Sequences and Strings

Sequences & Strings - CSc 144 v1.1 (McCann) - p. 1/20

Sequences

Definition: Sequence [1st Attempt]

Notation:

Rules

Recall:

 $\frac{n}{2}$]2i

Example(s):

Two Notations for Infinite Sequences:

Sequences & Strings - CSc 144 v1.1 (McCann) - p. 3/20

Sequences and Functions

Definition: Sequence [Final Version]

Arithmetic and Geometric Sequences

Definition: Arithmetic Sequence (a.k.a. Arithmetic Progression)

Definition: Geometric Sequence (a.k.a. Geometric Progression)

Example(s):

Sequences & Strings - CSc 144 v1.1 (McCann) - p. 5/20

Arithmetic Series

The sum of the terms of an arithmetic sequence (a.k.a. arithmetic series): $s_n = a_1 + \ldots + a_n = \frac{1}{2}n(a_1 + a_n)$ Here's why: First, note that $a_n = a_1 + (n-1)d$.

Next, here are two expressions for s_n :

$$s_n = a_1 + (a_1 + d) + (a_1 + 2d) + \dots + (a_1 + (n - 1)d)$$

$$s_n = (a_n - (n - 1)d) + (a_n - (n - 2)d) + \dots + (a_n - d) + a_n$$

Sum these expressions, and the d terms cancel, leaving:

$$2s_n = na_1 + na_n$$
, or $s_n = \frac{1}{2}n(a_1 + a_n)$.

Increasing Sequences

Definition: Increasing Sequence

Definition: Non-Decreasing Sequence

Definition: Strictly Increasing Sequence

Sequences & Strings - CSc 144 v1.1 (McCann) - p. 7/20

Decreasing Sequences

Definition: Decreasing Sequence

Definition: Non-Increasing Sequence

Definition: Strictly Decreasing Sequence

Sequences & Strings - CSc 144 v1.1 (McCann) - p. 9/20

Subsequences

Definition: Subsequence

Need to Identify a Sequence?

A great resource for sequences:

The Online Encyclopedia of Integer Sequences

(http://oeis.org/)

Example(s):

Sequences & Strings - CSc 144 v1.1 (McCann) - p. 11/20

Strings (1 / 2)

Somewhat beyond the programming language kind ...

Definition: String

Strings (2 / 2)

Notation:

- Lambda (λ) represents the empty (null) string
- xy means strings x and y are concatenated
- Superscripts denote repetition of concatenation
- |x| represents the length of string x
- A* is the set of strings that can be formed using elements of an alphabet A.
 - $\circ \ A^*$ is an infinite set
 - $\circ \ \lambda \in A^*$

Sequences & Strings - CSc 144 v1.1 (McCann) - p. 13/20

Set Cardinality Revisited (1 / 5)

An observation about set cardinality:

Definition: Finite

Sequences & Strings - CSc 144 v1.1 (McCann) - p. 14/20

Set Cardinality Revisited (2 / 5)

Definition: Countably Infinite (a.k.a. Denumerably Infinite)

. . .

.

Definition: Countable

Sequences & Strings - CSc 144 v1.1 (McCann) - p. 15/20

Set Cardinality Revisited (3 / 5)

Set Cardinality Revisited (4 / 5)

Question: Are the positive rational numbers countable?

Sequences & Strings - CSc 144 v1.1 (McCann) - p. 17/20

Set Cardinality Revisited (5 / 5)

Conjecture: A pairing function for \mathbb{R} cannot exist.

Now You Can Understand More Cartoons! (1/2)

Background: Elephant jokes became popular form of absurdist humor in the U.S. in the 1960s. For example:

Q: How many elephants can fit in a Jeep? A: Four – Two in the front and two in the back.

- Q: How many bison can fit in a Jeep?
- A: None it's full of elephants.

Q: How do you know when there are two elephants in your closet? A: You hear giggling when the door is closed.

Q: How do you know when there are three elephants in your closet? A: You can't close the door.

Q: How do you know when there are four elephants in your closet? A: There's an empty Jeep in the driveway.

Sequences & Strings - CSc 144 v1.1 (McCann) - p. 19/20

Now You Can Understand More Cartoons! (2/2)

http://www.userfriendly.org/cartoons/archives/05jun/uf008006.gif