Finite Probability

Probability (1 / 2)

Definition: Probability

\square

- The occurrences of interest are called \qquad .
- The set of possible occurrences is the \qquad .
- These are finite sets, hence the term finite probability.
- The occurrence probability of an interest event:

Probability (2 / 2)

Please note:
(a) $\forall e \in S, P(e)>0$
$\sum_{e \in S} P(e)=1$
Example(s):
\square

Applications of Counting to Probability (1 / 2)

1. Probability of Winning the Powerball Lottery

Applications of Counting to Probability (2 / 2)

2. Principle of Inclusion-Exclusion

Recall: $\left|E_{1} \cup E_{2}\right|=\left|E_{1}\right|+\left|E_{2}\right|-\left|E_{1} \cap E_{2}\right|$

Example(s):

Conditional Probability (1 / 2)

Example(s):

Conditional Probability (2 / 2)

Definition: Conditional Probability
\square

Example(s):

Independence of Events (1 / 3)

Recall: $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
Definition: Independent
\square

Example(s):

Independence of Events (2 / 3)
Example(s):

Independence of Events (3 / 3)

Random Variables (1 / 2)

Oddly, random variables are neither random nor variables!
Definition: Discrete Random Variable (DRV)
\square

Example(s):

Random Variables (2 / 2)

Example(s):

DRVs and Probabilities (1 / 2)

Each of 12 students count the number of pencils they have. The results: $3,0,3,2,3,1,1,5,2,3,3,1$.
What is the probability of occurence of each quantity?
——probabilities -
\#pencils frequency fraction decimal
0
1
2
3
4
5

DRVs and Probabilities (2 / 2)

Definition: Probability Distribution

\square
Example(s):

Mean of a Discrete Random Variable (1 / 3)

Definition: Population Mean (Version 1)

\square

Example(s):

Mean of a Discrete Random Variable (2 / 3)

We can also compute the mean using probabilities.

Example(s):

The quiz scores of 6 students are $10,4,8,8,10,10$.
By our mean definition, $\mu=\frac{10+10+10+8+8+4}{6}=8 . \overline{3}$
Observe:

Mean of a Discrete Random Variable (3 / 3)

Example(s): (Continues) Let Y be the quiz score DRV.
\square

Definition: Population Mean (Version 2)

Variance \& Standard Deviation of a DRV (1 / 4)

A little motivation:
Example(s):
The mean of 0 and 100 is
The mean of 45 and 55 is

Variance \& Standard Deviation of a DRV (2 / 4)

However: Squaring changes the units of measure from, for example, "points" to "points squared."

No problem! Taking the square root of $\left(x_{i}-\mu\right)^{2}$ gives us both un-squared units and positive values.

Variance \& Standard Deviation of a DRV (3 / 4)

Their expressions build on that of the expected value.
Definition: Variance of a DRV

Definition: Standard Deviation of a DRV

Variance \& Standard Deviation of a DRV (4 / 4)

Example(s): Recall: $\mu=8 \frac{1}{3}$ for quizzes $10,4,8,8,10,10$.

$$
\begin{array}{cccc}
\frac{y}{y} & \frac{\text { frequency }}{10} & \frac{P(Y=y)}{3} & \\
& 3 / 6 & & \\
8 & 2 & 2 / 6 \\
4 & 1 & 1 / 6
\end{array}
$$

Binomial Distribution

Recall: A probability distribution maps outcomes to probabilities.
Definition: Binomial Distribution
\square
Many real-world experiments have this distribution, such as:

Bernoulli Trial (1 / 5)

Definition: Bernoulii Trial

\square

Example(s):

Bernoulli Trial (2 / 5)

Example(s): (Continued from last slide)

The probabilities of each of the four outcomes are:
SS:
sf:
fs:
ff:

Bernoulli Trial (3 / 5)

Observation: We had 1 way to get two successes, 2 ways
to get one, and 1 way to get none. $1 \boxed{2} \sqrt[1]{ }$ - ring a bell?

Bernoulli Trial (4 / 5)

Time to generalize!

Definition: The Binomial Probability Formula

\square
Does that formula's structure remind you of anything?

Bernoulli Trial (5 / 5)

Example(s):

Mean \& Std. Deviation of a Binomial DRV (1 / 2)

We can still use our $\mu=\sum x P(X=x)$ and
$\sigma=\sqrt{\sum y^{2} P(Y=y)-\mu^{2}}$ expressions, but thanks to
the two-outcome limit of Binomial distributions, they can be greatly simplified.

Mean \& Std. Deviation of a Binomial DRV (2 / 2)

Example(s):

Probabilistic Reasoning (1 / 6)

Each drawer of a 3×2 dresser holds either a red or a blue UA T-shirt. One row of drawers has two red shirts, one row has two blue, and one row has
 one of each. You open one drawer and see a red T-shirt. What is the probability that the shirt in the other drawer in the same row is also red?

Probabilistic Reasoning (2 / 6)

One solution approach: Enumerate the possibilities. WLOG:

Dresser

Open Drawer Shirt Color in Containing Other Drawer?

R_{1}	
R_{2}	
R_{3}	

Probabilistic Reasoning (3 / 6)

A more famous, more recent, example:
"Suppose you're on a game show, and you're given the choice of three doors:
Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, 'Do you want to pick door No. 2?' Is it to your advantage to switch your choice?"

From "Ask Marilyn", Parade, Sept. 9, 1990.
Reference:
www.marilynvossavant.com/game-show-problem/
Care to Play?

Probabilistic Reasoning (4 / 6)

But . . . why? Three views:

1. Enumerate the Possibilities

Probabilistic Reasoning (5 / 6)

2. 'Car / Not Car'

Probabilistic Reasoning (6 / 6)

3. Conditional Probability

