1 Recursion Trees

Draw a recursion tree for the recurrence

$$T(n) = 3T\left(\frac{3n}{4}\right) + cn$$

Draw it at least to the third layer (that is, the grandchildren of the root); each node in the tree should show the local cost of that particular part of the recursion (see Slide Deck 04, slide 44).

Then make an argument (not a formal proof) that the tree will eventually have $\Theta(\log_4 n)$ layers, and that it will have $\Theta(3^{\log_4 3} n)$ leaves.

(My apologies to those who print out their homework; I know that this part will be hard to do on a computer. Draw it by hand, or draw a picture in a Paint program. Or, if you really want to go crazy, write a .dot file to draw it for you.)

Solution:

Since, at every step of recursion, size of the datasets is reduced by a factor of $\frac{4}{3}$, it will take $\log_{\frac{4}{3}} n = \Theta(\log n)$ steps to reach a fixed-size base case. At each layer, the number of elements increases by a factor of 3, meaning that there are $3^{\log_{\frac{4}{3}} n}$ leaves.

2 Master Method

Solve the following recurrences with the Master Method, if possible. Be clear to show the value of the constants a, b. Also identify exactly which case you are using. If a logarithm can be easily simplified (such as $\log_2 4 = 2$), do so; if not (such as $\log_5 7$), you may either convert it to a decimal value, or keep it in logarithm form.

If the recurrence cannot be solved by the Master Method, state why.

(a)

$$T(n) = 4T\left(\frac{n}{2}\right) + n$$
Solution:

\[a = 4 \]
\[b = 2 \]
\[\log_b a = \log_2 4 = 2 \]
\[f(n) = n \]

This is Case 1, because \(f(n) = O(n^{2-\epsilon}) \).
\[T(n) = \Theta(n^2) \]

(b)
\[T(n) = 3T\left(\frac{n}{3}\right) + n^3 \]

Solution:

\[a = 3 \]
\[b = 3 \]
\[\log_b a = \log_3 3 = 1 \]
\[f(n) = n^3 \]

This is Case 3, because \(f(n) = \Omega(n^{1+\epsilon}) \).
\[T(n) = \Theta(n^3) \]

(c)
\[T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n} \]

Solution:

\[a = 2 \]
\[b = 4 \]
\[\log_b a = \log_4 2 = \frac{1}{2} \]
\[f(n) = \sqrt{n} \]

This is Case 2, because \(f(n) = \Theta(n^{1/2}) \).
\[T(n) = \Theta(\sqrt{n} \log n) \]

(d)
\[T(n) = 4T\left(\frac{9n}{10}\right) + n^2 \]
Solution:

\[a = 4 \]
\[b = \frac{10}{9} \]

\[\log_b a = \log_{10/9} 4 \approx 13.2 \]
\[f(n) = n^2 \]

This is Case 3, because \(f(n) = O(n^{13.2-\epsilon}) \).

\[T(n) = \Theta(n^{13.2}) \]

(e)

\[T(n) = 4T\left(\frac{10n}{9}\right) + n^2 \]

Solution:

\[a = 4 \]
\[b = 9/10 \]

This cannot be solved by the Master Method, because \(b < 1 \).

(f)

\[T(n) = 2T\left(\frac{n}{2}\right) + n \log n \]

Solution:

\[a = 2 \]
\[b = 2 \]

\[\log_b a = \log_2 2 = 1 \]
\[f(n) = n \log n \]

This cannot be solved by the Master Method, because \(f(n) = n \log n \) is not polynomially different than \(n \).

(g)

\[T(n) = 7T\left(\frac{n}{8}\right) + n^2 \log n \]

Solution:

\[a = 7 \]
\[b = 8 \]

\[\log_b a = \log_8 7 \approx .94 \]
\[f(n) = n^2 \log n \]
This is Case 3, because $f(n) = \Omega(n^{0.94+\epsilon})$.

\[T(n) = \Theta(n^2 \lg n) \]

(h)

\[T(n) = 8T\left(\frac{n}{2}\right) + n^2 \lg n \]

Solution:

\[a = 8 \]
\[b = 2 \]
\[\log_b a = \log_2 8 = 3 \]

This is Case 1, because $f(n) = O(n^{0.94+\epsilon})$.

\[T(n) = \Theta(n^2 \lg n) \]

(i)

\[T(n) = 2T\left(\frac{n}{2}\right) + \lg n \]

Solution:

\[a = 2 \]
\[b = 2 \]
\[\log_b a = \log_2 2 = 1 \]

This is Case 1, because $f(n) = O(n^{1-\epsilon})$.

\[T(n) = \Theta(n) \]