
C
CSC#352,#Fall#2015#

The#University#of#Arizona#
William#H.#Mitchell#

whm@cs#
#

CSC#352#Fall#2015,#C#Slide#1#

A Little History

CSC#352#Fall#2015,#C#Slide#2#

In mid-1969 Ken Thompson at Bell Laboratories writes the first version of the
UNIX operating system in assembler on a Digital Equipment Corporation PDP-7.

Thompson starts to write a FORTRAN compiler but changes direction and creates
a language called "B", a cut-down version of BCPL. ("Basic Combined
Programming Language")

B was interpreted and was oriented towards untyped word-sized objects. Dennis
Ritchie adds types and writes a compiler. Ritchie initially calls it NB for New B,
but renames it C. (1972)

In 1973 the Third Edition of UNIX is released. It is largely in C.

In 1978 The C Programming Language by Brian Kernighan and Dennis Ritchie is
published.

CSC#352#Fall#2015,#C#Slide#3#

A little history

A standardization effort began in 1983 and culminated in a standard designated as
ANSI/ISO 9899:1990. This standard was long known as "ANSI C" and is now
referred to as "C89" or "C90".

Appendix C in King talks about C89 vs. "K&R C".

The first public release of C++ was in 1985. C++ started attracting C developers
immediately. By the late 1980s there was a substantial and steady migration of
developers from C to C++.

In 1999 a new standard, ISO/IEC 9899:1999, was finalized. It is known as C99.
With the C99 standard, C is no longer a subset of C++.

Appendix B in King talks about C99 vs. C89

The latest standard is ISO/IEC 9899:2011and is known as C11. As it was being
developed it was first called C0X (zero) and then C1X.

For our purposes there are few practical differences between C99 and C11.

Current plan: We'll try to be as close to C11 as is practical.
fall15/{INCITS+ISO+IEC+9899-201x.pdf,c11.pdf} is a freely
available, all-but-final copy of the C11 standard.

CSC#352#Fall#2015,#C#Slide#4#

A little history, continued

The Big Picture with C

CSC#352#Fall#2015,#C#Slide#5#

"C is a general-purpose programming language which features economy of
expression, modern control flow, and a rich set of operators."

 —Kernighan & Ritchie, 1978

There are large production systems written in C in virtually every software
application area.

C is most commonly used in "systems software" such as operating systems,
graphics libraries, editors, compilers, interpreters, virtual machines, and a wide
range of utilities.

C is a common choice for the "embedded" software that is used to control just
about every complex electro-mechanical system on the planet (and off), ranging
from toasters to spacecraft.

CSC#352#Fall#2015,#C#Slide#6#

What is C and Where is it Used?

C was designed to be "close to the machine"—there's usually a direct mapping
between an expression in C and the corresponding machine code.

"What you write is what you get."

C makes very efficient use of memory. An N-character string occupies N+1 bytes
of memory. An array of twenty 32-bit integers occupies 80 bytes of memory.

C programs typically run 80-90% as fast as an equivalent program hand-coded in
assembler. On some architectures with complex instruction scheduling rules, a
good C compiler generates better code than humans.

C has very few constraints—it's hard to find something you simply can't write in C.

In some cases, compilers for other languages generate C source code rather than
assembly code. ("C as assembler.") That language can then be made available
quickly on any machine that has a (good) C compiler.

With a little effort, a C program is portable from one architecture to another. And,
lots of machines have C compilers.

CSC#352#Fall#2015,#C#Slide#7#

What's great about C?

With respect to many languages, C has quite a few shortcomings:

•  No abstract types such as strings and lists.

•  Flat namespace for functions.

•  No protection against out-of-bounds array references.

•  No garbage collection—memory in the heap must be managed by hand.

•  Bugs often manifest themselves at times and in places that are far removed
from the faulty code.

It's not hard to get into trouble with C. A fact:
Bad C code is the cause of many security vulnerabilities. It's a pretty good
bet that a "buffer overrun vulnerability" is due to sloppy C code. (And it
takes a LOT of discipline to not be sloppy.)

CSC#352#Fall#2015,#C#Slide#8#

What's not so great about C?

C++ is essentially a superset of C that supports type extension, object-
oriented programming, and programming with generics.

The machine code generated for a body of C++ code is generally as fast and
memory-efficient as the same code in C.

Like C, memory must be managed by hand, but various C++ facilities make
memory management easier and safer than in C.

The additional power of C++ comes at a price: C++ is much more complicated
than C and is packed with pitfalls and subtle complexities.

CSC#352#Fall#2015,#C#Slide#9#

C vs. C++

"C was invented so that people wouldn't have to write operating systems in
assembler. C++ was invented so that people would haven't to write systems
software in C".

—author unknown

In my opinion, there are only two situations where it is appropriate to choose C
rather than C++ for a new system:

1.  There is no usable C++ compiler and debugger for the target platform.

2.  It is not practical and/or cost effective to train the development team in C++.

But regardless of whether the destination is C or C++, the first step is to learn C.

CSC#352#Fall#2015,#C#Slide#10#

C vs. C++, continued

In 1990 Sun Microsystems formed a group called the Green project. The initial
focus was to create a software development environment for consumer electronics
products.

C++ was the initial choice for a language for Green but frustration with C++ led
to a new language, Oak.

Oak was renamed to Java.

Java borrows heavily from C++. Java's lexical rules, control structures, data
types, and operators are very close to C.

Lots of what you've learned about Java is applicable in C.

CSC#352#Fall#2015,#C#Slide#11#

C vs. Java

Here are some scenarios that explore the question of choosing a language:

• A great amount of GNU Emacs is implemented in Lisp, which runs more
slowly than C. Would it be worth the time rewrite the Lisp portions in C?

• Imagine a purchase decision between two small-office copiers. The primary

consideration is cost but a close second is the copier's speed.

The control software of one copier is written in C. The control software of
the other is written in Java.

Which copier would be the better choice?

CSC#352#Fall#2015,#C#Slide#12#

When is C (or C++) a good choice?

Another:

• A company asks a consultant to write a program to perform a one-time

migration of data for some number of users. The consultant knows C, C++,
Java, Python, and Ruby. What are some factors that might be considered
when choosing a language?

•  How many clients and how much data for each?
•  What's the likelihood this conversion will ever need to be done again?
•  How can the data be accessed?
•  Are there computations that require a particular library?
•  Must the final conversion be done in a fixed amount of time, like one

evening?
•  Others?

CSC#352#Fall#2015,#C#Slide#13#

When is C (or C++) a good choice?, continued

iota.java vs. iota.c

CSC#352#Fall#2015,#C#Slide#14#

The C program above right is complete and compilable. By convention, C source
files have the suffix .c (lower case). It is fall15/c/iota.c.

C functions can be distributed among files as the developer sees fit. There are no
Java-like file-naming requirements. (More later on file organization.)

There are no classes in C—all executable code is held in functions.

Analogy: A C program is like a Java program with one class, named
Program. Every executable line of code is in some method of Program.

 CSC#352#Fall#2015,#C#Slide#15#

iota.java vs. iota.c
public class iota {
 public static void main(String args[]) {
 int N = Integer.parseInt(args[0]);

 for (int i = 1; i <= N; i++)
 System.out.println(i);
 }
}

#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *args[])
{
 int N = atoi(args[1]);

 for (int i = 1; i <= N; i++)
 printf("%d\n", i);
}

We'll be using the GNU C Compiler (gcc) to compile C programs.

Put this alias in your .bashrc: alias gcc="gcc -Wall -g -std=c1x" (Note: c-one-x.)

Slides and assignments will assume it is present. Once added, just do restart.

Let's use that gcc alias to create an executable file from iota.c.
% gcc iota.c

% ls -l a.out
-rwxrwxr-x 1 whm whm 9732 Sep 10 21:04 a.out

% file a.out
a.out: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically
linked (uses shared libs), for GNU/Linux 2.6.24, BuildID[sha1]=
0xa71dc06e817a7523c51b7c032409a65bfd713e27, not stripped

By default, the resulting executable is called a.out. Let's run it:

% a.out 3
1
2
3

CSC#352#Fall#2015,#C#Slide#16#

iota.java vs. iota.c, continued

gcc's -o option can be used to specify a name for the executable:

% gcc -o iota iota.c

% ls -l iota
-rwxrwxr-x 1 whm whm 9732 Sep 10 21:58 iota

% iota 2
1
2

Unlike Java class files, which can be run by any (up to date) Java virtual machine
on any platform, executables like iota are not portable between operating systems.

Let's try iota on my Mac:

% scp lec:cw/c/iota .

% iota
bash: iota: cannot execute binary file

CSC#352#Fall#2015,#C#Slide#17#

iota.java vs. iota.c, continued

bash has a time builtin:
% time java mgrep ghi /usr/share/dict/words >/dev/null
real 0m0.357s ("wall clock time")
user 0m0.240s (CPU time in program code)
sys 0m0.012s (CPU time in kernel code)

Let's predict...

% time java iota 3000000 >j
real 0m?.???s
user 0m?.???s
sys 0m?.???s

% time iota 3000000 >c
real 0m?.???s
user 0m?.???s
sys 0m?.???s

% diff c j

%

CSC#352#Fall#2015,#C#Slide#18#

iota.java vs. iota.c, continued

Another area of contrast between Java and C is error handling:

% java iota
Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 0
 at iota.main(iota.java:4)

% iota
Segmentation fault (core dumped)

% ls -l core
-rw------- 1 whm whm 237568 Sep 10 23:06 core

A core file is essentially a snapshot of the address space of the process.

Add ulimit -c 1000000 to your .bashrc to enable core dumps.

The name "core" comes from the term "core dump", which in the early days was a
word-by-word printed listing of memory contents used for debugging. A "core" is
a tiny ferrite ring that magnetically stores one bit. Google for "core plane image".
 CSC#352#Fall#2015,#C#Slide#19#

iota.java vs. iota.c, continued

gdb is the GNU debugger. Given an executable and a core file generated when
running it, gdb can be used to conduct a post-mortem analysis.

