
1

Stanley Yao
Computer Science Department

University of Arizona

Unix Basics

Csc352-Summer03, Stanley Yao 2

Outline

� OS Basics
� Shell Basics
� Process
� I/O, Redirection & Pipe

Csc352-Summer03, Stanley Yao 3

What is Operating System?

People

Physical devices

Micro-architecture

Machine language }

Word processor Web browser etc. } Application

Operating System

Compilers Shell etc. } System
Programs

Hardware

Csc352-Summer03, Stanley Yao 4

OS Concepts

� OS: protected library of useful functions

� OS Functions:
� Standard library: provide standard facilities

(abstractions) that everyone needs.
� Coordinator: allow several things to work

together in efficient and fair ways (resource
management).

Csc352-Summer03, Stanley Yao 5

UNIX

� UNIX is a multiprogrammed, timeshared
operating system
� Multi-programmed: OS runs multiple processes

simultaneously
� Process: running program
� Timeshared: multiple users share the system

simultaneously

Csc352-Summer03, Stanley Yao 6

OS Families

� Unix
� AT&T: System V
� Berkeley: BSD
� Sun: Solaris, SunOS
� IBM: AIX
� etc.

� Microsoft Windows
� Win2000, WinNT, WinXP

� MacOS
� And many many more …

2

Csc352-Summer03, Stanley Yao 7

Unix & C Programming Language

� Unix is written in C
� C is a programming language on Unix

� Who comes first?

� Programming languages .vs. Human
Languages

Csc352-Summer03, Stanley Yao 8

Outline

� OS Basics
� Shell Basics
� Process
� I/O, Redirection & Pipe

Csc352-Summer03, Stanley Yao 9

Shell

� What is “Shell”?
� Command-line interface to the OS

� Interpreter
� Environment

� A separate program, and not part of the OS

� What shells are there in UNIX?
� C Shell
� Bourne Shell
� bash
� tcsh
� etc.

Csc352-Summer03, Stanley Yao 10

C-Shell

� Invented by Bill Joy
� Commands

� Built-in commands
� Programs

� Executables
� Shell scripts

Wait for the
command

from the user

Command
finished

Execute the
command

W
ait for th

e
com

m
an

d to fin
ish

Command
finished

Parent Process Child Process

Csc352-Summer03, Stanley Yao 11

Command format

� command [command args] [shell args]
� Command can be a built-in or a file name
� For a file name, where to find the file? PATH

� Example:
� ls /home/yao

� cat schedule > mysched

Csc352-Summer03, Stanley Yao 12

Command Helpers

� “which” command will tell you where the
command is found in the path.

� “man” command can get the information
about commands and standard C library
functions.

� “command -h” or “command —help” to get
brief summary of the usage of “command” in
GNU release

3

Csc352-Summer03, Stanley Yao 13

Multiple Commands

� cmd_1; cmd_2; …; cmd_n
� Execute sequentially
� Prompt returns when the last one finishes
� No waiting among commands
� Appropriate for a set of commands that forms a

logical group

� Example:
� mkdir proposal; cd proposal; ls

� cd utils; cc –o gets gets.c; cd ..

Csc352-Summer03, Stanley Yao 14

Command Groups

� (cmd_1; cmd_2; …; cmd_n)
� Executing without affecting the current

environment
� Environment: the set of characteristics

describing a user’s working area

� Creating a subshell
� Example:

� (cd utils; cc –o gets gets.c)

Csc352-Summer03, Stanley Yao 15

Environment Variables

� User environment: special information, e.g.
login directory, your mailbox, your terminal
type, etc.

� Environment variables: maintains the special
environment information mentioned above

� Can be passed to programs executed from
the shell and affect the programs’ behavior,
e.g. default printer, mailbox, TERM in vi

Csc352-Summer03, Stanley Yao 16

Environment Variables (cont.)

