
CSc 110, Autumn 2017
Lecture 24: Lists for Tallying; Text Processing

Adapted from slides by Marty Stepp and Stuart Reges

"list mystery" problem

• traversal: An examination of each element of an list.

• What element values are stored in the following list?

a = [1, 7, 5, 6, 4, 14, 11]

for i in range(0, len(a) – 1):

if a[i] > a[i + 1]:

a[i + 1] = a[i + 1] * 2

index 0 1 2 3 4 5 6

value

index 0 1 2 3 4 5 6

value 1 7 10 12 8 14 22

A multi-counter problem

• Problem: Write a function most_frequent_digit that returns
the digit value that occurs most frequently in a number.

• Example: The number 669260267 contains:
one 0, two 2s, four 6es, one 7, and one 9.

most_frequent_digit(669260267) returns 6.

• If there is a tie, return the digit with the lower value.

most_frequent_digit(57135203) returns 3.

A multi-counter problem

• We could declare 10 counter variables ...
counter0, counter1, counter2, counter3, counter4,

counter5, counter6, counter7, counter8, counter9

• But a better solution is to use a list of size 10.
• The element at index i will store the counter for digit value i.
• Example for 669260267:

• How do we build such an list? And how does it help?

index 0 1 2 3 4 5 6 7 8 9

value 1 0 2 0 0 0 4 1 0 0

Creating a list of tallies

assume n = 669260267

counts = [0] * 10

while n > 0:

pluck off a digit and add to proper counter

digit = n % 10

counts[digit] += 1

n = n // 10

index 0 1 2 3 4 5 6 7 8 9

value 1 0 2 0 0 0 4 1 0 0

Tally solution

Returns the digit value that occurs most frequently in n.

Breaks ties by choosing the smaller value.

def most_frequent_digit(n):

counts = [0] * 10

while n > 0:

digit = n % 10 # pluck off a digit and tally it

counts[digit] += 1

n = n // 10

find the most frequently occurring digit

best_index = 0

for i in range(1, len(counts)):

if counts[i] > counts[best_index]:

best_index = i

return best_index

Section attendance question

• Read a file of section attendance (see next slide):
yynyyynayayynyyyayanyyyaynayyayyanayyyanyayna
ayyanyyyyayanaayyanayyyananayayaynyayayynynya
yyayaynyyayyanynnyyyayyanayaynannnyyayyayayny

• And produce the following output:
Section 1
Student points: [20, 16, 17, 14, 11]
Student grades: [100.0, 80.0, 85.0, 70.0, 55.0]

Section 2
Student points: [16, 19, 14, 14, 8]
Student grades: [80.0, 95.0, 70.0, 70.0, 40.0]

Section 3
Student points: [16, 15, 16, 18, 14]
Student grades: [80.0, 75.0, 80.0, 90.0, 70.0]

• Students earn 3 points for each section attended up to 20.

• Each line represents a section.
• A line consists of 9 weeks' worth of data.

• Each week has 5 characters because there are 5 students.
• Within each week, each character represents one student.

• a means the student was absent (+0 points)
• n means they attended but didn't do the problems (+1 points)
• y means they attended and did the problems (+3 points)

Section input file

yynyyynayayynyyyayanyyyaynayyayyanayyyanyayna

ayyanyyyyayanaayyanayyyananayayaynyayayynynya

yyayaynyyayyanynnyyyayyanayaynannnyyayyayayny

week 1 2 3 4 5 6 7 8 9

student 123451234512345123451234512345123451234512345

section 1

section 2

section 3

Section attendance answer

def main():
file = open("sections.txt")
lines = file.readlines()
section = 1
for line in lines:

points = [0] * 5
for i in range(len(line)):

student = i % 5
earned = 0
if line[i] == 'y': # c == 'y' or 'n' or 'a'

earned = 3
elif line[i] == 'n':

earned = 1
points[student] = min(20, points[student] + earned)

grades = [0] * 5
for i in range(len(points)):

grades[i] = 100.0 * points[i] / 20
print("Section", section)
print("Student points:", points)
print("Student grades:", grades)
print()
section += 1

Data transformations

• In many problems we transform data between forms.
• Example: digits count of each digit most frequent digit
• Often each transformation is computed/stored as an list.
• For structure, a transformation is often put in its own function.

• Sometimes we map between data and list indexes.

• by position (store the i th value we read at index i)
• tally (if input value is i, store it at array index i)
• explicit mapping (count 'J' at index 0, count 'X' at index 1)

• Exercise: Modify our Sections program to use functions that use lists as
parameters and returns.

List param/return answer
This program reads a file representing which students attended
which discussion sections and produces output of the students'
section attendance and scores.

def main():
file = open("sections.txt")
lines = file.readlines()
section = 1
for line in lines:

process one section
points = count_points(line)
grades = compute_grades(points)
results(section, points, grades)
section += 1

Produces all output about a particular section.
def results(section, points, grades):

print("Section", section)
print("Student scores:", points)
print("Student grades:", grades)
print()

...

List param/return answer
...

Computes the points earned for each student for a particular section.
def count_points(line):

points = [0] * 5
for i in range(len(line)):

student = i % 5
earned = 0
if line[i] == 'y': # c == 'y' or c == 'n'

earned = 3
elif line[i] == 'n':

earned = 2
points[student] = min(20, points[student] + earned)

return points

Computes the percentage for each student for a particular section.
def compute_grades(points):

grades = [0] * 5
for i in range(len(points)):

grades[i] = 100.0 * points[i] / 20
return grades

