Indirect ("Contra") Proofs of $p \rightarrow q$

Indirect Proofs - CSc 144 v1.1 (McCann) - p. 1/11

Review of Direct Proofs

To prove a conjecture of the form $p \rightarrow q$ by using a Direct Proof, we:

Assume that p is true, and

Show that *q*'s truth logically follows.

Reminders:

- If *p* is *actually* true, the proof is a <u>sound</u> argument.
- If *p* is only *assumed* true, the argument is merely <u>valid</u>.

"Indirect" Proofs

We can replace $p \to q$ with logically equivalent forms to create additional "indirect" proof techniques.

Example(s):

Indirect Proofs - CSc 144 v1.1 (McCann) - p. 3/11

Proof by Contraposition

(a.k.a. Proof of the Contrapositive)

Example #1: Proof by Contraposition

Conjecture: If $ac \leq bc$, then $c \leq 0$, when a > b.

Indirect Proofs - CSc 144 v1.1 (McCann) - p. 5/11

Example #2: Proof by Contraposition

Conjecture: If n^2 is even, then n is even.

Proof by Contradiction

(a.k.a. Reductio ad Absurdum)

Recall the Law of Implication: $p \to q \, \equiv \, \neg p \lor q$

Indirect Proofs - CSc 144 v1.1 (McCann) - p. 7/11

Example #1: Proof by Contradiction

Conjecture: If 3(n-6) is odd, then n is odd.

Example #2: Proof by Contradiction (1 / 2)

Conjecture: The sum of the squares of two odd integers is never a perfect square. (Or: If $n = a^2 + b^2$, then n is not a perfect square, where $a, b \in \mathbb{Z}^{odd}$.)

Indirect Proofs - CSc 144 v1.1 (McCann) - p. 9/11

Example #2: Proof by Contradiction (2 / 2)

How To Prove Biconditional Expressions

(i.e., Conjectures Of The Form $p \leftrightarrow q$)

Example(s):

Indirect Proofs - CSc 144 v1.1 (McCann) - p. 11/11