
C Sc 352, Spring 2005 UNIX Slide 1
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Introduction

What is UNIX?

UNIX Timeline

C Sc 352, Spring 2005 UNIX Slide 2
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

What is UNIX?

At Bell Labs, in 1969, Ken Thompson created a tiny operating system
that came to be known as UNIX.

During the 1970s UNIX gradually grew and evolved, and spread into
the computer science community.

In the 1980s and 1990s UNIX became an immensely popular platform
for software R&D and later, enterprise computing.

Some hallmarks of UNIX:

• Pre-emptive multi-tasking of processes

• Full support for multiple simultaneous users

• Utilities work well in combination with others

• APIs that combine simplicity, elegance, and power

• The system is stable and resilient

• The keyboard is alive and well

• Sophisticated users are not encumbered

• Casual users are frustrated

C Sc 352, Spring 2005 UNIX Slide 3
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

UNIX Timeline

1965 Researchers from Bell Labs and other organizations begin
work on Multics, a state-of-the-art interactive, multi-user
operating system.

1969 Bell Labs researchers, losing hope for the viability of Multics
due to performance issues, withdraw from the project.

One of the researchers, Ken Thompson, finds a little-used
PDP-7, and in a month implements a simple operating system
comprising a kernel, a command interpreter, an editor, and an
assembler.

Other Bell researchers, most notably Dennis Ritchie, are
attracted to Thompson's system and contribute to it.

1970 Peter Neumann suggests the name "Unics" for Thompson's
operating system, a pun on "Multics". A DEC PDP-11 is
acquired for further development of UNIX.

1971 In addition to supporting research, the PDP-11 running UNIX
hosts a word processing project: the preparation of patent
applications. Work begins on the C programming language.

1973 UNIX is rewritten in C.

1975 Ken Thompson takes a sabbatical and teaches at Berkeley. He
gets some students, including Bill Joy, interested in UNIX.

1978 Seventh Edition UNIX (V7), incorporating a goal of
portability, is released. Some say that V7 is the classic UNIX.

C Sc 352, Spring 2005 UNIX Slide 4
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

UNIX Timeline, continued

1979 Building on UNIX/32V, UCB produces a version of UNIX
that takes advantage of the DEC VAX-11/780 virtual memory
support. It is released as 3BSD (Berkeley Software
Distribution).

1981 VAXs running 4.1BSD are the system of choice for computer
science departments everywhere.

1982 Sun Microsystems is founded; Bill Joy leads their software
development.

1984 A federal court decree allows AT&T to get into the computer
business; AT&T releases UNIX System V.

1985 Richard Stallman writes the GNU Manifesto and founds the
Free Software Foundation. (GNU's Not UNIX.)

1988 IEEE Std 1003.1-1988 is approved. It came to be known as
POSIX.1 (Portable Operating System Interface).

1989 System V R4 (SVR4) is released, merging the System V and
BSD development lines.

1991 comp.os.minix: "Hello everybody out there using minix -
I'm doing a (free) operating system (just a hobby, won't be big
and professional like gnu) for 386(486) AT clones. ..."
—Linus Torvalds, a student at the University of Helsinki

1993 AT&T sells UNIX System Laboratories to Novell; Novell
conveys "UNIX" trademark to X/Open, a standards
organization.

C Sc 352, Spring 2005 UNIX Slide 5
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

UNIX Timeline, continued

In the years since 1993 there have been a series of licensing deals,
business maneuvers, and lawsuits involving Novell, SCO, The SCO
Group, Caldera, and Caldera International.

Today:

The term "UNIX" can be legally applied to any system that passes
a certification process established by The Open Group.

The IEEE/ISO POSIX standards facilitate writing software that is
portable between a wide range of UNIX and non-UNIX systems.

Linux keeps getting bigger and better.

C Sc 352, Spring 2005 UNIX Slide 6
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

C Sc 352, Spring 2005 UNIX Slide 7
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The Shell—Part 1

Shell and command-line basics

man(1) and built-in help

I/O Redirection

Pipes

C Sc 352, Spring 2005 UNIX Slide 8
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The Shell—basics

Users typically interact with UNIX via a "shell".

A reasonable definition for shell:

A command-line based environment for execution and control of
programs.

There are many different shells but a number of capabilities are
common to all popular shells:

• Command execution
• Redirection of input and output
• Piping
• Wildcard expansion
• Process control
• Command recall and editing
• Turing-complete

Shells in use on lectura:

Shell Users

Enhanced C Shell (tcsh) 641

Bourne-Again Shell 119

C Shell 60

Korn Shell 8

Bourne Shell 3

C Sc 352, Spring 2005 UNIX Slide 9
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Shell basics, continued

The shell we'll focus on is bash, the Bourne-Again Shell.

bash is our shell of choice because it is:

A typical shell
Full-featured
POSIX-compliant
Widely available

The things you'll learn about bash fall into three categories:

Things that work with just about every shell
Things that work with every POSIX-compliant shell
Things that are bash-specific but have counterparts in other shells

C Sc 352, Spring 2005 UNIX Slide 10
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Command line basics

Typing a command name and pressing the <ENTER> key causes the
program associated with the command to be executed. The output, if
any, is displayed on the screen. When the program terminates, the
shell prompts for another command.

Examples: (typed input is in bold)

$ hostname
lectura.CS.Arizona.EDU
$ whoami
whm
$ true
$ date
Wed Jan 12 22:12:36 MST 2005
$ who
wnj pts/44 Jan 12 16:42
dmr pts/73 Jan 11 15:49
drh pts/50 Jan 10 08:18
ken pts/50 Jan 11 08:18
rob pts/47 Jan 11 21:47
fed pts/44 Jan 12 16:42
$

A running instance of a program is called a process. A running shell is
a process that starts other processes.

C Sc 352, Spring 2005 UNIX Slide 11
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Sidebar: Running bash with ssh

The first step to run bash is to login to lectura via a secure shell (ssh)
connection.

On departmental Windows machines, you can use Secure Shell Client
on the Start menu (or desktop) to establish an ssh connection to
lectura. After starting the application, press <ENTER> to display
this dialog:

Specify lectura.cs.arizona.edu as the Host Name and your CS
Account login id as the User Name. Click Connect and enter your
password in the resulting dialog.

You'll then see a window with contents like this:

SSH Secure Shell 3.2.9 (Build 283)
[...more...]
Last login: Wed Jan 12 22:21:18 2005 from amelia.cs...
Sun Microsystems Inc. SunOS 5.9 Generic May 2002

%

C Sc 352, Spring 2005 UNIX Slide 12
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Running bash, continued

An alternative ssh client, and the one recommended by the instructor,
is PuTTY.

PuTTY can be found here,

http://www.chiark.greenend.org.uk/~sgtatham/putty/
(it's the first hit if you Google for putty)

and on the class website.

There is no installation with PuTTY—there is simply a Windows
executable named putty.exe. Put it wherever you want to and run it
from there.

C Sc 352, Spring 2005 UNIX Slide 13
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Running bash, continued

Running putty.exe produces a configuration screen:

Enter lectura.cs.arizona.edu (just lectura on CS machines) as the host
name and click Open. Another window will open that will prompt you
for your login name and password. Your shell prompt will then
appear.

In PuTTY, a left drag selects text; a right click pastes it.

pscp, found on the PuTTY website, is a ssh-based copy program
modeled after the UNIX cp (file copy) command.

C Sc 352, Spring 2005 UNIX Slide 14
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Running bash, continued

By default, users on lectura are assigned the enhanced C Shell (tcsh),
not bash, as their login shell.

To start bash, simply type bash at the tcsh prompt, which typically
ends with '%' or '>':

% bash
bash-2.04$

The default bash prompt is bash-2.04$. To avoid clutter on these
slides, examples will show the bash prompt as being only a dollar
sign.

To terminate bash, type exit. Then type exit again to terminate the
login shell (and your ssh session).

bash-2.04$ exit
% exit

If you wish to avoid the extra step of having to start bash each time
you login, change your login shell to be bash. (Do it via
http://www.cs.arizona.edu/apply—select CHANGE your UNIX login
shell under TYPE of APPLICATION.)

C Sc 352, Spring 2005 UNIX Slide 15
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Running bash, continued

ssh clients emulate "dumb terminals"— simple I/O devices that
provide little more than a keyboard and a screen that displays a matrix
of fixed-size characters.

The stty command displays "terminal" settings:

$ stty -a
speed 9600 baud; rows 45; columns 80;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D;
eol = <undef>; eol2 = <undef>; swtch = <undef>; start = ^Q;
stop = ^S; susp = ^Z; dsusp = ^Y; rprnt = ^R; werase = ^W;
lnext = ^V; flush = ^O;
-parenb -parodd cs8 -hupcl -cstopb cread -clocal -crtscts
[...lots more...]

Handy control-characters:

^C (control-C) kills the currently running process.

^U erases the characters typed thus far on the current line.

^W erases the last "word".

^S suspends output; ^Q resumes output.

^O causes output to be discarded until ^O is typed again.

^Z prints "Stopped" and suspends the current process. Execution
can be resumed with the fg command; jobs shows active "jobs";
kill kills jobs.

C Sc 352, Spring 2005 UNIX Slide 16
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Command line basics, continued

Most commands accept one or more operands:

$ cal 1 2005
 January 2005
 S M Tu W Th F S
 1
 2 3 4 5 6 7 8
 9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
$ banner unix

 # # # # # # #
 # # ## # # # #
 # # # # # # ##
 # # # # # # ##
 # # # ## # # #
 #### # # # # #

C Sc 352, Spring 2005 UNIX Slide 17
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Command line basics, continued

For many commands the operands are file names.

$ cat Hello.java
public class Hello {
 public static void main(String args[]) {
 System.out.println("Hello, world!");
 }
 }
$ javac Hello.java
$ java Hello
Hello, world!
$ rm Hello.class
$ java Hello
Exception in thread "main"
java.lang.NoClassDefFoundError: Hello

Note the evidence of the "silence is golden" philosophy, which is
common in UNIX programs.

The fgrep command searches for text. Its first argument is a string to
search for. The following arguments are the files to search in.

$ fgrep Hello Hello.java
public class Hello {
 System.out.println("Hello, world!");
$ fgrep Hello Hello.java Test.java
Hello.java:public class Hello {
Hello.java: System.out.println("Hello, world!");
$ fgrep Waldo Hello.java Test.java
$

Does fgrep embrace "silence is golden"?

Note: The "grep" family will be studied in more depth later.

C Sc 352, Spring 2005 UNIX Slide 18
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Command line basics, continued

An operand is one type of command line argument. Options are
another type of command line argument.

Options almost always begin with a '-' (minus sign) . By convention,
options appear between the command name and the operands, if any.

Examples:

$ date
Thu Jan 13 02:19:20 MST 2005
$ date -u
Thu Jan 13 09:19:22 UTC 2005
$ wc Hello.java
 5 14 127 Hello.java
$ wc -l -w Hello.java
 5 14 Hello.java

In some cases, an option has an associated argument:

$ javac -verbose -d work Hello.java
[parsing started Hello.java]
[parsing completed 143ms]
[loading
/usr/j2se/jre/lib/rt.jar(java/lang/Object.class)]
...more...
[wrote work/Hello.class]
[total 624ms]
$

For most programs the ordering of options is not significant but that is
a convention, not a rule.

C Sc 352, Spring 2005 UNIX Slide 19
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Command line basics, continued

It is common to allow single character options to be combined into a
single multi-character option. For example,

wc -l -w Hello.java

is equivalent to

wc -lw Hello.java

Some programs have verbose synonyms for single-character options.
Example:

wc --words --lines Hello.java

As a rule, whitespace is significant in command lines. For example,
the commands

date-u

wc -l-w Hello.java

are invalid.

There is nothing that prohibits a program from having its own style of
argument handling. The dd command, a very old file manipulation
utility, uses name/value pairs on the command line:

dd if=scores.dat ibs=90 skip=40 count=5 of=x

C Sc 352, Spring 2005 UNIX Slide 20
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Sidebar: Java and argument handling

When a Java program is run, the shell, the operating system kernel, and
the Java run-time system arrange for the command line arguments to
appear as an array of strings that is passed to main.

Here is a Java program that displays its arguments:

public class args {
 public static void main(String args[]) {
 for (int i = 0; i < args.length; i++)
 System.out.println("|" + args[i] + "|");
 }
 }

Interaction:

$ java args one two three
|one|
|two|
|three|
$ java args -a -b c +d e=f
|-a|
|-b|
|c|
|+d|
|e=f|
$ java args
$

C Sc 352, Spring 2005 UNIX Slide 21
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Command line basics, continued

Many non-alphanumeric characters have special meaning to the shell:

$ java args :)
bash: syntax error near unexpected token `:)'

Characters that have special meaning are often called metacharacters.
Here are the bash metacharacters:

~ ` ! # $ & * () \ | { } [] ; ' " < > ?

One way to specify an argument that contains metacharacters or
whitespace is to enclose the argument in quotes:

$ java args ':)' "'''" '"' ' x ' "y " z"'z"
|:)|
|'''|
|"|
| x |
|y |
|z'z|

Note that the enclosing quotes are consumed by the shell. args never
sees them.

We'll see later that some metacharacters are still interpreted even when
surrounded with double quotes. For the time being, always use single
quotes to avoid any surprises.

Problem: Describe a simple way to test whether a character is a shell
metacharacter.

C Sc 352, Spring 2005 UNIX Slide 22
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Command line basics, continued

An alternative to wrapping with quotes is to use a backslash to
"escape" each metacharacter.

If a character is preceded by a backslash, its special meaning, if any, is
suppressed.

$ java args :\) \ \'\"\\ x\ y \x\y\z
|:)|
| '"\|
|x y|
|xyz|

Note that it's not an error to escape an ordinary character.

The ASCII NUL (all zero bits) is the only character that can't be
passed in an argument.

C Sc 352, Spring 2005 UNIX Slide 23
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Command line basics, continued

Multiple commands can be specified on a single command line by
separating them with semicolons:

$ date -u; cal; wc Hello.java; java args \;
Thu Jan 13 07:42:22 UTC 2005
 January 2005
 S M Tu W Th F S
 1
 2 3 4 5 6 7 8
 9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
 5 14 127 Hello.java
|;|
$

The shell runs each command in turn, waiting for each to terminate
before the next command is started.

Note that there is no indication of where the output of one command
ends and the output of the next begins.

C Sc 352, Spring 2005 UNIX Slide 24
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Command-line basics—Summary

As a rule, command invocations have this form:

command-name option1 ... optionN operand1 .. operandN

Options and operands are often collectively referred to as arguments.

Options typically start with a '-' and are often single letters; single
letter options can often be combined.

Options sometimes have arguments themselves.

The ordering of options is usually not important.

Many programs allow options to follow operands.

As a rule, whitespace in options and operands is significant.

Interpretation of metacharacters can be suppressed by enclosing the
argument in quotes or preceding each metacharacter with a backslash.

All-in-all, there are somewhat firm conventions but no hard rules about
options and operands.

C Sc 352, Spring 2005 UNIX Slide 25
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The man(1) command

The "man" command displays documentation for commands (and
more). Here is a slightly abridged example—the "man page" for cal:

$ man cal
NAME
 cal - display a calendar

SYNOPSIS
 cal [[month] year]

DESCRIPTION
 The cal utility writes a Gregorian calendar to standard out-
 put. If the year operand is specified, a calendar for that
 year is written. If no operands are specified, a calendar
 for the current month is written.

OPERANDS
 The following operands are supported:

 month Specify the month to be displayed, represented as a
 decimal integer from 1 (January) to 12 (December). The
 default is the current month.

 year Specify the year for which the calendar is displayed,
 represented as a decimal integer from 1 to 9999. The
 default is the current year.

SEE ALSO
 calendar(1), attributes(5), environ(5)

NOTES
 An unusual calendar is printed for September 1752.

SunOS 5.9 Last change: 1 Feb 1995

Note that the (1) in man(1) indicates that the page comes from
section one of the manual, which contains user commands.

C Sc 352, Spring 2005 UNIX Slide 26
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The man(1) command, continued

A very handy man option is -k, which specifies a keyword to search
for in (all) the man page "NAME" entries.

Example: ("What was that calendar printing command??")

$ calendar 8 2004
/bin/calendar: illegal option -- 8 2004
usage: calendar [-]
$
$ man -k calendar
cal cal (1) - display a calendar
calendar calendar (1) - reminder service
difftime difftime (3c) - computes the difference
 between two times
mktime mktime (3c) - converts a tm structure
 to a calendar time

Some man page names appear in more than one section of the manual.
For example, printf appears in sections 1, 3c, and 3ucb. The -s flag
selects the entry in the specified section.

man -s 3ucb printf

man -s 1 printf

Most manual sections have an intro page that provides an overview of
the section.

man -s 4 intro

C Sc 352, Spring 2005 UNIX Slide 27
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Built-in help for commands

Many commands have a --help option:

$ wc --help
Usage: wc [OPTION]... [FILE]...
Print line, word, and byte counts for each FILE, and a
total line if more than one FILE is specified. With no
FILE, or when FILE is -, read standard input.

 -c, --bytes, --chars print the byte counts
 -l, --lines print the newline counts
 -L, --max-line-length print the length of the longest
 line
 -w, --words print the word counts
 --help display this help and exit
 --version output version information and
 exit

Report bugs to <bug-textutils@gnu.org>.

