Homework 1 Solutions

Qiyam Tung

June 22, 2014

1 Problem 1

If a computer could represent all real numbers, then function will never terminate. If there exists such a number x such that x/2 = 0, then that implies that 0 * 2 = x. But that number can only be 0, and therefore since the input is a non-zero number, the function will never terminate. Alternatively, it can be proved by arguing that a number exists between every two numbers on the real number line.

2 Problem 2

$$log_b a = \frac{log_{10}a}{log_{10}b} \tag{0}$$

Assume that $log_b a = y$, then by raising both sides with a base of b, we get

$$a = b^y \tag{0}$$

Now take the log_{10} of both sides

$$\log_{10}a = y \cdot \log_{10}b \tag{0}$$

$$\frac{\log_{10}a}{\log_{10}b} = y = \log_b a \tag{0}$$

3 Problem 3

3.1 2.19a

Proof (Inductive): Basis: n=1 $1^2 - 1 = 0$ and is therefore even. Inductive: $n^2 - n$ is even $\rightarrow (n+1)^2 - (n+1)$ is even $(n+1)^2 - (n+1) = n^2 + 2n + 1 - n - 1 = (n^2 - n) + 2n$ From our hypothesis, we know that $n^2 - n$ is even. And since 2n is even and addition of even numbers is even, $(n+1)^2 - (n+1)$ is even. QED

3.2 2.19b

Proof (deductive): First, without loss of generality, we assume that n is even. Then, $n^2 - n = n(n-1)$. Now, since n-1 is odd and even multiplied by odd is even, $n^2 - n$ is always even. QED

```
Proof (deductive):
By definition, every 3rd number is divisible by 3.
n^3 - n = n(n^2 - 1) = n(n - 1)(n + 1) = (n - 1)n(n + 1)
Given any value n, either n - 1, n, or n + 1 is a multiple of 3.
QED
```

3.4 2.19d

Proof (Inductive): Basis: n=1 $1^5 - 1 = 0$ and is divisible by 5. Inductive: $n^5 - n$ is even $\rightarrow (n+1)^5 - (n+1)$ is even $(n+1)^5 - (n+1) = n^5 + 5n^4 + 10n^3 + 10n^2 + 5n + 1 - n - 1 = (n^5 - n) + 5(n^4 + 2n^3 + 2n^2 + n)$ From our hypothesis, we know that $n^5 - n$ is even. The second term in parenthesis is a also divisible by 5, making the whole expression divisible by 5. QED

4 Problem 4

Let $\sqrt{3} = \frac{a}{b}$, then $3 = \frac{a^2}{b^2}$ or $a^2 = 3b^2$ [1]. We now consider the following cases.

- case 1: b is even. In this case b^2 is also even. Since $a^2 = 3b^2$, we can conclude that a^2 is even, and hence a is even. Since a and b can be reduced by canceling a common factor of 2, we have a contradiction.
- case 2: b is odd. In this case b^2 is also odd. Since $a^2 = 3b^2$, we can conclude that a^2 is odd, and hence a is odd. Let a = 2m + 1 and b = 2n + 1. Substituting in the equation [1] we get $3(4n^2 + 4n + 1) = 4m^2 + 4m + 1$, or $6n^2 + 6n + 1 = 2(m^2 + m)$. Since the left hand side is an odd number and the right hand side is an even number we have a contradiction.

Hence $\sqrt{3}$ is not rational.

Here we show that a^2 and a are of same parity. To show this we consider $a^2 - a = a(a-1)$. Since either a or a-1 is even, we get $a^2 - a$ is even, which implies a^2 and a are of same parity.

5 Problem 5

If we represent every object the position on a bit vector and use 0's to represent absence and 1's to indicate presence, then 001010 would represent a subset of the power set containing only the 2nd and 4th element for a set containing 6 objects. Therefore, representing all possible subsets is the same as asking all possible permutations of the bit string, which is $2*2*2*2*2=2^6$ for a set with 6 objects. Then, for any arbitrary *n*, the total number of subsets is then 2^n .

6 Problem 6

```
function reverse_list(Node head)
{
    if head == NULL
    return head
    else if head.next == NULL
    return head
    else
      Node cur = head
      Node prev = cur
      Node next = cur.next
      cur.next = NULL
```

```
while next != NULL
    prev = cur
    cur = next
    next = cur.next
    cur.next = prev
    return cur
}
```