Topic 10:

Integers

Background

In this topic we'll learn/review more properties of integer values.
We already know at least two ways in which to categorize integers:

Prime Numbers

Definition: Factor

Definition: Prime

\square
Definition: Composite
\square
Example(s):

From the 'Is This a Great Name or What?’ Dept.

Theorem: (The Fundamental Theorem of Arithmetic)
If p is a positive integer $\geq 2, p$ is prime or can be expressed as the product of multiple primes.
\square

Definition: Prime Factorization

Another Prime/Composite Theorem (1 / 2)

Theorem: If n is composite, n has at least one prime

 factor no larger than \sqrt{n}.
Another Prime/Composite Theorem (2 / 2)

Extra room for the proof:
\square
Example(s):

Dear Euclid: How Many Primes Exist? (1 / 2)

Theorem: There are infinitely many prime integers.

\square

Dear Euclid: How Many Primes Exist? (2 / 2)

Useful detail: If $c \mid(a+b)$ and $c \mid a$, then $c \mid b$.

Extra room for the proof:

Mersenne Numbers (1 / 2)

- The $n^{\text {th }}$ Mersenne Number is $2^{n}-1(1,3,7,15, \ldots)$.
- If n is composite, $2^{n}-1$ can't be prime.
- Why not? As $n=a b, 2^{n}-1=2^{a b}-1$, which is a binomial number and so it has $2^{a}-1$ as a factor.
- If n is prime, $2^{n}-1$ might be prime. $\left(2^{11}-1=23 \cdot 89\right)$
- If so, it's called a Mersenne Prime.
- Only a few dozen such primes have been found.

So ... what's the big deal?

Mersenne Numbers (2 / 2)

- There exist efficient tests for the primality of Mersenne numbers (e.g., the Lucas-Lehmer test).
- The GIMPS project uses spare CPU cycles to find Mersenne primes.
- Curious? Visit: www.mersenne.org

Division

Name the parts!

Too Bad This Isn't Really An Algorithm

Definition: Division 'Algorithm'
\square

Example(s):

Greatest Common Divisor (GCD) (1 / 2)

Definition: Greatest Common Divisor
\square
Example(s):

Definition: Relatively Prime

Greatest Common Divisor (GCD) (2 / 2)

Definition: Pairwise Relatively Prime

Example(s):

Least Common Multiple (LCM) (1 / 2)

Definition: Least Common Multiple

\square

Example(s):

Least Common Multiple (LCM) (2 / 2)

Example(s):

At your house, the garbage is collected once a week, a new five gallon bottle of water is delivered every 10 days, and your spouse insists that you vacuum the living room every five days. Yesterday, all three occurred on the same day. How often does that happen?

Another Theorem!

Theorem: If $a, b \in \mathbb{Z}^{+}$, then $a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)$.
Proof (direct): Consider the prime factorizations of a and b. The LCM is the product of the terms with the larger exponents and all terms that aren't shared. The GCD is the product of the remaining terms. Thus, the product of the LCM and GCD terms is the product of all terms in the prime factorizations.

Therefore, if $a, b \in \mathbb{Z}^{+}$, then $a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)$.

Congruences (1 / 3)

It is pitch black. You are likely to be eaten by a . . .

Congruences (2 / 3)

(Review from Topic 1.)
Definition: Congruent Modulo m
If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$, then a and b are congruent modulo $m($ written $a \equiv b(\bmod m)$) iff $a \% m=b \% m$ (or, iff $m \mid(a-b)$).

Example(s):

Congruences (3 / 3)

Example(s):

