
CSc 110, Autumn 2017
Lecture 13: Cumulative Sum and Boolean Logic

Adapted from slides by Marty Stepp and Stuart Reges

Adding many numbers

• How would you find the sum of all integers from 1-1000?

This may require a lot of typing
sum = 1 + 2 + 3 + 4 + ...

print("The sum is", sum)

• What if we want the sum from 1 - 1,000,000?
Or the sum up to any maximum?
• How can we generalize the above code?

Cumulative sum loop

sum = 0
for i in range(1, 1001):

sum = sum + i

print("The sum is", sum)

• cumulative sum: A variable that keeps a sum in progress and is updated
repeatedly until summing is finished.

• The sum in the above code is an attempt at a cumulative sum.

• Cumulative sum variables must be declared outside the loops that update them, so
that they will still exist after the loop.

Cumulative product

• This cumulative idea can be used with other operators:

product = 1

for i in range(1, 21):

product = product * 2

print("2 ^ 20 =", product)

• How would we make the base and exponent adjustable?

input and cumulative sum

• We can do a cumulative sum of user input:

sum = 0

for i in range(1, 101):

next = int(input("Type a number: "))

sum = sum + next

print("The sum is", sum)

Cumulative sum question

• Modify the receipt program from lecture 2
• Prompt for how many people, and each person's dinner cost.
• Use functions to structure the solution.

• Example log of execution:
How many people ate? 4
Person #1: How much did your dinner cost? 20.00
Person #2: How much did your dinner cost? 15
Person #3: How much did your dinner cost? 30.0
Person #4: How much did your dinner cost? 10.00

Subtotal: $75.0

Tax: $6.0

Tip: $11.25

Total: $92.25

Cumulative sum answer

This program enhances our Receipt program using a cumulative sum.

def main():

subtotal = meals()

results(subtotal)

Prompts for number of people and returns total meal subtotal.

def meals():

people = float(input("How many people ate? "))

subtotal = 0.0; # cumulative sum

for i in range(1, people + 1):

person_cost = float(input("Person #" + str(i) +

": How much did your dinner cost? "))

subtotal = subtotal + person_cost # add to sum

return subtotal

...

Cumulative answer, cont'd.

Calculates total owed, assuming 8% tax and 15% tip

def results(subtotal):

tax = subtotal * .08

tip = subtotal * .15

total = subtotal + tax + tip

print("Subtotal: $" + str(subtotal))

print("Tax: $" + str(tax))

print("Tip: $" + str(tip))

print("Total: $" + str(total))

Factoring if/else code

• factoring: Extracting common/redundant code.
• Can reduce or eliminate redundancy from if/else code.

• Example:
if a == 1:

print(a)

x = 3

b = b + x

elif a == 2:

print(a)

x = 6

y = y + 10

b = b + x

else: # a == 3
print(a)

x = 9

b = b + x

print(a)

x = 3 * a

if a == 2:

y = y + 10

b = b + x

Relational expressions
• if statements use logical tests.

if i <= 10: ...

• These are Boolean expressions.

• Tests use relational operators:

Operator Meaning Example Value

== equals 1 + 1 == 2 True

!= does not equal 3.2 != 2.5 True

< less than 10 < 5 False

> greater than 10 > 5 True

<= less than or equal to 126 <= 100 False

>= greater than or equal to 5.0 >= 5.0 True

Logical operators

• Tests can be combined using logical operators:

• "Truth tables" for each, used with logical values p and q:

Operator Description Example Result

and and (2 == 3) and (-1 < 5) False

or or (2 == 3) or (-1 < 5) True

not not not (2 == 3) True

P q p and q p or q

True True True True

True False False True

False True False True

False False False False

p not p

True False

False True

Evaluating logical expressions
• Relational operators have lower precedence than math;

logical operators have lower precedence than relational
operators

5 * 7 >= 3 + 5 * (7 – 1) and 7 <= 11

5 * 7 >= 3 + 5 * 6 and 7 <= 11

35 >= 3 + 30 and 7 <= 11

35 >= 33 and 7 <= 11

True and True

True

Logical questions

• What is the result of each of the following expressions?

x = 42

y = 17

z = 25

• y < x and y <= z
• x % 2 == y % 2 or x % 2 == z % 2
• x <= y + z and x >= y + z
• not(x < y and x < z)
• (x + y) % 2 == 0 or not((z - y) % 2 == 0)

• Answers: True, False, True, True, False

Type bool

• bool: A logical type whose values are True and False.
• A logical test is actually a Boolean expression.
• Like other types, it is legal to:

• create a bool variable
• pass a bool value as a parameter
• return a bool value from function
• call a function that returns a bool and use it as a test

minor = age < 21
is_prof = "Prof" in name
loves_csc = True

allow only CS-loving students over 21
if minor or is_prof or not loves_csc:

print("Can't enter the club!")

