Methods of Counting

The first math class.

The Pigeonhole Principle (1 / 2)

Definition: Pigeonhole Principle
\square
Definition: Pigeonhole Principle (w/ functions)

The Pigeonhole Principle (2 / 2)

Example(s):

The Multiplication Principle (1 / 2)

Example(s):

\square

Definition: Multiplication Principle (a.k.a. Product Rule)

\square

The Multiplication Principle (2 / 2)
Example(s):

The Addition Principle (1 / 2)

Definition: Addition Principle (a.k.a. Sum Rule)

Example(s):

The Addition Principle (2 / 2)
Example(s):

The Principle of Inclusion-Exclusion (1 / 5)

A problem with the Addition Principle:

Example(s):

The Principle of Inclusion-Exclusion (2 / 5)

Definition: Principle of Inclusion-Exclusion for Two Sets
\square

The Principle of Inclusion-Exclusion (3 / 5)

Definition: Principle of Inclusion-Exclusion for Three Sets

The cardinality of the union of sets M, N, and O is the sum of their individual cardinalities excluding the sum of the cardinalities of their pairwise intersections but including the cardinality of their intersection.

That is: $|M \cup N \cup O|=|M|+|N|+|O|$

$$
\begin{aligned}
& -(|M \cap N|+|M \cap O|+|N \cap O|) \\
& +|M \cap N \cap O| .
\end{aligned}
$$

The Principle of Inclusion-Exclusion (4 / 5)
Why so complex?

The Principle of Inclusion-Exclusion (5 / 5)

Example(s):

Permutations (1 / 2)

Definition: Permutation

\square

Example(s):

Permutations (2 / 2)

Conjecture: There are n ! possible permutations of n elements.
\square

xample(s):

r-Permutations (1 / 3)

Definition: r-Permutation

\square
Conjecture: The number of r-permutations of n elements, denoted $P(n, r)$, is $n \cdot(n-1) \cdot \ldots \cdot(n-r+1), r \leq n$.

r-Permutations (2 / 3)

Observation:

Example(s):

Example(s):

r-Combinations (1 / 3)

Definition: r-Combination
\square
Other Notations:

Example(s):

r-Combinations (2 / 3)

The r-Permutation - r-Combination Connection:

Example(s):

r-Combinations (3 / 3)

Example(s):

Repetition and Permutations

We've already seen this!

Example(s):

\square
In General: When object repetition is permitted, the number of r-permutations of a set of n objects is n^{r}.

Repetition and Combinations (1 / 3)

Example(s): 'Experienced' Golf Balls

Repetition and Combinations (2 / 3)

Example(s):

\square
In General: When repetition is allowed, the number of r combinations of a set of n elements is $\binom{n+r-1}{r}=\binom{n+r-1}{n-1}$.

Repetition and Combinations (3 / 3)

A Small Extension:

Example(s):

In General: When repetition is allowed, the number of r combinations of a set of n elements when one of each element is included in r is $\binom{r-1}{r-n}=\binom{r-1}{n-1}$.

Another View of Repetition and Combinations (1 / 2)

Consider: An integer variable can represent the quantity of items selected with repetition.

Example(s):

Another View of Repetition and Combinations (2 / 2)

Example(s):

Generalized Permutations (1 / 3)

Idea: What if some elements are indistinguishable?

Example(s):

\square

Generalized Permutations (2 / 3)

What if we have indistinguishable copies of multiple elements?

Example(s):

\square
In General: If we have n objects of t different types, and there are i_{k} indistinguishable objects of type k, then the number of distinct arrangements is $P\left(n ; i_{1}, i_{2}, \ldots, i_{t}\right)=\frac{n!}{i_{1}!\cdot i_{2}!\cdot \ldots \cdot i_{t}!}$.

Generalized Permutations (3 / 3)

We can view $P\left(n ; i_{1}, i_{2}, \ldots, i_{t}\right)$ in terms of combinations:
Example(s):
\square

In General:
$P\left(n ; i_{1}, i_{2}, \ldots, i_{t}\right)=\binom{n}{i_{1}}\binom{n-i_{1}}{i_{2}}\binom{n-i_{1}-i_{2}}{i_{3}} \cdots\binom{n-\ldots-i_{t-1}}{i_{t}}$

More Fun with Combinations (1 / 2)

What if we created a table of $\binom{n}{k}$ values?
k
$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{ll} & 0 \\ & 1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}$

More Fun with Combinations (2 / 2)
Pascal's Triangle is the centered rows of the $\binom{n}{k}$ table:

Proving that Pascal's Triange is 'Palindromic'

Conjecture: $\binom{n}{k}=\binom{n}{n-k}$, where $0 \leq k \leq n$

Pascal's Identity (Combinatorial Argument Example)

Conjecture: $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$, where $1 \leq k \leq n$
\square

Pascal's Identity [Combinatorial Proof (1 / 2)]

Definition: Combinatorial Proof
\square
Conjecture: $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$, where $1 \leq k \leq n$

Pascal's Identity [Combinatorial Proof (2 / 2)]

The Binomial Theorem (1/2)

The values of Pascal's Triangle appear in numerous places.
For instance:

$$
\begin{aligned}
& (a+b)^{0}=1 \\
& (a+b)^{1}=1 a+1 b \\
& (a+b)^{2}=1 a^{2}+2 a b+1 b^{2} \\
& (a+b)^{3}=1 a^{3}+3 a^{2} b+3 a b^{2}+1 b^{3}
\end{aligned}
$$

Generalize this, and you've got the Binomial Theorem.

The Binomial Theorem (2 / 2)
Theorem: $(a+b)^{n}=\sum_{k=0}^{n}\left[\binom{n}{k} \cdot a^{n-k} \cdot b^{k}\right]$
\square

Example(s):

