Methods of Counting

The first math class.

Credit: www.smbc-comics.com/comic/a-new-method

Counting - CSc 144 v1.1 (McCann) - p. 1/37

The Pigeonhole Principle (1 / 2) (a.k.a. The Dirichlet Drawer Principle)

Example:

Definition: Pigeonhole Principle

Definition: Pigeonhole Principle (w/ functions)

The Pigeonhole Principle (2 / 2)

Example(s):

Counting - CSc 144 v1.1 (McCann) - p. 3/37

The Multiplication Principle (1 / 2)

Example(s):

Definition: Multiplication Principle (a.k.a. Product Rule)

The Multiplication Principle (2 / 2)

Example(s):

Counting - CSc 144 v1.1 (McCann) - p. 5/37

The Addition Principle (1 / 2)

Definition: Addition Principle (a.k.a. Sum Rule)

The Addition Principle (2 / 2)

Example(s):

Counting - CSc 144 v1.1 (McCann) - p. 7/37

The Principle of Inclusion-Exclusion (1 / 5)

A problem with the Addition Principle:

The Principle of Inclusion-Exclusion (2 / 5)

Definition: Principle of Inclusion-Exclusion for Two Sets

Counting - CSc 144 v1.1 (McCann) - p. 9/37

The Principle of Inclusion-Exclusion (3 / 5)

Definition: Principle of Inclusion-Exclusion for <u>Three</u> Sets

The cardinality of the union of sets $M,\ N,$ and O is the
sum of their individual cardinalities excluding the sum of the
cardinalities of their pairwise intersections but including the
cardinality of their intersection.
That is: $ M \cup N \cup O = M + N + O $
$-(M \cap N + M \cap O + N \cap O)$
$+ M\cap N\cap O .$

The Principle of Inclusion-Exclusion (4 / 5)

Why so complex?

Counting - CSc 144 v1.1 (McCann) - p. 11/37

B

C

The Principle of Inclusion-Exclusion (5 / 5)

1			
1			
1			
1			
1			

Definition: Permutation

Example(s):

Counting - CSc 144 v1.1 (McCann) - p. 13/37

Permutations (2 / 2)

Conjecture: There are n! possible permutations of n elements.

r-Permutations (1 / 3)

Definition: *r***-Permutation**

Conjecture: The number of r-permutations of n elements,

. . .

denoted P(n, r), is $n \cdot (n-1) \cdot \ldots \cdot (n-r+1)$, $r \leq n$.

Counting - CSc 144 v1.1 (McCann) - p. 15/37

r-Permutations (2 / 3)

Observation:

Example(s):

Counting - CSc 144 v1.1 (McCann) - p. 17/37

r-Combinations (1 / 3)

. . .

Definition: *r***-Combination**

Other Notations:

r-Combinations (2 / 3)

The r-Permutation – r-Combination Connection:

Example(s):

Counting - CSc 144 v1.1 (McCann) - p. 19/37

r-Combinations (3 / 3)

Repetition and Permutations

We've already seen this!

Exam	p	le(S):
	-		L	

In General: When object repetition is permitted, the number

of *r*-permutations of a set of *n* objects is $\frac{n^r}{n}$.

Counting - CSc 144 v1.1 (McCann) - p. 21/37

Repetition and Combinations (1 / 3)

Example(s): 'Experienced' Golf Balls

Red	Green	Blue

Repetition and Combinations (2 / 3)

Example(s):

In General: When repetition is allowed, the number of r-combinations of a set of n elements is $\binom{n+r-1}{r} = \binom{n+r-1}{n-1}$.

Counting - CSc 144 v1.1 (McCann) - p. 23/37

Repetition and Combinations (3 / 3)

A Small Extension:

In General: When repetition is allowed, the number of
$$r$$
-combinations of a set of n elements when one of each element is included in r is $\binom{r-1}{r-n} = \binom{r-1}{n-1}$.

Consider: An integer variable can represent the quantity of items selected with repetition.

Example(s):

Counting - CSc 144 v1.1 (McCann) - p. 25/37

Another View of Repetition and Combinations (2 / 2)

Generalized Permutations (1 / 3)

Idea: What if some elements are indistinguishable?

Example(s):

Counting - CSc 144 v1.1 (McCann) - p. 27/37

Generalized Permutations (2 / 3)

What if we have indistinguishable copies of multiple elements?

Example(s):

In General: If we have n objects of t different types, and there are i_k indistinguishable objects of type k, then the number of distinct arrangements is $P(n; i_1, i_2, \ldots, i_t) = \frac{n!}{i_1! \cdot i_2! \cdot \ldots \cdot i_t!}$.

Generalized Permutations (3 / 3)

We can view $P(n; i_1, i_2, \ldots, i_t)$ in terms of combinations:

Example(s):

In General:

$$P(n; i_1, i_2, \dots, i_t) = \binom{n}{i_1} \binom{n-i_1}{i_2} \binom{n-i_1-i_2}{i_3} \cdots \binom{n-i_t-i_{t-1}}{i_t}$$

Counting - CSc 144 v1.1 (McCann) - p. 29/37

More Fun with Combinations (1 / 2)

What if we created a table of $\binom{n}{k}$ values?

More Fun with Combinations (2 / 2)

Pascal's Triangle is the centered rows of the $\binom{n}{k}$ table:

Counting - CSc 144 v1.1 (McCann) - p. 31/37

Proving that Pascal's Triange is 'Palindromic'

Conjecture: $\binom{n}{k} = \binom{n}{n-k}$, where $0 \le k \le n$

Pascal's Identity (Combinatorial Argument Example)

Conjecture: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$, where $1 \le k \le n$

Counting - CSc 144 v1.1 (McCann) - p. 33/37

Pascal's Identity [Combinatorial Proof (1 / 2)]

Definition: Combinatorial Proof

Conjecture: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$, where $1 \le k \le n$

Counting - CSc 144 v1.1 (McCann) - p. 35/37

The Binomial Theorem (1 / 2)

The values of Pascal's Triangle appear in numerous places. For instance:

$$(a+b)^{0} = 1$$

$$(a+b)^{1} = 1a + 1b$$

$$(a+b)^{2} = 1a^{2} + 2ab + 1b^{2}$$

$$(a+b)^{3} = 1a^{3} + 3a^{2}b + 3ab^{2} + 1b^{3}$$

Generalize this, and you've got the Binomial Theorem.

The Binomial Theorem (2 / 2)

Theorem:
$$(a+b)^n = \sum_{k=0}^n \left[\binom{n}{k} \cdot a^{n-k} \cdot b^k \right]$$

Example(s):

Counting - CSc 144 v1.1 (McCann) - p. 37/37