Some commands don't support --help, but...

$ cal --help
cal: illegal option -- -
usage: cal [[month] year]
$
$ cc --help
cc: Warning: option -- passed to ld
usage: cc [options] files. Use 'cc -flags' for
details

Note: There are separate "search paths" for programs and manual
pages. If the paths get out of sync the page displayed by man might
not correspond to the version of the program being run. (More on this
later.)

C Sc 352, Spring 2005 UNIX Slide 28
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

I/O Redirection

There are several possible destinations for the output of a program: the
screen, a file, another program, a hardware device, a process on
another machine, etc. Similarly, input may come from a variety of
sources.

UNIX has a notion of a standard input stream and a standard output
stream. It is common for programs to read from standard input and/or
write to standard output.

In Java, System.in is associated with standard input; System.out is
associated with standard output.

By default, when the shell starts a program, standard input is
associated with the keyboard and standard output is associated with the
screen.

C Sc 352, Spring 2005 UNIX Slide 29
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

I/O Redirection, continued

Here is a Java program that reads lines from standard input and writes
the line count to standard output:

import java.io.*;

public class lc {
 public static void main(String args[]) throws IOException {
 BufferedReader in = new BufferedReader(
 new InputStreamReader(System.in));

 String line; int count = 0;
 while ((line = in.readLine()) != null)
 count++;

 System.out.println(count);
 }
 }

Interaction with lc.java:

$ java lc
just
a
test
^D (control-D)
3
$

Due to the default association of standard input with the keyboard and
standard output with the screen, java lc reads lines from the keyboard
and displays the line count on the screen.

C Sc 352, Spring 2005 UNIX Slide 30
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

I/O Redirection, continued

It is possible to redirect standard input, so that instead of reading
characters from the keyboard, the data comes from a file.

Input redirection is indicated by adding '< file' to the command line:

$ java lc < lc.java
15
$

Output redirection is similar:

$ java lc > count
one
two
three
^D
$ cat count
3
$

If the target file does not exist, it is created. If it exists, it is
overwritten.

Both input and output can be redirected:

$ java lc <lc.java >out
$ java lc < out
1
$

Whitespace before and after < and > is optional.

C Sc 352, Spring 2005 UNIX Slide 31
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

I/O Redirection, continued

It is important to understand that the shell completely consumes the
redirection operators and the file names that follow the operators.
Example:

$ java args a b c < lc.java > out
$ cat out
|a|
|b|
|c|
$

To the program, there is no evidence whatsoever of the redirection of
standard input from lc.java and standard output to out.

Redirections can appear at any place on the command line:

$ java > out args a < lc.java b c
$ cat out
|a|
|b|
|c|
$

Explain this error:

$ java > args out a < lc.java b c
Exception in thread "main"
java.lang.NoClassDefFoundError: out

What arguments did the java command see?

C Sc 352, Spring 2005 UNIX Slide 32
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

I/O Redirection, continued

Many programs will accept input from either standard input or files
named on the command line:

$ wc Hello.java
 5 14 127 Hello.java
$ wc < args.java
 6 26 180

Consider this:

$ wc Hello.java < args.java
 5 14 127 Hello.java

Why isn't args.java processed, too?

Problem: Try writing a Java program that behaves as follows:

$ java x a b c Prints a, b, c
$ java x < y Prints the contents of the file y
$ java x a b c < y Prints a, b, c, and then contents of file y
$ java x Prints lines read on standard input

C Sc 352, Spring 2005 UNIX Slide 33
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

I/O Redirection, continued

A variant of '>' is '>>'. It appends standard output to the named file,
rather than truncating it. Example:

$ cal 1 2005 > out
$ echo >> out
$ echo >> out
$ cal 2 2005 >> out
$ cat out
 January 2005
 S M Tu W Th F S
 1
 2 3 4 5 6 7 8
 9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
....................

 February 2005
 S M Tu W Th F S
 1 2 3 4 5
 6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28

Note that echo simply prints its arguments on standard output.

Could the above example start with cal 1 2005 >> out instead?

C Sc 352, Spring 2005 UNIX Slide 34
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

I/O Redirection, continued

For reference:

$ cal 1 2005 > out
$ echo >> out
$ echo >> out
$ cal 2 2005 >> out

In this case, a similar effect can be achieved like this:

$ (cal 1 2005; echo; echo; cal 2 2005) > out

The parentheses serve to group the commands into a subshell that runs
each command in turn. The output of the subshell is directed to the
file out.

Speculate: What does the following command do?

$ cal 1 2005; echo; echo; cal 2 2005 > out

C Sc 352, Spring 2005 UNIX Slide 35
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

I/O Redirection, continued

There is a third I/O stream: standard error.

By convention, programs send "normal" output to standard output, and
"exceptional" output to standard error.

$ cal 2005 1 >out
cal: bad month
usage: cal [[month] year]
$ cat out
$

Standard output and error output can be combined with the '>&'
redirection operator:

$ cal 2005 1 >& out
$ cat out
cal: bad month
usage: cal [[month] year]

It is possible to separately redirect standard error with '2>':

$ cal 2005 1 >stdout 2>stderr
$ cat stdout
$ cat stderr
cal: bad month
usage: cal [[month] year]
$

In Java, System.err is associated with standard error.

C Sc 352, Spring 2005 UNIX Slide 36
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

I/O Redirection, continued

One great benefit of I/O redirection is that a program doesn't need to
include any file-handling code. A program can be written in terms of
standard input and standard output; opening files (and handling
potential failures) is handled by the shell.

Consider an alternative interface for the line counter,

java lc -input x.txt -output count

and the additional code that would be required. (Problem: Write it!)

Contrast: Once upon a time, users of DEC's VMS operating system did
output redirection like this,

$ assign/user sys$output out
$ run program

which is downright clumsy compared to this:

$ program > out

C Sc 352, Spring 2005 UNIX Slide 37
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Pipes

A pipe is an IPC (interprocess communication) mechanism supported
by the UNIX kernel.

A pipe connects two processes such that data written into the pipe by
the sending process can be read by the receiving process.

The shell supports piping between processes. Example:

$ who
hehf pts/5 Jan 10 16:31
srinivas pts/30 Jan 11 09:20
kobus pts/10 Jan 12 13:41
christem pts/17 Jan 12 23:16
laurynas pts/18 Jan 12 13:01
whm pts/9 Jan 13 00:07
...lots more...
$
$ who | wc -l
 98

The command who | wc -l connects the standard output of who
with the standard input of wc. who and wc run simultaneously.

Data always flows from left to right in a pipeline.

Problem: How could we find out if pete is logged in?

C Sc 352, Spring 2005 UNIX Slide 38
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Pipes, continued

A key element of the UNIX philosophy is to use pipelines to combine
two or more programs to perform a useful task.

Here is a pipeline that displays users in order by login name:

$ who | sort
dmr pts/73 Aug 15 15:49
drh pts/50 Aug 13 08:18
drh pts/73 Aug 14 11:01
ken pts/50 Aug 13 08:18
rob pts/47 Aug 12 12:47
rob pts/47 Aug 16 21:47
wnj pts/44 Aug 16 16:42

Just login names:

$ who | sort | cut -f 1 -d " "
dmr
drh
drh
ken
rob
rob
wnj

Unique users:

$ who | sort | cut -f 1 -d " " | uniq
dmr
drh
ken
rob
wnj

C Sc 352, Spring 2005 UNIX Slide 39
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Pipes, continued

Programs such as cut, sort, and uniq, which read standard input,
transform it, and write the result to standard output are often called
filters.

Problem: Write pipelines to...

Count the number of current login sessions for whm. (Note that
fgrep reads standard input if no files are specified.)

Count the number of words in /usr/dict/words that contain all the
vowels.

Print the login name of the user who has the greatest number of
login sessions. (Hint: uniq -c and head)

Confirm that tcsh is the most commonly used shell on lectura.

Print the login names of non-idle users who are using pine. (Hint:
use w and cut -c.)

Problem: Devise three pipeline problems.

C Sc 352, Spring 2005 UNIX Slide 40
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Pipes, continued

Problem: Draw diagrams for these command lines...

date > out

> x java lc < lc.java

cat < lc.java | wc | cat > x

wc >x lc.java | wc

Problem: Prove that all processes in a pipeline are running at the same
time. Could pipelines be provided on an operating system that can run
only one process at a time?

C Sc 352, Spring 2005 UNIX Slide 41
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Files and File Management

Filenames

Directories and paths

The ls command

The mkdir command

Copying files with cp

Deleting files with rm

Links

Moving/renaming files with mv

Tilde (~) substitution

Wildcards

Brace expansion

Filename completion

C Sc 352, Spring 2005 UNIX Slide 42
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Filenames

All ASCII characters except NUL (all bits zero) and / (slash) can
appear in a UNIX filename.

The maximum length of a filename is platform-dependent. On lectura,
which runs Solaris 9, the limit is 255 characters.

Here are some valid filenames:

Hello.java
a.out
core
.bashrc
a.b.c.d.
!@#$%^&*()_-+=
A collection of assorted notes about UNIX
:)
_\
 (three blanks and two tabs)
...

Filenames are case-sensitive. For example, hello.java and Hello.java
name two different files.

If a filename contains shell metacharacters or whitespace characters,
the characters must be escaped when the file is specified on the
command line:

$ wc -c '[1]' Version\ 2 'This|That'
 359 [1]
 688 Version 2
 417 This|That
 1464 total

C Sc 352, Spring 2005 UNIX Slide 43
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Directories and paths

With UNIX, like most modern operating systems, files are organized
using directories. Directories are collections of files and directories.

Collectively, the files and directories in a directory are called directory
entries.

Directory names follow the same rules as file names.

The location of a file or directory is specified with a path. A path
consists of a series of zero or more directory names and ends with the
name of a file or directory. Slashes separate the path components.

Here are some paths:

/home/whm/352/Hello.java
/usr/lib
/etc/passwd
/
/cs/www/classes/cs352/spring05
/net/sin/vol/vol0/home/whm
/var/tmp//xdviAAALZaG4A

It may not be obvious whether a path specifies a file or directory.

If a path starts with a slash (/), it is an absolute path.

The file or directory specified by an absolute path is located by starting
at "the root" (/) and traversing each directory in turn.

Every file and directory can be reached from the root.

Traversing a path may carry one across disk and machine boundaries.

C Sc 352, Spring 2005 UNIX Slide 44
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Directories and paths, continued

Here are some places of interest on lectura:

/usr/bin
Standard programs such as cat, man, and wc

/usr/local
A collection of software that is not supplied by Sun. Examples:
/usr/local/bin/mysql-4.0.20 is a directory tree for MySQL;
/usr/local/bin contains a collection of programs, including
some GNU replacements for programs in /usr/bin.

/usr/lib
Libraries of code and data. Examples: /usr/lib/libm.a is
collection of math routines for C; /usr/lib/spell is a directory of
data files used by the spell(1) command.

/tmp
Temporary files. Anybody can create a file or directory in
/tmp.

/etc
A diverse collection of files that typically related to system
administration. Examples: /etc/passwd is a list of all users;
/etc/mail/aliases is a list of mail aliases.

/cs/www
The root of www.cs.arizona.edu.

C Sc 352, Spring 2005 UNIX Slide 45
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Directories and paths, continued

Every process has a current working directory. The current directory of
the shell can be printed with the pwd command:

$ pwd
/home/whm

The cd command is used to change the current directory of the shell:

$ cd /home/cs352/spring05
$ pwd
/home/cs352/spring05
$ cd /etc
$ pwd
/etc

When a user logs in, the current directory of the shell is set to the
user's home directory. With no arguments, cd changes to the home
directory:

$ pwd
/etc
$ cd
$ pwd
/home/whm

On departmental Windows machines, a user's UNIX home directory is
mapped to H:.

C Sc 352, Spring 2005 UNIX Slide 46
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Directories and paths, continued

A path that does not start with a slash is called a relative path.

Relative paths are interpreted relative to the current directory of the
process.

Processes started by the shell "inherit" the shell's current directory.

Here are some relative paths:

notes
352/Hello.java
a1/tests/v1/old

If the working directory is /home/whm then

wc notes 352/Hello.java

operates on the same files as

wc /home/whm/notes /home/whm/352/Hello.java

C Sc 352, Spring 2005 UNIX Slide 47
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Directories and paths, continued

There are two directory entries that are special: . (read as "dot") and
.. ("dot dot"). Every directory contains . and ...

The name . specifies the current directory. We'll see practical uses for
"dot" later but for the moment notice that

notes
./notes
././notes

all refer to the file notes in the current directory.

The name .. refers to the parent of the current directory.

We might use .. in a relative path to reference files or directories in
parent directories or subdirectories of parents:

diff Timer.java ../Timer.java
cd ../352/a1
cal > ../../cal.out

A path need not be minimal. Example:

/home/cs352/../../../home/././//./whm/352/..

Problem: Describe an algorithm to interpret a relative path given a
current directory.

How many different paths can be used to specify the file /etc/passwd?

C Sc 352, Spring 2005 UNIX Slide 48
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The ls command

The ls ("LS") command lists the contents of a directory. By default, it
operates on the current directory.

$ ls
a out test z.dat
$ ls -l
total 8
-rw-rw-r-- 1 whm dept 0 Jan 17 21:47 a
-rw-rw-r-- 1 whm dept 29 Jan 17 21:47 out
drwxrwxr-x 2 whm dept 4096 Jan 17 22:20 test
-rw-rw-r-- 1 whm dept 148 Jan 17 22:19 z.dat

The "columns" are type and permissions, link count, owner, group,
size in bytes, last modification time, and file name. (More on the first
four later.)

The leading "d" indicates that test is a directory. "total 8" indicates
that a total of eight 1K blocks is required by the entries.

ls has many options. The -t option causes the list to be ordered by
modification time, most recent first:

$ ls -lt
total 8
drwxrwxr-x 2 whm dept 4096 Jan 17 22:20 test
-rw-rw-r-- 1 whm dept 148 Jan 17 22:19 z.dat
-rw-rw-r-- 1 whm dept 0 Jan 17 21:47 a
-rw-rw-r-- 1 whm dept 29 Jan 17 21:47 out

C Sc 352, Spring 2005 UNIX Slide 49
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The ls command, continued

If files or directories are specified as operands for ls, it operates on
them instead of the current directory.

$ ls -l a out
-rw-rw-r-- 1 whm dept 0 Jan 17 21:47 a
-rw-rw-r-- 1 whm dept 29 Jan 17 21:47 out
$ ls test
1 2 C1.java C2.java
$ ls -l test
total 152
-rw-rw-r-- 1 whm dept 159 Jan 17 22:20 1
-rw-rw-r-- 1 whm dept 2430 Jan 17 22:20 2
-r--r--r-- 1 whm dept 99125 Jan 17 22:20 C1.java
-r--r--r-- 1 whm dept 39650 Jan 17 22:20 C2.java

Files and directories whose names start with a period are called hidden
files. ls does not display hidden files unless the -a option is specified.

$ ls -la
total 16
drwxrwxr-x 3 whm dept 4096 Jan 17 22:32 .
drwxrwxr-x 3 whm dept 4096 Jan 17 21:47 ..
-rw-rw-r-- 1 whm dept 16 Jan 17 22:43 .opts
-rw-rw-r-- 1 whm dept 0 Jan 17 21:47 a
-rw-rw-r-- 1 whm dept 29 Jan 17 21:47 out
drwxrwxr-x 2 whm dept 4096 Jan 17 22:20 test
-rw-rw-r-- 1 whm dept 148 Jan 17 22:19 z.dat

Speculate: What would ls -at display?

C Sc 352, Spring 2005 UNIX Slide 50
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The ls command, continued

The -R option causes ls to recursively process subdirectories.

$ ls -lR
.:
total 8
-rw-rw-r-- 1 whm dept 0 Jan 17 21:47 a
-rw-rw-r-- 1 whm dept 29 Jan 17 21:47 out
drwxrwxr-x 2 whm dept 4096 Jan 17 22:20 test
-rw-rw-r-- 1 whm dept 148 Jan 17 22:19 z.dat

test:
total 152
-rw-rw-r-- 1 whm dept 159 Jan 17 22:20 1
-rw-rw-r-- 1 whm dept 2430 Jan 17 22:20 2
-r--r--r-- 1 whm dept 99125 Jan 17 22:20 C1.java
-r--r--r-- 1 whm dept 39650 Jan 17 22:20 C2.java

Learn more: Read the man page for ls and experiment with various
options. -F, -C, -1 (one), -r, -s, -S, and -u are among the more
commonly used options of ls.

Problem: Explain the following behavior:

$ ls
a out test z.dat
$ ls | wc
 4 4 17

C Sc 352, Spring 2005 UNIX Slide 51
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The mkdir command

The mkdir command creates one or more directories.

$ ls
a out test z.dat
$ mkdir test2
$ mkdir test2/a test2/b test2/c
$ ls -l test2
total 12
drwxrwxr-x 2 whm dept 4096 Jan 17 23:02 a
drwxrwxr-x 2 whm dept 4096 Jan 17 23:02 b
drwxrwxr-x 2 whm dept 4096 Jan 17 23:02 c

mkdir will not create intermediate directories in a path unless the -p
option is specified.

