CSc 110, Autumn 2017/

Lecture 13: Cumulative Sum and Boolean Logic
Adapted from slides by Marty Stepp and Stuart Reges

Ol GOOD, A TRUE OR
b, PALSE TESTY
HM

AT LAST, SOME CLARVTY? EVERY

SEMTENCE 1% E1THER PYRE,

SWEET TRUTH OR A VILE,

COMTEMPTIELE UE /! ONE

QF, THE OTHER ! MOTUING
M BETWEEN !

4\;%
¥

/
2

e
Adding many numbers

* How would you find the sum of all integers from 1-10007?

This may require a lot of typing
sum = 1 + 2 + 3 + 4 + ...
print ("The sum 1s", sum)

 What if we want the sum from 1 - 1,000,0007
Or the sum up to any maximum?

* How can we generalize the above code?

Cumulative sum loop

sum = 0
for 1 in range(l, 1001) :
sum = sum + 1

print ("The sum 1s", sum)

e cumulative sum: A variable that keeps a sum in progress and is updated
repeatedly until summing is finished.

 The sum in the above code is an attempt at a cumulative sum.

* Cumulative sum variables must be declared outside the loops that update them, so
that they will still exist after the loop.

Cumulative product

* This cumulative idea can be used with other operators:

product =1
for 1 in range(l, 21):
product = product * 2

print ("2 ~ 20 =", product)

* How would we make the base and exponent adjustable?

input and cumulative sum

* We can do a cumulative sum of user input:

sum = 0
for 1 1n range(l, 101):
next = int (input ("Type a number:

sum = sum + next

print ("The sum 1s", sum)

"))

Cumulative sum question

* Modify the receipt program from lecture 2
* Prompt for how many people, and each person's dinner cost.
e Use functions to structure the solution.

* Example log of execution:

How many people ate? 4
Person #1: How much did your dinner cost? 20.00

Person #2: How much did your dinner cost? 15
Person #3: How much did your dinner cost? 30.0
Person #4: How much did your dinner cost? 10.00

Subtotal: $75.0
Tax: $6.0

Tip: $11.25
Total: $92.25

Cumulative sum answer

This program enhances our Receipt program using a cumulative sum.
def main() :

subtotal = meals|()

results (subtotal)

Prompts for number of people and returns total meal subtotal.
def meals () :

people = float (input ("How many people ate? "))

subtotal = 0.0; # cumulative sum

for i in range(l, people + 1):
person cost = float (input ("Person #" + str(i) +
": How much did your dinner cost? "))
subtotal = subtotal + person cost # add to sum
return subtotal

Cumulative answer, cont'd.

Calculates total owed, assuming 8% tax and 15% tip
def results (subtotal):

tax = subtotal * .08

tip = subtotal * .15

total = subtotal + tax + tip

print ("Subtotal: $" + str (subtotal))
print ("Tax: $" + str(tax))

print ("Tip: $" + str(tip))

print ("Total: $" + str(total))

Factoring 1f/else code

* factoring: Extracting common/redun

dant code.

e Can reduce or eliminate redundancy from 1 f/else code.

* Example: ™~

if a == 1:
print (a)
X = 3 print (a)
b =Db + x % = 3 *

elif a == 2: ,
print (a) >>_ , 1f a ==
X = 6 y =
y =y + 10 b =Db +
b =Db + x

else: ¥ a ==
print (a)
Xx = 9
b =Db + x

Relational expressions

e if statements use logical tests.

if 1 <= 10:

* These are Boolean expressions.

* Tests use relational operators:

Operator Meaning Example Value
== equals 1 + 1 == True
| = does not equal 3.2 != 2.5 True
< less than 10 < 5 False
> greater than 10 > 5 True
<= less than or equal to 126 <= 100 False
>= greater than or equal to 5.0 >= 5.0 True

Logical operators

e Tests can be combined using logical operators:

Operator Description Example Result
and and (2 == 3) and (-1 < 5) False
or or (2) or (-1 < 5) True
not not not (2 == 3) True

* "Truth tables" for each, used with logical values p and g:

P q Pandq | Porq
True True True True
True False |False True
False | True False True
False |False |False False

P not p
True False
False | True

Evaluating logical expressions

* Relational operators have lower precedence than math;
logical operators have lower precedence than relational

operators
5 * 7 > 3 +5 * (7T -1) and 7 <= 11
5 * 7 > 3 + 5 * 6 and 7 <= 11
35 >> 3 + 30 and 7 <= 11
35 >= 33 and 7 <= 11
True and True
True

Logical questions

* What is the result of each of the following expressions?

x = 472 BOOLEAN HAIR Lo&lC
y = 17 A &
oo 4 @

*y < x and y <= z

* X % 2 == % 2 or x % 2 == 272 % 2 ,@\@@
|

*x <=y + z and x >=y Z AND OR xOR
*not(x < y and x < z)
* (x +vy) $ 2 == 0 or not((z - y) % 2 == 0)

* Answers: True, False, True, True, False

Type bool

* bool: A logical type whose values are True and False.
* Alogical test is actually a Boolean expression.
* Like other types, it is legal to:
e create a bool variable
* pass abool value as a parameter
* return abool value from function
e call a function that returns a bool and use it as a test

minor = age < 21
1s prof = "Prof" in name
loves csc = True

allow only CS-loving students over 21
1f minor or 1sTprof or not loves csc:
print ("Can enter the club!™)