Returning bool

def is_prime(n):

factors = 0;

for i in range(1, n + 1):

if (n % i == 0):

factors += 1

if factors == 2:

return True

else:

return False

• Calls to functions returning bool can be used as tests:
if is_prime(57):

...

Is this good style?

"Boolean Zen", part 1

• Students new to boolean often test if a result is True:

if is_prime(57) == True: # bad

...

• But this is unnecessary and redundant. Preferred:

if is_prime(57): # good

...

• A similar pattern can be used for a False test:

if is_prime(57) == False: # bad

if not is_prime(57): # good

"Boolean Zen", part 2

• Functions that return bool often have an
if/else that returns True or False:

def both_odd(n1, n2):

if n1 % 2 != 0 and n2 % 2 != 0:

return True

else:

return False

• But the code above is unnecessarily verbose.

Solution w/ bool variable

• We could store the result of the logical test.

def both_odd(n1, n2):

test = (n1 % 2 != 0 and n2 % 2 != 0)

if test: # test == True

return True

else: # test == False

return False

• Notice: Whatever test is, we want to return that.

• If test is True, we want to return True.

• If test is False, we want to return False.

Solution w/ "Boolean Zen"

• Observation: The if/else is unnecessary.
• The variable test stores a bool value;

its value is exactly what you want to return. So return that!

def both_odd(n1, n2):

test = (n1 % 2 != 0 and n2 % 2 != 0)

return test

• An even shorter version:
• We don't even need the variable test.

We can just perform the test and return its result in one step.

def both_odd(n1, n2):

return (n1 % 2 != 0 and n2 % 2 != 0)

"Boolean Zen" template

• Replace

def name(parameters):
if test:

return True

else:

return False

•with

def name(parameters):
return test

Improve the is_prime function

• How can we fix this code?
def is_prime(n):

factors = 0;

for i in range(1, n + 1):

if n % i == 0:

factors += 1

if factors != 2:

return False

else:

return True

De Morgan's Law

• De Morgan's Law: Rules used to negate boolean tests.
• Useful when you want the opposite of an existing test.

• Example:

Original Expression Negated Expression Alternative

a and b not a or not b not(a and b)

a or b not a and not b not(a or b)

Original Code Negated Code
if x == 7 and y > 3:

...

if x != 7 or y <= 3:

...

Boolean practice questions

• Write a function named is_vowel that returns whether a str is a
vowel (a, e, i, o, or u), case-insensitively.
• is_vowel("q") returns False
• is_vowel("A") returns True
• is_vowel("e") returns True

• Change the above function into an is_non_vowel that returns
whether a str is any character except a vowel.
• is_non_vowel("q") returns True
• is_non_vowel("A") returns False
• is_non_vowel("e") returns False

Boolean practice answers

Enlightened version. I have seen the true way (and false way)

def is_vowel(s):

return s == 'a' or s == 'A' or s == 'e' or s == 'E' or s =='i' or s == 'I'

or s == 'o' or s == 'O' or s == 'u' or s =='U'

Enlightened "Boolean Zen" version

def is_non_vowel(s):

return not(s == 'a') and not(s == 'A') and not(s == 'e') and not(s == 'E')

and not(s =='i') and not(s == 'I') and not(s == 'o') and

not(s == 'O') and not(s == 'u') and not(s =='U')

or, return not is_vowel(s)

When to return?

• Functions with loops and return values can be tricky.
• When and where should the function return its result?

• Write a function seven that uses randint to draw up to ten lotto
numbers from 1-30.

• If any of the numbers is a lucky 7, the function should stop and return True.
If none of the ten are 7 it should return False.

• The method should print each number as it is drawn.

15 29 18 29 11 3 30 17 19 22 (first call)
29 5 29 4 7 (second call)

Flawed solution

Draws 10 lotto numbers; returns True if one is 7.

def seven():

for i in range(10):

num = randint(1, 30)

print(num, " ", end='')

if num == 7:

return True

else:

return False

• The function always returns immediately after the first draw.

• This is wrong if that draw isn't a 7; we need to keep drawing.

Returning at the right time

Draws 10 lotto numbers; returns True if one is 7.

def seven():

for i in range(1, 11):

num = randint(1, 30)

print(str(num) + " ", end='')

if num == 7: # found lucky 7; can exit now

return True

return False # if we get here, there was no 7

• Returns True immediately if 7 is found.

• If 7 isn't found, the loop continues drawing lotto numbers.

• If all ten aren't 7, the loop ends and we return False.

if/else, return question

• Write a function count_factors that returns
the number of factors of an integer.
• count_factors(24) returns 8 because

1, 2, 3, 4, 6, 8, 12, and 24 are factors of 24.

• Solution:
Returns how many factors the given number has.
def count_factors(number):

count = 0
for i in range(1, number + 1):

if (number % i == 0):
count += 1 # i is a factor of number

return count

