
Topic 12:

Methods of Counting

Credit: www.smbc-comics.com/comic/a-new-method
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The Pigeonhole Principle (1 / 2) (a.k.a. The Dirichlet Drawer Principle)

Example:

Definition: Pigeonhole Principle

Definition: Pigeonhole Principle (w/ functions)
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The Pigeonhole Principle (2 / 2)

Example(s):
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The Multiplication Principle (1 / 2)

Example(s):

Definition: Multiplication Principle (a.k.a. Product Rule)
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The Multiplication Principle (2 / 2)

Example(s):
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The Addition Principle (1 / 2)

Definition: Addition Principle (a.k.a. Sum Rule)

Example(s):
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The Addition Principle (2 / 2)

Example(s):
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The Principle of Inclusion-Exclusion (1 / 5)

A problem with the Addition Principle:

Example(s):
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The Principle of Inclusion-Exclusion (2 / 5)

Definition: Principle of Inclusion-Exclusion for Two Sets
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The Principle of Inclusion-Exclusion (3 / 5)

Definition: Principle of Inclusion-Exclusion for Three Sets

The cardinality of the union of sets M , N , and O is the

sum of their individual cardinalities excluding the sum of the

cardinalities of their pairwise intersections but including the

cardinality of their intersection.

That is: |M ∪N ∪ O| = |M |+ |N |+ |O|

−(|M ∩N |+ |M ∩O|+ |N ∩O|)

+|M ∩N ∩O|.
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The Principle of Inclusion-Exclusion (4 / 5)

Why so complex?

A B

C

A B

C

A B

C
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The Principle of Inclusion-Exclusion (5 / 5)

Example(s):
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Permutations (1 / 2)

Definition: Permutation

Example(s):
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Permutations (2 / 2)

Conjecture: There are n! possible permutations of n elements.

Example(s):
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r-Permutations (1 / 3)

Definition: r-Permutation

Conjecture: The number of r-permutations of n elements,

denoted P (n, r), is n · (n− 1) · . . . · (n− r + 1), r ≤ n.
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r-Permutations (2 / 3)

Observation:

Example(s):

Counting – CSc 144 v1.1 (McCann) – p. 16/37



r-Permutations (3 / 3)

Example(s):

Counting – CSc 144 v1.1 (McCann) – p. 17/37

r-Combinations (1 / 3)

Definition: r-Combination

Other Notations:

Example(s):
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r-Combinations (2 / 3)

The r-Permutation – r-Combination Connection:

Example(s):

Counting – CSc 144 v1.1 (McCann) – p. 19/37

r-Combinations (3 / 3)

Example(s):
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Repetition and Permutations

We’ve already seen this!

Example(s):

In General: When object repetition is permitted, the number

of r-permutations of a set of n objects is nr
.
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Repetition and Combinations (1 / 3)

Example(s): ‘Experienced’ Golf Balls

Red Green Blue
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Repetition and Combinations (2 / 3)

Example(s):

In General: When repetition is allowed, the number of r–

combinations of a set of n elements is
(

n+r−1
r

)

=
(

n+r−1
n−1

)

.
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Repetition and Combinations (3 / 3)

A Small Extension:

Example(s):

In General: When repetition is allowed, the number of r–

combinations of a set of n elements when one of each element

is included in r is
(

r−1
r−n

)

=
(

r−1
n−1

)

.
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Another View of Repetition and Combinations (1 / 2)

Consider: An integer variable can represent the quantity of

items selected with repetition.

Example(s):
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Another View of Repetition and Combinations (2 / 2)

Example(s):
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Generalized Permutations (1 / 3)

Idea: What if some elements are indistinguishable?

Example(s):
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Generalized Permutations (2 / 3)

What if we have indistinguishable copies of multiple elements?

Example(s):

In General: If we have n objects of t different types, and there are

ik indistinguishable objects of type k, then the number of distinct

arrangements is P (n; i1, i2, . . . , it) =
n!

i1!·i2!·...·it!
.
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Generalized Permutations (3 / 3)

We can view P (n; i1, i2, . . . , it) in terms of combinations:

Example(s):

In General:

P (n; i1, i2, . . . , it) =
(

n

i1

)(

n−i1

i2

)(

n−i1−i2

i3

)

· · ·
(

n−...−it−1

it

)
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More Fun with Combinations (1 / 2)

What if we created a table of
(

n

k

)

values?

k

0 1 2 3 4 5

0

1

n 2

3

4

5
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More Fun with Combinations (2 / 2)

Pascal’s Triangle is the centered rows of the
(

n

k

)

table:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
...
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Proving that Pascal’s Triange is ‘Palindromic’

Conjecture:
(

n

k

)

=
(

n

n−k

)

, where 0 ≤ k ≤ n
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Pascal’s Identity (Combinatorial Argument Example)

Conjecture:
(

n

k

)

=
(

n−1

k−1

)

+
(

n−1

k

)

, where 1 ≤ k ≤ n
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Pascal’s Identity [Combinatorial Proof (1 / 2)]

Definition: Combinatorial Proof

Conjecture:
(

n

k

)

=
(

n−1

k−1

)

+
(

n−1

k

)

, where 1 ≤ k ≤ n
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Pascal’s Identity [Combinatorial Proof (2 / 2)]
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The Binomial Theorem (1 / 2)

The values of Pascal’s Triangle appear in numerous places.

For instance:

(a+ b)0 = 1

(a+ b)1 = 1a+ 1b

(a+ b)2 = 1a2 + 2ab+ 1b2

(a+ b)3 = 1a3 + 3a2b+ 3ab2 + 1b3

Generalize this, and you’ve got the Binomial Theorem.
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The Binomial Theorem (2 / 2)

Theorem: (a+ b)n =
n
∑

k=0

[(

n

k

)

· an−k · bk
]

Example(s):
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