Course Background

(or: Why You're Here, and What You Learned to Get Here)

Background - CSc 144 v1.1 (McCann) - p. 1/32

What Is Discrete Math?

Definition: Discrete Mathematics

Contrast this with 'the calculus,' which was developed by

Newton and Leibniz to study objects in motion. As a result:

.

- 'The Calculus' tends to focus on real values
- Discrete Mathematics tends to focus on integer values

Sample Discrete Math Topics

Topics that fall under the umbrella of discrete math include:

- Integral Functions and Relations
- Sets
- Sequences and Summations
- Counting (Permutations/Combinations, etc.)
- Discrete Probability

To understand those, you also need:

- First-Order Logic
- Logical Arguments
- Proof Techniques
- ... and a fair amount of pre-calculus mathematics

Background - CSc 144 v1.1 (McCann) - p. 3/32

"But Why Do I Have To Take Discrete Math?"

Discrete Structures is an ACM/IEEE core curriculum topic

• See:

https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

DM topics underlie much of Computer Science, including:

- Logic \rightarrow Knowledge Representation, Reasoning, Natural Language Processing, Computer Architecture
- Proof Techniques \rightarrow Algorithm Design, Code Verification
- Relations \rightarrow Database Systems
- Functions \rightarrow Hashing, Programming Languages
- Recurrence Relations \rightarrow Recursive Algorithm Analysis
- Probability \rightarrow Algorithm Design, Simulation

Topics You May Need To Review

• Mathematical concepts, including, but not limited to:

- Fractions
- Rational Numbers
- Basics of Sets
- Associative, Commutative, Distributive, and Transitive Laws
- Properties of Inequalities
- Summation and Product Notation
- Integer Division (Modulo, Divides, and Congruences)
- Even and Odd Integers
- Logarithms and Exponents
- Positional Number Systems

The Math Review appendix (available from the class web page) can help you review these topics.

Background - CSc 144 v1.1 (McCann) - p. 5/32

Notations for Sets of Values

\mathbb{Z}	All integers	$\{\ldots, -2, -1, 0, 1, 2, \ldots\}$
$\mathbb{Z}^+, \mathbb{N}^+$	All positive integers	$\{1,2,3,\ldots\}$
$\mathbb{Z}^*, \mathbb{N}_0$	The non-negative integers	$\{0, 1, 2, 3, \ldots\}$
Zeven	Even integers	$\{\ldots, -4, -2, 0, 2, 4, \ldots\}$
\mathbb{Z}^{odd}	Odd integers	$\{\ldots, -3, -1, 1, 3, \ldots\}$
\mathbb{Q}	Rational numbers	a/b , $a, b \in \mathbb{Z}, b \neq 0$
$\overline{\mathbb{Q}}$	Irrational Numbers	$\{i \mid i \notin Q\}$
\mathbb{R}	The real values	$\{\mathbb{Q}\cup\overline{\mathbb{Q}}\}$

Note: Avoid the term "natural numbers" and the plain \mathbb{N} .

Commutativity

Assume that \triangle is a binary operator on a set of values S.

If $x \bigtriangleup y = y \bigtriangleup x$ for any elements x and y in S,

then \triangle is a *commutative* operator.

Example(s):

Addition is commutative on \mathbb{R} :
Subtraction is non–commutative on $\mathbb R$:

Background - CSc 144 v1.1 (McCann) - p. 7/32

Associativity

Assume that \triangle is a binary operator on a set of values S.

If $(x \bigtriangleup y) \bigtriangleup z = x \bigtriangleup (y \bigtriangleup z)$ for any x, y, z in S,

then \triangle is an *associative* operator.

Example(s):

Multiplication is associative on \mathbb{Z} :

Subtraction is not associative on \mathbb{Z} :

Distributivity (1 / 2)

Assume that \triangle and \Box are binary operators on a set S, and that a, b, c are all values of S.

 \triangle is *left–distributive* over \Box when $a \triangle (b \Box c) = (a \triangle b) \Box (a \triangle c)$

 \triangle is *right–distributive* over \Box when $(b \Box c) \triangle a = (b \triangle a) \Box (c \triangle a)$

Background - CSc 144 v1.1 (McCann) - p. 9/32

Distributivity (2 / 2)

Example(s):

Multiplication distributes over addition:

This knowledge can help you do large products by hand:

Transitivity

Assume that \diamond defines a relationship on values from S.

For any x, y, z in S, \diamond is *transitive* if whenever $x \diamond y$ and

```
y \diamond z, then x \diamond z.
```

Example(s):

"Greater than" is transitive on \mathbb{R} :

In sports, "defeats" is not transitive on a set of teams:

Background - CSc 144 v1.1 (McCann) - p. 11/32

Three Fraction Reminders

① The product of fractions is the ratio of the products of the

numerators over the products of the denominators:

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

⁽²⁾ One fraction divided by another equals the product of the numerator fraction and the reciprocal of the denominator:

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$$

3 Computing the sum of two fractions requires a common

denominator, then we add the numerators:

 $\frac{a}{b} + \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{d} + \frac{b}{b} \cdot \frac{c}{d} = \frac{ad}{bd} + \frac{bc}{bd} = \frac{ad+bc}{bd}$

Rational and Irrational Numbers

.

Definition: Rational Number

Example(s):

A real number that is not rational is **irrational**.