% gdb iota core
GNU gdb (Ubuntu/Linaro 7.4-2012.04-0ubuntu2.1) 7.4-2012.04
...more...
Reading symbols from /cs/www/classes/cs352/fall15/c/iota...done.
Program terminated with signal 11, Segmentation fault.
...more...
(gdb) where
#0 ____strtol_l_internal (nptr=0x0, endptr=0x0, base=10,
group=<optimized out>,
 loc=0x7f34501c1020) at ../stdlib/strtol_l.c:298
#1 0x00007f344fe42690 in atoi (nptr=<optimized out>) at atoi.c:28
#2 0x0000000000400566 in main (argc=1, args=0x7ffe103ddb88) at
iota.c:5
(gdb) frame 2
#2 0x0000000000400566 in main (argc=1, args=0x7ffe103ddb88) at
iota.c:5
5 int N = atoi(args[1]);
(gdb) p args[0]
$1 = 0x7ffe103de95a "iota"

CSC#352#Fall#2015,#C#Slide#20#

iota.java vs. iota.c, continued

Compilation of C programs

CSC#352#Fall#2015,#C#Slide#21#

The specification of a programming language has two key facets.
•  Syntax:

Specifies the sequences of symbols that are valid programs in the
language.

•  Semantics:

Specifies the meaning of a sequence of symbols.

Here is an expression from iota.java:

Integer.parseInt(args[0])

Is the expression syntactically valid?
Yes.

How is validity determined?
The parser, one component of javac, is responsible for deciding that.

CSC#352#Fall#2015,#C#Slide#22#

Syntax and semantics

At hand:
Integer.parseInt(args[0])

What's required for the expression above to be semantically valid?
•  args must be an array.

•  The subscript of args must be an integer.

•  The class Integer must have a static public method named parseInt
that accepts one argument, whose type must be compatible with the
type of args[0].

What's the type of args[0]?
 String

How can we see if Integer has a suitable parseInt method?

% javap java.lang.Integer | fgrep parseInt
 public static int parseInt(java.lang.String, int) throws ...
 public static int parseInt(java.lang.String) throws ...

CSC#352#Fall#2015,#C#Slide#23#

Syntax and semantics, continued

Assignment 1 asked,
When a Java program is being compiled, what is the name of the file the Java
compiler would consult to determine whether a call such as Rectangle r =
new Rectangle(3, 4) is valid?

Answer: Rectangle.class

At hand: Integer.parseInt(args[0])

javac will read Integer.class to see if Integer has a suitable parseInt.

Where is Integer.class?

% jar tvf /usr/local/jdk/jre/lib/rt.jar | fgrep java/lang/Integer.class
 8848 Wed Jun 05 20:49:42 MST 2013 java/lang/Integer.class

Integer.class is one of many files contained in the rt.jar Java archive file.

Where is Integer.java, which was compiled by javac to produce Integer.class?

% jar tvf /usr/local/jdk/src.zip | fgrep /Integer.java
 46449 Wed Jun 05 19:01:38 MST 2013 java/lang/Integer.java

CSC#352#Fall#2015,#C#Slide#24#

Java compilation

Let's check the size of iota.c and compile it again.
% wc iota.c
 9 26 164 iota.c
% gcc -o iota iota.c

Here's a simplified version of what actually happens:

Step 1: The C preprocessor is run to "include" files, expand macros and more.

% gcc -E iota.c >iota-preprocessed.c

% wc iota.c iota-preprocessed.c
 9 26 164 iota.c
 938 2424 20188 iota-preprocessed.c

Step 2: The preprocessed C code is compiled into assembly code in a .s file.

% gcc -S iota-preprocessed.c

% wc iota-preprocessed.s
 359 743 5137 iota-preprocessed.s

CSC#352#Fall#2015,#C#Slide#25#

C compilation in slow motion

Step 3: The "Portable GNU assembler" (as) is run, producing an "object file" with
suffix .o. (Despite the name, there is absolutely no relation between object-
oriented programming and object files.)

% as --64 -o iota-preprocessed.o iota-preprocessed.s

% file iota-preprocessed.o
iota-preprocessed.o: ELF 64-bit LSB relocatable, x86-64, version 1
(SYSV), not stripped

nm can be used to show what symbols are present in an object file:

% nm iota-preprocessed.o
 U atoi
0000000000000000 T main
 U printf

CSC#352#Fall#2015,#C#Slide#26#

C compilation in slow motion, continued

#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *args[])
{
 int N = atoi(args[1]);

 for (int i = 1; i <= N; i++)
 printf("%d\n", i);
}

The "U"s indicate atoi and printf are referenced
but not defined in the .o file. The "T" indicates
that main is defined. main's code starts at
offset 0, shown as 64-bit hexadecimal number.

Step 4: The GNU "linker", ld ("LD") is used to create an executable from the
object file. Conceptually, this is done,

% ld -o iota iota-preprocessed.o -lc

but the actual command is 866 characters long. (Do gcc -v -o iota iota-
preprocessed.o to see it, and more.)

% file iota
iota: ELF 64-bit LSB executable, x86-64, version 1 (SYSV),
dynamically linked (uses shared libs), for GNU/Linux 2.6.24,
BuildID[sha1]=0x3f0347f91cda026d735ab975e5815e2219c969d9,
not stripped

% ls -l iota
-rwxrwxr-x 1 whm whm 9761 Sep 13 17:26 iota

% wc iota.c
 9 26 164 iota.c

CSC#352#Fall#2015,#C#Slide#27#

C compilation in slow motion, continued

High-altitude view of the steps performed by gcc -o iota iota.c:
•  Preprocess C source code to "include" files, expand macros and more.
•  Compile the preprocessed code into assembly code (machine instructions).
•  Assemble the assembly code into an object file.
•  "Link" the object code and some library code into an executable.

Try gcc's -v option, too: gcc -v -o iota iota.c

The above steps for compilation of C date back to the early days of C.

Important: gcc is an implementation of a C compiler. Another C compiler might
do things entirely differently. The C11 standard doesn't dictate any particular
organization for a C compiler.

In V7 UNIX the C compiler was launched with cc.

CSC#352#Fall#2015,#C#Slide#28#

C compilation in slow motion, continued

The C preprocessor

CSC#352#Fall#2015,#C#Slide#29#

One of the cornerstones of C is the idea of preprocessing.

The C preprocessor reads C source code and performs simple textual substitutions
based on preprocessor directives, which are indicated by lines that start with #.

iota.c starts with two preprocessor directives:

#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *args[])
...

The line #include <stdio.h> directs the preprocessor to temporarily suspend
reading lines from the current source file and instead read lines from the standard
header file named stdio.h. When all lines have been read from stdio.h,
processing of the original source file continues.

In effect, #include causes the text of stdio.h to be inserted in the current stream
of source code, just as if it had been pasted in with an editor.

CSC#352#Fall#2015,#C#Slide#30#

The idea of preprocessing

The use of angle-brackets in #include <stdio.h> indicate that stdio.h is a well-
known file that's found in an implementation-defined directory, which on most
systems is /usr/include.

Let's see if stdio.h has any #include directives:

% fgrep "#include" /usr/include/stdio.h
#include <libio.h>
#include <bits/stdio_lim.h>
#include <bits/sys_errlist.h>

gcc's -E option sends preprocessor output to standard output. Let's see how many
lines are generated by preprocessing iota.c:

% gcc -E iota.c | wc
 938 2424 20188

Preprocessing turns iota.c's 9 lines into 938 lines!

Quick excursion: Let's try fall15/c/iota.cc, a version of iota.c in C++:

% g++ -E iota.cc | wc
 19749 43480 459002

 CSC#352#Fall#2015,#C#Slide#31#

More on #include

Let's comment-out those #includes, to see if we really need them.
% cat iota.c
//#include <stdio.h>
//#include <stdlib.h>
int main(int argc, char *args[])
{
 int N = atoi(args[1]);

 for (int i = 1; i <= N; i++)
 printf("%d\n", i);
}

% gcc iota.c
iota.c: In function ‘main’:
iota.c:5:5: warning: implicit declaration of function ‘atoi’...
iota.c:8:9: warning: implicit declaration of function ‘printf’...
iota.c:8:9: warning: incompatible implicit declaration of built-in
function ‘printf’ [enabled by default]

CSC#352#Fall#2015,#C#Slide#32#

Why are we preprocessing?

With no #includes, we get some warnings:
% gcc iota.c
iota.c: In function ‘main’:
iota.c:5:5: warning: implicit declaration of function ‘atoi’...
iota.c:8:9: warning: implicit declaration of function ‘printf’...
...

Java uses .class files to check semantics (like Integer.parseInt(args[0])).

In C we use #includes of header files to specify function signatures for the
compiler to use to check semantics.

Let's reinstate the #includes and see where atoi and printf appear in the
preprocessor output (which is the compiler input!)

% gcc -E iota.c | egrep -w "atoi|printf"
extern int printf (__const char *__restrict __format, ...);
extern int atoi (__const char *__nptr)
 int N = atoi(args[1]);
 printf("%d\n", i);

CSC#352#Fall#2015,#C#Slide#33#

Why are we preprocessing, continued?

At hand:
% gcc -E iota.c | egrep -w "atoi|printf"
extern int printf (__const char *__restrict __format, ...);
extern int atoi (__const char *__nptr)
 int N = atoi(args[1]);
 printf("%d\n", i);

We'll later understand those prototypes for printf and atoi but for now we'll think
of them this way:

•  printf takes one or more arguments, the first of which is a string.
•  atoi takes a single argument, a string.
•  Both return an integer value.

TL;DR: One use for #includes is to specify function prototypes that the compiler
can use to check the semantics of function calls.

Note that we might need to include a file with thousands of prototypes just so the
C compiler can check a single function call!

CSC#352#Fall#2015,#C#Slide#34#

Why are we preprocessing, continued?

This program shows the range of an int in Java:
public class intminmax { // in fall15/c
 public static void main(String args[]) {
 System.out.format("int range is %d to %d\n",

 Integer.MIN_VALUE, Integer.MAX_VALUE);
 }
}

Here is its counterpart in C:

#include <stdio.h>
#include <limits.h>
int main(int argc, char *args[])
{
 printf("int range: %d to %d\n", INT_MIN, INT_MAX);
}

What's new?

