CSc 110, Autumn 2017

Lecture 9: Graphics and Nested Loops

Adapted from slides by Marty Stepp and Stuart Reges

Can you write this in Python?

Drawing parameter question

- Modify draw_car to allow the car to be drawn at any size.
- Existing car: size 100. Second car: $(150,10)$, size 50.
- Once you have this working, use a for loop with your function to draw a line of cars, like the picture at right.
- Start at $(10,130)$, each size 40 , separated by 50px.

Animation with sleep

- DrawingPanel's sleep function pauses your program for a given number of milliseconds.
- You can use sleep to create simple animations.

```
panel = DrawingPanel(250, 200)
for i in range(1, NUM_CIRCLES + 1):
    panel.draw_oval(15 * i, 15 * i, 30, 30)
    panel.sleep(500)
```

- Try adding sleep commands to loops in past exercises in this chapter and watch the panel draw itself piece by piece.

Drawing parameter answer

```
def main():
    panel = DrawingPanel(260, 100, background="light gray")
    draw_car(panel, 10, 30, 100)
    draw_car(panel, 150, 10, 50)
    for i in range(0, 5):
        draw_car(panel, 10 + i * 50, 130, 40);
def draw_car(p, x, y, size):
    p.fill_rect(x, y, size, size / 2, "black")
    p.fill_oval(x + size / 10, y + size / 5 * 2, size / 5, size / 5, "red")
    p.fill_oval(x + size / 10 * 7, y + size / 5 * 2, size / 5, size / 5, "red")
    p.fill_rect(x + size / 10 * 7, y + size / 10, size / 10 * 3, size / 5, "cyan")
```


重 Drawing... $\square \square$

Eile View Help
-

0505050505

How to add parameters

- The panel must always be a parameter to a function that draws
- Add in position (x, y) parameters
- These change x and y but not width and height of figures
- Add size parameter
- This changes width and height and sometimes x and y
- Think of all sizes and placements as percentages of the size
- size (width) was 100 , wheel was 70 from left, that is 70% from the left so, size / 10 * 7

Nested Loops

- What does the following code output?

```
def main():
    for i in range(1, 10):
        for j in range(1, 10):
            print(j * i, end="\t")
        print()
```

main()

Outputting a Grid

controls the number of rows

for i in range (n, m):
for j in range (n, m) : creates a single row

Output the following figures

- Left grid:
- $\mathrm{x}=100$
- $y=100$
- circle size $=20$
- number of circles $=5$
- Right grid:
- $\mathrm{x}=300$
- $y=300$
- circle size $=40$
- number of circles $=2$