Example(s):

Background - CSc 144 v1.1 (McCann) - p. 13/32

Basic Set Operators (1 / 2)

- 1. Union (U): $A \cup B$ contains all elements of both set A and set B
- 2. Intersection (\cap): $C \cap D$ contains only the elements present in both sets C and D
- 3. Difference (-): E F contains only the elements of set E that are **not** also in set F

(Note: Take out the "not," and you've got a definition for \cap)

4. Complement $(\overline{\Box})$: Given a set G, $\overline{G} = \mathcal{U} - G$, the set of available items, where \mathcal{U} is the *universe*.

Note: $X - Y = X \cap \overline{Y}$

Basic Set Operators (2 / 2)

Example(s):

 $A = \{1, 2, 4, 9\}$ $B = \{0, 2, 6, 8\}$ $C = \{2, 4, 7\}$

Background - CSc 144 v1.1 (McCann) - p. 15/32

Summation and Product Notation

$$\sum_{i=1}^{5} 2i = 2(1) + 2(2) + 2(3) + 2(4) + 2(5) = 30$$

where:

- Σ is the _____.
- *i* is the _____.
- 1 is the _____.
- 5 is the _____.
- 2*i* is the _____

Summation and Product Notation (cont.)

Switch Σ to Π (capital Pi) for multiplication:

Example(s):

Use parentheses to eliminate confusion:

Example(s):

Background - CSc 144 v1.1 (McCann) - p. 17/32

Nested Summations and Products

Much like nested $\ensuremath{\texttt{FOR}}$ loops.

|--|

Modulo and Divides

Integer Division (\setminus) produces quotients;

Modulo (%) produces remainders

Example(s):

Background - CSc 144 v1.1 (McCann) - p. 19/32

Modulo and Divides (cont.)

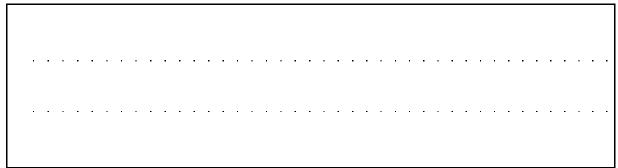
.

. .

Definition: Divides

Congruences

Definition: Congruent Modulo m



(b is called the *base*, r is the *residue* or *remainder*, and m is the *modulus*)

Example(s):

Background - CSc 144 v1.1 (McCann) - p. 21/32

Laws of Exponents

1.
$$w^{x+y} = w^x w^y$$

2. $(w^x)^y = w^{xy}$

3.
$$v^{x}w^{x} = (vw)^{x}$$

4.
$$\frac{w^x}{w^y} = w^{x-y}$$

5.
$$\frac{v^x}{w^x} = \left(\frac{v}{w}\right)^x$$

Laws of Logarithms

The connection between exponents and logarithms:

If
$$b^y = x$$
, then $\log_b x = y$.

For each of the following laws, a, b > 0 and $a, b \neq 1$:

1.
$$log_a x = \frac{log_b x}{log_b a}$$

2. If $m > n > 0$, then $log_b m > log_b n$
3. $b^{log_b x} = x$
4. $log_b(x^y) = ylog_b x$
5. $log_b(xy) = log_b x + log_b y$
6. $log_b(\frac{x}{y}) = log_b x - log_b y$

Background - CSc 144 v1.1 (McCann) - p. 23/32

Number Systems: Decimal

The Base 10 (a.k.a. Decimal, a.k.a. Arabic) System

- 10 symbols (glyphs): 0,1,2,3,4,5,6,7,8 and 9.
- In a string of symbols, each position is worth the product of the symbol's value and a power of 10, starting with $10^0 = 1$ on the right.

Number Systems: Binary

The Base 2 (a.k.a. Binary) System

- Just 2 symbols: 0 and 1.
- Each position is valued with increasing powers of 2.

Example(s):

Background - CSc 144 v1.1 (McCann) - p. 25/32

Converting Decimal to Binary

1. Repeated divisions by 2

Example(s):

2. Sums of powers of 2

Number Systems: Octal

(Key point: Octal is based on groups of 3 binary digits)

The Base 8 (a.k.a. Octal) System

- 8 symbols: 0 through 7, inclusive
- Each position is valued with increasing powers of 8

Example(s):

Background - CSc 144 v1.1 (McCann) - p. 27/32

Converting Octal to ...

... Decimal: Multiply digits by powers of 8:

Example(s):

... Binary: Convert digits to binary, and "degroup:"

Number Systems: Hexadecimal

(Key point: 'Hex' is based on groups of 4 binary digits)

The Base 16 (a.k.a. Hexadecimal) System

- 16 symbols: 0-9, inclusive, and A-F, inclusive
- Each position is valued with increasing powers of 16

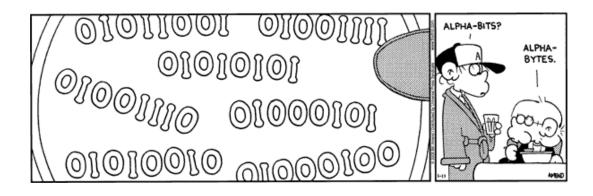
Example(s):

Background - CSc 144 v1.1 (McCann) - p. 29/32

Why Hexadecimal Is More Common Than Octal

What's The Secret Message?

"Foxtrot" from January 11, 2006:



Hint: Find an ASCII table!

Background - CSc 144 v1.1 (McCann) - p. 31/32

Remember!

The math review topics are used in this class, and direct questions about them will be asked on quizzes, Exam #1, and the Final Exam.

If you are not confident in your knowledge of them:

- Read Appendix A in "Kneel Before \mathbb{Z}^{odd} ,"
- Attend a Supplemental Instruction (SI) session, and
- Review and self-test the topics on your own!