Topic 6:

Additional Set Concepts

Sets - CSc 144 v1.1 (McCann) - p. 1/17

Set Concepts Already Covered

You may wish to review these basic set concepts, previously covered in the Math Review appendix, before starting this topic:

- Properties of sets (e.g., duplicate members are not allowed)
- Set notation (membership, set builder notation, etc.)
- Operators (union, intersection, difference, complement, cardinality)
- Venn diagrams

Why Are We Learning More About Sets?

Sets are foundational in many areas of Computer Science. For example:
Sets – CSc 144 v1.1 (McCann) – p. 3/17
Subsets
Definition: Subset
Definition: Proper Subset
Example(s):

Set Equality

Definition: Set Equality		
Example(s):		
	Sets - CSc 144 v1.1 (McCann) - p. 5/17	
Power Sets		
Definition: Power Set		
Example(s):		

Generalized Forms of \cup and \cap

Remember summation and product notations? E.g.:

$$\sum_{n=0}^{9} (2n+1)$$

Similar notation is used to generalize the union and intersection operators.

Assuming that $A_1 \dots A_m$ and $B_1 \dots B_n$ are sets, then:

Sets - CSc 144 v1.1 (McCann) - p. 7/17

Two More Set Properties

Definition: Disjoint		
Definition: Partition		
Definition: Faithfull		
Example(s):		

Examples of Set Identities

Look familiar?

Associativity
$$(A \cap B) \cap C = A \cap (B \cap C)$$

$$(A \cup B) \cup C = A \cup (B \cup C)$$

Commutativity
$$A \cap B = B \cap A$$

$$A \cup B = B \cup A$$

Distributivity
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Note: As with logical identities, you need not memorize set identities.

Sets - CSc 144 v1.1 (McCann) - p. 9/17

Expressing Set Operations in Logic

We've seen the first two already.

$$X \subseteq Y \equiv \forall z (z \in X \to z \in Y)$$

$$X \subset Y \equiv \forall z (z \in X \to z \in Y) \land \exists w (w \notin X \land w \in Y)$$

For those that return sets, Set Builder notation is a good choice:

Proving Set Identities (1 / 4)

To prove that set expressions ${\cal S}$ and ${\cal T}$ are equal, we can:

- 1. Prove that $S \subseteq T$ and $T \subseteq S$, or
- 2. Convert the equality to logic, prove it, and convert back

Example	e(s):			

Sets - CSc 144 v1.1 (McCann) - p. 11/17

Proving Set Identities (2 / 4)

Conjecture: $S \cup \mathcal{U} = \mathcal{U}$

Proving Set Identities (3 / 4)	
	Sets – CSc 144 v1.1 (McCann) – p. 13/17
Proving Set Identities (4 / 4)	Sets - CSc 144 v1.1 (McCann) - p. 13/17
Proving Set Identities (4 / 4)	Sets – CSc 144 v1.1 (McCann) – p. 13/17
Proving Set Identities (4 / 4) Conjecture: $S \cup \mathcal{U} = \mathcal{U}$	Sets – CSc 144 v1.1 (McCann) – p. 13/17
	Sets – CSc 144 v1.1 (McCann) – p. 13/17
	Sets – CSc 144 v1.1 (McCann) – p. 13/17
	Sets – CSc 144 v1.1 (McCann) – p. 13/17
	Sets – CSc 144 v1.1 (McCann) – p. 13/17
	Sets – CSc 144 v1.1 (McCann) – p. 13/17
	Sets – CSc 144 v1.1 (McCann) – p. 13/17
	Sets – CSc 144 v1.1 (McCann) – p. 13/17
	Sets – CSc 144 v1.1 (McCann) – p. 13/17

Final Set Operator: Cartesian Product (1 / 2)

Definition: Ordered Pair	
Example(s):	
	Sets - CSc 144 v1.1 (McCann) - p. 15/17
Final Set Operator: Cartesian Prod	duct (2 / 2)
Definition: Cartesian Product	
Example(s):	
	ı

Notes:

Sets - CSc 144 v1.1 (McCann) - p. 16/17

Example: Computer Representation of Sets

Sets - CSc 144 v1.1 (McCann) - p. 17/17