Topic 1:

Course Background

(or: Why You're Here, and What You Learned to Get Here)

What Is Discrete Math?

Definition: Discrete Mathematics

Contrast this with 'the calculus,' which was developed by
Newton and Leibniz to study objects in motion. As a result:

- 'The Calculus' tends to focus on real values
- Discrete Mathematics tends to focus on integer values

Sample Discrete Math Topics

Topics that fall under the umbrella of discrete math include:

- Integral Functions and Relations
- Sets
- Sequences and Summations
- Counting (Permutations/Combinations, etc.)
- Discrete Probability

To understand those, you also need:

- First-Order Logic
- Logical Arguments
- Proof Techniques
- ... and a fair amount of pre-calculus mathematics

"But Why Do I Have To Take Discrete Math?"

Discrete Structures is an ACM/IEEE core curriculum topic

- See:
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

DM topics underlie much of Computer Science, including:

- Logic \rightarrow Knowledge Representation, Reasoning,

Natural Language Processing, Computer Architecture

- Proof Techniques \rightarrow Algorithm Design, Code Verification
- Relations \rightarrow Database Systems
- Functions \rightarrow Hashing, Programming Languages
- Recurrence Relations \rightarrow Recursive Algorithm Analysis
- Probability \rightarrow Algorithm Design, Simulation

Topics You May Need To Review

- Mathematical concepts, including, but not limited to:
- Fractions
- Rational Numbers
- Basics of Sets
- Associative, Commutative, Distributive, and Transitive Laws
- Properties of Inequalities
- Summation and Product Notation
- Integer Division (Modulo, Divides, and Congruences)
- Even and Odd Integers
- Logarithms and Exponents
- Positional Number Systems

The Math Review appendix (available from the class
web page) can help you review these topics.

Notations for Sets of Values

\mathbb{Z}
$\mathbb{Z}^{*}, \mathbb{N}_{0} \quad$ The non-negative integers
$\mathbb{Z}^{\text {even }}$
$\mathbb{Z}^{\text {odd }}$
\mathbb{Q}
$\overline{\mathbb{Q}}$
\mathbb{R}
$\mathbb{Z}^{+}, \mathbb{N}^{+} \quad$ All positive integers
All integers

Even integers
Odd integers
Rational numbers
Irrational Numbers
The real values
$\{\ldots,-2,-1,0,1,2, \ldots\}$
$\{1,2,3, \ldots\}$
$\{0,1,2,3, \ldots\}$
$\{\ldots,-4,-2,0,2,4, \ldots\}$
$\{\ldots,-3,-1,1,3, \ldots\}$
${ }^{a} / b, a, b \in \mathbb{Z}, b \neq 0$
$\{i \mid i \notin Q\}$
$\{\mathbb{Q} \cup \overline{\mathbb{Q}}\}$

Note: Avoid the term "natural numbers" and the plain \mathbb{N}.

Commutativity

Assume that \triangle is a binary operator on a set of values S.
If $x \Delta y=y \Delta x$ for any elements x and y in S,
then \triangle is a commutative operator.

Example(s):

Addition is commutative on \mathbb{R} :

Subtraction is non-commutative on \mathbb{R} :

Associativity

Assume that \triangle is a binary operator on a set of values S.
If $(x \triangle y) \triangle z=x \triangle(y \triangle z)$ for any x, y, z in S,
then \triangle is an associative operator.

Example(s):

Multiplication is associative on \mathbb{Z} :

Subtraction is not associative on \mathbb{Z} :

Distributivity (1/2)

Assume that \triangle and \square are binary operators on a set S, and that a, b, c are all values of S.
\triangle is left-distributive over \square when $a \triangle(b \square c)=(a \triangle b) \square(a \Delta c)$
\triangle is right-distributive over \square when $(b \square c) \triangle a=(b \triangle a) \square(c \triangle a)$

Distributivity (2 / 2)

Example(s):

Multiplication distributes over addition:

This knowledge can help you do large products by hand:

Transitivity

Assume that \diamond defines a relationship on values from S.
For any x, y, z in S, \diamond is transitive if whenever $x \diamond y$ and
$y \diamond z$, then $x \diamond z$.

