Quantification

Quantification - CSc 144 v1.1 (McCann) - p. 1/27

Propositions With Variables (1 / 2)

. ,
Propositions are static; variables are not allowed. But
Definition: Predicate (a.k.a. Propositional Function)
Example(s):

Propositions With Variables (2 / 2)

Definition: Domain (a.k.a. Universe) of Discourse					
xample(s):	_				

Quantification - CSc 144 v1.1 (McCann) - p. 3/27

Quantification

Idea: Establish truth of predicates over sets of values.

Two common generalizations:

Note: Do <u>not</u> use the book's non-standard $\exists !x$ notation.

Evaluating Quantified Predicates (1 / 2)

Universally Quantified Predicates	
Example(s):	
	Quantification - CSc 144 v1.1 (McCann) - p. 5/27
	(0 / 0)
Evaluating Quantified Predicates	(2 / 2)
	(2 / 2)
Evaluating Quantified Predicates 2. Existentially Quantified Predicates	(2 / 2)
	(2 / 2)
	(2/2)
2. Existentially Quantified Predicates	(2/2)
	(2/2)
2. Existentially Quantified Predicates	(2/2)

Evaluating Mixed Quantifications (1 / 2)

First: Distinguishing $\exists x \, \forall y \, S(x,y)$ from $\forall i \, \exists k \, T(i,k)$:

Quantification - CSc 144 v1.1 (McCann) - p. 7/27

Evaluating Mixed Quantifications (2 / 2)

Example(s):					

Example: Universal Quantification (1 / 5)

Consider this conversational English statement:

All of McCann's students are geniuses.

How can we express that statement in logic notation?

Quantification - CSc 144 v1.1 (McCann) - p. 9/27

Example: Universal Quantification (2 / 5)

Attempt #2: All of McCann's students are geniuses. → Logic

Example: Universal Quantification (3 / 5)

Attempt #3: All of McCann's students are geniuses. → Logic

Let P(x): Student x is a genius, $x \in People$

Quantification - CSc 144 v1.1 (McCann) - p. 11/27

Example: Universal Quantification (4 / 5)

Attempt #4: All of McCann's students are geniuses. → Logic

Let P(x): Student x is a genius, $x \in People$

Let M(x): x is enrolled in one of McCann's classes, $x \in \mathsf{People}$

Example: Universal Quantification (5 / 5)

Attempt #5: All of McCann's students are geniuses. → Logic

Let P(x) : Student x is a genius, $x \in People$

Let M(x): x is enrolled in one of McCann's classes, $x \in \mathsf{People}$

Quantification - CSc 144 v1.1 (McCann) - p. 13/27

Implicit Quantification

The "all" can be implicit in the English statement.

Example(s):

Example: Existential Quantification

Consider this conversational English statement:

At least one towel is dirty.

How can we express that statement in logic notation?

Quantification - CSc 144 v1.1 (McCann) - p. 15/27

Another Example: Existential Quantification

Express this more specific statement in logic:

Some of the blue guest towels are dirty.

Let D(x): x is dirty, $x \in Towels$

Yet Another Example: Quantification

Now express this statement in logic:

Every last one of the blue guest towels are dirty!

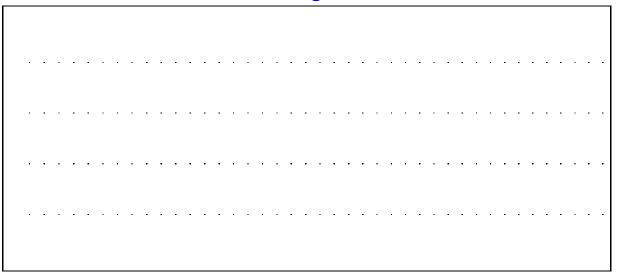
Let B(x): x is blue, $x \in Towels$

Let G(x): x is used by guests, $x \in Towels$

Let D(x): x is dirty, $x \in \text{Towels}$

Quantification - CSc 144 v1.1 (McCann) - p. 17/27

Free vs. Bound Variables


Definition: Bound Variable	
Definition: Free (a.k.a. Unbound) Variable	

Other examples of 'binding' in CS:

Negations of Quantified Expressions

Remember De Morgan's Laws for propositions? Well, ...

Definition: Generalized De Morgan's Laws

Quantification - CSc 144 v1.1 (McCann) - p. 19/27

Demonstration: $\overline{\forall x \, P(x)} \equiv \exists x \, \overline{P(x)}$ (1 / 2)

Let $S(x): x < 4, x \in \mathbb{Z}$

The expression $\forall x \ S(x), x \in \{1, 2, 3\}$ is true.

Equivalently, $\overline{\forall x \ S(x)}$ is false.

$$\forall x \ S(x) \equiv S(1) \wedge S(2) \wedge S(3)$$
 so ...

$$\overline{\forall x \; S(x)} \;\; \equiv \;\; \overline{S(1) \wedge S(2) \wedge S(3)} \ \equiv \;\; \overline{S(1)} \vee \overline{S(2)} \vee \overline{S(3)} \;\;\; ext{[De Morgan, 2x]}$$

(Remember: $\overline{S(1)} \vee \overline{S(2)} \vee \overline{S(3)}$ is still false.)

(Continues ...)

Demonstration: $\forall x P(x) \equiv \exists x \overline{P(x)}$ (2 / 2)

For $\overline{S(1)} \vee \overline{S(2)} \vee \overline{S(3)}$ to be false, each term must be false; that is, no $\overline{S(x)}$ is true (or all $\overline{S(x)}$ are false). It follows that the expression $\exists x \ \overline{S(x)}$ must be false, completing the demonstration.

Example(s):								

Quantification - CSc 144 v1.1 (McCann) - p. 21/27

Expressing "Exactly one ... " Statements (1 / 3)

Consider this conversational (& correct!) English statement:

Only one citizen of North Dakota is a member of the U.S. House of Representatives.

And consider this awkward but useful rewording:

Expressing "Exactly one ..." Statements (2 / 3)

That rewording is useful because it can be directly expressed logically:

Quantification - CSc 144 v1.1 (McCann) - p. 23/27

Expressing "Exactly one ... " Statements (3 / 3)

A lingering problem:

The domain ("Citizens of North Dakota") is too specific.

Solution: Add a predicate ... but what, and where?

Expressing "Exactly two ..." Statements (1 / 3) Key observation: Question: Can you say this in 'awkward English'? Exactly two citizens of North Dakota are U.S. Senators.

Quantification - CSc 144 v1.1 (McCann) - p. 25/27

Expressing "Exactly two ... " Statements (2 / 3)

Consider the two halves separately. Given:

S(x): x is a U.S. Senator, $x \in People$

1. "At least two citizens of North Dakota are U.S. Senators"

2. "At most two citizens of North Dakota are U.S. Senators"

Expressing "Exactly two ..." Statements (3 / 3)

Finally, AND together

$$\exists x \,\exists y \, (S(x) \land S(y) \land (x \neq y))$$

and

$$\forall x \, \forall y \, \forall z \, ((S(x) \land S(y) \land S(z)))$$
$$\rightarrow (x = y \lor y = z \lor x = z)):$$

Quantification - CSc 144 v1.1 (McCann) - p. 27/27