
CSC 352, Fall 2015
Assignment 10 (with corrections)

Due: Friday, November 13 at 23:59:59
The Usual Stuff

All the usual stuff on assignments applies to this one, too: make an aN symlink, use our gcc alias, use the
Tester, the Tester runs gcc first, etc. Refer to previous write-ups if you need a refresher.

Assume malloc never returns 0

malloc returns NULL (0) if there isn't enough memory available to meet an allocation request. With
modern systems that's relatively rare, but a production application should have some way to handle that
possibility. However, we won't worry about it on this assignment. Simply assume that malloc never
returns 0.

No restrictions, but...

There are no restrictions on your solutions for this assignment; you're free to use any elements of the C
language and library routines that you wish. However, the assignment is written with the intention of
being solvable using only what you've seen on slides 1-397, the previous assignments, and additional
routines mentioned in this write-up, like sscanf for picklines.c. If you find yourself going beyond
that set of things, you're probably overlooking a simpler solution, and/or making a problem harder than
intended. And, you might not be getting practice with the things I'd like you to be getting practice with.

Maybe more tests coming

A set of tests for this assignment but I'd like to improve it. I'm giving myself through 3pm on Monday,
November 6 to do so.

Problem 1. (12 points) warmup.c

The purpose of this problem is to get you warmed-up by implementing several very simple functions that
do memory allocation.

No full examples of operation of the functions are included in this write-up, but you can examine
a10/warmup1.c, and its output, to clarify how things work. Use gcc warmup.c
a10/warmup1.c for experimentation.

The grading set for this problem will be only a10/warmup1.c. It won't change after 3:00pm on Friday,
November 6, so there's no need to worry about cases not exercised in a10/warmup1.c.

Below are the functions you are to implement. Prototypes for all are in a10/warmup.h.

char *sdup(char *s)
returns a pointer to an allocated string that is a copy of the string s. There's a library function
named strdup that does the same thing but, needless to say, you may not use strdup in your
sdup solution.

Page 1 of 12

int *trio(int value)
returns a pointer to an allocated array of three ints that hold value-1, value, and value+1,
respectively.

char *char_range(char from, char to)
returns a pointer to an allocated string that consists of the characters from from through to,
inclusive. If from is greater than to, the string is empty.

int *reverse(int *first, int *last)
returns a pointer to an allocated array of ints that contains the ints between first and last,
inclusive, in reversed order. Assume first <= last.

int *merge(int *a, int *b, int nvals)
merges the int sequences starting at a and b, both assumed to have nvals values, into a single
sequence in an allocated array result, simply alternating between values in a and b. The
address of the allocated array is returned. Assume nvals >= 0.

Example: If nvals is 4, a is {1,2,3,4} and b is {10,20,30,40}, the allocated array would
contain {1,10,2,20,3,30,4,40}.

void split(int *vals, int nvals, int **result)
is the counterpart of merge, writing nvals values from vals alternately into two allocated arrays
of ints that are both nvals/2 elements in length.

result is the address of an uninitialized array of two int pointers. split stores the addresses
of the two allocated blocks in the two elements of result.

Example: If nvals is 6 and vals is {1,2,3,4,5,6}, then the first allocated block would hold
{1,3,5}, and the second allocated block would hold {2,4,6}. Assume nvals >= 0 and is
an even number.

Problem 2. (2 points) getnth.c

In this problem you are to implement a revised version of getnth from assignment 8. Here is the new
prototype:

char *getnth(char *s, int N)

Instead writing the result into a buffer supplied by the user, this version returns a pointer to a string in
allocated memory

If N is negative or too large, getnth returns 0. getnth assumes that the string s is well-formed

Problem 3. (5 points) split.c

Write a C function char **split(char *s) that breaks a getnth-style string into its components.
split returns a pointer to an allocated array of pointers to allocated strings. The last element in the

Page 2 of 12

array of pointers is zero, to mark its end.