Example(s):

"Greater than" is transitive on \mathbb{R} :

In sports, "defeats" is not transitive on a set of teams:

Three Fraction Reminders

(1) The product of fractions is the ratio of the products of the numerators over the products of the denominators:

$$
\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}
$$

(2) One fraction divided by another equals the product of the numerator fraction and the reciprocal of the denominator:

$$
\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c}
$$

(3) Computing the sum of two fractions requires a common denominator, then we add the numerators:

$$
\frac{a}{b}+\frac{c}{d}=\frac{a}{b} \cdot \frac{d}{d}+\frac{b}{b} \cdot \frac{c}{d}=\frac{a d}{b d}+\frac{b c}{b d}=\frac{a d+b c}{b d}
$$

Rational and Irrational Numbers

Definition: Rational Number

\square
Example(s):
\square
A real number that is not rational is irrational.
Example(s):

Basic Set Operators (1 / 2)

1. Union $(\cup): A \cup B$ contains all elements of both set A and set B
2. Intersection (\cap): $C \cap D$ contains only the elements present in both sets C and D
3. Difference (-): $E-F$ contains only the elements of set E that are not also in set F
(Note: Take out the "not," and you've got a definition for \cap)
4. Complement ($\bar{\square}$): Given a set $G, \quad \bar{G}=\mathcal{U}-G$, the set of available items. where \mathcal{U} is the universe.

Note: $X-Y=X \cap \bar{Y}$

Basic Set Operators (2 / 2)

Example(s):

$$
\begin{aligned}
& A=\{1,2,4,9\} \\
& B=\{0,2,6,8\} \\
& C=\{2,4,7\}
\end{aligned}
$$

Summation and Product Notation

$$
\sum_{i=1}^{5} 2 i=2(1)+2(2)+2(3)+2(4)+2(5)=30
$$

where:

- Σ is the \qquad .
- i is the \qquad .
- 1 is the \qquad .
- 5 is the \qquad .
- $2 i$ is the \qquad .

Summation and Product Notation (cont.)

Switch Σ to Π (capital Pi) for multiplication:

Example(s):

\square

Use parentheses to eliminate confusion:

Example(s):

Nested Summations and Products
Much like nested FOR loops.
Example(s):

Modulo and Divides

Integer Division (\backslash) produces quotients;
Modulo (\%) produces remainders

Example(s):

Modulo and Divides (cont.)

Definition: Divides

Example(s):

Congruences

Definition: Congruent Modulo m

\square
(b is called the base, r is the residue or remainder, and m is the modulus)

Example(s):

\square

Laws of Exponents

1. $w^{x+y}=w^{x} w^{y}$
2. $\left(w^{x}\right)^{y}=w^{x y}$
3. $v^{x} w^{x}=(v w)^{x}$
4. $\frac{w^{x}}{w^{y}}=w^{x-y}$
5. $\frac{v^{x}}{w^{x}}=\left(\frac{v}{w}\right)^{x}$

Laws of Logarithms

The connection between exponents and logarithms:

$$
\text { If } b^{y}=x, \text { then } \log _{b} x=y
$$

For each of the following laws, $a, b>0$ and $a, b \neq 1$:

1. $\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$
2. If $m>n>0$, then $\log _{b} m>\log _{b} n$
3. $b^{\log _{b} x}=x$
4. $\log _{b}\left(x^{y}\right)=y \log _{b} x$
5. $\log _{b}(x y)=\log _{b} x+\log _{b} y$
6. $\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$

Number Systems: Decimal

The Base 10 (a.k.a. Decimal, a.k.a. Arabic) System

- 10 symbols (glyphs): 0,1,2,3,4,5,6,7,8 and 9 .
- In a string of symbols, each position is worth the product of the symbol's value and a power of 10 , starting with $10^{0}=1$ on the right.

Example(s):

Number Systems: Binary

The Base 2 (a.k.a. Binary) System

- Just 2 symbols: 0 and 1.
- Each position is valued with increasing powers of 2.

Example(s):

Converting Decimal to Binary

1. Repeated divisions by 2

Example(s):
2. Sums of powers of 2

Example(s):

Number Systems: Octal

(Key point: Octal is based on groups of 3 binary digits)
The Base 8 (a.k.a. Octal) System

- 8 symbols: 0 through 7, inclusive
- Each position is valued with increasing powers of 8

Example(s):

Converting Octal to ...

... Decimal: Multiply digits by powers of 8:

Example(s):

...Binary: Convert digits to binary, and "degroup:"

Example(s):

Number Systems: Hexadecimal

(Key point: 'Hex' is based on groups of 4 binary digits)
The Base 16 (a.k.a. Hexadecimal) System

- 16 symbols: $0-9$, inclusive, and A-F, inclusive
- Each position is valued with increasing powers of 16

Example(s):

Why Hexadecimal Is More Common Than Octal

What's The Secret Message?

"Foxtrot" from January 11, 2006:

Hint: Find an ASCII table!

Remember!

The math review topics are used in this class, and direct questions about them will be asked on quizzes, Exam \#1, and the Final Exam.

If you are not confident in your knowledge of them:

- Read Appendix A in "Kneel Before $\mathbb{Z}^{\text {odd, }}$,"
- Attend a Supplemental Instruction (SI) session, and
- Review and self-test the topics on your own!

