Additional Set Concepts

Set Concepts Already Covered

You may wish to review these basic set concepts, previously covered in the Math Review appendix, before starting this topic:

- Properties of sets (e.g., duplicate members are not allowed)
- Set notation (membership, set builder notation, etc.)
- Operators (union, intersection, difference, complement, cardinality)
- Venn diagrams

Why Are We Learning More About Sets?

Sets are foundational in many areas of Computer Science.
For example:

Subsets

Definition: Subset
\square

Definition: Proper Subset

Example(s):

Set Equality

Definition: Set Equality
\square

Example(s):

Power Sets

Definition: Power Set
\square

Example(s):

Generalized Forms of \cup and \cap

Remember summation and product notations? E.g.:

$$
\sum_{n=0}^{9}(2 n+1)
$$

Similar notation is used to generalize the union and intersection operators.

Assuming that $A_{1} \ldots A_{m}$ and $B_{1} \ldots B_{n}$ are sets, then:

Two More Set Properties

Definition: Disjoint

\square

Definition: Partition

Example(s):

Examples of Set Identities

Look familiar?
Associativity

$$
\begin{aligned}
& (A \cap B) \cap C=A \cap(B \cap C) \\
& (A \cup B) \cup C=A \cup(B \cup C)
\end{aligned}
$$

Commutativity $\quad A \cap B=B \cap A$

$$
A \cup B=B \cup A
$$

Distributivity $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

De Morgan

$$
\begin{aligned}
& \overline{A \cup B}=\bar{A} \cap \bar{B} \\
& \overline{A \cap B}=\bar{A} \cup \bar{B}
\end{aligned}
$$

Note: As with logical identities, you need not memorize set identities.

Expressing Set Operations in Logic

We've seen the first two already.
$X \subseteq Y \equiv \forall z(z \in X \rightarrow z \in Y)$
$X \subset Y \equiv \forall z(z \in X \rightarrow z \in Y) \wedge \exists w(w \notin X \wedge w \in Y)$
For those that return sets, Set Builder notation is a good choice:

Proving Set Identities (1 / 4)

To prove that set expressions S and T are equal, we can:

1. Prove that $S \subseteq T$ and $T \subseteq S$, or
2. Convert the equality to logic, prove it, and convert back

Example(s):

Proving Set Identities (2 / 4)

Conjecture: $S \cup \mathcal{U}=\mathcal{U}$

Proving Set Identities (3 / 4)

Proving Set Identities (4 / 4)

Conjecture: $S \cup \mathcal{U}=\mathcal{U}$

Final Set Operator: Cartesian Product (1 / 2)

Definition: Ordered Pair

\square

Example(s):

Final Set Operator: Cartesian Product (2 / 2)

Definition: Cartesian Product
\square

Example(s):

Notes:

Example: Computer Representation of Sets