CSC#352#Fall#2015,#C#Slide#35#

Minimums and maximums

At hand:
#include <stdio.h>
#include <limits.h>
int main(int argc, char *args[])
{
 printf("int range: %d to %d\n", INT_MIN, INT_MAX);
}

Let's look in limits.h:

% grep INT_M /usr/include/limits.h
define INT_MIN (-INT_MAX - 1)
define INT_MAX 2147483647
define UINT_MAX 4294967295U

The first #define above specifies that the preprocessor is to replace all
occurrences of INT_MIN with (-INT_MAX - 1).

We also see replacements for INT_MAX and UINT_MAX (the largest unsigned
int value.)

CSC#352#Fall#2015,#C#Slide#36#

The #define preprocessor directive

At hand:
#include <stdio.h>
#include <limits.h>
int main(int argc, char *args[])
{
 printf("int range: %d to %d\n", INT_MIN, INT_MAX);
}

Let's see what the preprocessor does with intminmax.c. Note the tail -7.

% gcc -E intminmax.c | tail -7
8 "/usr/lib/gcc/x86_64-linux-gnu/4.6/include-fixed/syslimits.h" 2 3 4
35 "/usr/lib/gcc/x86_64-linux-gnu/4.6/include-fixed/limits.h" 2 3 4
3 "intminmax.c" 2
int main(int argc, char *args[])
{
 printf("int range: %d to %d\n", (-2147483647 - 1), 2147483647);
}

INT_MIN and INT_MAX are said to be macros––they expand into text that
replaces an identifier.

CSC#352#Fall#2015,#C#Slide#37#

#define, continued
define INT_MIN (-INT_MAX - 1)
define INT_MAX 2147483647

Macros can have parameters. Here's a macro that will help us explore C:
% cat /cs/www/classes/cs352/fall15/h/iprint.h
#define iprint(e) printf(#e " = %d\n", e)

Let's extend our gcc alias so we can use #include "iprint.h". Note the quotes.
alias gcc="gcc -Wall -g -std=c1x -I/cs/www/classes/cs352/fall15/h"

The -I says "Look in this directory for header files, too."

Here's a program that uses it: (fall15/c/iprint1.c)

#include <stdio.h>
#include "iprint.h"
int main(int argc, char *args[])
{
 iprint(5 + 7 * 3);
 iprint('A' + 25);
 iprint(argc);
}

CSC#352#Fall#2015,#C#Slide#38#

An iprint macro

Execution:
% gcc iprint1.c
% a.out
5 + 7 * 3 = 26
'A' + 25 = 90
argc = 1

Can we create a Java analog for iprint?

See slide 40!

We've seen the preprocessor used for including files and macro replacement. It
does more, including conditional compilation.

Along with function prototypes and macros, header files contains structs,
typedefs, const values and other things that we'll be learning about.

There are lots of header files on lectura:

% find /usr/include -name *.h | wc -l
8869

% find /usr/include -name *.h -exec cat {} \; | wc -l
1492328

The preprocessor is very powerful but has many pitfalls, too. We'll learn all about
it soon but we know what we need to know for now.

CSC#352#Fall#2015,#C#Slide#39#

There's lots more with the preprocessor

Here's iprint:
#define iprint(e) printf(#e " = %d\n", e)

Let's use it:
iprint(3 + 4);

Here's what that "call" of iprint turns into:
 printf("3 + 4" " = %d\n", 3 + 4);

We can see that the text 3 + 4 has replaced the e at the end of the expansion but
what's going on with #e?

Rule 1: The form #param says to insert param but wrap it in quotes,
making it a string literal.

Rule 2: Juxtaposed literals are considered to be a single string literal.

The end result is that iprint(3 + 4); is equivalent to this:

printf("3 + 4 = %d\n", 3 + 4);

CSC#352#Fall#2015,#C#Slide#40#

Sidebar: How the iprint macro works

Bits

CSC#352#Fall#2015,#C#Slide#41#

Wikipedia says,
"A bit is the basic unit of information in computing and digital
communications. A bit can have only one of two values, and may therefore be
physically implemented with a two-state device.
...
"The term bit is a portmanteau of binary digit."

With N bits we can represent 2N unique values:

CSC#352#Fall#2015,#C#Slide#42#

What's a bit?

Number
of bits

Number of
unique values

1 2
2 4
8 256
16 65,536
32 4,294,967,296
64 18,446,744,073,709,551,616

Don't say it but think of a number: What's the largest number three bits can hold?

CSC#352#Fall#2015,#C#Slide#43#

How much data can three bits hold?

Bits Integer
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

Bits Integer
100 -4
101 -3
110 -2
111 -1
000 0
001 1
010 2
011 3

Here is a "two's
complement"
representation

Here is a simple
representation

Here's another
representation

Bits Integer
000 0
001 one million
010 one billion
011 one trillion
100 one quadrillion
101 one quintillion
110 one googol
111 Aleph-null, the

first transfinite
cardinal number

Computers are often characterized as being N-bit machines. Examples:

Vast simplification: An N-bit machine works efficiently with "words" of data that
comprise N bits.

Conceivably, a 32-bit machine might take longer to store 16 bits than 32 bits.
 CSC#352#Fall#2015,#C#Slide#44#

Bits and computer architecture

Machine Introduced Bits
IBM 709 1958 36
IBM 360 1964 32
PDP-7 1965 18
PDP-11 1970 16
Intel 4004 1971 4
Intel 8080 1974 8
Intel 8086 1978 16
VAX-11 1978 32
Intel 80386 1985 32
Intel Pentium 1993 32
Pentium with x86-64 2003 64

Basic types in C

CSC#352#Fall#2015,#C#Slide#45#

Section 6.2.5 of the C11 standard defines three groups of basic types:

•  char

•  Signed and unsigned integer types
Examples: int, short, long, long long, unsigned int

•  Floating types
Examples: float, double, long double, double _Complex

The basic types are scalar types—they hold a single value.

Reminder: A good-enough copy of the C11 standard can be found in fall15/
c11.pdf

CSC#352#Fall#2015,#C#Slide#46#

The basic types

In Java, the range of integral types is defined by The Java Language Specification.

Here is the full text of of 4.2.1 from fall15/jls8.pdf:

Note that nothing is mentioned about sizes in bits!

But it is common for JVM implementations to use 8 bits for bytes, 16 bits for
shorts, etc.

CSC#352#Fall#2015,#C#Slide#47#

Sidebar: integral types in Java

In C, the range of values for each scalar type is "implementation dependent", but
minimum magnitudes (positive and negative) are specified. A sampling:

 short -32767 to +32767
 int -32767 to +32767
 long -2147483647 to +2147483647
 long long -9223372036854775807 to +9223372036854775807
 char -127 to 127 if chars are signed; 0 to 255 if not

CSC 252 alumni: What's a little surprising about those ranges?

There are minimums for the floating types, too. The C11 standard has several
pages of specifications but a simplified example is that a double must be able to
represent numbers in the range 10-37 to 1037 and maintain 10 significant digits.

At one point in time it was typical for an N-bit machine to have N-bit ints, but
that's no longer as common as it was.

CSC#352#Fall#2015,#C#Slide#48#

Ranges for types in C

Java specifies fixed ranges for integral types but C lets sizes vary across
implementations, albeit with minimums.

What's a good thing about Java's fixed ranges?

The programmer doesn't need to make provisions for something like an
unusually small int. If an int calculation "fits" on JVM, it will fit on all
JVMs.

What's a good thing about implementation-defined ranges?

A 16-bit processor in an embedded system isn't burdened with manipulating
32-bit int values.

C has gracefully handled forty years of memory growth. Java is already in a
pinch with Unicode 2.0, which supports more than 65,535 characters.

The C11 standard requires <limits.h> to define TYPE_MIN and TYPE_MAX
macros for all types. The programmer can use the preprocessor to make a
decision at compile time to use longs instead of ints, should ints be too small.

CSC#352#Fall#2015,#C#Slide#49#

Fixed vs. varying ranges

The sizeof operator looks like a function. We can use it to see how much
memory is occupied by an instance of a type.

#include <stdio.h>
int main(int argc, char *args[]) // sizeof0.c
{
 printf("sizeof(char) is %lu\n", sizeof(char));
 printf("sizeof(int) is %lu\n", sizeof(int));
}

Execution:

% a.out
sizeof(char) is 1
sizeof(int) is 4

The standard says sizeof(char) is always 1. chars are almost always one byte in
size, so we'll think of sizeof(...) as producing a size in bytes.

We can see that ints are apparently four bytes long. Assuming 8-bit bytes, we're
working with 32-bit ints. But, INT_MAX tells us what an int can hold!

CSC#352#Fall#2015,#C#Slide#50#

The sizeof operator

sizeof produces a result of
type unsigned long.
Oops: %zu is better!

Let's look at the sizes of various types. We'll use a psize macro to avoid repetition.

#include <stdio.h>
#define psize(e) printf("sizeof(" #e ") = %lu\n", sizeof(e))

int main(int argc, char *args[]) // sizeof1.c
{
 psize(char);
 psize(short);
 psize(int);
 psize(long);
 psize(sizeof(sizeof(int)));
 psize(float);
 psize(double);
 psize(long double);
 psize(long double _Complex);
}

CSC#352#Fall#2015,#C#Slide#51#

sizeof, continued

Execution:
% a.out
sizeof(char) = 1
sizeof(short) = 2
sizeof(int) = 4
sizeof(long) = 8
sizeof(sizeof(sizeof(int))) = 8
sizeof(float) = 4
sizeof(double) = 8
sizeof(long double) = 16
sizeof(long double _Complex) = 32

Just like iprint(e), psize is writing code for us! Try this: write a program that
generates the above output but don't use a macro.

Prove this: The value of a sizeof expression is computed at compile time.

Proof:

% cat sizeof1a.c
#include <stdio.h>
int main(int argc, char *args[])
{
 printf("%d %lu %lu %lu %d\n",
 111, sizeof(double),
 sizeof(long double),

 sizeof(long double _Complex),
 999);
}

% gcc -S sizeof1a.c

Why did we put in 111 and 999?
So we can look for them!

