Relations

Background

Having collections of data: Good.
Knowing the connections between collections: Better!

Example(s):

Relations (1 / 2)

Definition: (Binary) Relation

\square

Example(s):

Relations (2 / 2)

Definition: Related

Example(s):

Graph Representations of Relations (1 / 2)

Example \#1: Presidents-Parties
Recall: $A=\{$ Kennedy, Johnson, Nixon, Carter, Reagan $\}$
$B=\{$ Dem, Rep $\}$
$R=\{($ Kennedy, Dem $),($ Johnson, Dem $)$, (Nixon,Rep), (Carter, Dem), (Reagan, Rep) \}

Kennedy •
Johnson •

- Democratic

Nixon•
Carter• •Republican
Reagan•

Graph Representations of Relations (2 / 2)

Example \#2: $x \% y=0, x \neq y$
Recall: $H=\{1,2,3,4,5,6\}$

$$
R=\{(2,1),(3,1),(4,1),(5,1),(6,1),(4,2),(6,2),(6,3)\}
$$

$1 \quad$?
6. •3
$\dot{5} \quad \dot{4}$

Properties of Relations: Reflexivity

Definition: Reflexivity

\square

Example(s):

Properties of Relations: Symmetry (1 / 2)

Definition: Symmetry
\square

Example(s):

Properties of Relations: Symmetry (2 / 2)

Example(s): Graph Representations \& Symmetry
\square

Properties of Relations: Antisymmetry (1/2)

Definition: Antisymmetry
\square
Example(s):

Properties of Relations: Antisymmetry (2 / 2)

Example(s): Graph Representations \& Antisymmetry
\square

Properties of Relations: Transitivity (1 / 2)

Definition: Transitivity
\square

Example(s):

Properties of Relations: Transitivity (2 / 2)

Example(s):

Relational Composition Examples (1 / 4)

Three examples of creating relations from relations.

Example \#1: Set Operators

Relational Composition Examples (2 / 4)

Example \#2: Swapping content of ordered pairs
Definition: Inverse
\square

Relational Composition Examples (3 / 4)

Example \#3: Composites
Definition: Composite

Example(s):

Relational Composition Examples (4 / 4)

Example \#3: Composites (cont.)

Example(s):

\square

Definition: Complement

Equivalence Relations (1 / 4)

You may have already implemented one in Java...

Definition: Equivalence Relation

Equivalence Relations (2 / 4)

Example(s):

Equivalence Relations (3 / 4)

So ... why are these called equivalence relations?
Recall:

$$
\begin{aligned}
R=\{ & (0,0), \\
& (1,1),(1,-1),(-1,1),(-1,-1), \\
& (2,2),(2,-2),(-2,2),(-2,-2)\}
\end{aligned}
$$

Equivalence Relations (4 / 4)

Definition: Equivalence Class

\square
Example(s):

Partial Orders (1 / 3)

Consider scheduling the construction of a house.

Definition: Reflexive (a.k.a. Weak) Partial Order

Partial Orders (2 / 3)

Example(s):

Partial Orders (3 / 3)

Definition: Irreflexivity (of Relations)

Definition: Irreflexive (a.k.a. Strict) Partial Order
\square

Total Orders (1 / 2)
Definition: Comparable
\square
Definition: Total Order
\square

Total Orders (2 / 2)

Example(s):

