Collected Definitions for Exam \#3

This is the 'official' collection of need-to-know definitions for Exam \#3. I can't recall the last time I didn't ask a definition question on an exam. To help you better prepare yourself for definition questions, I've assembled this list. My pledge to you: If I ask you for a definition on the exam, the term will come from this list. Note that this is not a complete list of the definitions given in class. You should know the others, too, but I won't specifically ask you for their definitions on the exam.

Topic 7: Relations (Continued from the Exam \#2 Topic 7 definition list. If I ask you to define a

 Topic 7 term on Exam \#3, it will come from this list.)- The inverse of a relation R on set A, denoted R^{-1}, contains all of the ordered pairs of R with their components exchanged. (That is, $R^{-1}=\{(b, a) \mid(a, b) \in R\}$.)
- Let G be a relation from set A to set B, and let F be a relation from B to set C. The composite of F and G, denoted $F \circ G$, is the relation of ordered pairs $(a, c), a \in A, c \in C$, such that $b \in B,(a, b) \in G$, and $(b, c) \in F$.
- A relation R on set A is an equivalence relation if it is reflexive, symmetric, and transitive.
- The equivalence class of an equivalence relation R on set B, and an element $b \in B$, is $\{c \mid c \in B \wedge(b, c) \in$ $R\}$ and is denoted $[b]$. That is, the equivalence class is the set of all elements of the base relation equivalent to a given element as defined by the relation.
- A relation R on set A is a (reflexive/weak) partial order if it is reflexive, antisymmetric, and transitive.
- A relation R on set A is irreflexive if, for all members of $A,(a, a) \notin R$.
- A relation R on set A is an irreflexive (or strict) partial order if it is irreflexive, antisymmetric, and transitive.
- Let R be a weak partial order on set $A . a$ and b are said to be comparable if $a, b \in A$ and either $a \preceq b$ or $b \preceq a$ (that is, either $(a, b) \in R$ or $(b, a) \in R)$.
- A weak partially-ordered relation R on set A is a total order if every pair of elements $a, b \in A$ are comparable.

Topic 8: Functions

- A function from set X to set Y, denoted $f: X \rightarrow Y$, is a relation from X to Y such that $f(x)$ is defined $\forall x \in X$ and, for each $x \in X$, there is exactly one $(x, y) \in f$.
- For each of the following, let $f: X \rightarrow Y$ be a function, and assume $f(n)=p$.
- X is the domain of $f ; Y$ is the codomain of f.
- f maps X to Y.
- p is the image of $n ; n$ is the pre-image of p.
- The range of f is the set of all images of elements of X. (Note that the range need not equal the codomain.)
- The floor of a value n, denoted $\lfloor n\rfloor$, is the largest integer $\leq n$.
- The ceiling of a value m, denoted $\lceil m\rceil$, is the smallest integer $\geq m$.
- A function $f: X \rightarrow Y$ is injective (a.k.a. one-to-one) if, for each $y \in Y, f(x)=y$ for at most one member of X.
- A function $f: X \rightarrow Y$ is surjective (a.k.a. onto) if f 's range is Y (the range $=$ the codomain).
- A bijective function (a.k.a. a one-to-one correspondence) is both injective and surjective.
- The inverse of a bijective function f, denoted f^{-1}, is the relation $\{(y, x) \mid(x, y) \in f\}$.
- Let $f: Y \rightarrow Z$ and $g: X \rightarrow Y$. The composition of f and g, denoted $f \circ g$, is the function $h=f(g(x))$, where $h: X \rightarrow Z$.
- A function $f: X \times Y \rightarrow Z$ (or $f(x, y)=z$) is a binary function.

Topic 9: Indirect ("Contra") Proofs of $p \rightarrow q$

No new definitions in this topic!

Topic 10: Properties of Integers

- Let i and j be positive integers. j is a factor of i when $i \% j=0$.
- A positive integer p is prime if $p \geq 2$ and the only factors of p are 1 and p.
- A positive integer p is composite if $p \geq 2$ and p is not prime.
- Let x and y be integers such that $x \neq 0$ and $y \neq 0$. The Greatest Common Divisor (GCD) of x and y is the largest integer i such that $i \mid x$ and $i \mid y$. That is, $\operatorname{gcd}(\mathrm{x}, \mathrm{y})=\mathrm{i}$.
- If the GCD of a and b is 1 , then a and b are relatively prime.
- When the members of a set of integers are all relatively prime to one another, they are pairwise relatively prime.
- Let x and y be positive integers. The Least Common Multiple (LCM) of x and y is the smallest integer s such that $x \mid s$ and $y \mid s$. That is, $\operatorname{lcm}(\mathrm{x}, \mathrm{y})=\mathrm{s}$.

Topic 11: Sequences and Strings

- A sequence is the ordered range of a function from a set of integers to a set S.
- In an arithmetic sequence (a.k.a. arithmetic progression) $a, a_{n+1}-a_{n}$ is constant. This constant is called the common difference of the sequence.
- In a geometric sequence (a.k.a. geometric progression) g, $\frac{g_{n+1}}{g_{n}}$ is constant. This constant is called the common ratio of the sequence.
- An increasing (a.k.a. non-decreasing) sequence i is ordered such that $i_{n} \leq i_{n+1}$.
- A strictly increasing sequence i is ordered such that $i_{n}<i_{n+1}$.
- A non-increasing (a.k.a. decreasing) sequence i is ordered such that $i_{n} \geq i_{n+1}$.
- A strictly decreasing sequence i is ordered such that $i_{n}>i_{n+1}$.
- Sequence x is a subsequence of sequence y when the elements of x are found within y in the same relative order.
- A string is a contiguous finite sequence of zero or more elements drawn from a set called the alphabet.
- A set is finite if there exists a bijective mapping between it and a set of cardinality $n, n \in \mathbb{Z}^{*}$.
- A set is countably infinite (a.k.a. denumerably infinite) if there exists a bijective mapping between the set and either \mathbb{Z}^{*} or \mathbb{Z}^{+}.
- A set is countable if it is either finite or countably infinite. If neither, the set is uncountable.