$ mkdir test3/x/y
mkdir: cannot make directory `test3/x/y': No such
file or directory
$ mkdir -p test3/x/y
$ touch test3/a test3/x/a
$ ls -lR test3
test3:
-rw-rw-r-- 1 whm dept 0 Jan 17 23:13 a
drwxrwxr-x 3 whm dept 4096 Jan 17 23:13 x

test3/x:
-rw-rw-r-- 1 whm dept 0 Jan 17 23:13 a
drwxrwxr-x 2 whm dept 4096 Jan 17 23:13 y

test3/x/y:

What does the touch command apparently do?

C Sc 352, Spring 2005 UNIX Slide 52
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Copying files with cp

Three common file manipulations are copying, deleting, and
moving/renaming.

The cp command copies one file to another, or, alternatively, copies
one or more files to a directory:

cp file1 file2
cp file1 dir1
cp file1 file2 ... fileN dir1

Examples:

$ echo "some data" > x
$ cp x y
$ ls -l
-rw-r--r-- 1 whm dept 10 Aug 20 00:13 x
-rw-r--r-- 1 whm dept 10 Aug 20 00:13 y
$ cp y z
$ ls -l
-rw-r--r-- 1 whm dept 10 Aug 20 00:13 x
-rw-r--r-- 1 whm dept 10 Aug 20 00:13 y
-rw-r--r-- 1 whm dept 10 Aug 20 00:15 z
$ mkdir d
$ cp x y z d
$ cp x d/a
$ ls d
a x y z

What does the following command do?

$ cp /etc/passwd /usr/lib/aliases ../x .

C Sc 352, Spring 2005 UNIX Slide 53
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

cp, continued

The -i option provides some safety—it causes cp to prompt if a file is
going to be overwritten:

$ touch x y
$ ls -l
-rw-r--r-- 1 whm dept 0 Aug 20 00:26 x
-rw-r--r-- 1 whm dept 0 Aug 20 00:26 y
$ cp x y (No warning –- y was overwritten)
$ cp -i x y
cp: overwrite `y'? y

cp's -r option can be used to recursively copy a directory. The -p
option preserves modification times (and more).

$ ls -l d
-rw-r--r-- 1 whm dept 43 Aug 14 23:18 a
-rw-r--r-- 1 whm dept 293 Aug 4 00:25 b
drwxr-xr-x 2 whm dept 4096 Aug 20 00:33 c
$ cp -r d d2
$ ls -l d2
-rw-r--r-- 1 whm dept 43 Aug 20 00:42 a
-rw-r--r-- 1 whm dept 293 Aug 20 00:42 b
drwxr-xr-x 2 whm dept 4096 Aug 20 00:42 c
$ cp -rp d d3
$ ls -l d3
-rw-r--r-- 1 whm dept 43 Aug 14 23:18 a
-rw-r--r-- 1 whm dept 293 Aug 4 00:25 b
drwxr-xr-x 2 whm dept 4096 Aug 20 00:33 c

Note that the contents of d/c are not shown but the contents are copied
to d2/c and d3/c.

C Sc 352, Spring 2005 UNIX Slide 54
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Deleting files with rm

The rm (remove) command is used to permanently delete one or more
files:

$ rm tmp.out Hello.java.old a b c

To remove a directory, use rmdir.

$ rmdir x

A directory must be empty before it can be removed with rmdir, but
rm's -r option can be used to remove a directory and all its contents.

$ mkdir -p y/z
$ rmdir y
rmdir: y: File exists
$ rm -rf y
$

The -i option of rm causes a prompt before a file is removed. The -f
option forces removal of read-only files.

C Sc 352, Spring 2005 UNIX Slide 55
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Recovering files via .snapshot

On lectura, a directory named /home/user/.snapshot maintains
various virtual snapshots of the user's directory tree:

$ ls -F /home/whm/.snapshot
hourly.0/ hourly.3/ hourly.6/ nightly.1/ nightly.4/ weekly.1/
hourly.1/ hourly.4/ hourly.7/ nightly.2/ nightly.5/
hourly.2/ hourly.5/ nightly.0/ nightly.3/ weekly.0/

If a file is inadvertently deleted, you may be able to find a copy of it in
your .snapshot directory.

$ pwd
/home/whm/352
$ ls -l lc.java
-rw-r--r-- 1 whm dept 359 Jan 13 00:25 lc.java
$ rm lc.java (Oops!)

Start with hourly.0 and look for the missing file. If found, just copy it
back into place.

$ ls -l /home/whm/.snapshot/hourly.0/352/lc.java
-rw-r--r-- 1 whm dept 359 Jan 13 00:25
/home/whm/.snapshot/hourly.0/352/lc.java
$ cp /home/whm/.snapshot/hourly.0/352/lc.java .

The virtual snapshots are created periodically. A snapshot might not
contain a recently created file or recent modifications to an older file.

Directory trees can be restored with cp -rp.

Note that some file CS servers maintain more snapshots than others.

C Sc 352, Spring 2005 UNIX Slide 56
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Links

Internally, a file is represented with an i-node (index node), a data
structure that contains information such as the starting disk address of
the file's data, the owner of the file, modification time, etc.

A directory is simply a file with distinguished status that contains a
mapping between i-node numbers and names.

Here is a Java model of a directory:

class Directory {
 static class directory_entry {
 int inode_number;
 String name;
 }
 directory_entry entries[];
 int active_entries = 0;
 }

The -i option of ls shows i-node numbers:

$ date >a
$ mkdir b
$ ls -ia
200793473 . 7372598 .. 48319878 a 8379685 b

C Sc 352, Spring 2005 UNIX Slide 57
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Links, continued

For reference:

$ date >a
$ mkdir b
$ ls -iaF
200793473 ./ 7372598 ../ 48319878 a 8379685 b/

A file can have more than one name in a directory. A file can be in
more than one directory.

The ln (link) command can be used to create another directory entry
for an existing file:

$ ln a c
$ ls -iaF
200793473 ./ 7372598 ../ 48319878 a 8379685 b/
 48319878 c
$ cat a
Fri Aug 20 17:55:14 MST 2004
$ cat c
Fri Aug 20 17:55:14 MST 2004
$ echo "new contents" > c
$ cat a
new contents
$ ln a b/x
$ ls -iRF
.:
48319878 a 8379685 b/ 48319878 c

b:
48319878 x

C Sc 352, Spring 2005 UNIX Slide 58
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Links, continued

The link created with a command like 'ln f1 f2' is called a hard link.
Hard links pose problems in some situations. For example, files can
not be linked across devices, and directories cannot be linked:

$ ln /home/whm/x /tmp/x
ln: cannot create hard link `/tmp/x' to
`/home/whm/x': Cross-device link
$ mkdir d
$ ln d d2
ln: d: hard link not allowed for directory

Another problem is that of a broken link.

Frequently, a symbolic link is a better choice than a hard link.

A symbolic link, or "symlink", is indicated with the -s option of ln:

$ date >x
$ ln -s x x2
$ ls -l
total 16
-rw-r--r-- 1 whm dept 29 Aug 20 18:35 x
lrwxrwxrwx 1 whm dept 1 Aug 20 18:35 x2 -> x
$ cat x2
Fri Aug 20 18:35:12 MST 2004

A symbolic link is a file that's treated by the kernel in a distinguished
way. Note the link and the target file have different i-node numbers:

$ ls -li
 87281 -rw-r--r-- 1 whm dept 29 Aug 20 18:54 x
411545 lrwxrwxrwx 1 whm dept 1 Aug 20 18:53 x2 -> x

C Sc 352, Spring 2005 UNIX Slide 59
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Links, continued

A symbolic link can be made to a directory:

$ ln -s /home/cs352/fall04/assign1/refs a1refs
$ ls -l a1refs
lrwxrwxrwx 1 whm dept 31 Aug 20 18:42 a1refs
 -> /home/cs352/fall04/assign1/refs
$ cd a1refs
$ pwd
/home/cs352/fall04/assign1/refs

A symbolic link can be created (and exist) regardless of whether the
target exists.

$ ls
$ ln -s a b
$ ls -l
total 8
lrwxrwxrwx 1 whm dept 1 Aug 20 18:53 b -> a
$ cat b
cat: b: No such file or directory
$ date >a
$ cat b
Fri Aug 20 18:54:07 MST 2004

The -L option of ls "follows" symlinks:

$ ls -l b
lrwxrwxrwx 1 whm dept 1 Aug 20 18:53 b -> a
$ ls -lL b
-rw-r--r-- 1 whm dept 29 Aug 20 18:54 b

C Sc 352, Spring 2005 UNIX Slide 60
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Links, continued

Symlinks can reference other symlinks:

$ date >a
$ ln -s a b
$ ln -s b c
$ ls -l
-rw-r--r-- 1 whm dept 29 Aug 20 19:12 a
lrwxrwxrwx 1 whm dept 1 Aug 20 19:12 b -> a
lrwxrwxrwx 1 whm dept 1 Aug 20 19:12 c -> b
$ cat c
Fri Aug 20 19:12:29 MST 2004

Some programs, such as ls, treat symlinks in special ways. Other
programs, such as cat, simply follow the link(s) and open the
referenced file, if it exists.

Two more examples: rm removes a symlink, not the referenced file,
and does not follow symlinks to directories. cp copies the target file.

$ date >x
$ ln -s x x2
$ ls -l
-rw-r--r-- 1 whm dept 29 Aug 21 00:30 x
lrwxrwxrwx 1 whm dept 1 Aug 21 00:30 x2 -> x
$ cp x2 y
$ rm x2
$ ls -l
-rw-r--r-- 1 whm dept 29 Aug 21 00:30 x
-rw-r--r-- 1 whm dept 29 Aug 21 00:31 y

(Bottom line: RTM for the details.)

C Sc 352, Spring 2005 UNIX Slide 61
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Moving/renaming files with mv

The mv command can be used to rename a file or directory. The
general form is 'mv old-name new-name'. Examples:

$ mv Node.java Element.java
$ mv tests tests.old

The change is accomplished by deleting the directory entry for the old
name and making an entry for the new name, with the same i-node
number:

$ ls -i Element.java
6912838 Element.java
$ mv Element.java Item.java
$ ls -i Item.java
6912838 Item.java

mv can also be used to move one or more files (and/or directories)
between directories:

$ mkdir docs
$ mv Tree.html Scan.html docs
$ mv ../../x /home/whm/notes .

mv can handle cross-device moves. In that case the result is achieved
via a copy and then a delete. Example:

$ ls -i Item.java
6912838 Item.java
$ mv Item.java /tmp/whm
$ ls -i /tmp/whm/Item.java
4677186 /tmp/whm/Item.java

The -i option causes mv to prompt if a target file exists.

C Sc 352, Spring 2005 UNIX Slide 62
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Tilde (~) substitution

It is often the case that a user wishes to refer to files and/or directories
in their home directory.

One option is to specify a full path, such as /home/whm/notes, but that
can be cumbersome if the path to a home directory is long, such as
/r/serv1/vol2/users/w/whm.

The shell treats the tilde character (~) as a shorthand for the user's
home directory, replacing occurrences of ~ with the home directory
path:

$ java args ~
|/home/whm|
$ echo ~/x ~/352/args.java
/home/whm/x /home/whm/352/args.java
$ cp ~/x.java .
$ cd ~/352

Also, the shell expands ~user to the home directory of the specified
user:

$ echo ~whm
/home/whm

Important: Note that echo (and args) allow us to see the end result of
the command-line transformations made by the shell:

$ echo cp ~/x.java .
cp /home/whm/x.java .

To "see" what a command is "seeing", just prepend echo!

C Sc 352, Spring 2005 UNIX Slide 63
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Tilde (~) substitution, continued

Note that tilde substitution is done by the shell, not the operating
system. A program can be coded to support shell-like tilde
expansion—some programs do, but many programs don't.

The java.io.File class does not handle tilde:

$ ls -l ~/x
-rw-r--r-- 1 whm dept 0 Aug 25 02:34 /home/whm/x
$ cat tilde.java
import java.io.*;
public class tilde {
 public static void main(String args[]) {
 System.out.println(new File("/home/whm/x").exists());
 System.out.println(new File("~/x").exists());
 }
 }
$ javac tilde.java
$ java tilde
true
false

C Sc 352, Spring 2005 UNIX Slide 64
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Wildcards

Wildcards allow the user to specify files and directories using textual
patterns.

The simplest wildcard metacharacter is ?, a question mark. A question
mark matches any one character. Examples:

? Matches one-character names. Examples: a, B, :, -

x? Matches names that are two characters long and begin with
an 'x'. Examples: xx, x+, x.

What would be matched by the following?

???

a??b

???.?

C Sc 352, Spring 2005 UNIX Slide 65
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Wildcards, continued

If a command line argument contains one or more wildcard specifiers
the shell replaces that argument with a list of file names in the current
directory that match the specified pattern.

Examples:

$ ls
62 X a a.b ab axe b oxo

$ echo ?
X a b

$ java args ?? a??
|62|
|ab|
|a.b|
|axe|

$ ls -l ?b ??b ??
-rw-r--r-- 1 whm 0 Sep 8 00:12 62
-rw-r--r-- 1 whm 0 Sep 8 00:11 a.b
-rw-r--r-- 1 whm 0 Sep 8 00:11 ab
-rw-r--r-- 1 whm 0 Sep 8 00:11 ab

The process of replacing a wildcard-bearing argument with file names
is called wildcard expansion. An old term, "globbing", is occasionally
used.

It is important to understand that the shell handles wildcard expansion.
It is not done by individual programs.

C Sc 352, Spring 2005 UNIX Slide 66
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Wildcards, continued

If a wildcarded argument matches no files, it is passed unchanged to
the program:

$ ls
62 X a a.b ab axe b oxo

$ java args a?? ??a
|a.b|
|axe|
|??a|

Hidden files (which start with a dot) are not matched by a wildcard
unless the pattern starts with a dot:

$ ls

$ touch .xyz

$ echo ????
????

$ echo .???
.xyz

C Sc 352, Spring 2005 UNIX Slide 67
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Wildcards, continued

A more powerful wildcard is * (asterisk). It matches any sequence of
characters, including an empty sequence.

* Matches every (non-hidden) name

*.java Matches every name that ends with .java

x Matches every name that contains an x.
Examples: x, ax, axe, xxe, xoxox

.* Matches every hidden name, including . and ..

What would be matched by the following?

old.

*x*y

.

Handouts for this class are prepared using WordPerfect, which in turn
generates PDF and PostScript files. Here's a command that the
instructor uses from time to time:

ls -lt *.wpd *.pdf *.ps | more

What's he doing?

C Sc 352, Spring 2005 UNIX Slide 68
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Wildcards, continued

Wildcards are often combined. Examples:

??* Matches names that are two or more characters long

*.? Matches names whose next to last character is a dot

What would be matched by the following?

?x?*

-?-

*~

C Sc 352, Spring 2005 UNIX Slide 69
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Wildcards, continued

It is possible to require that a single character be one of several:

[a-z] Matches names that consist of a single lowercase letter.

*.[hcy] Matches names whose suffix is .h, .c, or .y

[A-Z]*.[0-9]
Matches names that start with a capital letter and end
with a dot and a digit.

*.[!0-9] Matches names that end with a dot and a non-digit
character. Equivalent: *.[^0-9]

[Tt]ext Matches Text and text.

Problems:

At most, how many files could be matched with this pattern:
[ab][cde][fghi]

A directory has a series of a files that are numbers starting at 1
and increasing. See if any files in the range 90-135 are missing

Move all directories whose names start with a lower case vowel
into a directory named V. Move all directories starting with a
lower case consonant into a directory named C.

C Sc 352, Spring 2005 UNIX Slide 70
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Wildcards, continued

Slashes can be included in a pattern to match files elsewhere than the
current directory. For example,

wc ~/*.java

runs wc on every Java source file in the user's home directory.

Problem: Describe the high-level operation performed by each of the
following commands.

ls */TreeWalker.java

cat *.java */*.java */*/*.java >jsrc

ls -lt ~/.snapshot/hourly.?/352/*.notes

ln -s /home/cs352/fall04/a1/* .

ls -ld /????/???

echo /*/

Unfortunately, bash has no way to indicate a recursive match but
find(1) provides a reasonable alternative.

There are other wildcard specifiers but ?, *, and [...], along with brace
expansion are most commonly used.

C Sc 352, Spring 2005 UNIX Slide 71
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Wildcards, continued

Problem:

This Windows command,

rename *.cc *.cpp

changes the extension of every .cc file to .cpp. (block.cc would
become block.cpp, for example.)

Consider a well-intentioned analog with mv:

mv *.cc *.cpp

What would be the result? What conditions might influence the result?

C Sc 352, Spring 2005 UNIX Slide 72
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Brace expansion

Common strings in a series of arguments can be concisely specified
using brace expansion. The construct {string1,string2,...,stringN}
expands to N arguments containing each string in turn.

Example:

$ ls
$ echo {one,two,three}
one two three

$ echo x-{one,two,three}.txt
x-one.txt x-two.txt x-three.txt

$ touch x-{one,two,three}.txt
$ ls
x-one.txt x-three.txt x-two.txt

Note that brace expansion does not simply plug existing file names
into the command line, like wildcards do. Instead, it is synthesizing
command-line text.

