Relations

Relations - CSc 144 v1.1 (McCann) - p. 1/26

Background

Having collections of data: Good.

Knowing the connections between collections: Better!

Relations (1 / 2)

Definition: (Binary) Relation

.

Example(s):

Relations - CSc 144 v1.1 (McCann) - p. 3/26

Relations (2 / 2)

Definition: Related

Graph Representations of Relations (1 / 2)

Example #1: Presidents-Parties Recall: $A = \{$ Kennedy, Johnson, Nixon, Carter, Reagan $\}$ $B = \{$ Dem, Rep $\}$ $R = \{$ (Kennedy, Dem), (Johnson, Dem), (Nixon, Rep), (Carter, Dem), (Reagan, Rep) $\}$ Kennedy•

- Johnson• •Democratic
 - Nixon•
 - Carter• Republican
- Reagan•

Relations - CSc 144 v1.1 (McCann) - p. 5/26

Graph Representations of Relations (2 / 2)

Example #2: $x \ \% \ y = 0, x eq y$			
Recall: $H = \{1, 2, 3, 4, 5, 6\}$			
$R = \{(2,1), (3,1), (4,1), (5,1), (6,1), (4,2), (6,2), (6,3)\}$			
	1	2.	
6•			• 3
	•5	• 4	

Properties of Relations: Reflexivity

Definition: Reflexivity

Example(s):

Relations - CSc 144 v1.1 (McCann) - p. 7/26

Properties of Relations: Symmetry (1 / 2)

Definition: Symmetry

Properties of Relations: Symmetry (2 / 2)

Example(s): Graph Representations & Symmetry

Relations - CSc 144 v1.1 (McCann) - p. 9/26

Properties of Relations: Antisymmetry (1 / 2)

Definition: Antisymmetry

Properties of Relations: Antisymmetry (2 / 2)

Example(s): Graph Representations & Antisymmetry

Relations - CSc 144 v1.1 (McCann) - p. 11/26

Properties of Relations: Transitivity (1 / 2)

Definition: Transitivity

Properties of Relations: Transitivity (2 / 2)

Example(s):

Relations - CSc 144 v1.1 (McCann) - p. 13/26

Relational Composition Examples (1 / 4)

Three examples of creating relations from relations.

Example #1: Set Operators

Relational Composition Examples (2 / 4)

Example #2: Swapping content of ordered pairs

Definition: Inverse

Relations - CSc 144 v1.1 (McCann) - p. 15/26

Relational Composition Examples (3 / 4)

Example #3: Composites

Definition: Composite

Relational Composition Examples (4 / 4)

Example #3: Composites (cont.)

Example(s):

Definition: Complement

Relations - CSc 144 v1.1 (McCann) - p. 17/26

Equivalence Relations (1 / 4)

You may have already implemented one in Java...

.

Definition: Equivalence Relation

Equivalence Relations (2 / 4)

Example(s):

Relations - CSc 144 v1.1 (McCann) - p. 19/26

Equivalence Relations (3 / 4)

So ... why are these called *equivalence* relations?

Recall:

$$R = \{ (0,0), \\ (1,1), (1,-1), (-1,1), (-1,-1), \\ (2,2), (2,-2), (-2,2), (-2,-2) \}$$

Equivalence Relations (4 / 4)

Definition: Equivalence Class

Example(s):

Relations - CSc 144 v1.1 (McCann) - p. 21/26

Partial Orders (1 / 3)

Consider scheduling the construction of a house.

Definition: Reflexive (a.k.a. Weak) Partial Order

Partial Orders (2 / 3)

Example(s):

Relations - CSc 144 v1.1 (McCann) - p. 23/26

Partial Orders (3 / 3)

Definition: Irreflexivity (of Relations)

Definition: Irreflexive (a.k.a. Strict) Partial Order

Total Orders (1 / 2)

Definition: Comparable

Definition: Total Order

Relations - CSc 144 v1.1 (McCann) - p. 25/26

Total Orders (2 / 2)