
CSc 110, Autumn 2017
Lecture 38: Sorting

Adapted from slides by Marty Stepp and Stuart Reges

Sorting

• sorting: Rearranging the values in a list into a specific order
(usually into their "natural ordering").

• one of the fundamental problems in computer science
• can be solved in many ways:

• there are many sorting algorithms

• some are faster/slower than others

• some use more/less memory than others

• some work better with specific kinds of data

• some can utilize multiple computers / processors, ...

• comparison-based sorting : determining order by
comparing pairs of elements:
• <, >, …

Selection sort

• selection sort: Orders a list of values by repeatedly putting
the smallest or largest unplaced value into its final position.

The algorithm:

• Look through the list to find the smallest value.

• Swap it so that it is at index 0.

• Look through the list to find the second-smallest value.

• Swap it so that it is at index 1.

...

• Repeat until all values are in their proper places.

Selection sort example
• Initial list:

• After 1st, 2nd, and 3rd passes:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value 22 18 12 -4 27 30 36 50 7 68 91 56 2 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 18 12 22 27 30 36 50 7 68 91 56 2 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 12 22 27 30 36 50 7 68 91 56 18 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 22 27 30 36 50 12 68 91 56 18 85 42 98 25

Selection sort code

Rearranges the elements of a into sorted order using

the selection sort algorithm.

def selection_sort(a):

for i in range(0, len(a) - 1):

find index of smallest remaining value

min = i

for j in range(i + 1, len(a)):

if (a[j] < a[min]):

min = j

swap smallest value its proper place, a[i]

swap(a, i, min)

Selection sort runtime (Fig. 13.6)

• How many comparisons does selection sort have to do?

Activity
• Initial list:

• After 1st, 2nd, and 3rd passes:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value 2 8 -2 4 7 0 -6 50 70 -8 1 6 21 5 42 9 -5

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -8 8 -2 4 7 0 -6 50 70 2 1 6 21 5 42 9 -5

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -8 -6 -2 4 7 0 8 50 70 2 1 6 21 5 42 9 -5

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -8 -6 -5 4 7 0 8 50 70 2 1 6 21 5 42 9 -2

Similar algorithms

bubble sort: Make repeated passes, swapping adjacent values
 slower than selection sort (has to do more swaps)

insertion sort: Shift each element into a sorted sub-list
 faster than selection sort (examines fewer values)

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value 22 18 12 -4 27 30 36 50 7 68 91 56 2 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value 18 12 -4 22 27 30 36 7 50 68 56 2 85 42 91 25 98

22 50 91 98

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 12 18 22 27 30 36 50 7 68 91 56 2 85 42 98 25

7
sorted sub-list (indexes 0-7)

Merge sort

• merge sort: Repeatedly divides the data in half, sorts each
half, and combines the sorted halves into a sorted whole.

The algorithm:
• Divide the list into two roughly equal halves.
• Sort the left half.
• Sort the right half.
• Merge the two sorted halves into one sorted list.

• Often implemented recursively.
• An example of a "divide and conquer" algorithm.

• Invented by John von Neumann in 1945

Merge sort example
index 0 1 2 3 4 5 6 7

value 22 18 12 -4 58 7 31 42

22 18 12 -4

22 18

22 18

18 22

merge

split
12 -4

12 -4

-4 12

merge

split

split

-4 12 18 22

58 7 31 42

58 7

58 7

7 58

merge

split
31 42

31 42

31 42

merge

split

split

7 31 42 58

-4 7 12 18 22 31 42 58

split

merge merge

merge

Merge halves code

Merges the left/right elements into a sorted result.

Precondition: left/right are sorted

def merge(result, left, right):

i1 = 0 # index into left list

i2 = 0 # index into right list

for i in range(0, len(result)):

if i2 >= len(right) or (i1 < len(left) and left[i1] <= right[i2]):

result[i] = left[i1] # take from left

i1 += 1

else:

result[i] = right[i2] # take from right

i2 += 1

Merge sort code

Rearranges the elements of a into sorted order using

the merge sort algorithm.

def merge_sort(a):

if len(a) >= 2:

split list into two halves

left = a[0, len(a)//2]

right = a[len(a)//2, len(a)]

sort the two halves

merge_sort(left)

merge_sort(right)

merge the sorted halves into a sorted whole

merge(a, left, right)

Merge sort runtime
• How many comparisons does merge sort have to do?

Activity
index 0 1 2 3 4 5 6 7

value 2 11 6 4 -8 7 3 42

merge sort the following list:

Sorting algorithms

• bogo sort: shuffle and pray

• bubble sort: swap adjacent pairs that are out of order

• selection sort: look for the smallest element, move to front

• insertion sort: build an increasingly large sorted front portion

• merge sort: recursively divide the list in half and sort it

• heap sort: place the values into a sorted tree structure

• quick sort: recursively partition list based on a middle value

other specialized sorting algorithms:

• bucket sort: cluster elements into smaller groups, sort them

• radix sort: sort integers by last digit, then 2nd to last, then ...

• ...