Returning bool

def 1s prime (n):
factors = 0;
for 1 1n range(l, n + 1):
if (n % 1 == 0):
factors += 1

Is this good style?

if factors == 2:
return True
else:
return False

* Calls to functions returning bool can be used as tests:

if is_prime (57):

"Boolean Zen", part 1

e Students new to boolean often test if aresultis True:

if is prime(57) == True: # bad

e But this is unnecessary and redundant. Preferred:
if is prime(57): # good

* A similar pattern can be used for a False test:

if is_prime(57) == False: # bad
if not is prime(57): # good

"Boolean Zen", part 2

 Functions that return bool often have an
1f/else thatreturns True or False:

def both odd(nl, n2):
ifnl $2 !'=0andn2 $ 2 '=0:
return True
else:
return False

* But the code above is unnecessarily verbose.

Solution w/ boo1l variable

* We could store the result of the logical test.

def both odd(nl, n2):

test = (n1 $ 2 !'= 0 and n2 % 2 != 0)
if test: # test == True

return True
else: # test == False

return False

* Notice: Whatever test is, we want to return that.
* [f testis True, we want to return True.
* [ftestisFalse, we want to return False.

Solution w/ "Boolean Zen"

* Observation: The i £ /else is unnecessary.

e The variable test stores a bool value;
its value is exactly what you want to return. So return that!
def both odd(nl, n2):
=

test = (nl % 2
return test

0O and n2 % 2 != 0)

* An even shorter version:

 We don't even need the variable test.
We can just perform the test and return its result in one step.

def both odd(nl,

_ nz2) :
return (nl1 $ 2 !=

O and n2 $ 2 '= 0)

"Boolean Zen" template

* Replace
def name (parameters) :
1f test:
return True
else:

return False

e With

def name (parameters) :
return test

Improve the 1s prime function

e How can we fix this code?

def is prime (n) :
factors = 0;
for 1 in range(l, n + 1):
if n % 1 ==
factors += 1

if factors != 2:
return False
else:
return True

De Morgan's Law

* De Morgan's Law: Rules used to negate boolean tests.
* Useful when you want the opposite of an existing test.

Original Expression Negated Expression Alternative

a and b not a or not b not (a and b)
a or b not a and not b not (a or b)
* Example:
Original Code Negated Code

1if x == 7 and y > 3: if x =7 or yv <= 3:

Boolean practice questions

 Write a function named is vowel that returns whethera strisa
vowel (a, e, i, 0, or u), case-insensitively.
* 1s vowel ("g") returns False
* 1s vowel ("A") returns True
* 1s vowel ("e") returns True

* Change the above function intoan is non wvowel that returns
whether a str is any character except a vowel.
* 1s non vowel ("g") returns True
* 1s non vowel ("A") returns False
* 1s non vowel ("e") returns False

Boolean practice answers

Enlightened version. I have seen the true way (and false way)
def is vowel (s):
return s == 'a' or s == 'A' or s == 'e' or s == 'E' or s =='i' or s == 'I'
or s == 'o' or s == 'O' or s == 'u' or s =='U0U"'

Enlightened "Boolean Zen" version
def is non vowel (s):

return not(s == 'a') and not(s == 'A') and not(s == 'e') and not(s == 'E')
and not(s =='i') and not(s == 'I') and not(s == 'o') and
not(s == '0O') and not(s == 'u') and not(s =='U")

or, return not is_ vowel (s)

When to return?

* Functions with loops and return values can be tricky.
e When and where should the function return its result?

* Write a function seven that uses randint to draw up to ten lotto
numbers from 1-30.

* If any of the numbers is a lucky 7, the function should stop and return True.
If none of the ten are 7 it should return False.

* The method should print each number as it is drawn.

15 29 18 29 11 3 30 17 19 22 (first call)
29 5 29 4 7 (second call)

Flawed solution

Draws 10 lotto numbers; returns True if one is 7.
def seven () :
for 1 in range(10) :
num = randint (1, 30)

print (num, " ", end='")
if num ==

return True
else:

return False

* The function always returns immediately after the first draw.
* This is wrong if that draw isn't a 7, we need to keep drawing.

Returning at the right time

Draws 10 lotto numbers; returns True if one is 7.
def seven() :
for 1 in range(l, 11):

num = randint (1, 30)
print (str (num) + " ", end="'")
if num == 7: # found lucky 7; can exit now

return True

return False # if we get here, there was no 7

e Returns True immediately if 7 is found.
e If 7 isn't found, the loop continues drawing lotto numbers.
 If all ten aren't 7, the loop ends and we return False.

if/else, return question

* Write a function count factors thatreturns
the number of factors of an integer.

* count factors (24) returns 8 because
1,2,3,4,6, 8, 12, and 24 are factors of 24.

e Solution:

Returns how many factors the given number has.
def count factors (number) :
count = 0
for 1 1n range(l, number + 1):
if (number $ i == 0):
count += 1 # i is a factor of number
return count

