(McCann)

Collected Definitions Since Exam \#3

Here are the definitions that we've covered since the material for the last midterm exam. I'm not going to re-print all of the definitions for the whole semester - if you lost a previous exam's definition handout, you can print another from the class web page or D2L.

Topic 12: Counting

- I provided two definitions of the (Generalized) Pigeonhole Principle; learn either one:
(a) if n items are placed in k boxes, then at least one box contains at least $\left\lceil\frac{n}{k}\right\rceil$ items.
(b) Let $f: X \rightarrow Y$, where $|X|=n$ and $|Y|=k$, and let $m=\left\lceil\frac{n}{k}\right\rceil$. There are at least m values $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ such that $f\left(a_{1}\right)=f\left(a_{2}\right)=\ldots=f\left(a_{m}\right)$.
- The Multiplication Principle (a.k.a. the Product Rule): If there are s steps in an activity, with n_{1} ways of accomplishing the first step, n_{2} of accomplishing the second, etc., and n_{s} ways of accomplishing the last step, then there are $n_{1} \cdot n_{2} \cdot \ldots \cdot n_{s}$ ways to complete all s steps.
- The Addition Principle (a.k.a. the Sum Rule): If there are t tasks, with n_{1} ways of accomplishing the first, n_{2} ways of accomplishing the second, etc., and n_{t} ways of accomplishing the last, then there are $n_{1}+n_{2}+\ldots+n_{t}$ ways to complete one of these tasks, assuming that no two tasks interfere with one another.
- The Principle of Inclusion-Exclusion for Two Sets says that the cardinality of the union of sets M and N is the sum of their individual cardinalities excluding the cardinality of their intersection. That is: $|M \cup N|=|M|+|N|-|M \cap N|$
- The Principle of Inclusion-Exclusion for Three Sets says that the cardinality of the union of sets M, N, and O is the sum of their individual cardinalities excluding the sum of the cardinalities of their pairwise intersections and including the cardinality of their intersection. That is: $|M \cup N \cup O|=|M|+|N|+|O|-(|M \cap N|+|M \cap O|+|N \cap O|)+|M \cap N \cap O|$
- An ordering of n distinct elements is called a permutation.
- An ordering of an r-element subset of n distinct elements is called an r-Permutation.
- An r-Combination of an n-element set X is an r-element subset of X. The quantity of r-element subsets is denoted $C(n, r)$ or $\binom{n}{r}$, and is read " n choose r."
- A combinatorial proof is an argument based on the principles of counting.

Topic 13: Finite Probability

- The probability that a specific event will occur, denoted $P(E)$, equals $\frac{|E|}{|S|}$, where $|E|$ is the quantity of occurrences of interest and $|S|$ is the quantity of possible occurrences.
- Let X and Y be events. The conditional probability of X given Y, denoted $P(X \mid Y)$, is $\frac{P(X \cap Y)}{P(Y)}$.
- If $P(A \mid B)=P(A)$, then the events A and B are independent.
- A discrete random variable (DRV) X is a function that maps outcomes of an activity to a countable range.
- A probability distribution is a function that maps the elements of the sample space to their probabilities of occurrence.
- The population mean (a.k.a. expected value) of a DRV Y, denoted μ, equals $\frac{\sum_{i} y_{i}}{n}$, where y_{i} is observation i and n is the cardinality of Y 's sample space. (A version using probability is given next.)
- The population mean (a.k.a. expected value) of a DRV Y, denoted μ, equals $\sum y P(Y=y)$. (A version not using probability is given just above.)
- The population variance of a DRV Y, denoted σ^{2}, equals $\sum(y-\mu)^{2} P(Y=y)$ and also $\sum y^{2} P(Y=y)-\mu^{2}$.
- The population standard deviation (SD), denoted σ, of a DRV Y is the square root of Y 's sample variance.
- A binomial distribution is a probability distribution whose sample space has only two possible outcomes.
- A Bernoulli trial is a sequence of experiments in which each experiment (a) either succeeds or fails, (b) is independent of the other experiments, and (c) has the same probability of success as the others.
- The binomial probability formula for a binomial distribution on a DRV Y of n trials and a probability of success p is $P(Y=y)=\binom{n}{y} p^{y}(1-p)^{n-y}$, where $0 \leq y \leq n$.