Brace expansion can be combined with wildcards.

ls *.{java,class}

is equivalent to:

ls *.java *.class

C Sc 352, Spring 2005 UNIX Slide 73
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Brace expansion, continued

Brace expansion is done first, then wildcard matching is performed.

$ ls
x.java y.java

$ echo *.{java,class} (equivalent to echo *.java *.class)
x.java y.java *.class

Any number of brace expansions can appear in an argument:

$ echo {red,blue,green}_{sky,water,land}
red_sky red_water red_land blue_sky blue_water blue_land
green_sky green_water green_land

Brace expansion is sensitive to whitespace:

$ echo {a,b, c}
{a,b, c}

Explain this:

$ echo{a,b,c}
bash: echoa: command not found

What does the following expand to?

~{dmr,ken,rob}/bin/am{.sh,}

C Sc 352, Spring 2005 UNIX Slide 74
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Filename completion

bash provides filename completion—it will "type" unique portions of
filenames and show alternatives when appropriate.

Consider this directory:

$ ls
ListTest.d1 ListTest.java TreeWalker.java

If you type,

$ javac T<TAB>

bash will "complete" the filename, producing this,

$ javac TreeWalker.java

and you can press <ENTER> to run javac.

If you type

$ javac L<TAB>

bash will produce this,

$ javac ListTest.

and beep. A second <TAB> will show the two alternatives. You
might then type j<TAB>, which bash would respond to with

$ javac ListTest.java

C Sc 352, Spring 2005 UNIX Slide 75
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Filename completion, continued

In some cases the functionality of wildcards overlaps with filename
completion. Given these files,

$ ls
ListTest.d1 ListTest.java TreeWalker.java

one might do the same two compilations like this:

$ javac T*
$ javac L*a

C Sc 352, Spring 2005 UNIX Slide 76
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

C Sc 352, Spring 2005 UNIX Slide 77
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Shell Scripts

Basics

Scripts and I/O streams

Variables

Parameters

The for statement

The if statement

The while statement

Debugging shell scripts

Lots more with scripts...

C Sc 352, Spring 2005 UNIX Slide 78
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Shell script basics

A shell script is simply a file that contains a series of shell commands.

Here is a script that prints the number of current login sessions:

$ cat ucount
echo -n Current logins:
who | wc -l | tr -s " "

One way to run a script is to run bash with the script as an argument:

$ bash ucount
Current logins: 44

It would be nice to only type ucount, but that produces an error:

$ ucount
bash: ./ucount: Permission denied

The problem is that the permissions of ucount do not indicate that it is
executable. The chmod command adjusts permissions.

$ ls -l ucount
-rw-r--r-- 1 whm dept 48 Jan 24 09:53 ucount
$ chmod +x ucount
$ ls -l ucount
-rwxr-xr-x 1 whm dept 48 Jan 24 09:53 ucount

The script can now be run by simply naming it, like any other
command:

$ ucount
Current logins: 44

C Sc 352, Spring 2005 UNIX Slide 79
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Scripts and I/O streams

Redirecting a script's standard output produces a catenation of standard
output of all the commands in the script.

For reference:

$ cat ucount
echo -n Current logins:
who | wc -l | tr -s " "

The output of ucount can be redirected:

$ ucount >out
$ cat out
Current logins: 44

The file out ends up with the output of each command in turn.

Redirecting the output of a script does not affect output redirections
inside the script. Here is an oddly divided version of ucount that
illustrates the point:

$ cat ucount2
echo -n Current logins:
who | wc -l >tmp
tr -s " " < tmp
$ ucount2 > out
$ cat out
Current logins: 44

C Sc 352, Spring 2005 UNIX Slide 80
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Scripts and I/O streams, continued

Programs run inside a script "inherit" the standard input stream of the
script. Example:

$ cat countbytes
wc -c

$ date | countbytes
 29

Here is a trivial script that avoids the nuisance of having to type "java"
when running the lc.java utility:

$ cat lc
java lc

$ lc < args.java
6

C Sc 352, Spring 2005 UNIX Slide 81
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Scripts and I/O streams, continued

The following script illustrates the technique of "capturing" standard
input so that the data can be used as standard input for more than one
program.

$ cat countboth
cat >.countboth.tempfile
echo -n "wc says: "
wc -l < .countboth.tempfile
echo -n "lc says: "
java lc < .countboth.tempfile
rm .countboth.tempfile

cat is used to create a temporary file that contains standard input. The
file is then fed to wc and java lc as standard input for each of them.

Usage:

$ cal | countboth
wc says: 8
lc says: 8

What are three hazards posed by this simple-minded use of a
temporary file?

C Sc 352, Spring 2005 UNIX Slide 82
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Variables

bash provides for variables in a shell script. Here is a version of
countboth that uses a variable to avoid repetitious (and possibly
erroneous) specification of the temporary file name:

$ cat countboth2
tmp=.countboth.tempfile
cat > $tmp
echo -n "wc says: "
wc -l < $tmp
echo -n "lc says: "
java lc < $tmp
rm $tmp

There is no declaration of tmp. Variables come into existence when
they are first assigned a value.

A dollar sign such as in $tmp indicates the following identifier should
be treated as a variable and its value interpolated.

There can be no spaces on either side of the assignment operator.

If a value contains whitespace, use escapes or quotes: x="a b"

Unless special steps are taken, the value of a variable is considered to
be a string.

C Sc 352, Spring 2005 UNIX Slide 83
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Variables, continued

Concatenation of strings is accomplished by juxtaposing variables and,
possibly, text.

An artificial example:

$ cat var1
who=Bob
a=apple
b=orange
sen="$who compared ${a}s and ${b}s"
echo "$sen all day long."

Execution:

$ var1
Bob compared apples and oranges all day long.

Speculate: What would

sen="$who compared $as and $bs"

produce?

Note that variable interpolation is done inside double quotes, but not
single quotes:

$ x="abc"
$ echo "x is $x"
x is abc
$ echo 'x is $x'
x is $x

C Sc 352, Spring 2005 UNIX Slide 84
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Script parameters

It is often useful to pass arguments to scripts. An argument can be
fetched using $N, where N is the 1-based position of the parameter.
Example:

$ cat printargs
echo The first argument is $1
echo Arg 2: "'"$2"'"
echo Third arg: $3

$ printargs just testing
The first argument is just
Arg 2: 'testing'
Third arg:

$ printargs Dots " " and more dots
The first argument is Dots
Arg 2: ' '
Third arg: and

If there is no Nth argument, $N expands to nothing.

C Sc 352, Spring 2005 UNIX Slide 85
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Script parameters, continued

Here is a script that compiles a Java source file and then executes the
resulting class file.

$ cat rj
javac $1.java
java $1 $2 $3 $4 $5 $6 $7 $8 $9 ${10} ${11}

Usage:

$ rj lc < lc.java
15

$ rj args a test here
|a|
|test|
|here|

What are two shortfalls in rj?

C Sc 352, Spring 2005 UNIX Slide 86
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Script parameters, continued

The "special variable" $* expands to all command line arguments. We
can use it to write a version of rj that is not limited to a fixed number
of parameters:

$ cat rj2
javac $1.java
java $*

The command

$ rj2 args a b c d e f g h i j k l m

causes these commands to be executed.

javac args.java
java args a b c d e f g h i j k l m

Another special variable that is sometimes handy is $#. It expands to
the command line argument count. Example:

$ cat numargs
echo There are $# command line arguments

$ numargs a b "c d" e
There are 4 command line arguments

C Sc 352, Spring 2005 UNIX Slide 87
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Script parameters, continued

Problem: Write a script named cpxt that copies a file, adding an
extension to the name.

The command

$ cpxt Search.java nullbug

would be equivalent to

$ cp Search.java Search.java.nullbug

C Sc 352, Spring 2005 UNIX Slide 88
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The for statement

bash, like most shells, can be thought of as an interpreter for a
programming language, albeit highly specialized for line-by-line
interaction. It has several control structures, including if, while, for,
and case.

A common use of the for loop is to iterate over the command line
arguments. Here is an argument-printing script:

echo $# arguments:
for i in $*
do
 echo $i
done

Usage:

$ args just testing
2 arguments:
just
testing

$* expands to two "words", just and testing. The variable i is assigned
each word in turn.

What does the following script do?

for i in $*
do
 echo -n "$i: "
 java lc < $i
done

C Sc 352, Spring 2005 UNIX Slide 89
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

for, continued

Here is the general form of for:

for i in words
do
 cmd1

...
cmdN

done

The shell is very line-oriented. Here is a faulty version of args:

echo $# arguments:
for i in $* do echo $i done

Execution:

$ args just testing
2 arguments:
args: line 3: unexpected end of file

Speculate: What was the shell expecting to see next?

C Sc 352, Spring 2005 UNIX Slide 90
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

for, continued

At hand: "unexpected end of file" with this script:

echo $# arguments:
for i in $* do echo $i done

The problem is that the shell considers do, echo, $i, and done to be
additional words to assign to i!

The loop can be made a one-liner by appropriately inserting
semicolons:

for i in $*; do echo $i; done

A loop can be typed "on the fly", at the shell prompt:

$ mkdir some_long_directory_name
$ for i in src tests lib docs
> do
> mkdir some_long_directory_name/$i
> done
$
$ ls some_long_directory_name
docs lib src tests

The shell is printing "> ", which is the secondary prompt. The
secondary prompt is printed when the shell detects an incomplete
expression.

The loop can be recalled for editing (with up-arrow). You'll see this:

 for i in src tests lib docs; do mkdir some_long_d
irectory_name/$i; done

C Sc 352, Spring 2005 UNIX Slide 91
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

for, continued

Problem:
Write a script that echos its arguments in reverse order.

Example:

$ revargs they jumped up
up jumped they

Contrast: Here is a C shell version of args:

#!/bin/csh
echo $#argv arguments:
foreach i ($*)
 echo $i
end

The first line, #!/bin/csh, indicates that /bin/csh should be used to
run the script.

C Sc 352, Spring 2005 UNIX Slide 92
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The if statement

Here is the general form of the if statement in bash:

if command-line
then
 cmd1

...
cmdN

fi

First, the command-line is executed. If the resulting exit code is zero,
which indicates success, then the enclosed commands are executed.

Here is a script that compiles a Java program and, if the compilation is
successful, runs the program:

if javac $1.java
then
 java $*
fi

Note that the special variable $? holds the exit code of the last process.

$ echo $?
0
$ grep lsdjfsdjfsl /etc/passwd
$ echo $?
1
$ true
$ echo $?
0
$ false
$ echo $?
1

C Sc 352, Spring 2005 UNIX Slide 93
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

if, continued

The test(1) command can be used to check for a variety of conditions
such as whether a relation, like equality, holds between two values. It
can also be used to test for file attributes such as existence,
executability, etc.

test indicates success or failure by setting the exit code.

For example, test -f file tests to see if file exists and is a "regular file":

$ test -f args.java
$ echo $?
0
$ test -f xyz.java
$ echo $?
1

Here is a further refinement of the compile-and-run script:

if test $# -eq 0
then
 echo "Usage: $0 file (w/o .java!)"
 exit 1
fi
if test -f $1.java
then
 if javac $1.java
 then
 java $*
 fi
else
 echo $1.java: Not found
fi

C Sc 352, Spring 2005 UNIX Slide 94
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Sidebar: The [command

Many shells consider [(left square bracket) to be an alias for the test
command. A common practice is to use [, not test in scripts.

Another version of compile-and-run:

if [$# -eq 0]
then
 echo "Usage: $0 file (w/o .java!)"
 exit 1
fi
if [-f $1.java]
then
 if javac $1.java
 then
 java $*
 fi
else
 echo $1.java: Not found
fi

C Sc 352, Spring 2005 UNIX Slide 95
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The while statement

Here is the general form of the while statement in bash:

while command-line
do
 cmd1

...
cmdN

done

Here is a cheap real-time clock via an on-the-fly while loop:

$ while true
> do # REMEMBER: > is the secondary prompt!
> date
> sleep 1
> done
Mon Jan 24 17:08:12 MST 2005
Mon Jan 24 17:08:13 MST 2005
Mon Jan 24 17:08:14 MST 2005
^C

Here is a script that prints a banner when a user logs off. It checks
every ten seconds.

$ cat waitfor
while who | grep -q $1
do
 sleep 10
done
banner $1 is off!

You might run it as a background process:

$ waitfor whm &

C Sc 352, Spring 2005 UNIX Slide 96
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Debugging shell scripts

The primary tool for debugging scripts is the echo command, but the -
v and -x options of bash are sometimes useful, too.

The -v option causes each command to be echoed before it is executed:

$ cat buggy
x=$2.$1
echo $x

$ bash -v buggy aa bb
x=$2.$1
echo $x
bb.aa

The -x option causes each command to be echoed after expansion:

$ bash -x buggy aa bb
+ x=bb.aa
+ echo bb.aa
bb.aa

With both:

$ bash -v -x buggy aa bb
x=$2.$1
+ x=bb.aa
echo $x
+ echo bb.aa
bb.aa

 Languages such as Icon, Python, Ruby, and Perl are often called "scripting languages"1

but the instructor thinks the term "agile language" is more accurate. The term "script" usually
refers to an automated sequence of commands that could be performed by hand, but Icon, Python,
Ruby, and Perl (and others) are designed for general purpose computation, not just orchestrating
execution of commands.

C Sc 352, Spring 2005 UNIX Slide 97
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Lots more with scripts...

These slides address only very basic elements of shell scripts. UNIX
Power Tools devotes about 100 pages to scripts. Entire books have
been written about programming with shell scripts. However, the
material presented in these slides should be adequate to solve the
shell-programming problems posed in the assignments.

Shell scripts can solve many problems quickly but a growing script can
slowly turn into a Frankenstein.

Here are some of the issues encountered when writing scripts that
perform non-trivial computations:

Limited selection of data types
Syntactic irregularities
No debugging tools
Tedious quoting of values with metacharacters.
Slow execution

It is important to have a sense of when to move from a shell script to a
program in an agile language such as Python, Ruby, Perl or, the1

instructor's favorite, Icon.

One example of a large script is /home/cs352/fall04/gnu/diffutils-2.8.1
/configure. It does platform-specific configuration of the source code
for the GNU "diffutils". It is 15,482 lines long.

C Sc 352, Spring 2005 UNIX Slide 98
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

C Sc 352, Spring 2005 UNIX Slide 99
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The Shell—Part 2

More about variables

$PATH—The command search path

bash initialization files

Aliases

Functions

Command substitution

Named pipes

The history facility

The directory stack

C Sc 352, Spring 2005 UNIX Slide 100
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

More about shell variables

Variables can be created and used interactively. For example, to easily
reference files associated with assignment 1, you might use a variable
named a1:

$ a1=~cs352/spring05/a1
$ echo $a1
/home/cs352/spring05/a1
$ ls $a1
...output...
$ cp $a1/mgrep.class .
$ date | $a1/rev
5002 TSM 45:55:41 13 naJ noM

The shell has a collection of variables. The full set of variables and
values can be displayed with the set command. Here is some heavily
edited output:

$ set
COLUMNS=80
HOME=/home/whm
HOSTNAME=lectura.CS.Arizona.EDU
LINES=45
LOGNAME=whm
OLDPWD=/home/whm/icon/src
PS1='$ '
PWD=/home/whm/352
SHELL=/usr/local/bin/bash
TZ=US/Arizona
$ set | wc -l
 68

How could I copy a file from the directory I was previously in to the
directory I'm currently in?

C Sc 352, Spring 2005 UNIX Slide 101
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Variables, continued

It is often handy to set a shell variable and then use it inside a script or
program but by default, variables are not transmitted to an executable.
Example:

$ a1=~cs352/spring05/a1
$ echo $a1
/home/cs352/spring05/a1
$ cat vtest
echo a1 is $a1
$ vtest
a1 is
$

Note that a1 has a value on the command line, but not inside the script!

To direct the shell that a variable should be transmitted to an
executable, the variable must be put on the export list by using the
export command:

$ export a1
$ vtest
a1 is /home/cs352/spring05/a1
$ a1="something different"
$ vtest
a1 is something different

Note that an export need only be done once in a shell session.

With no arguments, export shows the variables that are currently on
the export list. export -n var removes var from the export list.

C Sc 352, Spring 2005 UNIX Slide 102
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Variables, continued

The set of variables (and associated values) that is exported is known
as "the environment". The env command prints the environment:

$ env
PWD=/home/whm/352
TZ=US/Arizona
HOSTNAME=lectura.CS.Arizona.EDU
MSTKSIZE=100000
a1=something different
a2=/home/cs352/spring05/a2
[...lots more...]

A variable that is exported is commonly called an "environment
variable".

Environment variables often influence program behavior. For
example, date consults the environment variable TZ:

$ date
Mon Jan 31 16:09:04 MST 2005
$ TZ=US/Eastern
$ date
Mon Jan 31 18:09:16 EST 2005

If a variable assignment appears before a command, the assignment
only exists for the execution of that command:

$ TZ=Asia/Baghdad date
Tue Feb 1 02:18:22 AST 2005
$ date
Mon Jan 31 16:18:29 MST 2005

Transmission of environment variables is "one way": changing the
value of a variable in a script does not change the value in the caller.