CSC#352#Fall#2015,#C#Slide#52#

sizeof, continued

Excerpts from sizeof1a.c
 ...
.LC0:
 .string "%d %lu %lu %lu %d\n"
 ...
main:
 ...
 movl $.LC0, %eax
 movl $999, %r9d
 movl $32, %r8d
 movl $16, %ecx
 movl $8, %edx
 movl $111, %esi
 movq %rax, %rdi
 movl $0, %eax
 call printf
 movl $0, %eax
 ...

Variables and constants

CSC#352#Fall#2015,#C#Slide#53#

As in Java, scalar variables are declared by specifying a type followed by
one or more identifiers:

char c;
int min, max;
float minSkew, fudgeFactor;
long initial_count, last_count;

The standard specifies that identifiers are composed of letters, digits,
and underscores, and may not start with a digit.

Some compilers, including gcc, also permit a dollar sign.

As in Java, identifiers are case sensitive.

Most compilers, including gcc, permit very long identifiers but the C11
standard guarantees only 31 significant characters in some cases. (The
C90 standard guarantees only 6 in some cases.)

CSC#352#Fall#2015,#C#Slide#54#

Variables

Lexical tokens such as 20, 'x', and 12.34 are called literals in Java. In C
they are called constants.

As in Java, integer constants can be specified in decimal, hexadecimal
(base 16), or octal (base 8):

int ten = 10;
int twenty = 0x14; // 0x indicates hexadecimal
int thirty = 036; // leading zero indicates octal

By default, the type of an integer constant is int.

The L and LL suffixes can be added to explicitly indicate a long or long
long constant:

long two_billion = 2000000000L;
long long three_trillion = 3000000000000LL;

CSC#352#Fall#2015,#C#Slide#55#

Constants

C code is said to be "portable" if it will operate correctly with any C
compiler that meets the standard, regardless of the underlying machine
architecture.

Is the following C code portable? Why or why not?

int one_billion = 1000000000;

No. On a machine with 16-bit ints, for example, the value is too
big for an int!

If in Java instead, is the code portable?

Yes. The JLS guarantees that 1000000000 is in the range of an int.

CSC#352#Fall#2015,#C#Slide#56#

Constants, continued

Floating point constants have a familiar form:
float a = 123.456;
double b = -1e3;
double c = 1234e-10;

By default, the type of a floating point constant is double.

A suffix can be added to a floating point constant to force a type:
111.222F
333.444D
555.666L (long double)

CSC#352#Fall#2015,#C#Slide#57#

Constants, continued

Let's use the psize macro (now in fall15/h/352.h) to explore sizes of constants.
% cat constants1.c
#include <stdio.h>
#include "352.h"

int main(int argc, char *args[])
{
 psize(3);
 psize(3LL);
 psize(3.0);
 psize(3.0F);
 psize(3.0L);
}

Be sure you've got the latest gcc alias:

 alias gcc='gcc -Wall -g -std=c1x -I/cs/www/classes/cs352/fall15/h'

CSC#352#Fall#2015,#C#Slide#58#

Constants, continued

Execution:
% gcc constants1.c && a.out
sizeof(3) = 4
sizeof(3LL) = 8
sizeof(3.0) = 8
sizeof(3.0F) = 4
sizeof(3.0L) = 16

Character constants are specified by enclosing a character in single quotes.

char let_a = 'a', dollar = '$';

In C, a character constant is simply another way to specify an int constant.

Consider this code:

psize('a');
printf("'a' = %d, '$' = %d\n", 'a', '$');

Output:
sizeof('a') = 4
'a' = 97, '$' = 36

CSC#352#Fall#2015,#C#Slide#59#

Character constants

A char can be initialized with an ordinary integer constant.

char c1 = 42, c2 = 50, c3 = 65, c4 = 98;
printf("c1 = %c, c2 = %c, c3 = %c, c4 = %c\n", c1, c2, c3, c4);

The %c format specifier causes printf to produce the character whose ASCII
code is specified by the value of the corresponding argument.

Output:

c1 = *, c2 = 2, c3 = A, c4 = b
 // 42 50 65 98

It is important to understand that char values are simply small integers. Programs
such as ssh clients and text editors display those integer values in a familiar
graphical form. Above we see that 42 is shown as *, 50 is shown as 2, etc.

Let's use echo and od to explore character values:
% echo "*2Ab <=> GHI" | od -Ad -td1
0000000 42 50 65 98 32 60 61 62 32 71 72 73 10

CSC#352#Fall#2015,#C#Slide#60#

Character constants, continued

"ASCII" stands for American Standard Code for Information Interchange.

The ASCII standard assigns a number from 0-127 to 128 specific characters.
Here's one view of the "encoding":

There are many ASCII charts on the web but man ascii is very convenient!

 CSC#352#Fall#2015,#C#Slide#61#

Sidebar: ASCII

0 NUL

1-26 ^A through ^Z but many have other names. ^J (10) is
linefeed–LF (or newline); ^M (13) is carriage return–CR.

27-31 Various control codes including ESC (27)
32-47 space ! " # $ % & ' () * + , - . /

48-57 The digits 0-9

58-64 : ; < = > ? @

65-90 A-Z

91-96 [\] ^ _ `

97-122 a-z

123-127 { | } ~ DEL (another control code)

Why do we need a standard like ASCII?
Because computers store numbers, not characters!

When we type "Hello" into an editor and hit Save, five numbers get stored in a
file on the disk. What five numbers should we store?

If we encode those five letters using ASCII, we store 72 101 108 108 111.
If we encode with them with EBCDIC, we store 200 133 147 147 150.

If an editor reads a file and gets 101 993 433 32 48 49 726, what characters
should it display to the user?

If we don't know what encoding was used, we have no idea what characters
those numbers represent.

Could it be ASCII?

It is said that at the time ASCII was created, over 60 character encoding systems
were in use. (Google for Bob Bemer.)

CSC#352#Fall#2015,#C#Slide#62#

ASCII, continued

What are the two fundamental decisions when designing a character encoding
system?

•  The characters in the set.
•  The ordering of the characters.

What's the fundamental trade-off when deciding what characters to include in an
encoding system?

The larger the set, the more bits it takes to store a single character.

Consider some sizes:

•  ASCII is a 7-bit encoding––128 characters
•  EBCDIC is an 8-bit encoding––256 characters
•  RADIX-50 has 40 characters: 0-9 A-Z . $ % and space
•  Unicode was originally a 16-bit code but the latest version defines 1,114,112

"code points".

Impress your friends by memorizing the ASCII encoding!
http://memrise.com/course/80243/ascii-to-decimal/

CSC#352#Fall#2015,#C#Slide#63#

ASCII, continued

Just as in Java, various character "escapes" are available:
#include <stdio.h>
int main(int argc, char *args[])
{
 char quote = '\'', newline = '\n', bslash = '\\';

 char lsquare = '\x5b', rsquare = '\135';

 printf("%c%c%c%c%c",
 lsquare, quote, newline, bslash, rsquare);
}

Execution:
% PS1="% "
% gcc constants2.c
% a.out
['
\]% a.out | wc -c
5
%

CSC#352#Fall#2015,#C#Slide#64#

(Back to) Character constants

% a.out | od -td1 (decimal)
0000000 91 39 10 92 93

% a.out | od -tx1 (hexadecimal)
0000000 5b 27 0a 5c 5d

% a.out | od -to1 (octal)
0000000 133 047 012 134 135

In C, a sequence of characters enclosed in double quotes is called a string literal.

As we saw in iota.c, a string literal is a suitable first argument for printf:
 printf("%d\n", i);

"%d\n" looks just like a Java string literal, which has the type String.

However, the meaning of "%d\n" is very different in C:
1.  It causes creation of a nameless char array with four values: 37, 100, 10,

and 0.

2.  The value of "%d\n" is the address of the first value in the array.

We'll learn all about string literals later. For now we'll use string literals only as
printf format specifiers.

CSC#352#Fall#2015,#C#Slide#65#

String literals

Java has a "definite assignment" rule that requires that a local variable be
initialized or assigned a value before it is used. If it can't be proven that some
value has definitely been assigned to a local variable, it is an error to use it.

There is no similar requirement in C. Example:

% cat init.c
...
int main(int argc, char *args[])
{
 double x, y; int i, j;
 printf("i + j = %d, x + y = %g\n", i + j, x + y);
}
% gcc init.c
...warnings...
% a.out
i + j = -4128880, x + y = -7.67023e+304

The values of i, j, x, and y are simply the values that happen to be in the memory
locations associated with those variables. Your results may vary.

CSC#352#Fall#2015,#C#Slide#66#

Initialization of variables

At hand:
•  Java considers it to be an error if a local variable might be used before it is

given a value.

•  C does not attempt to verify that a local variable has been given a value
before it is used.

Question: What are the implications of this C design choice in...

 Language specification?
 Simpler
 Compilation?
 Faster (and a simpler, smaller compiler)
 Execution?
 Faster––no need to "zero" memory for local variables––but carries a risk.

The -Wall option in our gcc alias causes warnings to be produced for init.c.
With \gcc init.c, which directs bash to ignore the alias, there are no warnings!

lint(1) was used to look for suspicious code years ago. Check Wikipedia!

CSC#352#Fall#2015,#C#Slide#67#

Initialization of variables, continued

Operators

CSC#352#Fall#2015,#C#Slide#68#

C has three multiplicative operators:
 * / %

In broad terms, the operators match their Java counterparts, performing
multiplication, division, and remaindering.

The operands of % must be integers.

As in Java, if one operand of * or / is integral and the other is floating point, the
result is floating point.

Examples:
5 * 7 // 35
5.5 * 7.7 // 42.35
5 * 7.7 // 38.5
34 / 3 // 11
34.0 / 3 // 11.3333
34 % 3 // 1

CSC#352#Fall#2015,#C#Slide#69#

Multiplicative operators

With integer division in C90, if either operand of / is negative, whether the quotient
rounds towards zero or away from zero is implementation specific. For example,
-13/4 might produce -3 or -4.

In C99 and C11, the quotient of two integers is "the algebraic quotient with any
fractional part discarded"—it "truncates toward zero". (C11 6.5.5)

Example:

5 / -3 // -1
-5 / -3 // 1
-5 / 3 // -1
5.0 / -3.0 // -1.66667
-5.0 / -3.0 // 1.66667
-5.0 / 3.0 // -1.66667

The C90, C99, and C11 standards have the same specification regarding division or
remaindering by zero:

"In both operations, if the value of the second operand is zero, the behavior is
undefined."

