
CSc 110, Autumn 2017
Lecture 15: Strings and Fencepost Loops

Adapted from slides by Marty Stepp and Stuart Reges

http://xkcd.com/221/

http://xkcd.com/221/

Looping through a string

• The for loop through a string using range:

major = "CSc"

for letter in range(len(major)):

print(major[letter])

• You can also use a for loop to print or examine each character without range.

major = "CSc"

for letter in major:

print(letter)

Output:
C

S

c

String tests

name = "Voldermort"

if name.startswith("Vol"):

print("He who must not be named")

Function Description

startswith(str) whether one contains other's characters at start

endswith(str) whether one contains other's characters at end

• The in keyword can be used to test if a string contains another string.

example: "er" in name # true

String question

• A Caesar cipher is a simple encryption where a message is encoded by
shifting each letter by a given amount.
• e.g. with a shift of 3, A  D, H  K, X  A, and Z  C

• Write a program that reads a message from the user and performs a
Caesar cipher on its letters:

Your secret message: Brad thinks Angelina is cute

Your secret key: 3

The encoded message: eudg wklqnv dqjholqd lv fxwh

Strings and ints

• All char values are assigned numbers internally by the computer, called
ASCII values.

• Examples:
'A' is 65, 'B' is 66, ' ' is 32
'a' is 97, 'b' is 98, '*' is 42

• One character long Strings and ints can be converted to each other
ord('a') is 97, chr(103) is 'g'

• This is useful because you can do the following:
chr(ord('a' + 2)) is 'c'

A deceptive problem...

• Write a method print_letters that prints each letter from a
word separated by commas.

For example, the call:
print_letters("Atmosphere")

should print:
A, t, m, o, s, p, h, e, r, e

Flawed solutions

• def print_letters(word):

for i in range(0, len(word)):

print(word[i] + ", ", end='')

print() # end line

• Output: A, t, m, o, s, p, h, e, r, e,

• def print_letters(word):

for i in range(0, len(word)):

print(", " + word[i], end='')

print() # end line

• Output: , A, t, m, o, s, p, h, e, r, e

Fence post analogy

• We print n letters but need only n - 1 commas.

• Similar to building a fence with wires separated by posts:

• If we use a flawed algorithm that repeatedly places a post + wire, the last post

will have an extra dangling wire.

for length of fence :

place a post.

place some wire.

Fencepost loop

• Add a statement outside the loop to place the initial "post."
• Also called a fencepost loop or a "loop-and-a-half" solution.

place a post.

for length of fence – 1:

place some wire.

place a post.

Fencepost function solution

• def print_letters(word):

print(word[0])

for i in range(1, len(word)):

print(", " + word[i], end='')

print() # end line

• Alternate solution: Either first or last "post" can be taken out:

def print_letters(word):

for i in range(0, len(word) - 1):

print(word[i] + ", ", end='')

last = len(word) – 1

print(word[last]) # end line

Fencepost question

• Write a function print_primes that prints all prime numbers up to
a max.

• Example: print_primes(50) prints
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47

• If the maximum is less than 2, print no output.

• To help you, write a function count_factors which returns the
number of factors of a given integer.
• count_factors(20) returns 6 due to factors 1, 2, 4, 5, 10, 20.

Fencepost answer

Prints all prime numbers up to the given max.

def print_primes(max):

if (max >= 2):

print("2", end='')

for i in range(3, max + 1):

if (count_factors(i) == 2):

print(", " + str(i))

print()

Returns how many factors the given number has.

def count_factors(number):

count = 0

for i in range(1, number + 1):

if (number % i == 0):

count += 1 # i is a factor of number

return count