Example of usage:

% cat a10/split1.c
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

char **split(char *s);

int main()
{
 char **p = split("3.red5.green");

 for (int i = 0; i < 3; i++) {
 char *s = p[i];
 printf("p[%d] = '%s'\n", i, p[i] ? p[i] : "<null>");
 if (s)
 free(s);
 }

 free(p);
}

You'll probably want to use getnth from problem 2. To avoid "coupling" these two problems, the tester
uses my getnth solution, in object-file form, in a10/getnth.o. Here's a gcc invocation that does
the same thing the tester does:

gcc -o split1 a10/split1.c split.c a10/getnth.o

Execution:

% split1
p[0] = 'red'
p[1] = 'green'
p[2] = '<null>'

If split is called with an empty string, it returns a pointer to a dynamically allocated one-element array;
the value of the element is zero.

split should make no about assumptions the length of the string being split or the number of strings it is
being split into. If sufficient memory is available via malloc to hold the result, then split should be
able to handle it.

Problem 4. (5 points) build.c

Write a C function char *build(char **strings) that creates and returns a dynamically
allocated getnth-style string from strings, a zero-terminated array of pointers to strings.

Here is a test program:

Page 3 of 12

% cat a10/build1.c
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
char *build(char **strings);
int main()
{
 char *s1[] = { "a", "test", "of", "build", 0 };
 char *s2[] = { "1", "", "22", "", "333", 0 };

 char **arrays[] = { s1, s2, 0 };
 char ***next;

 for (next = arrays; *next; next++) {
 char *s = build(*next);
 puts(s);
 free(s);
 }
 }

% gcc -o build1 a10/build1.c build.c
% build1
1.a4.test2.of5.build
1.10.2.220.3.333

build should make no assumptions about the number of strings it is given or the total length of the string
being built. If sufficient memory is available via malloc to hold the result, then build should be able
to handle it.

Implementation note: Use sprintf to convert lengths into character strings.

Problem 5. (15 points) picklines.c

For this problem you are to write a C program picklines that reads lines on standard input and prints
lines according to one or more command-line specifications. Here's a simple file to work with:

% cat a10/picklines.1
a
b
c
d
e
f

Let's use picklines to print the third, first, and last line of the file:

% picklines 3 1 -1 < a10/picklines.1
c
a
f

Page 4 of 12

As you can see, line numbers are one-based. You can also see that reverse numbering is supported: -1
specifies the last line.

A specification can be a range of lines:

% picklines 2:4 6:1 < a10/picklines.1
b
c
d
f
e
d
c
b
a

Note that 6:1 produces reversed output: line 6, then line 5, etc., through line 1.

Negative numbers can be used in a range, too:

% picklines -1:1 < a10/picklines.1
f
e
d
c
b
a
% picklines -3:-2 < a10/picklines.1
d
e

If a specification contains a line that is out of range, that specification is silently ignored. Here's a series of
invalid specifications followed by a single valid specification, which does produce a line of output:

% picklines 0 7 -7 1:10 -7:1 3 < a10/picklines.1
c

Note that zero is never a valid line number.

Assume specifications are well formed—either a single integer or two integers separated by a colon. You
won't see things like 1:, --3, or 3::x.

Assume that input lines are less then 1000 characters in length. There may be any number of
specifications on the command line. There may be as many as 9,223,372,036,854,775,807 (LONG_MAX)
input lines, so use a long to represent line numbers.

Implementation notes

To keep things simple, I recommend that you read all lines into memory. Use the technique shown with

Page 5 of 12

realloc2.c (slide 382) to create an array of char pointers that's expanded as needed.

On rectangle.c on assignment 6 you used scanf to read numbers from standard input. A related
function is sscanf (note the double 's'), which "reads" from a string. I hope to spend some time on
scanf and sscanf in lecture before the semester is done but for now let me just show an example of
using sscanf to parse line specifications. Here is a10/parsespec.c:

#include <stdio.h>

int main(int argc, char **argv)
{
 long first, last;
 int nums = sscanf(argv[1], "%ld:%ld", &first, &last);

 printf("nums = %d, first = %ld, last = %ld\n",
 nums, first, last);
}

Here are two interactions with it:

% parsespec 1:100
nums = 2, first = 1, last = 100

% parsespec -5
nums = 1, first = -5, last = 140725490698960

Note that the return value implies whether the specification is of the form N or N:M.

