Functions

Functions - CSc 144 v1.1 (McCann) - p. 1/19

Functions as Relations (1 / 2)

Consider: $f(x) = x + 1, x \in \mathbb{Z}$

Definition: Function

Functions as Relations (2 / 2)

Functions - CSc 144 v1.1 (McCann) - p. 3/19

Function Terms (1 / 2)

Let $f: X \to Y$ be a function. $f(n) = p \ [\ (n, p) \in f \].$

- X is the _____ of f
- Y is the _____ of f
- *f* _____ *X* to *Y*
- p is the _____ of n
- *n* is the _____ of *p*
- f's _____ is the set of all images of X's elements

Note: A function's range need not equal its codomain.

Function Terms (2 / 2)

Example(s):

Functions - CSc 144 v1.1 (McCann) - p. 5/19

Digraph Representation (1 / 2)

Digraph Representation (2 / 2)

Example(s):

 $Functions - CSc \ 144 \ v1.1 \ (McCann) - p. \ 7/19$

Two Functions You Need To Know (1 / 4)

1. Floor $(\lfloor x \rfloor)$

Definition: Floor Function

Two Functions You Need To Know (2 / 4)

1. Floor $(\lfloor x \rfloor)$ (cont.)

Using Floor for Rounding to the Nearest Integer

Functions - CSc 144 v1.1 (McCann) - p. 9/19

Two Functions You Need To Know (3 / 4)

2. Ceiling $(\lceil x \rceil)$

Definition: Ceiling Function

Two Functions You Need To Know (4 / 4)

2. Ceiling $(\lceil x \rceil)$ (cont.)

Example(s):

Functions – CSc 144 v1.1 (McCann) – p. 11/19

Example: Type A UPC Code Check Digits

The check digit equals the image of this function:

- s =Sum of digits in positions 1, 3, 5, 7, 9, & 11
- t = Sum of digits in positions 2, 4, 6, 8, & 10

u = 3s + t; the check digit is (10 - u%10)%10.

Using the above sample:

$$s = 39, t = 24$$
, and $u = 3(39) + 24 = 141$.

The check digit =
$$(10 - 141\%10)\%10 = 9$$
.

Graphs Of Functions (1 / 2)

Important Distinction: Continuous vs. Discontinuous Functions

Consider: $f = \{(x, x+1) \mid x \in \dots\}$

Functions - CSc 144 v1.1 (McCann) - p. 13/19

Graphs Of Functions (2 / 2)

How should the graph of our long-distance calling plan function look?

Categories of Functions: Injective

Definition: Injective Functions (a.k.a. One-to-one)

Example(s):

Functions - CSc 144 v1.1 (McCann) - p. 15/19

Categories of Functions: Surjective

Definition: Surjective Functions (a.k.a. Onto)

Categories of Functions: Bijective

Definition: Bijective Functions (a.k.a. One-to-one Correspondence)

Example(s):

Functions - CSc 144 v1.1 (McCann) - p. 17/19

Odds and Ends

Definition: Functional Composition

Let $f: Y \to Z$ and $g: X \to Y$. The composition of fand g, denoted $f \circ g$, is the function h = f(g(x)), where $h: X \to Z$.

Definition: Inverse Functions

Beyond Unary Functions

Definition: Binary Functions

Example(s):

Functions - CSc 144 v1.1 (McCann) - p. 19/19