C Sc 352, Spring 2005 UNIX Slide 103
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Variables, continued

man consults MANPATH to see what man-page trees the user wishes
to have searched, and in what order. A temporary setting might be
used to see a different version of a man page:

$ echo $MANPATH
/usr/local/man:/usr/man:/usr/X11/man:/opt/unsuppo
rted/man
$ man ls

FSF LS(1)

NAME
 ls - list directory contents
[...more...]

$ MANPATH=/usr/man man ls

User Commands ls(1)

NAME
 ls - list contents of directory

[...more...]

C Sc 352, Spring 2005 UNIX Slide 104
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Variables, continued

Certain variables control the behavior of bash. For example, PS1
specifies the shell's (primary) prompt string.

$ echo $PS1
$
$ PS1="Command? "
Command? date
Mon Jan 31 16:25:01 MST 2005
Command? who | wc
 73 365 2263
Command?

If the prompt contains certain escaped characters, the shell replaces
those escapes with appropriate values.

Two of many:
\t is replaced with the current time
\w is replaced with the current directory

Example:

Command? PS1="\t \w $ "
01:29:14 ~/352 $ cd /
01:29:24 / $ cd /home/cs352
01:29:31 /home/cs352 $ cd
01:29:37 ~ $

The full set of escapes can be found on the bash man page—search
twice for "PROMPTING". (Type /PROMPTING, then n at the more
prompt.)

C Sc 352, Spring 2005 UNIX Slide 105
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Variables, continued

The variable PS2 is the secondary prompt string. It is issued when an
apparently fragmentary command line is present:

$ echo $PS2
>
$ echo 'testing
> this'
testing
this
$ ls |
> wc |
> wc
 1 3 24

C Sc 352, Spring 2005 UNIX Slide 106
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

$PATH–The command search path

An important variable is PATH. It lists the series of directories that
bash is to search to find a command. Here is the instructor-
recommended setting for lectura:

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/uc
b:/opt/unsupported/bin:.

When the user enters a command such as ls, each directory in turn is
searched for an executable named ls. The first one found, if any, is
executed.

For better or worse, there may be many versions of an executable with
a given name. For example, there are several versions of ls:

 $ ls -l /usr/bin/ls /usr/local/bin/ls /usr/ucb/ls
 -r-xr-xr-x root 19084 Apr 6 2002 /usr/bin/ls
 -rwxr-xr-x root 297276 Mar 28 2000 /usr/local/bin/ls
 -rwxr-xr-x root 13844 Apr 6 2002 /usr/ucb/ls

On lectura, /usr/local/bin contains both non-standard executables such
as emacs, and improved ("improved"?) versions of standard
executables (such as ls).

The search path controls both inclusion and preference of executables:

• Because /usr/local/bin in the path, the command emacs runs
/usr/local/bin/emacs.

• Because /usr/local/bin precedes /usr/bin and /usr/ucb, the
command ls runs /usr/local/bin/ls.

C Sc 352, Spring 2005 UNIX Slide 107
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The search path, continued

For reference:

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/uc
b:/opt/unsupported/bin:.

Here is a quick list of the directories that follow /usr/local/bin:

/usr/bin is where most standard executables reside.

On lectura, /bin is just a symlink to /usr/bin but on the Fedora
Linux machines it is separate directory. By including it, the same
PATH value suffices for both systems.

/usr/bin/X11 contains executables related to the X Window
System.

/usr/ucb contains a number of executables that orginated at U. C.
Berkeley.

/opt/unsupported/bin contains executables that have been
installed and are maintained by volunteers, not the lab staff.

Dot (.) is the current directory.

The questions of presence, and position, of the current directory in the
search path, have no simple answers. The document To Dot or Not to
Dot, on the class website discusses the issues involved. The instructor
believes that putting the current directory at the end of the path
provides a reasonable balance between convenience and security.

C Sc 352, Spring 2005 UNIX Slide 108
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The search path, continued

It is common for users to have their own "bin" directory that contains
executables for personal use. Some users put their bin first in their
path to be able to override standard versions of executables:

$ echo $PATH
/home/whm/bin:/usr/local/bin:/usr/bin:/bin:/usr/b
in/X11:/usr/ucb:/opt/unsupported/bin:.

A personal bin might include links (or copies) of standard programs,
but with different names:

$ ln -s /usr/ucb/ps ~/bin/ups
$ ln -s /usr/bin/ls ~/bin/binls

A user might segregate binaries and scripts using two bins, ~/bin and
~/sbin, for example.

It is important to keep PATH and MANPATH "in sync":

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/uc
b:/opt/unsupported/bin:.
$ echo $MANPATH
/usr/local/man:/usr/man:/usr/X11/man:/opt/unsuppo
rted/man

Problem: Describe the possible results of this combination:

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/ucb:.
$ echo $MANPATH
/usr/man:/usr/local/man:/usr/X11/man

C Sc 352, Spring 2005 UNIX Slide 109
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The search path, continued

A common question is which directory contains a particular command.
The type command answers that question:

$ type ls
ls is /usr/local/bin/ls

To speed up command search, bash will cache the location of a
command the first time the command is executed:

$ type date
date is /usr/local/bin/date
$ date
Tue Aug 24 23:41:42 MST 2004
$ type date
date is hashed (/usr/local/bin/date)

The -a option of type shows all the occurrences:

$ type -a ls
ls is /usr/local/bin/ls
ls is /usr/ucb/ls
ls is /usr/bin/ls

$ type -a echo
echo is a shell builtin
echo is /usr/local/bin/echo
echo is /usr/ucb/echo
echo is /usr/bin/echo

$ type -a type
type is a shell builtin
type is /usr/bin/type

C Sc 352, Spring 2005 UNIX Slide 110
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

bash start-up files

The behavior of bash can be customized by putting commands in the
initialization files that bash reads.

When bash is started as a login shell (the shell specified in a user's
/etc/passwd entry), it looks for three files in turn:
~/.bash_profile, ~/.bash_login, and ~/.profile. Upon finding one, it
executes the commands in that file (and doesn't look any further).

Here is a .bash_profile that sets the prompt, PATH, cs352, and a1. a1
and cs352 are then exported.

$ cat ~/.bash_profile
PS1="Command? "
PATH=/usr/local/bin/:/usr/ucb:/usr/bin
cs352=~cs352/spring05
a1=$cs352/a1
export cs352 a1

The file can be tested by "sourcing" it with the source command:

$ source ~/.bash_profile
Command? env | fgrep a1
a1=/home/cs352/spring05/a1
Command?

It is important to use the source command because source processes
commands as if they had been typed at the prompt. It is usually a
mistake to run a start-up file as a script (bash .bash_profile, for
example) because then things such as assignments and exports survive
for only the lifetime of the script.

C Sc 352, Spring 2005 UNIX Slide 111
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

bash start-up files, continued

When bash is started as a non-login shell, such as when run from tcsh,
it looks for a file called ~/.bashrc but does not look for any of the files
used when it is a login shell.

To get the same settings regardless of whether bash is a login shell,
one could copy ~/.bash_profile to ~/.bashrc when changes are made,
or link the files together with ln or ln -s.

Another option is to put all initializations in .bashrc and have
.bash_profile source .bashrc:

$ cat ~/.bash_profile
source ~/.bashrc

If bash is a login shell, then .bash_profile is processed, and in turn it
simply processes ~/.bashrc.

bash initialization files can be quite elaborate. It is common to see
things such as conditional logic that sets PATH and other variables
based on the type of system one has logged into.

C Sc 352, Spring 2005 UNIX Slide 112
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Aliases

It is possible to create an alias for a command. Example:

$ alias jc=javac
$ jc Hello.java

If the expansion is more than one word, use quotes (or escapes):

$ alias lf="ls -F"
$ alias rm='rm -i' (no problem with self-reference)
$ alias tf=TRACE=0
$ alias tn=TRACE=-1

With no arguments, alias shows the current set of aliases:

$ alias
alias jc='javac'
alias lf='ls -F'
alias rm='rm -i'
alias tf='TRACE=0'
alias tn='TRACE=-1'

The type command is aware of aliases:

$ type rm
rm is aliased to `rm -i'

It is common to define aliases in ~/.bashrc.

C Sc 352, Spring 2005 UNIX Slide 113
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Functions

In many ways, bash scripts are like functions: they encapsulate a
sequence of operations. But, bash also provides functions.

Here is a simple function, which might be found in a .bashrc:

mcd()
{
 mkdir $1
 cd $1
}

The function encapsulates a common operation: Making a new
directory and going into it.

It is run like a script. Note that the prompt reflects the change of
directory:

~/352 $ mcd tests
~/352/tests $

This example shows an important difference between scripts and
functions: A cd in a script changes the directory for the script but not
for the caller. A cd in a function does change the caller's directory.
Similarly, an assignment in a script can change a variable in the caller.

There is a lot more to shell functions than is shown here.

C Sc 352, Spring 2005 UNIX Slide 114
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Command substitution

The command substitution facility provides a way to turn the output of
a command into command-line arguments. Example:

$ cat srcfiles
lc.java
mkall.icn
getpid.c
$ echo $(cat srcfiles)
lc.java mkall.icn getpid.c

On a command line, the form $(command-line) indicates to run the
enclosed command-line, and substitute the whitespace-separated
words it produces for the $(...) construct. The resulting command line
is then executed.

Any number of command substitutions may appear on a command line
and the enclosed commands may be arbitrarily complex.

More examples:

$ ls -l $(cat srcfiles)
-rw-r--r-- 1 whm 74 Sep 1 14:23 getpid.c
-rw-r--r-- 1 whm 360 Aug 14 18:54 lc.java
-rw-r--r-- 1 whm 115 Aug 17 00:57 mkall.icn

$ wc $(cat srcfiles datafiles)
 15 36 360 lc.java
 6 16 115 mkall.icn
 6 13 74 getpid.c
 7 24 452 lc.1
 14 36 259 lc.2
 48 125 1260 total

C Sc 352, Spring 2005 UNIX Slide 115
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Command substitution, continued

Another example:

$ wc $(cat srcfiles datafiles | sort -k 2 -t.)
 7 24 452 lc.1
 14 36 259 lc.2
 6 13 74 getpid.c
 6 16 115 mkall.icn
 15 36 360 lc.java
 48 125 1260 total

Note that the echo command and command substitution are inverses:

echo turns arguments into output; command substitution turns
output into arguments.

Consider this:

$ echo a b c
a b c
$ echo $(echo a b c)
a b c

What does the following script do?

for i in $*
do
 mv -i $i $(echo $i | tr A-Z a-z)
done

C Sc 352, Spring 2005 UNIX Slide 116
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Command substitution, continued

What does the following command do?

yes "x" | head -n $(wc -l < lc.java) > lc.x

Problem: Run more on the files in the current directory that contain the
word "if". Recall that fgrep -l (-L) prints only the names of files that
contain a match.

Problem: Copy files in the current directory that contain the words "if"
and "while" to a subdirectory named both.

Problem: Write a script mkprefix pfx N with this behavior:

$ ls
$ mkprefix x 5
$ ls
x.1 x.2 x.3 x.4 x.5

Hint: seq N prints the integers from 1 through N, one per line.

C Sc 352, Spring 2005 UNIX Slide 117
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Command substitution, continued

The result of command substitution can be assigned to a variable.

$ f=$(fgrep -l Reader *.java)
$ wc $f
 15 36 359 lc.java
 11 37 278 lc2.java
 26 73 637 total
$ more $f
[...]

Here is a script that produces the sum of its arguments.

$ cat sum
sum=0
for i in $*
do
 sum=$(java eval $sum + $i)
done
echo $sum

Problem: Use sum to compute the sum of the integers from 1 through
100.

Command substitution is performed inside double-quoted literals.
Here are a couple of lines from a script:

echo "Hostname: $(hostname | cut -f1 -d.)"
echo "Users: $(echo $(who | wc -l))"

What is the purpose of the echo in the second line?

C Sc 352, Spring 2005 UNIX Slide 118
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Command substitution, continued

Problem: Write an equally concise version of the following sentence
without taking advantage of command substitution:

"To see what your login shell is, type this: finger $(whoami)"

An older, but very commonly used form of command substitution is
`...` (back-quotes):

finger `whoami`
wc `cat srcfiles datafiles | sort +1 -t.`

The older form is a little easier to type, but doesn't nest:

$ echo $(echo $(echo x))
x
$ echo `echo `echo x``
echo x

We'll see later that the -i option of diff is the Right Way to perform a case-insensitive1

comparison of two files.

C Sc 352, Spring 2005 UNIX Slide 119
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Process substitution

The process substitution facility of bash is best introduced via a task
that is simplified by using the facility.

The cmp command can be used to see if two files differ:

$ cat a
Just testing...
$ cat b
just TESTING...
$ cmp a b
a b differ: char 1, line 1
$

To compare the files in a case-insensitive way, we could do this:1

$ tr A-Z a-z < a > a.s
$ tr A-Z a-z < b > b.s
$ cmp a.s b.s
$

Process substitution allows the comparison above to be expressed in
one command. It looks like this:

cmp <(tr A-Z a-z < a) <(tr A-Z a-z < b)

Here's one way to think about it: The syntax <(command) causes the
shell to generate an entity that can be read from as if it were a file.
The data produced by this entity is the standard output stream of
command.

C Sc 352, Spring 2005 UNIX Slide 120
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Process substitution, continued

At hand:

cmp <(tr A-Z a-z < a) <(tr A-Z a-z < b)

Exploration:

$ echo cmp <(tr A-Z a-z < a) <(tr A-Z a-z < b)
cmp /dev/fd/63 /dev/fd/62

$ ls -l <(tr A-Z a-z < a) <(tr A-Z a-z < b)
crw-rw-rw- root 246, 62 Feb 2 10:17 /dev/fd/62
crw-rw-rw- root 246, 63 Feb 2 10:17 /dev/fd/63

Problem: See if files v1.out and v2.out contain the same lines but in
differing orders, ignoring lines that contain the word "test".

C Sc 352, Spring 2005 UNIX Slide 121
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

History

The shell maintains a "history" of command lines.

The history command displays the accumulated list:

$ history
 41 pwd
 42 ls
 43 ls -l
 44 javac args.java
 46 java args a test here
 47 history

The HISTSIZE variable controls the size of the history list. The
default is 500. (The above list is abbreviated!)

The last command can be recalled and executed by typing !! ("bang-
bang"):

$ date
Mon Sep 6 22:07:36 MST 2004
$!! (typed by user)
date (printed by shell)
Mon Sep 6 22:07:37 MST 2004

Note that the command is echoed, then executed.

A previous command can be re-executed with !N, where N is the
number of the command in the history list:

$!44
javac args.java

C Sc 352, Spring 2005 UNIX Slide 122
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

History, continued

Another way to recall a command is with !prefix. The history is
searched in reverse order for a command that starts with prefix. If a
command starting with prefix is found, it is re-executed:

$!javac
javac args.java

Sometimes a prefix search produces an unexpected result. A user
might try to re-execute java args like this,

$!java
javac args.java

and have a javac command re-executed instead. (Why?)

Adding ":p" to a history selection causes the selected command to only
be printed, but the command is added to the history list. If the
command is the one desired, it can then be run with !!:

$!fg:p
fgrep x words | fgrep y (not run, only printed)
$!!
fgrep x words | fgrep y (printed, then executed)

Be especially careful with one letter searches, like !r, !c, !m — you
might be surprised with an rm, cp, or mv!

If a search fails, an error is produced:

$!xyz
bash: !xyz: event not found

C Sc 352, Spring 2005 UNIX Slide 123
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

History, continued

The construct !$ is replaced with the last argument of the last
command:

$ ls -l deepest.1
-rw-r--r-- 1 whm 73 Jan 25 21:22 deepest.1

$ cp !$ ~cs352/spring05/a1
cp deepest.1 ~cs352/spring05/a1

$ cd !$
cd ~cs352/spring05/a1

Another example:

$ more SomeLongName.java
[...]
$ cp !$!$.bak
cp SomeLongName.java SomeLongName.java.bak

The construct !* specifies all arguments of the last command line.

$ more *.out x* *.bak
[...files examined -- nothing worth keeping...]
$ rm !*
rm *.out x* *.bak

Appending :p to either !$ or !* causes the command to be printed and
put in the history list, but not executed.

C Sc 352, Spring 2005 UNIX Slide 124
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

History, continued

A common practice is to search the history list and then select a
command by number:

$ history | fgrep java
 390 java mgrep x x.java
 392 java mgrep x mgrep.java x.java
 397 java mgrep x x
 398 java mgrep x x x22
 402 java mgrep
 415 java -cp /home/cs352/spring05/a1 mgrep 1 x
 578 javap -c java.lang.String
 595 java mgrep 1 x
$!415
java -cp /home/cs352/spring05/a1 mgrep 1 x

Handy: alias hg='history | fgrep'. (Usage: hg java)

A series of commands might be pieced together and repeatedly
executed as a unit:

$ history | tail
...
 671 javac mgrep.java
 672 java mgrep csh /etc/passwd >mine
 673 diff -c mine ref
$!671; !j; !!
javac mgrep.java; java mgrep csh /etc/passwd
>mine; diff -c mine ref
[...edit...]
$!j
javac mgrep.java; java mgrep csh /etc/passwd
>mine; diff -c mine ref

C Sc 352, Spring 2005 UNIX Slide 125
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

History—odds and ends

Sometimes it's useful to change every occurrence of a string in the last
command. Example:

$ cp ../372/elisp.sli.wpd emacs.sli.wpd
$!!:gs/sli/nts/
cp ../372/elisp.nts.wpd emacs.nts.wpd

Alterations to the last command are usually done by recalling it with
up-arrow (or C-p) but ^old^new can be used:

$ fgrep
$ cut -f 2 -d : /etc/passwd
[...]
$ ^2^3
cut -f 3 -d : /etc/passwd | head

There is an obvious overlap in functionality between the history
mechanism and command line editing via Emacs-style bindings (or
vi-style bindings via set -o vi). Mix and match as so inclined!