You can experiment with the executable, a10/parsespec.

Problem 6. (16 points) alloc.c

In this problem you are to implement a portion of a memory allocator. An industrial strength memory
allocator must be fast and memory-efficient. This allocator is neither—it wastes a lot of space and is
relatively slow. However, it has a very simple design and also provides detection of leaks, and frees of
non-allocated blocks. And, writing a memory allocator will give us additional insight about using memory
allocation.

You need to write relatively little code for this problem; the harder part of the problem is understanding
the design of this simple allocator. Once you "get it", I think you'll find the coding to be easy, but you may
need to read through this write-up several times to "get it".

We'll do more with this allocator on assignment 11, so time spent now will be of benefit then, too.

A first step is to be sure you understand the idea of the trivial allocator on slide 372: It first sets aside a big
block of memory as an array named memory_pool. next_pool_addr is pointed at the first byte of
memory_pool. If malloc(1000) is called, next_pool_addr is returned, and then advanced
1000. A following call to malloc(50) would return the current value of next_pool_addr and then
do next_pool_addr += 50. No record is kept of allocations, and free does nothing, but as long as

Page 6 of 12

less than 100,000,000 bytes are needed, it'll work just fine.

Here is the interface for the allocator that's the focus of this problem: (a10/alloc.h)

void *alloc_block(int nbytes, char *tag);

void free_block(void *addr, char *tag);

void show_pool(char *label);

I'll be giving you the code for alloc_block. Your task on this problem is to write the other two
routines: free_block and show_pool.

A key simplification in this allocator is the use of fixed-size blocks. Every allocation consumes
BLOCK_SIZE bytes of the memory pool, and no allocation can be more than BLOCK_SIZE bytes. A
further simplification is that there can only be a fixed-number of active allocations. Those two
simplifications lead to this declaration:

char mem_pool[BLOCK_SIZE*MAX_ACTIVE_ALLOCS];

The above is a line of code that will appear in your version of alloc.c. mem_pool is a global
variable—the declaration is NOT placed inside a function.

Even though each allocation consumes BLOCK_SIZE bytes, another array, block_sizes, also a global,
tracks the amount of memory that was requested via alloc_block. Here is its declaration:

int block_sizes[MAX_ACTIVE_ALLOCS];

With those two pieces of the implementation in hand, let's consider some code that makes use of the
allocator. Here is a loop that allocates 3 blocks:

char *a[10];

for (int i = 1; i <= 3; i++) {
 a[i-1] = alloc_block(i*10, "loop 1");

alloc_block simply examines each element of block_sizes in turn until it finds an element (N)
that is zero. It sets block_sizes[N] to the number of bytes requested and returns the address of
mem_pool[BLOCK_SIZE*N].

After the above loop is done, a[0] is &mem_pool[BLOCK_SIZE*0], a[1] is
&mem_pool[BLOCK_SIZE*1], and a[2] is &mem_pool[BLOCK_SIZE*2].

Further, block_sizes[0] is 10, block_sizes[1] is 20, and block_sizes[2] is 30. Because
block_sizes is a global, all elements are set to zero when the program begins execution. The other
elements of block_sizes will thus be zero.

The second argument to alloc_block is a tag. The tag provides a way to associate an allocated block
with a particular call to alloc_block. In the case above the programmer has chosen "loop 1" as the

Page 7 of 12

tag.

block_tags, another array in alloc.c, "parallels" block_sizes:

char *block_tags[MAX_ACTIVE_ALLOCS];

block_tags[i] holds the tag associated with block_sizes[i]. Continuing with the series of
alloc_block calls in the example, block_tags[0], block_tags[1], and block_tags[2]
each reference the string "loop 1".

Next, a block is freed:

free_block(a[2], "a");

As mentioned above, the value held in a[2] is &mem_pool[BLOCK_SIZE*2]—the third block in the
pool. Because of the use of fixed size blocks, free_block can easily calculate which block is being
freed:

block_num = (addr - mem_pool) / BLOCK_SIZE;

In this case, block_num will be 2.

