Homework 1 Solutions

Qiyam Tung

June 22, 2014

1 Problem 1

If a computer could represent all real numbers, then function will never terminate. If there exists such a number x such that $x / 2=0$, then that implies that $0 * 2=x$. But that number can only be 0 , and therefore since the input is a non-zero number, the function will never terminate. Alternatively, it can be proved by arguing that a number exists between every two numbers on the real number line.

2 Problem 2

$$
\begin{equation*}
l o g_{b} a=\frac{\log _{10} a}{\log _{10} b} \tag{0}
\end{equation*}
$$

Assume that $\log _{b} a=y$, then by raising both sides with a base of b, we get

$$
\begin{equation*}
a=b^{y} \tag{0}
\end{equation*}
$$

Now take the $\log _{10}$ of both sides

$$
\begin{align*}
& \log _{10} a=y \cdot \log _{10} b \tag{0}\\
& \frac{\log _{10} a}{\log _{10} b}=y=\log _{b} a \tag{0}
\end{align*}
$$

3 Problem 3

$3.1 \quad$ 2.19a

Proof (Inductive):
Basis: $\mathrm{n}=1$
$1^{2}-1=0$ and is therefore even.
Inductive: $n^{2}-n$ is even $\rightarrow(n+1)^{2}-(n+1)$ is even

$$
(n+1)^{2}-(n+1)=n^{2}+2 n+1-n-1=\left(n^{2}-n\right)+2 n
$$

From our hypothesis, we know that $n^{2}-n$ is even. And since $2 n$ is even and addition of even numbers is even, $(n+1)^{2}-(n+1)$ is even.

QED

3.2 2.19b

Proof (deductive):
First, without loss of generality, we assume that n is even.
Then, $n^{2}-n=n(n-1)$. Now, since $n-1$ is odd and even multiplied by odd is even, $n^{2}-n$ is always even.

QED

$3.3 \quad 2.19 \mathrm{c}$

Proof (deductive):
By definition, every 3rd number is divisible by 3 .
$n^{3}-n=n\left(n^{2}-1\right)=n(n-1)(n+1)=(n-1) n(n+1)$
Given any value n, either $n-1, n$, or $n+1$ is a multiple of 3 .
QED

$3.4 \quad 2.19 \mathrm{~d}$

$$
\begin{aligned}
& \text { Proof (Inductive): } \\
& \text { Basis: } \mathrm{n}=1 \\
& 1^{5}-1=0 \text { and is divisible by } 5 . \\
& \text { Inductive: } n^{5}-n \text { is even } \rightarrow(n+1)^{5}-(n+1) \text { is even } \\
& \quad(n+1)^{5}-(n+1)=n^{5}+5 n^{4}+10 n^{3}+10 n^{2}+5 n+1-n-1=\left(n^{5}-n\right)+5\left(n^{4}+2 n^{3}+2 n^{2}+n\right)
\end{aligned}
$$

From our hypothesis, we know that $n^{5}-n$ is even. The second term in parenthesis is a also divisible by 5 , making the whole expression divisible by 5 .

QED

4 Problem 4

Let $\sqrt{3}=\frac{a}{b}$, then $3=\frac{a^{2}}{b^{2}}$ or $a^{2}=3 b^{2}[1]$. We now consider the following cases.
case 1: b is even. In this case b^{2} is also even. Since $a^{2}=3 b^{2}$, we can conclude that a^{2} is even, and hence a is even. Since a and b can be reduced by canceling a common factor of 2 , we have a contradiction.
case 2: b is odd. In this case b^{2} is also odd. Since $a^{2}=3 b^{2}$, we can conclude that a^{2} is odd, and hence a is odd. Let $a=2 m+1$ and $b=2 n+1$. Substituting in the equation [1] we get $3\left(4 n^{2}+4 n+1\right)=4 m^{2}+4 m+1$, or $6 n^{2}+6 n+1=2\left(m^{2}+m\right)$. Since the left hand side is an odd number and the right hand side is an even number we have a contradiction.

Hence $\sqrt{3}$ is not rational.
Here we show that a^{2} and a are of same parity. To show this we consider $a^{2}-a=a(a-1)$. Since either a or $a-1$ is even, we get $a^{2}-a$ is even, which implies a^{2} and a are of same parity.

5 Problem 5

If we represent every object the position on a bit vector and use 0 's to represent absence and 1 's to indicate presence, then 001010 would represent a subset of the power set containing only the 2 nd and 4 th element for a set containing 6 objects. Therefore, representing all possible subsets is the same as asking all possible permutations of the bit string, which is $2 * 2 * 2 * 2 * 2 * 2=2^{6}$ for a set with 6 objects. Then, for any arbitrary n, the total number of subsets is then 2^{n}.

6 Problem 6

```
function reverse_list(Node head)
{
    if head == NULL
        return head
    else if head.next == NULL
        return head
    else
        Node cur = head
        Node prev = cur
        Node next = cur.next
        cur.next = NULL
```

while next ! = NULL prev = cur
cur $=$ next
next = cur.next
cur.next = prev
return cur
\}