When a bash login shell exits, the history is saved to ~/.bash_history.
The number of commands saved is controlled by HISTFILESIZE.

Adding \# to the variable PS1 causes the number of the current
command to be displayed in the prompt:

$ PS1="\# $ "
658 $ date
Thu Feb 3 02:12:18 MST 2005
659 $

And as usual...There is a lot more to the history mechanism than is
shown in these slides.

C Sc 352, Spring 2005 UNIX Slide 126
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The directory stack

The shell maintains a directory stack. The cd and pwd commands
change and query, respectively, the top element of the directory stack.

The dirs command displays the contents of the directory stack:

$ pwd
/home/whm
$ dirs
~

The pushd command pushes a directory on the stack and changes to it;
the popd command removes the top entry from the stack and changes
to the then-top entry:

$ pushd ~/352
~/352 ~
$ pushd ~cs352/spring05
/home/cs352/spring05 ~/352 ~
$ popd
~/352 ~
$ pushd (with no argument, swaps the top two)
~ ~/352

Some alias suggestions:

alias pwd=dirs
alias to=pushd
alias bk=popd

Experiment: Push several directories on the stack and try pushd +1.

C Sc 352, Spring 2005 UNIX Slide 127
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Assorted Utilities

diff (and patch)

find

tar

Regular expressions and the grep family

sed

C Sc 352, Spring 2005 UNIX Slide 128
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

diff

diff is a sophisticated tool for comparing one file to another.

diff is run by naming two files. The default output format is cryptic,
but the -c (context) format is easily understood. Example:

$ diff -c users.1 users.2
*** users.1 Tue Sep 7 11:59:09 2004
--- users.2 Wed Sep 8 23:28:21 2004

*** 1,6 ****
 ralph
! jhh
 pete
 phil
- debray
 greg
--- 1,6 ----
 ralph
! jcropper
 pete
 phil
 greg
+ gmt

The first two lines of output show the involved files. The next line, all
asterisks, precedes each section of differences (only one, in this case).

The next line, *** 1,6 ****, indicates that lines 1-6 of the
first file immediately follow. The three asterisks correspond to the
asterisks in *** users.1

Further down, --- 1,6 ----, indicates that lines 1-6 of the second
file come next. The three dashes correspond to the dashes in
--- users.2.

users.1 users.2

ralph
jhh
pete
phil
debray
greg

ralph
jcropper
pete
phil
greg
gmt

C Sc 352, Spring 2005 UNIX Slide 129
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

diff, continued

For reference:

$ diff -c users.1 users.2
*** users.1 Tue Sep 7 11:59:09 2004
--- users.2 Wed Sep 8 23:28:21 2004

*** 1,6 ****
 ralph
! jhh
 pete
 phil
- debray
 greg
--- 1,6 ----
 ralph
! jcropper
 pete
 phil
 greg
+ gmt

Three differences are shown between the two files:

The line jhh in one file is jcropper in the other. "!" indicates a
line that differs between the two files.

The line debray in users.1 is not in users.2. "-" indicates this
line is not present in the other file.

The line gmt in users.2 is not in users.1. "+" indicates this line is
not present in the other file.

In most cases, the differences are reported as concisely as possible.

users.1 users.2

ralph
jhh
pete
phil
debray
greg

ralph
jcropper
pete
phil
greg
gmt

C Sc 352, Spring 2005 UNIX Slide 130
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

diff, continued

For reference:

$ diff -c users.1 users.2
*** users.1 Tue Sep 7 11:59:09 2004
--- users.2 Wed Sep 8 23:28:21 2004

*** 1,6 ****
 ralph
! jhh
 pete
 phil
- debray
 greg
--- 1,6 ----
 ralph
! jcropper
 pete
 phil
 greg
+ gmt

Another way to think about the report is in terms of modifications to
the first file that would produce the second file:

Change jhh to jcropper.

Delete debray.

Add gmt.

users.1 users.2

ralph
jhh
pete
phil
debray
greg

ralph
jcropper
pete
phil
greg
gmt

C Sc 352, Spring 2005 UNIX Slide 131
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

diff, continued

Here is a diff showing several sections of differences. Note that if the
change in a section is solely insertion or deletion, only one "side" is
shown. The -c1 option restricts the context to one line.

$ diff -c1 100 100.mod
*** 100 Thu Sep 9 00:04:46 2004
--- 100.mod Thu Sep 9 00:08:18 2004

*** 12,15 ****
 12
- 13
 14
 15
--- 12,15 ----
 12
 14
+ a
 15

*** 24,26 ****
 24
- 25
 26
--- 24,25 ----

*** 66,67 ****
--- 65,67 ----
 66
+ b
 67

*** 89,91 ****
 89
! 90
 91
--- 89,92 ----
 89
! ninety
! 90.1
 91

C Sc 352, Spring 2005 UNIX Slide 132
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

diff, continued

By default, diff is very strict—two files are considered identical only if
character by character their contents are the same. In such a case, diff
produces no output:

$ cp users.1 users.3
$ diff users.1 users.3
$

diff has many options to relax the comparison in various ways. The -b
option ignores differences in runs of whitespace:

$ cat text.1
to be
or not to
be
$ cat text.2
to be
or not to
b e
$ diff -c1 -b text.[12]
*** text.1 Thu Sep 9 01:04:19 2004
--- text.2 Thu Sep 9 01:05:25 2004

*** 2,3 ****
 or not to
! be
--- 2,3 ----
 or not to
! b e

With -w, all whitespace is ignored:

$ diff -w text.[12]
$

C Sc 352, Spring 2005 UNIX Slide 133
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

diff, continued

The -r option directs diff to recursively compare directories.

$ ls -R
.:
a b

./a:
w x y

./b:
w x z
$ cat a/x
line 1
line 2
line 3
$ cat b/x
line 1
line two
line 3
$ diff -r -c1 a b
diff -r -c1 a/x b/x
*** a/x Thu Sep 9 01:50:24 2004
--- b/x Thu Sep 9 01:50:48 2004

*** 1,3 ****
 line 1
! line 2
 line 3
--- 1,3 ----
 line 1
! line two
 line 3
Only in a: y
Only in b: z

C Sc 352, Spring 2005 UNIX Slide 134
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

diff, continued

If one diff operand specifies a file and the other specifies a directory,
the file name is assumed to be the same in the directory. For example,
if v1 is a directory,

diff Parser.java v1

is equivalent to

diff Parser.java v1/Parser.java

Process substitution is very handy with diff. What is the following
command doing?

diff <($a5/fill 10 < f1) <(fill 10 < f1)

diff has many output formats. You might experiment with the -e, -u,
and -y options.

Some related programs:

cmp compares files but simply reports the first difference, and
exits:

$ cmp users.1 users.2
users.1 users.2 differ: char 9, line 2

diff3 does three-way differencing.

xdiff and meld provide graphical interfaces for viewing
differences.

C Sc 352, Spring 2005 UNIX Slide 135
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

patch

patch makes changes to a file based on a "diff", which is the output of
a diff run. Here is a simple scenario:

Version 1 of Probe.cc is developed and distributed in source
form.

Version 2 of Probe.cc is created. A diff of the two versions is
produced:

diff -c v[12]/Probe.cc >v1-v2.diff

The diff is made available along with version 2 of Probe.cc.

A user can upgrade to version 2 in two ways: (1) Fetch the new
version of Probe.cc; or, (2) Fetch the diff and use patch to
transform version 1 into version 2. Here is a slightly edited
version of a patch run:

$ patch < v1-v2.diff
Hmm... Looks like a new-style context diff to me...
The text leading up to this was:

|*** v1/Probe.cc
--- v2/Probe.cc
Patching file v1/Probe.cc using Plan A...
Hunk #1 succeeded at 1034.
Hunk #2 succeeded at 2223.
Hunk #3 succeeded at 3455.
done

patch can typically accommodate changes that the user has made to
version 1. Also, patch handles diffs made with -r.

C Sc 352, Spring 2005 UNIX Slide 136
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The find command

The find command recursively searches a directory tree (or trees)
for files matching specified criteria.

The simplest use is to specify a directory name. find then prints the
name of every directory entry in the tree:

$ /bin/pwd
/home/cs352/fall04

$ find .
.
./admin
./admin/test.java
./admin/test.class
./bin
./bin/showmail
./bin/jikesx
./bin/jikes
./bin/jikes~
./mail
...lots more...

$ find . | wc -l
 4269

$ find etc
etc
etc/bash_profile
etc/.bash_profile
etc/.bashrc
etc/bashrc

Note that hidden files are shown but . and .. are special-cased.

If no directory is specified, the default is the current directory.

C Sc 352, Spring 2005 UNIX Slide 137
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

find, continued

A number of "tests" are available to constrain the results.

A commonly-used test is -name, which requires that files match a
wildcard specification:

$ find -name "*.java"
./rev.java
./args.java
./Hello.java
./lc.java
./errout.java
./dir.java
./a1/rev.java
./a1/sum.java
./a1/iota.java
./a1/echo.java
...

$ ls -l $(find -name "[A-Z]*.java")
-rw-r--r-- 1 whm 127 Aug 13 14:32 ./Hello.java
-rw-r--r-- 1 whm 598 Sep 8 21:35 ./tmp/Scanner.java

$ more $(find -name notes)
...

Problem: A friend says that sometimes find works and sometimes it
doesn't. Here is the command being used:

$ find -name *.java

What's happening?

C Sc 352, Spring 2005 UNIX Slide 138
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

find, continued

find has a number of tests related to file access and modification times.
Here is a search for files that were modified in the last two "days":

$ find -mtime -2
.
./work
./work/outline.notes.0105
./work/outline.notes.0138
./rev.java
./tmp
./tmp/TreeWalker.java
./tmp/Scanner.java
...

Note that both ordinary files and directories are produced.

The specification -mtime -2 means modified in the last 48 hours;
-mtime +3 means last modified more than 72 hours ago; -mtime 2
means last modified between 48 and 72 hours ago. Adding -daystart
causes a shift to calendar days: find -daystart -mtime 0 produces files
modified today.

If more than one test is specified an AND'ing of tests results. Here's a
search for *.java files modified in the last three days:

$ find -name "*.java" -mtime -3

C Sc 352, Spring 2005 UNIX Slide 139
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

find, continued

More examples of searches:

Look for files over 100K in size that are over 200 days old:

$ find -size +100k -mtime +200

Find directories named test:

$ find -name test -type d

A test can be negated by preceding it with ! (or -not), one of find's
"operators":

$ find ! -name *.java

Problem: The above command produces names like x.java~. Exclude
them, too.

Speculate: What does the following search look for?

$ find -newer x ! -empty ! -user whm

Another operator is -o, for "or". Grouping can be done with
parentheses, but they must be escaped, and whitespace is significant.

find -size +10k -o \(-name *.java -mtime +10 \)

C Sc 352, Spring 2005 UNIX Slide 140
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

find, continued

In addition to tests, find has "actions". Once upon a time, the -print
action was required to print the names:

find . -print

Most current versions assume -print if no other actions are specified.

The -ls action causes 'ls -lids' to be performed on each file found:

$ find ~cs352/fall04/etc -ls
3409699 4 drwxr-sr-x 2 whm 4096 Sep 12 14:06 etc
3409701 0 lrwxrwxrwx 1 whm 13 Sep 10 18:03
etc/bash_profile -> .bash_profile
3409705 0 -rw-r--r-- 1 whm 12 Sep 10 17:29
etc/.bash_profile
3409706 4 -rw-r--r-- 1 whm 362 Sep 11 17:46 etc/.bashrc
3409703 0 lrwxrwxrwx 1 whm 7 Sep 10 18:04 etc/bashrc
-> .bashrc

C Sc 352, Spring 2005 UNIX Slide 141
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

find, continued

A very general action is -exec. It runs a specified command.

$ find -name "[A-Z]*.java" -exec wc -l {} \;
 5 ./Hello.java
 15 ./tmp/TreeWalker.java

The command starts with the argument following -exec and continues
to the next semicolon. The semicolon must be escaped so that it is
passed to find as an argument, and not intercepted by the shell. For
each match, the path to the entry is substituted for {}.

Here's how the instructor removes his Emacs backup files from a tree:

$ find -name ".ZBK.*.ZBK" -exec rm {} \;

Note that shell aliases do not come into play with -exec. Even if rm is
aliased to rm -i, no prompting is done.

Problem: What's a quick way to see which files find will remove and
then, with a second command, remove them?

Problem: Find .h and .c files and make copy of each, adding a .bak
suffix. For example, x.h would be copied to x.h.bak.

Problem:
Imagine a GUI-based version of find, where you build up the
search by clicking options. Would you rather use it or the
command-line version? (For the rest of your career...)

C Sc 352, Spring 2005 UNIX Slide 142
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Sidebar: find vs. .snapshot

Ugly problem: When in your home directory on lectura, find descends
into your .snapshot directory:

$ cd
$ find
.
./!
./372
./372/a4
./372/a4/i1.icn
./372/a4/n
./372/a4/i1
...lots of output...
./.snapshot
./.snapshot/hourly.7
./.snapshot/hourly.7/!
./.snapshot/hourly.7/372
./.snapshot/hourly.7/372/a4
./.snapshot/hourly.7/372/a4/i1.icn

End result: find's in your home directory are painful. The instructor
has only about 10,000 files in his tree but look at this:

$ find ~ | wc -l
 167913

C Sc 352, Spring 2005 UNIX Slide 143
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

find vs. .snapshot, continued

Solution: Find which NFS server your home directory is on and make
a symlink, perhaps "net", to your directory on that server:

$ cd
$ df .
Filesystem 1k-blocks Used
Available Use% Mounted on
sinagua:/vol/vol0/home/whm
 228789416 188377520
40411896 82% /home/whm

$ ln -s /net/sin/vol/vol0/home/whm net

You can then go to ~/net and do a find there, or do this:

find ~/net/.

The trailing /. is required because by default, find does not follow
symbolic links.

C Sc 352, Spring 2005 UNIX Slide 144
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The tar command

tar is the "tape archiver" but it is most widely used to create an
"archive" that contains all files in a tree or inversely, create a tree of
files from a tar archive.

Here's a small tree to work with:

$ ls -R p1
p1:
args.java lc.java x y

p1/x:
a b

p1/y:

To make a "tar file" (or "tar") of p1, do this:

$ tar cvzf p1.tz p1
p1/
p1/x/
p1/x/a
p1/x/b
p1/args.java
p1/y/
p1/lc.java
$ ls -l p1.tz
-rw-r--r-- 1 whm 638 Sep 12 21:07 p1.tz

The first argument is an option string that indicates to create (c) a tar
file, be verbose (v), compress the output (z), and write the result to a
file (f), not a tape. The second argument, p1.tz is the file to create.
The third argument is the directory to "tar up".

C Sc 352, Spring 2005 UNIX Slide 145
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

tar, continued

The table of contents of a tar file can be displayed with the t option:

$ tar tvzf p1.tz
drwxr-xr-x whm/dept 0 2004-09-12 21:05 p1/
drwxr-xr-x whm/dept 0 2004-09-12 21:04 p1/x/
-rw-r--r-- whm/dept 29 2004-09-12 21:04 p1/x/a
-rw-r--r-- whm/dept 139 2004-09-12 21:04 p1/x/b
-rw-r--r-- whm/dept 180 2004-09-12 20:53 p1/args.java
drwxr-xr-x whm/dept 0 2004-09-12 21:03 p1/y/
-rw-r--r-- whm/dept 360 2004-09-12 20:53 p1/lc.java

Without the v (verbose) option, only paths are shown with t:

$ tar tzf p1.tz
p1/
p1/x/
p1/x/a
...

C Sc 352, Spring 2005 UNIX Slide 146
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

tar, continued

The x option extracts the contents of an archive, reproducing the
original tree:

$ mkdir v2
$ cd v2
$ tar xvzf ../p1.tz
p1/
p1/x/
p1/x/a
p1/x/b
p1/args.java
p1/y/
p1/lc.java
$ ls
p1

$ ls -R p1
p1:
args.java lc.java x y

p1/x:
a b

p1/y:

In this case the tar was unloaded into an empty directory. If a tree p1
had already existed, tar would have added and/or overwritten files and
directories in that tree.

C Sc 352, Spring 2005 UNIX Slide 147
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

tar, continued

Individual files and/or directories can be extracted:

$ tar xvf ../p1.tar p1/y p1/x/b
p1/x/b
p1/y/
$ ls -R p1
p1:
x y

p1/x:
b

p1/y:

An issue that requires a bit of thought when creating a tar is how it is
"rooted". p1.tar is rooted at p1:

$ tar tf p1.tar
p1/
p1/x/
p1/x/a
p1/x/b
p1/args.java
p1/y/
p1/lc.java

Because p1.tar is rooted at p1, extracting files causes the directory p1
to be created.