To indicate that the block is now available for subsequent allocation, its entry in block_sizes is
zeroed:

block_sizes[block_num] = 0;

Next, another block is allocated:

a[5] = alloc_block(200, "next");

alloc_block will scan block_sizes and find that block_sizes[2] is zero. It will set
block_sizes[2] to 200 and return &mem_pool[BLOCK_SIZE*2].

At any point in time, the total amount of memory currently allocated can be calculated by summing the
values in block_sizes[0] through block_sizes[MAX_ACTIVE_ALLOCS-1].

In addition to the code above, I am giving you the code for alloc_block. Here it is:

void *alloc_block(int nbytes, char *tag)
{
 if (nbytes <= 0 || nbytes > BLOCK_SIZE)
 return 0;
 for (int i = 0; i < MAX_ACTIVE_ALLOCS; i++) {
 if (block_sizes[i] == 0) {
 block_sizes[i] = nbytes;
 block_tags[i] = tag;

 char *block_start = &mem_pool[i*BLOCK_SIZE];
 return block_start;

Page 8 of 12

 }
 }
 return 0;
}

As described above, alloc_block first searches for an empty block, indicated by block_sizes[i]
being zero. If found, it sets the size and tag, and returns the address of the block. If no blocks are
available, it returns 0.

The above code can be found in a10/alloc_starter.c. Copy that file to alloc.c in your
directory and start with it.

Recall: Your task on this problem is to write two routines: show_pool and free_block.

The void show_pool(char *label) function prints a report that shows the status of the pool.
The first line of the report is the label passed to show_pool. For each active block it then prints the
block number (in the range 0 to MAX_ACTIVE_ALLOCS), the amount of memory allocated by the user
for the block, the address of the block, and the tag associated with the block. Finally, it prints the number
of allocated blocks and the total amount of memory allocated.

The following program, a10/alloc1.c, incorporates the examples above and interleaves two calls to
show_pool:

#include <string.h>
#include <stdio.h>

#include "/cs/www/classes/cs352/fall15/a10/alloc.h"

int main()
{
 char *a[10];

 for (int i = 0; i < 3; i++)
 a[i] = alloc_block((i+1)*10, "loop 1");

 show_pool("After loop:");

 free_block(a[2], "a");

 a[3] = alloc_block(200, "next");

 show_pool("Ready to exit:");
}

Compilation and execution:

% gcc alloc.c a10/alloc1.c
% a.out
After loop:
Block 0: 10 bytes at 0x61e520, tag: "loop 1"
Block 1: 20 bytes at 0x61e920, tag: "loop 1"

Page 9 of 12

Block 2: 30 bytes at 0x61ed20, tag: "loop 1"
Total: 3 allocated blocks, 60 allocated bytes
Ready to exit:
Block 0: 10 bytes at 0x61e520, tag: "loop 1"
Block 1: 20 bytes at 0x61e920, tag: "loop 1"
Block 2: 200 bytes at 0x61ed20, tag: "next"
Total: 3 allocated blocks, 230 allocated bytes

Next, here's what void free_block(void *addr, char *tag) needs to do:

(1) Be sure that addr is an address returned by alloc_block.

(2) Be sure that the block is currently allocated.

(3) Zero the corresponding entry in block_sizes.

Here is a program, a10/alloc2.c, that has two memory management errors that alloc.c detects.

#include <string.h>
#include <stdio.h>

#include "/cs/www/classes/cs352/fall15/a10/alloc.h"

int main()
{
 char *p1 = alloc_block(100, "p1");
 char *p2 = alloc_block(200, "p2");
 *p2++ = 'x';

 free_block(p1, "A");
 free_block(p1, "B"); // duplicate free

 free_block(p2, "C"); // free of advanced pointer

 show_pool("Done!");
}

Output:

free_block(0x61e520, B): free of non-allocated block
free_block(0x61e921, C): bad address
Done!
Block 1: 200 bytes at 0x61e920, tag: "p2"
Total: 1 allocated blocks, 200 allocated bytes

If an error is detected, free_block simply prints a message, which should be in the exact format shown
above, and exits. Here are the two printf format strings used:

"free_block(%p, %s): bad address\n"
"free_block(%p, %s): free of non-allocated block\n"

On many slides you've seen pointers printed using a "%lu" but note that "%p" is the correct, portable way

Page 10 of 12

to print a pointer value. The C11 standard describes %p like this: "The argument shall be a pointer to
void. The value of the pointer is converted to a sequence of printing characters, in an implementation-
defined manner."