The phrase "the behavior is undefined" indicates that for this situation, an
implementation can do whatever it wants (possibly whatever is easiest to implement)
and still be compliant with the standard.
 CSC#352#Fall#2015,#C#Slide#70#

Multiplicative operators, continued

With gcc on lectura, a floating point division by zero produces a representation of
infinity, but an integer division by zero produces a core dump:

% cat div2.c (Note: #include not shown...)
int main(int argc, char *args[])
{
 double q = 1.0 / 0.0; // No warning produced
 printf("q = %g\n", q);

 int q2 = 1 / 0;
 printf("q2 = %d\n", q2); // Produces a warning
}

% gcc div2.c
div2.c: In function ‘main’:
div2.c:8:16: warning: division by zero [-Wdiv-by-zero]

% a.out
q = inf
Floating point exception (core dumped)

Problem: Somebody says, "The printf is blowing up in the middle of printing q = inf
––it should be q = infinity, like in Java" How could we address that claim?

CSC#352#Fall#2015,#C#Slide#71#

Multiplicative operators, continued

C has two binary arithmetic additive operators:
+ -

C has two unary arithmetic operators:

+ -

All four perform just like their Java counterparts.

Examples:

4 + 7 // 11

1e4 + 1e7 // 1.001e+07

1.2 - 3 // -1.8

-(3 - 4) // 1

+(3 - 4) // -1

CSC#352#Fall#2015,#C#Slide#72#

+ and -

C's assignment operator is essentially identical to Java's.

Assuming that i is declared as int, evaluating the expression i = 7 does two
things:

 1. It produces the value 7 as the result of the expression.

 2. As a side-effect, the value held in i is changed to 7.

Stated more briefly:

 The assignment operator produces a value but has a side effect, too.

Example:

int i = 3;
iprint(i = 7);

 // Output: i = 7 = 7 (demonstrates that i = 7 produces 7)
iprint(i);

 // Output: i = 7 (demonstrates that i was changed to 7)

CSC#352#Fall#2015,#C#Slide#73#

The assignment operator

A "side effect" is a change in the state of the program's observable data or in the
state of the environment with which the program interacts.

Which of these Java expressions have a side effect?

x + 3 * y
 No side effect. A computation was done but no evidence of it remains.

s.length() > 2 || s.charAt(1) == '#'
 No side effect. A computation was done but no evidence of it remains.

"testing".toUpperCase()
 A string "TESTING" was created somewhere but we can't get to it.

L.add("x"), where L is an ArrayList
 Side effect: An element was added to L. Definitely a side-effect!

System.out.println("Hello!")
 Side effect: "Hello!" went somewhere.

window.checkSize()
 Can't tell without looking at window.checkSize()!

CSC#352#Fall#2015,#C#Slide#74#

Sidebar: Side effects

Given int i, j = 3, k;, what does the following statement do?
 i = j + (k = 2);

1.  k = 2 is evaluated first, producing the value 2. k will be set to 2 as a side-

effect, but exactly when that happens is somewhat indefinite.
2.  j + 2 is evaluated next, producing 5.
3.  i = 5 is evaluated next, producing 5. i will be set to 5 as a side-effect.
4.  It is guaranteed that i will be set to 5 and k will be set to to 2 before

execution of the next statement begins.

CSC#352#Fall#2015,#C#Slide#75#

The assignment operator, continued

Another example:
% cat asgnop1.c
#include <stdio.h>
int main(int argc, char *args[])
{
 char c; int i;

 printf("c = %c, i = %d, c = %c\n", c = 'A', i = 10, c = 'B');
 printf("c = %c\n", c);
}

% gcc asgnop1.c
asgnop1.c: In function ‘main’:
asgnop1.c:7:59: warning: operation on ‘c’ may be undefined

 [-Wsequence-point]

% a.out
c = A, i = 10, c = B
c = A

CSC#352#Fall#2015,#C#Slide#76#

The assignment operator, continued

The standard defines a number "sequence points"––
points at which it is guaranteed that any side-effects
have been completed. One such point is between
statements.

Because the ordering of the assignments to
c is undefined, we get this warning!

It's important to distinguish assignment from initialization.

This is an assignment statement:

i = 7;

This is a declaration with initialization:

int i = 7;

Is the following line a declaration, an assignment, or both?

double x, y = 0.0;
 x is declared.
 y is declared and initialized.
 There is no assignment.

CSC#352#Fall#2015,#C#Slide#77#

Assignment vs. initialization

C has compound assignment for the multiplicative and additive binary operators:

 += -= *= /= %=

In essence, they perform like their Java counterparts. Generally stated,

 E1 op= E2

is equivalent to

 E1 = E1 op E2

with the exception that E1 is evaluated only once.

Examples, assuming int i = 5;

i *= 3; // assigns 15 to i

i %= 2; // assigns 1 to i

CSC#352#Fall#2015,#C#Slide#78#

Compound assignment operators

C has prefix and postfix increment and decrement operators that behave like their
Java counterparts.

Sometimes they are simply used for their side-effect:
int i = 5;

i++;
// i is now 6

i--;
// i is 5

--i;
// i is 4

++i;
// i is 5

But along with having a side-effect, they each produce a value, too!

CSC#352#Fall#2015,#C#Slide#79#

Increment and decrement operators

It is critical to understand that the ++ and -- operators produce a value AND, as a
side-effect, alter the value of the associated variable.

What is the value of the following expression?
 i++

The value of i++ is i. As a side effect, i is incremented.

Example:
int i = 5;

iprint(i);

// Output: i = 5
iprint(i++);

 // Output: i++ = 5
iprint(i);

// Output: i = 6
iprint(i++);

 // Output: i++ = 6

CSC#352#Fall#2015,#C#Slide#80#

Increment and decrement, continued

At hand: The ++ and -- operators produce a value AND, as a side-effect, alter the
value of the associated variable.

What is the value of the following expression?
 i--

The value of i-- is i. As a side effect, i is decremented.

Example:
int i = 5;

iprint(i);

 // Output: i = 5
iprint(i--);

 // Output: i-- = 5
iprint(i);

 // Output: i = 4
iprint(i--);

 // Output: i-- = 4

CSC#352#Fall#2015,#C#Slide#81#

Increment and decrement, continued

The meaning of the prefix forms are different, but just like Java:

The value of ++i is i + 1. As a side effect, i is incremented.

The value of --i is i - 1. As a side effect, i is decremented.

Example:
int i = 5;

iprint(i++);

 // Output: i++ = 5
iprint(i);

 // Output: i = 6
iprint(++i);

 // Output: ++i = 7
iprint(i);

 // Output: i = 7

CSC#352#Fall#2015,#C#Slide#82#

Increment and decrement, continued

An expression is a sequence of symbols that can be evaluated to produce a value.

Here are some Java expressions:

 'x'
 i + j * k
 f(args.length * 2) + n

There are three questions that programmers often consider when looking at an
expression in conventional languages like C and Java:

•  What value does the expression produce?

•  What's the type of that value?

•  Does the expression have any side effects?

Mnemonic aid: Imagine you're wearing a vest that's reversed. "vest" reversed is
"t-se-v": type/side-effect/value.

CSC#352#Fall#2015,#C#Slide#83#

Sidebar: Value, type, and side-effect

What is the value of the following Java expressions?
3 + 4
 7

1 < 2
 true

"abc".charAt(1)
 'b'

s = "3" + 4
 "34"

"a,bb,c3".split(",")
 An array with three elements: "a", "bb" and "c3"

"a,bb,c3".split(",")[2]
 "c3"

"a,bb,c3".split(",")[2].charAt(0) == 'X'
 false

 CSC#352#Fall#2015,#C#Slide#84#

Sidebar: Value, type, and side-effect, continued

What is the type of the value produced by each of the following Java expressions?
3 + 4
 int

1 < 2
 boolean

"abc".charAt(1)
 char

s = "3" + 4
 String

"a,bb,c3".split(",")
 String []

"a,bb,c3".split(",")[2]
 String

"a,bb,c3".split(",")[2].charAt(0) == 'X'
 boolean

 CSC#352#Fall#2015,#C#Slide#85#

Sidebar: Value, type, and side-effect, continued

When we ask,
"What's the type of this expression?"

we're actually asking this:
"What's the type of the value produced by this
expression?"

What are the side effects of each of the following Java expressions?
3 + 4
 No side effects

1 < 2
 No side effects

"abc".charAt(1)
 No side effects

s = "3" + 4
 s will now reference a String with value "34".
 What if s was already "34"? Is it still considered a side-effect?

"a,bb,c3".split(",")
 No side effects

"a,bb,c3".split(",")[2]
 No side effects

"a,bb,c3".split(",")[2].charAt(0) == 'X'
 No side effects

 CSC#352#Fall#2015,#C#Slide#86#

Sidebar: Value, type, and side-effect, continued

Here's a Java program that makes use of the "autoboxing" mechanism to show the type
of values. (Note that if there were a standard Java preprocessor we wouldn't need to
use n++ to associate "inputs" with output.)

public class exprtype {
 public static void main(String args[]) {
 int n = 1;
 showtype(n++, 3 + 'a');
 showtype(n++, 3 + 4.0);
 showtype(n++, "a,b,c".split(","));
 showtype(n++, new HashMap<String,Integer>());
 }
 private static void showtype(int num, Object o) {
 System.out.format("%d: %s\n", num, o.getClass());
 }
}

Output:
1: class java.lang.Integer
2: class java.lang.Double
3: class [Ljava.lang.String;
4: class java.util.HashMap (Note: no String or Integer––type erasure!)

CSC#352#Fall#2015,#C#Slide#87#

Sidebar: Value, type, and side-effect, continued

C provides the same set of relational and equality operators that Java does.
< > <= >= != ==

The C operators perform the same tests as their Java counterparts, but the return
type is different:

In C, relational and equality operators produce a result of type int. If the
comparison succeeds, the result is 1. Otherwise it is 0.