C Sc 352, Spring 2005 UNIX Slide 148
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

tar, continued

An alternative is to root a tar at the current directory:

$ tar cvf ../p1d.tar .
./
x/
x/a
x/b
args.java
y/
lc.java

$ mkdir v3
$ cd v3
$ tar xvf ../p1d.tar
./
x/
x/a
x/b
args.java
y/
lc.java
$ ls
args.java lc.java x y

With this approach, no directory named p1 is created.

Such an archive can be said to be "rooted at dot".

C Sc 352, Spring 2005 UNIX Slide 149
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

tar, continued

tar is great for making a snapshot of work in progress. Here is
one example:

$ cd ~/352
$ tar cvzf ../352.091204.tz .

Here's another way to snapshot:

$ cd
$ tar cvzf 352.091204.tz 352

Don't do this:

$ tar cvzf t.tz .
...output...
tar: t.tz: file changed as we read it

Because the output file, t.tz, is in the current directory it is included in
the archive, and tar notices that the file grew as the archive was being
created.

Another mistake:

$ tar cvzf ~/352.tz ~/352

~/352 expands to an absolute path such as /home/whm/cs352. When
files are extracted, they'll overwrite the files currently in
/home/cs352/home—probably not what is desired. It is almost
always a mistake to create an archive that contains absolute path
names.

C Sc 352, Spring 2005 UNIX Slide 150
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

tar, continued

The T option directs tar to read a file that in turn lists the files to
include in the tar:

$ find . -name "*.java" >jfiles
$ tar cvzTf jfiles jfiles.tz

tar can read from standard input and write to standard output, indicated
by '-' for the input or output file:

$ tar czf - p1 | supercrypt > p1.cpt
$ supercrypt -d p1.cpt | tar xzf -

Here is a pipeline that uses a subshell to copy a directory tree.

$ /bin/pwd
/home/whm/352
$ tar cf - . | (mkdir ../352.2; cd ../352.2; tar xf -)

tar has many options but the subset presented here is adequate for a
wide variety of needs.

A program popular with some users that's similar to tar is cpio.

Sad but true:

On lectura, GNU tar (described herein) is in /usr/local/bin/tar.
Unfortunately, there is no man page for it, but --help does work.

"man tar" produces the man page for /usr/bin/tar, which differs
from GNU tar. (Two examples: Option 'z' is not supported and
instead of 'T' there is '-I' (I).)

C Sc 352, Spring 2005 UNIX Slide 151
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The fgrep command

The fgrep command prints lines that match a pattern. A simple
example:

$ fgrep print *.java
Hello.java: System.out.println("Hello, world!");
args.java: System.out.println("|" + args[i] + "|");
dir.java: void print()
dir.java: System.out.println(entries[i].inode_number + ": "
+
dir.java: d.print();
dir.java: d2.print();
lc.java: System.out.println(count);

Each .java file is processed line by line and if a line contains 'println',
it is printed, preceded by the name of the file that contains it.

fgrep can read standard input:

$ cat *.java | fgrep print
 System.out.println("Hello, world!");
 System.out.println("|" + args[i] + "|");
 void print()
 System.out.println(entries[i].inode_number + ": " +
 d.print();
 d2.print();
 System.out.println(count);

C Sc 352, Spring 2005 UNIX Slide 152
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

fgrep, continued

The -l (L) flag causes fgrep to simply print the names of files that have
an occurrence of the pattern:

$ fgrep -l print *.java
args.java
lc.java

The -v causes inversion—non matching lines are printed:

$ fgrep -v print args.java
public class args {
 public static void main(String args[]) {
 for (int i = 0; i < args.length; i++)
 }
 }

Problems:

Find lines initializing an Object array with "new" of some sort.

Find println calls that don't contain a double-quote but only
consider Java files that contain the string "Test".

Other handy options (among many):

-w searches for whole "words".
-c prints a count of matching lines.
-n prints line numbers.
-C prints surrounding lines (five-line "window" by default).
-e is used like this: 'fgrep -e -x ...', to search for -x.
-f file reads patterns from a file.

C Sc 352, Spring 2005 UNIX Slide 153
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Regular expressions

In computer science theory, a language is a set of strings. The set may
be infinite.

The Chomsky hierarchy of languages looks like this:

Unrestricted languages ("Type 0")
Context-sensitive languages (Type 1)
Context-free languages (Type 2)
Regular languages (Type 3)

Roughly speaking, natural languages are unrestricted languages that
can only specified by unrestricted grammars.

Programming languages are usually context-free languages—they can
be specified with a context-free grammar, which has very restrictive
rules. Every Java program is a string in the context-free language that
is specified by the Java grammar.

A regular language is a very limited kind of context free language
that can be described by a regular grammar. A regular language
can also be described by a regular expression.

A regular expression is simply a string that may contain
metacharacters. Here is an example of a regular expression:

^\([A-Z].*[ab]\?\)\|[a-fA-F]\{3,5\}

Regular expressions have some similarities to filename wildcards but
the two facilities are used in different contexts and behave very
differently in most cases.

C Sc 352, Spring 2005 UNIX Slide 154
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Regular expressions, continued

grep behaves like fgrep but instead of searching for literal text, it
assumes its first argument is a regular expression.

In a regular expression, all alphanumeric characters (and some special
characters) match themselves. The commands

$ fgrep abc123 x

and

$ grep abc123 x

produce the same results.

Note that abc123 is a regular expression that describes a regular
language that contains one string: abc123

The simplest RE (regular expression) metacharacter is the period (or
"dot"). In a RE, a dot matches any character. Example:

$ grep "a.b.c" /usr/dict/words
albacore
barbecue (note that match is not at beginning)
canvasback
drawback
iambic
[...more...]

What is matched by the following?

$ grep "....." /usr/dict/words

As a matter of habit, enclose regular expressions in quotes.

C Sc 352, Spring 2005 UNIX Slide 155
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Regular expressions, continued

A caret (^) at the beginning of a regular expression requires that the
following RE appear at the start of a line.

$ grep "^spot" /usr/dict/words
spot
spotlight
spotty

A dollar sign requires that the line end with the preceding RE.

$ grep "spot$" /usr/dict/words
despot
spot
sunspot
tenspot

Problems:

Print words that are exactly four characters long.

How many words have an "a" as their third character?

Does the file lc.java contain any empty lines?

What is the longest word in the dictionary?

Speculate: Are the quotes really needed around "^spot" and "spot$"?

C Sc 352, Spring 2005 UNIX Slide 156
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Regular expressions, continued

Another rule:

R* matches zero or more occurrences of the regular expression R.

Example:

ab*c Matches lines that contain an 'a' that is followed by zero
or more 'b's that are followed by a 'c'. Examples: ac,
abc, abbbbbbc, back, cache, Babcock.

Problems:

Find words that start with 'a' and end with 'b'.

Describe lines matched by ^a*b.*c..$

Describe lines matched by if.*f(.*)

Find words that have all vowels in order.

Speculate: What does a*.\. match?

Tip: To experiment with grep, run it with no input. Then, type lines of
test input. The lines that match are echoed.

Example: What does the RE *.c match? Find out:

$ grep "*.c"

C Sc 352, Spring 2005 UNIX Slide 157
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Regular expressions, continued

Regular expressions have precedence rules. The * operator has higher
precedence than juxtaposition (one character next to another).

Example: a.*b is interpreted as a(.*)b rather than (a.*)b .

The operator * is "greedy"—it tries to match the longest string
possible, and cuts back only to make the full expression succeed.
Example:

Given a.*b and the input 'abbb', the first attempt is:

a matches a
.* matches bbb
b fails—no characters left!

The matching algorithm then backtracks and does this:

a matches a
.* matches bb
b matches b

C Sc 352, Spring 2005 UNIX Slide 158
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Regular expressions, continued

Another rule:

The notation [characters] is a RE that matches any one of the
specified characters. [^characters] is an RE that matches any
character not in the set. (It matches the complement of the set.) A
dash between two characters in a set specifies a range.

For example, ^[AEIOU].*[^0-9]$ matches lines that start with a capital
vowel and don't end with a digit.

Problems:

Find words that contain a capital letter in a position other than the
first.

Strings that match [A-Za-z_][A-Za-z_0-9]* commonly occur in
programs. What are they?

Find lines that have an if statement and one of these
comparisons: !=, ==, <=, >=

Are there any non-alphabetic characters in /usr/dict/words?

C Sc 352, Spring 2005 UNIX Slide 159
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Regular expressions, continued

If R is a regular expression, R\+ matches one or more instances of R.

If R is a regular expression, R\? matches zero or one instances of R.

Example:

[a-z]\+[0-9]\? matches one or more lower case letters and,
possibly, a digit.

Like *, \+ and \? have higher precedence than juxtaposition.

REs can be grouped with (escaped) parentheses to override precedence
rules.

Example:

\(ab\)\+ matches strings like ab, abab, ababab, etc.

Describe the input lines that would be printed by this grep invocation:

$ grep "^\(\(ab\)\+c\?\(xyz\)*\)\?$"

The sequence \| provides an "or" capability. Example:

\(one\|two\|three\) \(apple\|biscuit\)s\?

Speculate: What does the following RE match?

one\|two\|three apple\|biscuits\?

C Sc 352, Spring 2005 UNIX Slide 160
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Regular expressions, continued

Many programs have some support for regular expressions. However,
the set of metacharacters can vary from program to program.
Example:

grep considers +, ?, | and parentheses to have special meaning
only when escaped. egrep considers those same characters to be
metacharacters unless escaped.

The grep RE \(a\|bc\|de\)\+ has this egrep equivalent: (a|bc|de)+

Problem: Specify the egrep equivalent for the grep RE "(+)".

The set of RE operations varies from program to program. For
example, some programs provide one or more of the following:

\<print\> matches the string print when it appears as a "word".

[0-9]\{1,6\} matches strings of 1-6 digits.

Lines that have nothing but whitespace: ^[[:space:]]*$

The java.util.regex package supports many more constructs.

The pinnacle of support for regular expressions (or deepest pit,
depending on your view) is Perl.

As a rule, however, you can do a lot with just these:
. * + ? [...] [^...] ^ $

C Sc 352, Spring 2005 UNIX Slide 161
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The sed command

sed is the "stream editor". It is designed to perform one or more
transformations on a stream of input text.

The s/from/to/ command of sed performs simple textual substitution:

$ date | sed 's/0/zero/'
Mon Feb 7 17:zero5:03 MST 2005

$ date | sed 's/0/zero/g' (g is "global")
Mon Feb 7 17:zero5:zero6 MST 2zerozero5

$ echo $a1 | sed 's./. .g' (or 's/\// /g')
 home cs352 spring05 a1

sed recognizes regular expressions:

$ cal | sed 's/[0-9]\+/<num>/g'
 February <num>
 S M Tu W Th F S
 <num> <num> <num> <num> <num>
 <num> <num> <num> <num> <num> <num> <num>
<num> <num> <num> <num> <num> <num> <num>
...

$ sed 's/(.*)/()/' < args.java
public class args {
 public static void main() {
 for ()
 System.out.println();
...

Problem: Use sed to strip // comments from a Java source file. Take a
naive approach. For example, don't worry about a literal like "=//=".

C Sc 352, Spring 2005 UNIX Slide 162
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

sed, continued

In the "to" field of sed's s command, an ampersand specifies the text
matched by the "from" field. Example:

$ date | sed 's/[0-9]\+/(&)/g'
Mon Feb (7) (17):(36):(53) MST (2005)

Elements of the "from" field that are grouped with parentheses can be
plugged into the replacement with \N.

Example:

$ echo /a/b/x.c | sed 's;\(.*\)/\(.*\);\2 in \1;'
x.c in /a/b

Several sed commands may be specified on the command line. The
following command deletes whole-line comments and strips intra line
comments.

$ sed -e '/^\/\//d' -e 's;//.*;;' < x.java
...

A sequence of sed commands can be put into a file:

$ cat stripcmt
/^\/\//d
s;//.*;;
$ sed -f stripcmt < args.java
...

sed has many more capabilities than are discussed here. One example:
sed -n -e 1p -e '$p' prints the first and last line of standard
input.

C Sc 352, Spring 2005 UNIX Slide 163
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Why call it "grep"?

The ed editor was one of the first applications to use regular
expressions. ed's g (global) command applies a series of commands to
each line that matches a regular expression.

Example:

$ ed lc.java
360
g/=/p
 BufferedReader in =
 int count = 0;
 while ((line = in.readLine()) != null)
q
$

This operation, printing lines in a file that match a regular expression
was being done frequently enough that it became encapsulated in a
program. That program's name summarized the operation: g/re/p

C Sc 352, Spring 2005 UNIX Slide 164
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The grep family

There are three classic members in the grep family: grep, fgrep, and
egrep.

The need for three distinct programs was driven by performance and
memory limitations at the time they were created.

Here's a quote from the 4BSD manual, c. 1980:

"grep patterns are limited regular expressions in the style of ex(1)
[an improved ed]; it uses a compact nondeterministic algorithm.
egrep patterns are full regular expressions; it uses a fast
deterministic algorithm that sometimes needs exponential space.
fgrep patterns are fixed strings; it is fast and compact.

Today:

grep is a good first choice and is the most frequently used
member of the family.

egrep makes complex regular expressions less tedious due to the
enlarged set of metacharacters.

fgrep treats no characters as special—use it when the pattern
contains lots of special characters that you don't want treated
specially. Example: fgrep '*.*' *.sh

Other grep variants exist. (Try man -k grep.) One of them is agrep—
"approximate" grep. Try agrep -2 Willim /etc/passwd to find lines
that are within two characters of matching "Willim".

C Sc 352, Spring 2005 UNIX Slide 165
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Emacs' grep command

Emacs has a grep command that runs the grep program and lets you
work through "hits" one by one, just like compilation errors.

M-x grep produces a partial command line in the minibuffer:

Run grep (like this): grep -n -e

Finish the command line:

Run grep (like this): grep -n -e println *.java

A buffer named *grep* will appear that shows the matching lines.

Typing C-x ` (back quote!) runs next-error, which for each hit, opens
the file and positions you on the matching line.

C Sc 352, Spring 2005 UNIX Slide 166
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Emacs and regular expressions

Emacs supports regular expressions. All the details can be found via
info: Choose the Emacs menu item and then the Regexps menu item.

M-C-s starts an incremental regular expression search.

Recall this example: Consider the steps to change lines from this:

/home/whm/x.java
/x/y.z
/a/bb/ccc/dddd/eeee

to this:

x.java /home/whm
y.z /x
eeee /a/bb/ccc/dddd

C-M-% runs query-replace-regexp. The replacement pattern can use
\1, \2, etc. to "plug in" groups from the matched string.

Here's an RE to search with:

^\(.*\)/\(.*\)$

and a replacement

\2 TAB \1

C Sc 352, Spring 2005 UNIX Slide 167
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Files and File Management—Part 2

User and groups

File permissions

Directory permissions

root—the "superuser"

Symbolic links and permissions

umask

The set-uid mechanism

"Everything is a file"

C Sc 352, Spring 2005 UNIX Slide 168
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Users and groups

Associated with every login name, like whm, there is a numeric user id
(uid).

A user's uid is specified in the third field of the user's /etc/passwd
entry:

$ egrep "whm|ranjini" /etc/passwd
whm:x:3186:46:William H. Mitchell:...
ranjini:x:2349:7449:Ranjini Swaminathan:...

A user can display his or her user id with the id command:

$ id -u
3186

Internally, UNIX uses the uid (as an integer), not the login name, to
identify users.

C Sc 352, Spring 2005 UNIX Slide 169
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Users and groups, continued

UNIX has a notion of group membership. A user may be in many
groups at once. /etc/group specifies members of groups. Here are a
few selected lines of a representative /etc/group file: (not lectura's)

staff:*:15:root,steve,joff,alt,mca,tas
other:*:17:
recruit:*:22:recruit,peter,mp
faculty:*:26:alt,robert,ed,lionel,alan,mca
office:*:24:beth,maggie,jmc
turnin:*:37:cs227,cs340,cs352,cs372,alt,robert,\

 ed,lionel,alan,mca,ak,andrew

Every user is in at least one group, specified in the fourth /etc/passwd
field as a numeric group id (gid).

The groups command shows group memberships. id shows full
details:

$ groups
dept turnin cs352 cs451 whm

$ id
uid=3186(whm) gid=46(dept) groups=46(dept),
37(turnin), 119(cs352),451(cs451),8086(whm)

When a user runs a process, the uid and gid of that user become the uid
and gid of that process.

C Sc 352, Spring 2005 UNIX Slide 170
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

File permissions

When a user attempts to perform an operation on a file, the UNIX
kernel determines if the user has permission for that operation on that
file.

Every file is owned by a user and a group. The -l (L) option of ls
shows the ownership. The -n flag suppresses look-up of the uid and
gid; the numeric values are displayed instead.

$ cd ~cs352/spring05/etc
$ ls -l .bashrc
-rw-r--r-- 1 whm cs352 395 Jan 24 21:27 .bashrc

$ ls -ln .bashrc
-rw-r--r-- 1 3186 119 395 Jan 24 21:27 .bashrc

Every file has a collection of nine "mode bits" (or, "the mode") that
specify which operations can be performed by whom. The characters
in the leftmost column of ls -l output show the permissions.

