Direct Proofs of $p \rightarrow q$

Handful O' Definitions (1 / 2)

Definition: Conjecture
\square

Definition: Theorem

Definition: Proof

Handful O' Definitions (2 / 2)

Definition: Lemma

\square

Definition: Corollary

\square

Example(s):

Why do People Fear Proofs?

1. Proofs don't come from an assembly line.

- Need knowledge, persistence, and creativity

2. Creating proofs seems like magic.

- But they are systematic in many ways

3. Proofs are hard to read and understand.

- Only if the writer makes them so

4. Institutionalized Fear.

- Many teachers avoid them in classes

Constructing a proof? Remember:

1. There are several proof techniques for a reason.

- One may be easier to use than the others

2. Knowledge of mathematics is important.

- Remember our Math Review?

3. There are "tricks" to know.

- Ex: Dividing an even \# in half leaves no remainder

4. Practice helps . . . a lot!

- Just as it does for most everything else

5. Dead ends are expected.

- Proofs in books are the final, polished versions

Speaking of Even Numbers ...

Here are a few ways to say that $n \in \mathbb{Z}$ is even:

- $n / 2$ is an integer
- $n \% 2=0$
- n is twice some integer (e.g., $n=2 k, k \in \mathbb{Z}$)

Similarly, $d \in \mathbb{Z}$ is odd when:

Types Of Proof In This Class

1. Direct Proof

- The most common variety

2. Proof by Contraposition

- Like Direct, but with a twist

3. Proof by Contradiction

- A dark road on a foggy night

Direct Proofs

Our First Conjecture

Conjecture: If n is even, then n^{2} is also even, $n \in \mathbb{Z}$.
\square

Proof-Writing Miscellanea

- Remember: A conjecture isn't a theorem until proven.
- Don't lose sight of your destination.
- When writing proofs in this class:

1. Always start with "Proof (style):"
2. Stating your allowed assumptions can help.
3. Define all introduced variables.
4. End proofs with "Therefore, " and the conjecture.
[Outside of this class: "Q.E.D." (quod erat demonstrandum,
Latin for "this was to be demonstrated.")]

A Conjecture About Rational Numbers

Conjecture: If $r, s \in \mathbb{Q}$, then $\frac{r}{s} \in \mathbb{Q}$.

A Conjecture About Inequalities

Conjecture: If $0<a<b$, then $a^{2}<b^{2}, a, b \in \mathbb{R}$.

"Proof By Cases"

Question: How would you prove that $\forall x C(x)$ is true, where $x \in\{6,28,496\}$?

A Direct Proof Employing Cases

Conjecture: $s \rightarrow r \equiv \neg r \rightarrow \neg s$
Proof (direct): Consider all possible combinations of values of r and s :

$$
r \quad s \quad s \rightarrow r \quad \neg r \rightarrow \neg s
$$

Case 1:

Therefore, $s \rightarrow r \equiv \neg r \rightarrow \neg s$.
(Yes, this truth table is a direct proof by cases.)

A More Traditional Direct Proof With Cases

Conjecture: $3 x(x+1)$ is even, $x \in \mathbb{Z}$.
\square

A More Interesting Direct Proof With Cases

Conjecture: $x^{2} \% 4 \in\{0,1\}, x \in \mathbb{Z}$.

Poor Arguments \longrightarrow Poor Proofs (1/2)

Conjecture: $1<0$.

Proof or Goof?:

Consider x such that $0<x<1$. Take the base-10
logarithm of both sides of $x<1$: $\log _{10} x<\log _{10} 1$. By
definition, $\log _{10} 1=0$. Divide both sides by $\log _{10} x$:
$\frac{\log _{10} x}{\log _{10} x}<\frac{0}{\log _{10} x}$, which reduces to $1<0$.
Therefore, $1<0$.

Poor Arguments \longrightarrow Poor Proofs (2 / 2)

Conjecture: For all $n \in \mathbb{Z}^{\text {odd }},\left(n^{2}-1\right) \% 4=0$.
Proof or Goof?:
Let $x=1.1^{2}-1=0.0 \% 4=0$. Let $x=3.3^{2}-1=8$.
$8 \% 4=0$. Let $x=5.5^{2}-1=24.24 \% 4=0$. This
shows no sign of failing to give a result of 0 .
Therefore, for all $n \in \mathbb{Z}^{\text {odd }},\left(n^{2}-1\right) \% 4=0$.

Disproving Conjectures (1 / 2)

There are two common approaches:
(1) Prove that the conjecture's negation is true.

Conjecture: If m is even and n is even, $m+n$ is odd.
\square

Disproving Conjectures (2 / 2)

(2) Find a counter-example. (Very commonly used!)

Conjecture: No integer n exists such that the sum of its divisors equals $2 n$.