Examples:
3 <= 4

 // produces 1

'a' == 'b'

 // produces 0

5.0 > 4.9

 // produces 1

sizeof(8 >= 9)

 // produces sizeof(int)
CSC#352#Fall#2015,#C#Slide#88#

Relational and equality operators

Does each of the following expressions compile? If so, what is its value?

1 < 2 + 3 == 4

x == y != 'z'

1 < 2 < 3

1 < 2 < 3 > 4 > 5

1 < 2 < / > 4 > 5

1 < 2 / 4 > 5

Try them with iprint! Then write six more yourself.

If you post one on Piazza that makes me say, "Interesting!", I'll give you an
assignment point.

CSC#352#Fall#2015,#C#Slide#89#

Relational and equality operators, continued

C has the same three logical operators as Java:
|| && ! (unary)

The operands of the logical OR operator (||) must be ints or convertible to ints.

Logical OR produces an int result of 1 if either of its operands has a non-zero
value. Otherwise, 0 is produced.

Examples:
1 || 0

 // produces 1

2 > 3 || 4 != 5

 // produces 1

Two more:
x == x + 1 || y == y - 2

int result = x < y || y > z * 5;

CSC#352#Fall#2015,#C#Slide#90#

Logical operators

As in Java, short-circuit evaluation is used:
The right-hand operand of a logical OR is evaluated only if the left-hand
operand yields zero.

Example:

int i = 0;

3 < 4 || i++ // produces 1, i is unchanged

3 > 4 || i++ // produces 0, i is incremented

Strong recomendation: Work through the code above!

CSC#352#Fall#2015,#C#Slide#91#

Logical operators, continued

The logical AND operator (&&) produces 1 (an int) if both operands have a non-
zero value. Otherwise, it produces 0.

Examples:

1 && 0
 // produces 0

1 < 2 && 3 != 4

 // produces 1

('a' || 'b') && 'c'

 // produces 1

Short-circuit evaluation is used: The right-hand operand is evaluated only if the
left-hand operand yields a non-zero result.

CSC#352#Fall#2015,#C#Slide#92#

Logical operators, continued

The logical NOT operator (!) produces an int result of 1 if its operand is zero. It
produces 0 otherwise.

!0
 // produces 1

!1

 // produces 0

!2

 // produces 0

!!-2

 // produces 1

!(1 < 2 && 0)

 // produces 1

CSC#352#Fall#2015,#C#Slide#93#

Logical operators, continued

The conditional operator in C looks like its counterpart in Java:
 E1 ? E2 : E3

First, the expression E1 is evaluated. If it produces a non-zero value, E2 is
evaluated and its result becomes the result of the conditional expression.

Alternatively, if E1 produces a zero value, E3 is evaluated and its result becomes
the result of the conditional expression.

Examples:
1 ? 2 : 3

 // produces 2

1 < 2 ? 3 < 4 : 5

 // produces 1

CSC#352#Fall#2015,#C#Slide#94#

The conditional operator

What does the following call do?

 printf("Process complete; %d box%s filled.\n", n, n > 1 ? "es" : "");

A simple view for now: the %s format specifier indicates that the corresponding
argument is a string literal.

Here are two potential results:
 Process complete; 1 box filled.

 Process complete; 3 boxes filled.

FYI, Java analog:

 System.out.format("Process complete; %d box%s filled.\n",
 n, n > 1 ? "es":"");

CSC#352#Fall#2015,#C#Slide#95#

The conditional operator, continued

C11 defines a boolean type: _Bool

The <stdbool.h> header has macros for bool, true, and false. Example:

% cat bool.c
#include <stdbool.h>
int main(int argc, char *args[])
{
 bool flag;
 bool a = true;
 bool b = false;
}

% gcc -E bool.c | tail -5
{
 _Bool flag;
 _Bool a = 1;
 _Bool b = 0;
}

My opinion is that using C11's booleans does little more than add a layer of
obscurity. You're free to use them, but I'll probably continue to avoid them.

CSC#352#Fall#2015,#C#Slide#96#

C11's boolean type

In essence, the precedence and associativity of C operators matches their Java
counterparts.

You might think the C11 standard would have a simple chart that shows operator
precedence and associativity but if there is one, I can't find it!

Neither does JLS8 have a precedence chart!

Why not?

I don't know!

The C11 standard and the JLS define a grammar for their respective
languages, and precedence is implied by that grammar. My guess is that
authors felt it would be redundant to include a simple chart. That seems
pretty silly!

This seems like a classic example of "works in theory but not in practice".

fall15/cpred.png is a shot of the precedence chart from section 2.12 in K&R2e.
There's a link on the Piazza resources page, too.
 CSC#352#Fall#2015,#C#Slide#97#

Precedence and associativity

A trio of control structures

CSC#352#Fall#2015,#C#Slide#98#

Just like Java, C makes a distinction between expressions and statements.

Here are three expressions:
x = 7
i++
printf("Hello\n")

Appending a semicolon to an expression makes it a statement. Here are
three statements:

x = 7;
i++;
printf("Hello\n");

Expressions always have a type, but statements never do. (And like in
Java, the type of some expressions is void.)

CSC#352#Fall#2015,#C#Slide#99#

Expressions vs. statements

The general form of a C if-else statement is the same as Java:

if (expression)
 statement1
else
 statement2

expression is evaluated and if the value produced is non-zero then statement1 is
executed. Otherwise, statement2 is executed.

There's an else-less if, too:

if (expression)
 statement

Example:
 if ('x' + 3.75e50)
 printf("works!\n");

CSC#352#Fall#2015,#C#Slide#100#

The if-else statement

controlling expression must be a scalar

A compound statement groups several statements into a single statement.

The general form of a compound statement is:

{
 statement1

 statement2
 ...
 statementN

}

Example:

if (count != 0) {
 printf("Average item weight is %g pounds\n", total_weight / count);
 printf("Average length is %g feet\n", total_length / count);
 }

else
 printf("No items processed!\n");

Some companies have coding standards that require all control structures to use
compound statements. A "commit" of the above might be refused automatically!

CSC#352#Fall#2015,#C#Slide#101#

Compound statements

General form:
while (expression)

 statement

C's while is just like Java's, with the variation you'd expect: statement is
executed while expression yields a non-zero value.

Problem: Using while, write an infinite loop in C.

while (1) {
 ...
 }

Problem: Given an int n, print "Hello!" n times. Restriction: No assignments or
relational operators!

while (n--)
 printf("Hello!\n");

Quick: Is it correct or OBO?

CSC#352#Fall#2015,#C#Slide#102#

The while statement

C has a do-while, also conditionalized on a non-zero value:

do
 statement

while (expression) ;

Example:

int n = 3;
do {
 printf("%d\n", n);
} while (--n);

What's a hazard of the above do-while?

 What if n is zero?

Are the braces needed above?

CSC#352#Fall#2015,#C#Slide#103#

The do-while statement

Byte-by-byte I/O

CSC#352#Fall#2015,#C#Slide#104#

All UNIX files can be considered to be a simple, continuous series of bytes. A
byte is eight bits on most modern systems, providing 256 distinct values.

As we've seen, od can be used to display a file's bytes as a sequence of integers:

% cat text2
abc
0

% od -td1 -Ad text2
0000000 97 98 99 10 48 10

od can show bytes as signed (-128 to 127) or unsigned (0 to 255) values:

% head -c12 /dev/urandom > bytes

% od -td1 bytes
0000000 -118 79 -10 21 -107 102 86 24 10 41 52 102

% od -tu1 bytes
0000000 138 79 246 21 149 102 86 24 10 41 52 102

CSC#352#Fall#2015,#C#Slide#105#

UNIX files are just a series of bytes

One way to read a file one byte at a time is with the function getchar(), defined
by the C11 standard:

CSC#352#Fall#2015,#C#Slide#106#

The getchar() function

EOF is a macro defined by including stdio.h. We'll talk about EOF soon.

There are man pages for the C library functions. Try man getchar.

Here's a program that reads bytes from standard input and prints the value of each
byte both as an integer and as a character:

% cat dumpbytes.c
#include <stdio.h>
int main(int argc, char *args[])
{
 int byte_num = 0, c;

 while ((c = getchar()) != EOF)
 printf("%04d: %3d (%c)\n",
 byte_num++, c, c);
 return 0;
}

% gcc -o dumpbytes dumpbytes.c

CSC#352#Fall#2015,#C#Slide#107#

dumpbytes.c

Execution:
% cat text2
abc
0
% dumpbytes < text2
0000: 97 (a)
0001: 98 (b)
0002: 99 (c)
0003: 10 (
)
0004: 48 (0)
0005: 10 (
)
%

% echo -n x | dumpbytes
0000: 120 (x)
%
% echo -n x | dumpbytes | dumpbytes
0000: 48 (0)
0001: 48 (0)
0002: 48 (0)
0003: 48 (0)
0004: 58 (:)
0005: 32 ()
0006: 49 (1)
0007: 50 (2)
0008: 48 (0)
0009: 32 ()
0010: 40 (()
0011: 120 (x)
0012: 41 ())
0013: 10 (
)
%

CSC#352#Fall#2015,#C#Slide#108#

dumpbytes.c, continued

For reference, dumpbytes.c:
#include <stdio.h>
int main(int argc, char *args[])
{
 int byte_num = 0, c;

 while ((c = getchar()) != EOF)
 printf("%04d: %3d (%c)\n",
 byte_num++, c, c);
 return 0;
}#

Here's a program that counts lines and characters on standard input. Note that it
counts lines by simply counting newlines.

#include <stdio.h>
int main(int argc, char *args[]) // clc.c
{
 int c, num_lines = 0, num_chars = 0;

 while ((c = getchar()) != EOF) {
 num_chars++;
 if (c == '\n')
 num_lines++;
 }

 printf("%d lines, %d characters\n",
 num_lines, num_chars);
}

CSC#352#Fall#2015,#C#Slide#109#

A line and character counter

Usage:
% cat text
A
test
right here
% clc < text
3 lines, 18 characters

Is clc too chatty? Should it
output just "3 18"?

Imagine that Bob is reading a list of words to Carole over the phone. Carole is
repeating the words to Alice, who's writing them down. Here's what Carole says:

"gondola
version
impious
data
viking
oops
lost
him"

What was the last word that Bob read to Carole?