Problem 7. Extra Credit observations.txt

Submit a plain text file named observations.txt with...

(a) (1 point extra credit) An estimate of how long it took you to complete this assignment. To facilitate
programmatic extraction of the hours from all submissions have an estimate of hours on a line by itself,
more or less like one of the following three examples:

Hours: 6
Hours: 3-4.5
Hours: ~8

If you want the one-point bonus, be sure to report your total (estimated) hours on a line that starts with
"Hours:". There must be only one "Hours:" line in observations.txt. It's fine if you care to
provide per-problem times, and that data is useful to us, but report it in some form of your own invention,
not with multiple lines that contain "Hours:", in either upper- or lower-case.

Other comments about the assignment are welcome, too. Was it too long, too hard, too detailed? Speak
up! I appreciate all feedback, favorable or not.

(b) (1-3 points extra credit) Cite an interesting course-related observation (or observations) that you made
while working on the assignment. The observation should have at least a little bit of depth. Think of me
saying "Good!" as one point, "Excellent!" as two points, and "Wow!" as three points. I'm looking for
quality, not quantity.

Turning in your work

Use a10/turnin to submit your work. Each run creates a time-stamped "tar file" in your current
directory with a name like aN.YYYYMMDD.HHMMSS.tz You can run a10/turnin as often as you
want. We'll grade your final submission.

Note that each of the aN.*.tz files is essentially a backup, too, but perhaps mail to 352f15 if you need
to recover a file—it's easy to accidentally overwrite your latest copies with a poorly specified extraction.

a10/turnin -l shows your submissions.

To give you an idea about the size of my solutions, here's what I see as of press time:

% wc $(grep -v txt < a10/delivs)
 81 196 1395 warmup.c
 34 81 627 getnth.c
 24 54 374 split.c
 29 71 575 build.c
 84 253 1903 picklines.c
 68 184 1564 alloc.c

Page 11 of 12

 320 839 6438 total
% for i in $(grep -v txt a10/delivs); do echo $i: $(tr -dc \; <
$i | wc -c); done
warmup.c: 29
getnth.c: 14
split.c: 12
build.c: 14
picklines.c: 40
alloc.c: 27

 There are few comments in my code.

Miscellaneous

This assignment is based on the material on C slides 1-397.

Point values of problems correspond directly to assignment points in the syllabus. For example, a 10-point
problem corresponds to 1% of your final grade in the course.

Feel free to use comments to document your code as you see fit, but note that no comments are required,
and no points will be awarded for documentation itself. (In other words, no part of your score will be
based on documentation.)

Remember that late assignments are not accepted and that there are no late days; but if circumstances
beyond your control interfere with your work on this assignment, there may be grounds for an extension.
See the syllabus for details.

My estimate is that a student who has only taken CSC 127A and 127B but done well in them, and has
completed the previous assignments, and has done the required reading will need 8-10 hours to complete
this assignment.

Keep in mind the point value of each problem; don't invest an inordinate amount of time in a
problem or become incredibly frustrated before you ask for a hint or help. Remember that the
purpose of the assignments is to build understanding of the course material by applying it to solve
problems.

If you put eight hours into this assignment and don't seem to be close to completing
it, it's probably time to touch base with us. Specifically mention that you've reached
eight hours. Give us a chance to speed you up!

Our goal is that everybody gets 100% on this assignment AND gets it done in an amount of time
that is reasonable for them.

I hate to have to mention it but keep in mind that cheaters don't get a second chance. If you give your code
to somebody else and they turn it in, you'll both likely fail the class, and more. (See the syllabus for the
details.)

Page 12 of 12

