Topic 11:

Sequences and Strings

Sequences

Definition: Sequence [1st Attempt]
\square
Notation:

Example(s):

Rules

Recall: $\quad \sum_{i=1}^{n} 2 i$
Example(s):
\square
Two Notations for Infinite Sequences:

Sequences and Functions

Definition: Sequence [Final Version]

Example(s):

Arithmetic and Geometric Sequences

Definition: Arithmetic Sequence (a.k.a. Arithmetic Progression)

\square

Definition: Geometric Sequence (a.k.a. Geometric Progression)

\square
Example(s):

Arithmetic Series

The sum of the terms of an arithmetic sequence (a.k.a. arithmetic series): $s_{n}=a_{1}+\ldots+a_{n}=\frac{1}{2} n\left(a_{1}+a_{n}\right)$

Here's why: First, note that $a_{n}=a_{1}+(n-1) d$.
Next, here are two expressions for s_{n} :

$$
\begin{aligned}
& s_{n}=a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right)+\ldots+\left(a_{1}+(n-1) d\right) \\
& s_{n}=\left(a_{n}-(n-1) d\right)+\left(a_{n}-(n-2) d\right)+\ldots+\left(a_{n}-d\right)+a_{n}
\end{aligned}
$$

Sum these expressions, and the d terms cancel, leaving:

$$
2 s_{n}=n a_{1}+n a_{n}, \text { or } s_{n}=\frac{1}{2} n\left(a_{1}+a_{n}\right)
$$

Increasing Sequences

Definition: Increasing Sequence

\square
Definition: Non-Decreasing Sequence

Definition: Strictly Increasing Sequence

Decreasing Sequences

Definition: Decreasing Sequence

Definition: Non-Increasing Sequence

\square
Definition: Strictly Decreasing Sequence

Subsequences

Definition: Subsequence
\square

Example(s):

Need to Identify a Sequence?

A great resource for sequences:

The Online Encyclopedia of Integer Sequences

> (http://oeis.org/)

Example(s):

Strings (1 / 2)

Definition: String

\square
Example(s):

Strings (2 / 2)

Notation:

- Lambda (λ) represents the empty (null) string
- $x y$ means strings x and y are concatenated
- Superscripts denote repetition of concatenation
- $|x|$ represents the length of string x
- A^{*} is the set of strings that can be formed using elements of an alphabet A.
- A^{*} is an infinite set
- $\lambda \in A^{*}$

Set Cardinality Revisited (1 / 5)

An observation about set cardinality:

Definition: Finite

Set Cardinality Revisited (2 / 5)

Definition: Countably Infinite (a.k.a. Denumerably Infinite)

\square

Definition: Countable

Set Cardinality Revisited (3 / 5)

Example(s):

Set Cardinality Revisited (4 / 5)

Question: Are the positive rational numbers countable?
\square

Set Cardinality Revisited (5 / 5)

Conjecture: A pairing function for \mathbb{R} cannot exist.

Background: Elephant jokes became popular form of absurdist humor in the U.S. in the 1960s. For example:

Q: How many elephants can fit in a Jeep?
A: Four - Two in the front and two in the back.
Q: How many bison can fit in a Jeep?
A: None - it's full of elephants.
Q: How do you know when there are two elephants in your closet?
A: You hear giggling when the door is closed.
Q: How do you know when there are three elephants in your closet?
A: You can't close the door.
Q: How do you know when there are four elephants in your closet?
A: There's an empty Jeep in the driveway.

Now You Can Understand More Cartoons! (2/2)

http://www.userfriendly.org/cartoons/archives/05jun/uf008006.gif