Carole and Alice can talk further to settle the question but programs need a simple
way to distinguish data from the end of the data.

CSC#352#Fall#2015,#C#Slide#110#

End-of-file

The problem:
How can we distinguish data from the end of the data?

One approach is to use a sentinel value, a value that won't appear in the data.

What's a problem with using a value like -999999999 as a sentinel value when
summing a series of integer values?

It precludes -999999999 from being in the input.

If we're reading ints with Scanner, what are our options for detecting end of file?
We can use hasNextInt()
We can catch NoSuchElementException
Anything else?

If we're reading integers one per line from standard input using
BufferedReader.readLine() what would be a good sentinel value other than
relying on readLine() returning null at end of file?

Perhaps a line like "end".

CSC#352#Fall#2015,#C#Slide#111#

End-of-file, continued

Here's interaction with the ed editor:

% ed
i
one
two
.
1,$p
one
two
w x
8
q
% cat x
one
two
%

CSC#352#Fall#2015,#C#Slide#112#

End-of-file, continued

Does ed use a sentinel value?
Yes, a period by itself on a line terminates
input mode.

How could we create file like dots?

% cat dots
.
.
.
%

We might enter three x's and then change
them to periods with 1,$s/x/./

The problem:
An 8-bit byte read from a file might have any of 256 different values. An 8-
bit char can only hold 256 different values. There's no char value that's left
free to be used as a sentinel value.

Should we recognize one of those 256 characters as an end-of-file sentinel
character? Is that what control-D is?

A fact in the mix: ASCII code 25 is called "EM", for "End of medium".

CSC#352#Fall#2015,#C#Slide#113#

The end-of-file problem for bytes

Let's look at the C11 standard's synopsis for getchar() again:
Synopsis

#include <stdio.h>
int getchar(void);

Note that getchar() returns an int!

The standard goes on to say,

"If the stream is at end-of-file, the end-of-file indicator for the stream is set
and getchar returns EOF."

Recall this input idiom:
 while ((c = getchar()) != EOF) ...

How can we find out what the EOF character is?

% gcc -E dumpbytes.c | fgrep "c = getchar"
 while ((c = getchar()) != (-1))

What's going on?

CSC#352#Fall#2015,#C#Slide#114#

getchar() and end-of-file

The facts:
If we want to use all 256 byte values there's no value free to be a sentinel.

Despite its name, getchar() returns an int, not a char.

getchar() returns the int -1 at end-of-file.

getchar()'s solution for distinguishing data from the end of the data is to return a
larger quantity, an int, which can hold any of the 256 possible byte values (0-255)
as well as a sentinel value, -1.

Imagine a C implementation of Java's BufferedReader.readLine() that uses
getchar(). When getchar() returns -1, that code might then return a data
structure that represents null in Java. (Note: quite a bit simplified!)

Java's Reader.read() method returns "The character read, as an integer in the
range 0 to 65,535 (0x00-0xffff), or -1 if the end of the stream has been
reached." The return type of Reader.read() is int.

CSC#352#Fall#2015,#C#Slide#115#

getchar() and end-of-file, continued

The putchar(int c) function causes a byte with the value of c to be written to
standard output. Example:

 #include <stdio.h>
int main(int argc, char *args[]) // hellobytes.c
{
 putchar(72);
 putchar(101);
 putchar(108);
 putchar(108);
 putchar(111);
 putchar(33);
 putchar(10);
}

Execution:

% a.out
Hello!

CSC#352#Fall#2015,#C#Slide#116#

The putchar() function

Problem: Write cat0, a simple version of cat. It need only read bytes from
standard input and write them to standard output. Examples:

% date > x
% cat0 < x
Fri Sep 25 00:03:00 MST 2015
% cat0 > out
just
testing
^D
% cat0 < out
just
testing
%

CSC#352#Fall#2015,#C#Slide#117#

The putchar() function, continued

Solution:
#include <stdio.h>
int main(int argc, char *args[])
{
 int c;
 while ((c = getchar()) != EOF)
 putchar(c);
}

Can we reduce it to the following?
int main(int argc, char *args[])
{
 int c;
 while (putchar(c = getchar()) != EOF)
 ;
}

Here is a program that uses scanf()—the input counterpart of printf(). The
scanf call below is somewhat like Scanner.nextInt().

% cat writebytes.c
#include <stdio.h>
int main(int argc, char *args[])
{
 int byte_value;

 while (scanf("%d", &byte_value) == 1)
 putchar(byte_value);
}

scanf returns the number of values read or EOF.
Do man scanf for lots more!

The unary & operator will be discussed in detail later. For now, simply note that it
produces the address of its operand (a variable). That address is passed to
scanf(), which stores the integer read into that variable. (Try leaving off the &.)

CSC#352#Fall#2015,#C#Slide#118#

The scanf function

Usage:
% writebytes >x
48
65 10
% wc -c x
3 x
% dumpbytes < x
0000: 48 (0)
0001: 65 (A)
0002: 10 (
)
%

More control structures

CSC#352#Fall#2015,#C#Slide#119#

C's for statement has the same general form as Java's for:

for (expr1; expr2; expr3)

 statement

Just like while, the body of the loop is executed if expr2 yields a non-zero value.

A loop to print the numbers from 1 through 5:
for (int i = 1; i <= 5; i++)
 printf("%d\n", i);

A loop to print the alphabet backwards:
for (char c = 'z'; c >= 'a'; c--)
 putchar(c);

Is the alphabet-printing loop portable? (That is, does the C11 standard guarantee
it will run correctly on any machine?)

It is not portable. It assumes a character coding system with a contiguous set
of lowercase letters in ascending order.

CSC#352#Fall#2015,#C#Slide#120#

The for statement

A program to print a truth table for the && and || operators:
int main(int argc, char *args[]) // for2.c
{
 for (int a = 0; a <= 1; a++) {
 for (int b = 0; b <= 1; b++) {
 printf("%d || %d = %d\t", a, b, a||b);
 printf("%d && %d = %d\n\n", a, b, a&&b);
 }
 }
}

Output:
% gcc for2.c && a
0 || 0 = 0 0 && 0 = 0

0 || 1 = 1 0 && 1 = 0

1 || 0 = 1 1 && 0 = 0

1 || 1 = 1 1 && 1 = 1

CSC#352#Fall#2015,#C#Slide#121#

for, continued

In the common case, the break statement in C is just like Java's break: it causes
an immediate exit from the enclosing loop. Example:

while ((c = getchar()) != EOF) {
 if (c > 127) {
 printf("Non-ascii character: %d\n", c);
 break;
 }
 ...other processing...
 }

 ...next statement after while...

C does not provide a "labeled break" like Java's but the same effect can be
achieved with the goto statement, which we'll see soon.

CSC#352#Fall#2015,#C#Slide#122#

The break statement

C's continue skips the remainder of a loop iteration and continues with the next
iteration of the loop.

In the following example, blanks, tabs, and form-feeds are not included in a
character count:

while ((c = getchar()) != EOF) {
 if (c == ' ' || c == '\t' || c == '\f')
 continue;
 char_count++;
 }

C does not provide a labeled continue like Java's but the same result can be
achieved with goto.

CSC#352#Fall#2015,#C#Slide#123#

The continue statement

The goto statement causes control to transfer to the statement with the specified
label.

Here's an old-fashioned way to print the numbers from 1 through 10:
int main(int argc, char *args[]) // goto1.c
{
 int i = 1;
 top: printf("%d\n", i++);
 if (i > 10)
 goto done;
 goto top;

 done: printf("All done!\n");
}

Before modern control structures evolved it was common to write code such as
the above. And, in assembly language, you've only got "branches" and "jumps".

Speculate: Should we teach "goto" first and control structures later?

CSC#352#Fall#2015,#C#Slide#124#

The goto statement

One modern use of goto is to cleanly exit from deeply nested loops. Java provides a
labeled break for that purpose. In C, a goto is reasonable alternative:

 for (...) {
 while (...) {
 for (...) {
 while (...) {
 ...
 if (...)
 goto recycle;
 ...
 }
 }
 }
 recycle:
 f();
 }

The only other option, introducing a set of flags and tests, often produces code that is
hard to reason about.

The goto statement is often handy when a program is generating a C program.

Use of goto in other situations is generally frowned upon.

CSC#352#Fall#2015,#C#Slide#125#

goto, continued

Here's a program that uses a switch to count vowels and non-vowels:
int main(int argc, char *args[])
{
 int c, num_vowels = 0, num_others = 0;

 while ((c = getchar()) != EOF) {
 switch (c) {
 case 'a': case 'A':
 case 'e': case 'E':
 case 'i': case 'I':
 case 'o': case 'O':
 case 'u': case 'U':
 num_vowels++;
 break;
 default:
 num_others++;
 break;
 }
 }
 printf("%d vowels, %d others\n", num_vowels, num_others);
}

CSC#352#Fall#2015,#C#Slide#126#

The switch statement

An interesting switch-based construction that's
permitted in C but not in Java is known as "Duff's
Device", invented by Tom Duff while at Lucasfilm.

CSC#352#Fall#2015,#C#Slide#127#

switch, continued
C's switch is very similar to Java's switch––it selects a block of code to execute
based on a controlling expression. Here is a simplified general form:

switch (controlling_expr) {

 case const_expr1:
 stmt_block1
 break;
 case const_expr2:
 stmt_block2
 break;
 ...
 default:
 dflt_block
 break;
 }

Simplified rules: (6.8.4.2 in C11 has the details)
•  controlling_expr must produce an integer

•  Each const_expr must be an constant of integer
type and not be duplicated in another case
specification.

•  A stmt_block can have any number of cases.

•  default: can appear only once.

•  Execution "falls through" to the next case if there's
no break.

•  If the control expression matches no case and
there's no default specified, nothing is executed.

Functions

CSC#352#Fall#2015,#C#Slide#128#

All executable code in a C program is contained in functions.

Here's the general form of a function definition in C:

return_type function_name(parameters)
{

 ...any mix of declarations and statements...
}

Example:
int add(int a, int b)
{
 int sum;

 sum = a + b;
 return sum;
}

As in Java, the return statement terminates execution of a function and produces
the specified value as the result of the function invocation.