C Sc 352, Spring 2005 UNIX Slide 171
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

File permissions, continued

At hand:

$ ls -l .bashrc
-rw-rw-r-- 1 whm cs352 395 Jan 24 21:27 .bashrc

The first character is the type of the file and is not related to
permissions. (A dash is an ordinary file, d is directory, l is symbolic
link; there are others that are less common.)

The next three characters (rw-) indicate the operations that can be
performed by the owner of the file (whm): he can read data from it and
write data to it.

If the file were executable, the third character would be x, not -.

The next three characters specify the operations permitted by group
members. The file can be read and written, but not executed by
members of the cs352 group.

The final group of three characters specifies what "others" can do. If a
user is not whm, and not in the cs352 group, the only operation that
can be performed is reading the file.

C Sc 352, Spring 2005 UNIX Slide 172
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

File permissions, continued

Running the command 'cat .bashrc' eventually reaches a line of code
in cat.c that calls a kernel routine that in turn opens the file for
reading:

/* Code from GNU textutils-2.0/src/cat.c */

int input_desc;
int file_open_mode = O_RDONLY;
...
input_desc = open (infile, file_open_mode);

When a program attempts to open a file, the kernel determines the
relationship of the user to the file. If whm is running the program then
the kernel consults the owner permission bits.

Because the owner permission bit to allow read access is "on", the file
is opened successfully.

Here is the access validation algorithm in broad terms:

Based on the uid and gid of the process, classify the user as owner
of the file, group member, or "other".

Classify operation as read, write, or execute.

Check the mode bit associated with the user and operation
classification.

C Sc 352, Spring 2005 UNIX Slide 173
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

File permissions, continued

A file might be writable but not readable:

$ ls -l log
--w--w--w- 1 whm dept 55978 Sep 15 00:52 log

$ cat log
cat: log: Permission denied

$ date >>log

$ ls -l log
--w--w--w- 1 whm dept 56007 Sep 15 00:53 log

A more practical example:

$ ls -l log
-rw--w--w- 1 whm dept 56007 Sep 15 00:53 log

How might a mode 611 file be useful?

C Sc 352, Spring 2005 UNIX Slide 174
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

File permissions, continued

The third character in each mode triple specifies whether the file is
executable by each class of user.

$ ls -l hello*
-rw-r--r-- 1 whm dept 21 Sep 15 00:48 hello1
-rwxr-xr-x 1 whm dept 21 Sep 15 00:49 hello2

$ head hello*
==> hello1 <==
echo "Hello, world!"

==> hello2 <==
echo "Hello, world!"

$./hello1
bash: ./hello1: Permission denied

$./hello2
Hello, world!

The only difference between hello1 and hello2 is that hello2 has the
mode bits for execute "on". hello2 is said to be executable.

A file can be unreadable but still executable:

$ ls -l date
---x--x--x 1 whm dept 80608 Sep 15 00:39 date
$ wc date
wc: date: Permission denied
$./date
Wed Sep 15 00:50:49 MST 2004

What are the pros and cons of having an "executable" bit?

C Sc 352, Spring 2005 UNIX Slide 175
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

File permissions, continued

The chmod command is used to change the mode of a file.

One alternative is to specify the mode in octal (base 8)—each digit
corresponds to a character triple:

$ chmod 742 x
$ ls -l x
-rwxr---w- 1 whm dept 0 Sep 15 01:00 x

Interpretation:

7 = 111 rwx
4 = 100 r--
2 = 010 -w-

Remember: The leading dash is the file type.

Problems:

What octal digits correspond to r-x--xrw- ?

What character triples correspond to the octal digits 123?

C Sc 352, Spring 2005 UNIX Slide 176
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

File permissions, continued

The mode can also be specified symbolically:

$ chmod 0 A (Note that the name of the file is "A")
$ ls -l A
---------- 1 whm dept 0 Sep 15 01:00 A

$ chmod u+r A ('u' is the (u)ser who owns the file)
$ ls -l A
-r-------- 1 whm dept 0 Sep 15 01:00 A

$ chmod o+w A ('o' is "others"—not the user or the group)
$ ls -l A
-r------w- 1 whm dept 0 Sep 15 01:00 A

$ chmod g+rw A
$ ls -l A
-r--rw--w- 1 whm dept 0 Sep 15 01:00 A

$ chmod ug-w A ('-' turns off bits)
$ ls -l A
-r--r---w- 1 whm dept 0 Sep 15 01:00 A

$ chmod 644 A
$ ls -l A
-rw-r--r-- 1 whm dept 0 Sep 15 01:00 A

$ chmod +x A (if no class(es) specified, apply to all)
$ ls -l A
-rwxr-xr-x 1 whm dept 0 Sep 15 01:00 A

$ chmod u=rw,g=wx,o=r A (OUCH! Note: no spaces!)
$ ls -l A
-rw--wxr-- 1 whm dept 0 Sep 15 01:00 A

C Sc 352, Spring 2005 UNIX Slide 177
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

File permissions, continued

Many files may be specified at once:

chmod +x *.sh

chmod 444 $(find -name "*.java")

The -R option recursively applies a change to every file (and directory)
in a tree:

chmod -R -w src

Different programs handle read-only files in different ways. For
example, rm prompts if a read-only file is specified:

$ touch a b
$ chmod 444 a
$ ls -l
-r--r--r-- 1 whm dept 0 Sep 16 02:42 a
-rw-r--r-- 1 whm dept 0 Sep 16 02:42 b
$ rm *
rm: remove write-protected file `a'? y
$ ls
$

cp doesn't allow a read-only file to be overwritten, unless -f is
specified:

$ touch x y; chmod 444 y
$ cp x y
cp: cannot create regular file `y': Permission
denied
$ cp -f x y
$ ls -l y
-rw-r--r-- 1 whm dept 0 Sep 16 02:48 y

C Sc 352, Spring 2005 UNIX Slide 178
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

File permissions, continued

Problem: A naive system administrator has "disabled" a too-popular
game:

$ /usr/games/zork
bash: /usr/games/zork: Permission denied

$ ls -l /usr/games/zork
-rwxr--r-- 1 root dept 703908 Sep 15 02:26
/usr/games/zork

How can be Zorking be continued?

C Sc 352, Spring 2005 UNIX Slide 179
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Directory permissions

Permissions apply to directories, too, but with a different
interpretation:

Read permission allows the directory entries to be listed.

Write permission allows entries to be added or deleted.

Execute permission allows a directory to be searched and/or cd'd
into.

The instructor's home directory is mode 700:

$ ls -ld ~whm
drwx------ 88 whm empty 32768 Feb 8 09:38 /home/whm

If a directory is unwritable, files can't be removed or created, but
existing files can be changed:

$ touch x y
$ ls -l
-rw-r--r-- 1 whm dept 0 Sep 15 01:25 x
-rw-r--r-- 1 whm dept 0 Sep 15 01:25 y
$ chmod u-w .
$ ls -ld .
dr-xr-xr-x 2 whm dept 4096 Sep 15 01:25 .
$ rm x
rm: cannot unlink `x': Permission denied
$ touch z
touch: z: Permission denied
$ date >y
$ ls -l
-rw-r--r-- 1 whm dept 0 Sep 15 01:25 x
-rw-r--r-- 1 whm dept 29 Sep 15 01:25 y

C Sc 352, Spring 2005 UNIX Slide 180
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Directory permissions, continued

The contents of an unreadable directory cannot be listed:

$ mkdir d1
$ date >d1/x
$ touch d1/y
$ ls -l
drwxr-xr-x 2 whm dept 4096 Sep 15 01:47 d1
$ ls -l d1
-rw-r--r-- 1 whm dept 29 Sep 15 01:47 x
-rw-r--r-- 1 whm dept 0 Sep 15 01:47 y
$ chmod 0 d1
$ ls -l
d--------- 2 whm dept 4096 Sep 15 01:47 d1
$ ls d1
ls: d1: Permission denied

If a directory has only search permission (--x) files in the directory
can be accessed by name, but the directory contents can't be listed:

$ chmod 111 d1
$ ls -ld d1
d--x--x--x 2 whm dept 4096 Sep 15 01:47 d1
$ ls d1
ls: d1: Permission denied
$ ls -l d1
ls: d1: Permission denied
$ cat d1/x
Wed Sep 15 01:47:33 MST 2004
$ date >d1/y
$ touch d1/z
touch: d1/z: Permission denied

C Sc 352, Spring 2005 UNIX Slide 181
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Directory permissions, continued

For reference: d1 has two files:

-rw-r--r-- 1 whm dept 29 Sep 15 01:47 x
-rw-r--r-- 1 whm dept 29 Sep 15 01:47 y

You can cd to a search-only directory and modify existing files
(assuming appropriate permission on the files) but you can't look
around or change directory entries.

$ ls -ld d1
d--x--x--x 2 whm dept 4096 Sep 15 01:47 d1
$ cd d1
$ ls
ls: .: Permission denied
$ cat x
Wed Sep 15 01:49:20 MST 2004
$ cp x y
$ touch z
touch: z: Permission denied

Search-only directories are typically used to provide users access to
files, but only if the user has been informed of the name(s). Analogy:
A web page that's not referenced anywhere but that can be displayed if
the URL is known.

Is there a way to determine the names of files in a search-only
directory?

Speculate: What are the characteristics of a mode 444 directory?

C Sc 352, Spring 2005 UNIX Slide 182
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

root—the "superuser"

Uid 0 is the user id of root, the "superuser". System administration
work is typically done as root. When running as root, read and write
permissions are simply ignored—root has full access to every file in
every directory.

Example: (Note that by convention, root's prompt contains a #.)

id -u
0

ls -l x
---------- 1 whm dept 29 Sep 15 03:11 x

cat x
Wed Sep 15 03:11:28 MST 2004

cal >x

$ ls -l x
---------- 1 whm dept 139 Sep 15 03:11 x

Execute permissions do apply to root:

./x
bash: ./x: Permission denied

C Sc 352, Spring 2005 UNIX Slide 183
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Symbolic links and permissions

Symbolic links are shown as mode 777, but the mode is
inconsequential because read and write operations apply to the
underlying file, not the link.

$ ls -l
total 0
-r--r--r-- 1 whm dept 29 Sep 15 03:17 x
lrwxrwxrwx 1 whm dept 1 Sep 15 03:17 x1 -> x

$ date >x
bash: x: Permission denied

$ date >x1
bash: x1: Permission denied

$ chmod 666 x1
$ ls -l
-rw-rw-rw- 1 whm dept 29 Sep 15 03:17 x
lrwxrwxrwx 1 whm dept 1 Sep 15 03:18 x1 -> x

$ cal > x1
$ ls -l
-rw-rw-rw- 1 whm dept 139 Sep 15 03:21 x
lrwxrwxrwx 1 whm dept 1 Sep 15 03:18 x1 -> x

The ability to delete or create a symbolic link is determined by the
permissions of the directory containing (or to contain) the link, just as
if deleting or creating an ordinary file.

C Sc 352, Spring 2005 UNIX Slide 184
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

umask

Every process has a file mode creation mask. The umask command
displays the current value of the mask, which is inherited by child
processes:

$ umask
022

touch and bash's > operator, to name two examples, specify an initial
mode of 666 (rw-rw-rw-) for files that are created. The GNU C
compiler specifies an initial mode of 777 for executable files it creates.

The initial mode of a file is calculated by starting with the mode
specified by the creating program and turning off the umask'd bits.

$ umask
022
$ touch x
$ gcc -o trivial trivial.c
$ ls -l
-rwxr-xr-x 1 whm dept 6376 Sep 15 23:09 trivial
-rw-r--r-- 1 whm dept 9 Sep 15 23:09 trivial.c
-rw-r--r-- 1 whm dept 0 Sep 15 23:09 x

The same sequence, but with a more restrictive umask:

$ umask 077
$ rm x trivial
$ touch x
$ gcc -o trivial trivial.c
$ ls -l
-rwx------ 1 whm dept 6376 Sep 15 23:10 trivial
-rw-r--r-- 1 whm dept 9 Sep 15 23:09 trivial.c
-rw------- 1 whm dept 0 Sep 15 23:10 x

C Sc 352, Spring 2005 UNIX Slide 185
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The "set-uid" mechanism

In some cases it is useful to allow ordinary users to read and/or write
files they do not have permission to read or write.

Example: Any user can change his or her password using passwd(1).
However, that requires modifications to /etc/shadow:

$ ls -l /etc/shadow
-r-------- 1 root 89554 Sep 15 21:20 /etc/shadow

The set-uid (SUID) mechanism provides a solution:

If an executable has mode bit 4000 set, when that executable is
run the effective user id (euid) of the process becomes the uid of
the owner of the file.

Here is what a set-uid executable looks like: (the mode is 4555)

$ ls -l /usr/bin/passwd
-r-sr-xr-x 1 root sys 21964 Apr 6 2002
/usr/bin/passwd

Note the s instead of an x in the owner triple. When passwd is run,
that process has the file access privileges of root, and can make
changes to /etc/shadow.

Similarly, mode bit 2000, the set-gid (SGID) bit causes the effective
group id of a process to be set based on the executable's group.

It is notoriously difficult to write a perfectly secure non-trivial set-uid
application.

The set-uid mechanism was awarded a patent.

C Sc 352, Spring 2005 UNIX Slide 186
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

"Everything is a file"

It is sometimes said that with UNIX, "everything is a file": UNIX
creates a facade that allows peripherals and "pseudo-devices" to be
treated as files.

Once upon a time, "dumb terminals" were connected to UNIX
machines via serial lines. The terminals appeared as files in the /dev
directory. At that time, you might have seen this:

$ ls -l /dev/tty?
crw--w--w- 1 root 1, 0 Oct 1 10:10 ttya
crw--w--w- 1 jte 1, 1 Oct 2 09:23 ttyb
crw--w--w- 1 mp 1, 2 Oct 2 10:14 ttyc
crw--w--w- 1 tas 1, 3 Oct 2 10:09 ttyd

You could do something like this,

$ echo "All files deleted." > /dev/ttyb

and jte would see those words on his screen.

You could then do this,

$ stty erase " " >/dev/ttyb

which would cause the spacebar to act like the backspace key, and
further test your friendship with jte.

C Sc 352, Spring 2005 UNIX Slide 187
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

"Everything is a file"

Hardwired terminals are less common these days but there are "files"
in /dev that correspond to "pseudo-terminals" that are used for network
logins. The tty (teletype) command shows the name of the terminal
that one is using:

$ tty
/dev/pts/149
$ ls -lL /dev/pts/149
crw--w---- 1 whm tty 24, 149 Sep 15 23:44
/dev/pts/149

If output is redirected to the device, it appears on the screen:

$ date > /dev/pts/149
Wed Sep 15 23:42:30 MST 2004

The device can be read:

$ wc /dev/pts/149
a
test
^D
 2 2 7 /dev/pts/149

C Sc 352, Spring 2005 UNIX Slide 188
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

"Everything is a file", continued

There are devices corresponding to peripherals. Here are some
examples from Red Hat Linux:

/dev/sda is the entirety of the first SCSI disk.

/dev/sdb2 is the second partition of the second SCSI disk.

/dev/fd0 is the first floppy disk drive.

/dev/lp1 is the second parallel-port printer.

Devices on Solaris, the flavor of UNIX that lectura runs, aren't named
as simply. For example, the root filesystem is on /dev/dsk/c1t0d0s0,
which is a symbolic link to

/devices/pci@8,600000/SUNW,qlc@4/fp@0,0/ssd@w21000004cf9
67393,0:a

C Sc 352, Spring 2005 UNIX Slide 189
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

"Everything is a file", continued

Here are some devices (pseudo-devices, actually) that are handy for the
ordinary user:

/dev/null The null device. Data written to it is discarded. If
read, it produces end of file immediately.

/dev/random A source of random data. (man -s 7d random)

/dev/tty The terminal you're currently on.

/dev/zero An infinite source of zero-valued bytes.

To discard some output, send it to /dev/null. Imagine you
want to see only standard error output from a command that writes
thousands of lines to standard output:

$ ls -lR /home/icon >/dev/null
ls: /home/icon/bugs/tc: Permission denied
ls: /home/icon/bugs/tc2: Permission denied
$

Imagine a program insists on error log file being written. If you don't
care about the log, you might do this:

$ app2 -log /dev/null ...

A file of zero-valued bytes can be made by reading a portion of
/dev/zero:

$ head -100000c /dev/zero > zeroes

C Sc 352, Spring 2005 UNIX Slide 190
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

"Everything is a file", continued

One use of /dev/tty is to read from the keyboard regardless of whether
standard input is redirected. Example:

import java.io.*;
public class oklines {
 public static void main(String args[]) throws IOException {
 BufferedReader in =
 new BufferedReader(new
 InputStreamReader(System.in));
 BufferedReader tty =
 new BufferedReader(new FileReader("/dev/tty"));

 String line;
 while ((line = in.readLine()) != null) {
 System.err.print(line + "? "); // Note: System.err
 if (tty.readLine().charAt(0) == 'y')
 System.out.println(line);
 }
 }
 }

Usage:

$ mkdir new
$ cp $(ls *.java | java oklines) new
Test.java? n
env1.java? y
ruler.java? y
x.java? n
$ ls new
env1.java ruler.java

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190

