Problems for Practice: Recurrence Relations

Sample Problem For the following recurrence relation, find a closed-form equivalent expression and prove that it is equivalent.

$$
L(1)=3
$$

$L(n)=L\left(\frac{n}{2}\right)+1 \quad$ where n is a positive integral power of 2
Step 1: Find a closed-form equivalent expression (in this case, by use of the "Find the Pattern" approach).

$$
\begin{aligned}
& L(1)=3 \\
& L(n)=L\left(\frac{n}{2}\right)+1 \\
& L\left(\frac{n}{2}\right)=L\left(\frac{n}{4}\right)+1 \quad \text { Express } L(n) \text { in terms of } L\left(\frac{n}{4}\right) \\
& L(n)=\left(L\left(\frac{n}{4}\right)+1\right)+1 \\
& L(n)=L\left(\frac{n}{4}\right)+2 \\
& L\left(\frac{n}{4}\right)=L\left(\frac{n}{8}\right)+1 \quad \text { Express } L(n) \text { in terms of } L\left(\frac{n}{8}\right) \\
& L(n)=\left(L\left(\frac{n}{8}\right)+1\right)+2 \\
& L(n)=L\left(\frac{n}{8}\right)+3 \\
& L\left(\frac{n}{8}\right)=L\left(\frac{n}{16}\right)+1 \quad \text { Once more, just to be sure of the patterns } \\
& L(n)=\left(L\left(\frac{n}{16}\right)+1\right)+3 \\
& L(n)=L\left(\frac{n}{16}\right)+4 \\
& L(n)=L\left(\frac{n}{2^{a}}\right)+a \quad \text { In general, for any postive integer } a
\end{aligned}
$$

Let $2^{a}=n$, or $a=\log _{2} n$.
$L(n)=L\left(\frac{n}{n}\right)+\log _{2} n$
$L(n)=L(1)+\log _{2} n$
$L(n)=\log _{2} n+3 \quad$ Final closed-form expression

Step 2: Prove, by induction on n, that this closed-form expression is equivalent to the given recurrence relation.
Theorem: $L(n)=\log _{2} n+3$, where n is a positive integral power of 2 .
Proof (by induction on n):
Basis: $L(1)=\log _{2} 1+3=0+3=3$. Correct.
Inductive: If $L(n)=\log _{2} n+3$, then $L(2 n)=\log _{2} 2 n+3$

$$
\begin{aligned}
L(2 n) & =L(n)+1 & & \text { By the given recurrence relation } \\
& =\log _{2} n+3+1 & & \text { Application of the inductive hypothesis } \\
& =\left(1+\log _{2} n\right)+3 & & \text { Commutativity of Addition } \\
& =\left(\log _{2} 2+\log _{2} n\right)+3 & & \log _{x} x=1 \\
L(2 n) & =\log _{2} 2 n+3 & & \log _{2} a+\log _{2} b=\log _{2}(a b)
\end{aligned}
$$

Therefore, $L(n)=\log _{2} n+3$, where n is a positive integral power of 2 .

Now Try These For each of the following recurrence relations, find a closed-form equivalent expression and prove that it is equivalent.

1. $S(0)=6$
$S(n)=S(n-1)+2 \quad$ Easy
2. $T(1)=2$
$T(n)=2 T(n-1)+4 \quad$ A bit harder
3. $\begin{aligned} Q(1) & =c \\ Q(n) & =Q\left(\frac{n}{2}\right)+2 n\end{aligned}$

Harder still

Looking for the solutions? Sorry, they aren't available on-line, but I'll bet that you can get the TA(s) to work one or two of them during the exam review session.

