
CSc 110, Autumn 2017
Lecture 21: Line-Based File Input

Adapted from slides by Marty Stepp and Stuart Reges

IMDb movies problem

• Consider the following Internet Movie Database (IMDb) data:

1 9.1 196376 The Shawshank Redemption (1994)

2 9.0 139085 The Godfather: Part II (1974)

3 8.8 81507 Casablanca (1942)

• Write a program that displays any movies containing a phrase:

Search word? part

Rank Votes Rating Title
2 139085 9.0 The Godfather: Part II (1974)
40 129172 8.5 The Departed (2006)
95 20401 8.2 The Apartment (1960)
192 30587 8.0 Spartacus (1960)
4 matches.

• Is this a token or line-based problem?

"Chaining"
• main should be a concise summary of your program.

• It is bad if each function calls the next without ever returning (we call this
chaining):

• A better structure has main make most of the calls.
• Functions must return values to main to be passed on later.

main
functionA

functionB
functionC

functionD

main
functionA

functionB
functionD

functionD

Bad IMDb "chained" code 1

Displays IMDB's Top 250 movies that match a search string.

def main():

get_word()

Asks the user for their search word and returns it.

def get_word():

search_word = input("Search word: ")

search_word = search_word.lower()

print()

file = open("imdb.txt")

search(file, search_word)

Breaks apart each line, looking for lines that match the search word.

def search(file, search_word):

matches = 0

for line in file:

line_lower = line.lower() # case-insensitive match

if (search_word in line_lower):

matches += 1

print("Rank\tVotes\tRating\tTitle")

display(line)

Bad IMDb "chained" code 2

Displays the line in the proper format on the screen.

def display(line):

parts = line.split()

rank = parts[0]

rating = parts[1]

votes = parts[2]

title = ""

for i in range(3, len(parts)):

title += parts[i] + " " # the rest of the line

print(rank + "\t" + votes + "\t" + rating + "\t" + title)

Better IMDb answer 1

Displays IMDB's Top 250 movies that match a search string.

def main():

search_word = get_word()

file = open("imdb.txt")

line = search(file, search_word)

if (len(line) > 0):

print("Rank\tVotes\tRating\tTitle")

matches = 0

while (len(line) > 0):

display(line)

line = search(file, search_word)

matches += 1

print(str(matches) + " matches.")

Asks the user for their search word and returns it.

def get_word():

search_word = input("Search word: ")

search_word = search_word.lower()

print()

return search_word

...

Better IMDb answer 2

...

Breaks apart each line, looking for lines that match the search word.

def search(file, search_word):

for line in file:

line_lower = line.lower() # case-insensitive match

if (search_word in line):

return line

return "" # not found

displays the line in the proper format on the screen.

def display(line):

parts = line.split()

rank = parts[0]

rating = parts[1]

votes = parts[2]

title = ""

for i in range(3, len(parts)):

title += parts[i] + " " # the rest of the line

print(rank + "\t" + votes + "\t" + rating + "\t" + title)

Survey Results

0
10
20
30
40
50
60
70

What you like about lecture

0
5

10
15
20
25
30
35

What you dislike about lecture

0
10
20
30
40
50
60
70

What you like about section

0
10
20
30
40
50
60
70
80

What you dislike about section

0

2

4

6

8

10

12

Resources you would like

Least favorite

• Handwritten exams

• Quizzes

• Time of deadlines

• Daily problems

• Collaboration

• Projects

Favorite

• Problem solving

• Joy of getting a problem right

• Programming

• Resources

• Cartoons

"The projects are probably one of the most satisfying pieces
of schoolwork I've ever done. I just feel a real sense of
accomplishment when I complete one."