� setenv VARNAME string

� unsetenv VARNAME

� Use: $VARNAME
� Show all variables: env (or printenv)
� Conventionally all cap
� Examples:

� PATH

� HOME

Csc352-Summer03, Stanley Yao 17

Shell Variables

� Internal to the shell
� set name = value

� unset name

� Use: $name
� Show all variables: set
� Examples:

� path: kept sync by shell
� noclobber: prevents redirection from overwriting an

existing file. (wc foo.c >! /tmp/out)
� status

Csc352-Summer03, Stanley Yao 18

Outline

� OS Basics
� Shell Basics
� Process
� I/O, Redirection & Pipe

4

Csc352-Summer03, Stanley Yao 19

Unix Process Basics

� Process
� Running program
� Run the same program

twice?

� Process tree
� ps: ps aux
� pstree

Init

login

csh

pinegcc

login

csh

pineProc_1

httpd sshd

Proc_2 Proc_3

orphans

Csc352-Summer03, Stanley Yao 20

Standard I/O for Each Process

� Standard I/O connections (file descriptors)
� stdin: standard input (e.g. terminal keyboard)
� stdout: standard output (e.g. terminal screen)
� stderr: standard error (e.g. terminal screen)

� A typical UNIX process reads its input from
stdin, writes its output to stdout, and any
error messages to stderr.

Csc352-Summer03, Stanley Yao 21

Standard I/O for Each Process (cont.)

� Inherited from the parent
� Shell can control the file descriptors of its

children (redirection)
� This is a very powerful feature of UNIX, as it

means the shell can make a process
read/write different things without modifying
the program, e.g. files, devices, another
process.

Csc352-Summer03, Stanley Yao 22

Process Return Value

� A UNIX process can return a status value to
its parent when it exits
� Zero: OK
� Non-zero: Error

� The parent uses the value to decide what to
do next.

� The C-shell stores this value in a variable
called status.

Csc352-Summer03, Stanley Yao 23

Outline

� OS Basics
� Shell Basics
� Process
� I/O, Redirection & Pipe

Csc352-Summer03, Stanley Yao 24

Why redirection or pipe?

� You want to store the result in a file instead
of print them out on the screen

� You want to prepare the input in a file
instead of typing them every time the
program is run

� You want to connect several UNIX tools in a
chain to finish a more complex work. The
data flow through those tools. The output of
a previous tool will be the input of the next.

5

Csc352-Summer03, Stanley Yao 25

Redirection

� Default standard I/O: the same as the shell
� Shell arguments in the command line can specify the

change of the standard I/O
� Examples:

� Write stdout to a file: wc foo.c > /tmp/foo

� Append stdout to a file: wc foo.c >> /tmp/foo

� Write stdout & stderr to a file: wc foo.c >& /tmp/foo

� Ignore stdout: wc foo.c > /dev/null

� Read stdin from a file: wc < foo.c

� Read stdin from a device: wc < /dev/null

Csc352-Summer03, Stanley Yao 26

Output Redirection Summary

>>&>&Stdout+stderr

>>>Stdout

AppendCreate/truncate
and write

Csc352-Summer03, Stanley Yao 27

Pipe

� cmd_1 | cmd_2 | … | cmd_3
� Connect a program’s standard output with

another program’s standard input
� Example:

� who > temp; wc –l < temp; rm temp

� who | wc –l

� cat dict1 dict2 dict3 | sort +1 | pr
| lpr

� cc pcman.c |& more

� cc pcman.c |& pr | lpr

Csc352-Summer03, Stanley Yao 28

Pipe (cont.)

� What commands can be connected with
pipes?
� Command on the left must write to the standard

output
� Command on the write must read from the

standard input

� Example:
� ls | rm

� Result: Broken pipe line

Csc352-Summer03, Stanley Yao 29

Acknowledgement

� John H. Hartman, Classnotes for Csc352-
Spring03, CS Dept., University of Arizona,
2003

� Gail Anderson, Paul Anderson, The Unix C
Shell Field Guide, Prentice Hall, 1986

� Andrew S. Tanenbaum, Modern Operating
Systems (2nd Ed.), Prentice Hall, 2001