CSC#352#Fall#2015,#C#Slide#129#

Function basics

At hand:
int add(int a, int b)
{
 int sum;

 sum = a + b;
 return sum;
}

A shorter equivalent:
int add(int a, int b)
{
 int sum = a + b;

 return sum;
}

Even shorter:
int add(int a, int b)
{
 return a + b;
}

CSC#352#Fall#2015,#C#Slide#130#

Function basics, continued

Let's add in a main with some calls to add:
#include <stdio.h>
#include <limits.h>
#include "352.h"

int add(int a, int b) // fcn1.c
{
 int sum;
 sum = a + b;
 return sum;
}

int main(int argc, char *args[])
{
 int r1 = add(3,4);
 printf("r1 is %d\n", r1);
 int r2 = add(add(r1+5,20),add(r1-10,add(r1*r1,50)));
 printf("r2 is %d\n", r2);
 iprint(add(INT_MIN,INT_MAX));
}

 CSC#352#Fall#2015,#C#Slide#131#

Function basics, continued

Execution:
% gcc fcn1.c && a.out
r1 is 7
r2 is 128
add(INT_MIN,INT_MAX) is -1

The C11 standard says that the body of code that is output by the preprocessor is
known as a translation unit.

Let's put the translation unit for fcn1.c into x:

 % gcc -E fcn1.c > x

Let's see how many lines, words and characters are in the translation unit for
fcn1.c:

% wc x
 723 1789 14870 x

Let's see on which lines the word "add" appears in the translation unit for fcn1.c.

% fgrep -n -w add x
707:int add(int a, int b)
718: int r1 = add(3,4);
720: int r2 = add(add(r1+5,20),add(r1-10,add(r1*r1,50)));
%d\n", add((-2147483647 - 1),2147483647));

Important: The translation unit is not the file x; it's the lines in the file x.

CSC#352#Fall#2015,#C#Slide#132#

Sidebar: translation units

Here's add again:
int add(int a, int b)
{
 return a + b;
}

Here are some invalid uses of add:

add(3) // too few arguments
add(3,4,5) // too many arguments
add(3,"4") // second argument has wrong type

The C compiler is required to detect errors such as the above when the code is
being compiled.

Java also turns up such errors at compile time but in dynamically typed languages
like Ruby and Python, the above misuses of add wouldn't turn up until the
program was run.

CSC#352#Fall#2015,#C#Slide#133#

Type checking for function calls

A simplified rule: For the compiler to confirm that a function f is being properly
used, either (1) the definition of f or (2) a prototype for f must appear in a
translation unit before the first call of f in that unit.

Here's a skeleton of fcn1.c:

int add(int a, int b) // this is a definition of add
{
 return a + b;
}

int main(int argc, char *args[])
{
 int r1 = add(3,4);
 ...
}

The code above satisfies (1): add is defined before its first call, in main.

A call such as add(3) in main would noted as an error because the definition of
add has two arguments.

CSC#352#Fall#2015,#C#Slide#134#

Type-checking for function calls, continued

At hand:
A simplified rule: For the compiler to confirm that a function f is being used
as expected, either (1) the definition of f or (2) a prototype for f must appear
in a translation unit before the first call of f in that unit.

In the following code the definition for add appears after main, but a prototype
for add appears before main. That satisfies (2) above.

int add(int a, int b); // prototype for add

int main(int argc, char *args[]) // fcn1a.c
{ int r1 = add(3,4); ... }

int add(int a, int b) { return a + b; } // definition for add

A prototype specifies a function's return type and argument types but has no body.

CSC#352#Fall#2015,#C#Slide#135#

Type-checking for function calls, continued

At hand:
A simplified rule: For the compiler to confirm that a function f is being used
as expected, either (1) the definition of f or (2) a prototype for f must appear
in a translation unit before the first call of f in that unit.

Lots of old C code is still in service. To accommodate that old code (and old
coders) there is a far more complicated set of type-checking rules that is actually
used for function calls.

However, we'll write code that heeds our simplified rule, and fix any warnings
that arise when we don't get it right.

Note that changing -Wall to -Werror in your gcc alias causes all warnings to be
treated as errors. I hesitate to recommend -Werror in your gcc alias since that
breaks an occasional interesting experiment, but the Tester will use -Werror for C
programs.

CSC#352#Fall#2015,#C#Slide#136#

Type-checking for function calls, continued

In addition to describing the interface of a function, a prototype is a promise that
somewhere there exists a matching definition of the function. If no definition is
found, an error is produced:

% cat fcn1b.c
#include <stdio.h>
...
int add(int a, int b); // "prototype" for add

int main(int argc, char *args[])
{
 iprint(add(3,4));
}

% gcc fcn1b.c
/tmp/cckFCOPS.o: In function `main':
/home/whm/cw/c/fcn1b.c:8: undefined reference to `add'
collect2: ld returned 1 exit status

CSC#352#Fall#2015,#C#Slide#137#

A prototype is a promise

Let's see where printf appears in the translation unit:
% gcc -E fcn1.c | fgrep -nw printf
445:extern int printf (__const char *__restrict __format, ...);
719: printf("r1 is %d\n", r1);
721: printf("r2 is %d\n", r2);
722: printf("add(INT_MIN,INT_MAX)" " is %d\n",
add((-2147483647 - 1),2147483647));

The prototype for printf at line 445 of the translation unit allows the compiler to
confirm that the calls to printf at lines 719, 721, and 722 are correct.

Note that there's no definition for printf in the translation unit. printf comes
from the C library. gcc's last step is "linking", done by ld(1), and ld produces an
executable that either contains the code for printf or references the code in a
"shared library".

CSC#352#Fall#2015,#C#Slide#138#

A prototype is a promise, continued

Consider this:
% cat fcn2.c
int f();

int main(int argc, char *args[])
{
 f(3);
}

int f() { ... }

% gcc fcn2.c
%

Why doesn't gcc indicate that there's a mismatch between int f() and the call
f(3)?

CSC#352#Fall#2015,#C#Slide#139#

A curiosity

At hand––the following produces no errors.
int f();

int main(...) { f(3); }

int f() { ... }

Why doesn't gcc indicate that there's a mismatch in the number of arguments?

From C11:

A function prototype is a declaration of a function that declares the types of its
parameters.

The line int add(); is a function declaration but it is not a function prototype!

This distinction rises from the standard's support for legacy code.

Note that violations of our simplified "rule" on slide 134 are not seen as errors by
gcc! That "rule" is really just a recommended practice for us.

CSC#352#Fall#2015,#C#Slide#140#

A curiosity, continued

A prototype for a function that has no parameters is specified like this:
 int f(void);

Here's a fully correct version:

int f(void);

int main(...) { f(); } // f(3) will produce an error

int f(void) { ... }

I was surprised to see that following compiles without an error or warning:
int f() { ... }
int main(...) { f(3); }

gcc does generate an error for this:
int f(void) { ... }
int main(...) { f(3); }

CSC#352#Fall#2015,#C#Slide#141#

A curiosity, continued

It is common to put #include directives first in a source file, followed by
prototypes for functions that appear later in the file, followed by function
definitions. Example:

#include <stdio.h>
#include <string.h>

int next_word_len(...);
void add_words(...);

int main(int argc, char *args[]) { ...code... }

void add_words(...) { ...code... }

int next_word_len(...) { ...code... }

Note that the prototypes are "at file scope", i.e., they are not contained in a
function.

CSC#352#Fall#2015,#C#Slide#142#

Source file layout

Despite the name, some "functions" don't return a value. A return type of void
indicates that the "function" yields no value. Example:

void printN(int n, char c)
{

 while (n--)
 putchar(c);

}

CSC#352#Fall#2015,#C#Slide#143#

Not all "functions" are functions

If a function's return type is void, no value is specified in the return statement:
void f(int n)
{

 if (g(n))
 return;
 ...

}

There is an implicit return at the end of every routine.

The terms "routine" and "subroutine" are synonyms for "function" and are often
used to communicate the possibility that a "function" doesn't necessarily return a
value.

It is incorrect to refer to a C function as a "method".

CSC#352#Fall#2015,#C#Slide#144#

Not all "functions" are functions, continued

A function that calls itself, either directly or indirectly, is said to be recursive.
Like most modern languages, C supports recursive functions.

Here's a recursive function that prints the digits of a whole number:
void pdigits(int n)
{
 if (n == 0)
 return;
 else {
 pdigits(n / 10);
 printf("%d\n", n%10);
 }
}

int main(int argc, char *args[])
{
 pdigits(47819);
}

CSC#352#Fall#2015,#C#Slide#145#

Recursive functions

Output:
4
7
8
1
9

About pdgits I would say,
The recursion first "bottoms out"
and prints the digits on the way up.

In Java, methods can be overloaded: any number of methods can have the same
name as long as their signatures differ by the number of arguments and/or
argument type.

Example: (in Java)

public class X {
 int cube(int n) ...
 float cube(float n) ...
 double cube(double n) ...

 void f(int a) ...
 void f(int a, char b) ...
 }

Overloading is common in Java's library classes. Two examples:

% javap java.lang.String | grep valueOf | wc -l
9

% javap java.io.PrintStream | grep println | wc -l
10

CSC#352#Fall#2015,#C#Slide#146#

(No!) Overloading

Unfortunately, C does not support overloading of functions. There can only be
one globally-accessible function with a given name in an entire program.

One workaround is to use more descriptive names:

int cube(int n);
float fcube(float n);
double dcube(double n);

void f(int a);
void f2(int a, char b);

Try "man abs" and "man fabs".

We'll later see some alternatives provided by the preprocessor and "static"
functions.

Contrast: C++ does allow overloaded functions

CSC#352#Fall#2015,#C#Slide#147#

(No!) Overloading, continued

A variable declared inside a function definition is called a local variable.

It is said that a variable "lives" when storage is guaranteed to be reserved for it.

The lifetime of a local variable is from the time of entry into the "block"
containing the variable to the time that execution of code in the block ends.

One type of block is the body of a function. Consider this function:
void f()
{
 int i;

 ...executable code...

 int j;

 ...more code...
}

CSC#352#Fall#2015,#C#Slide#148#

Local variables

Two local variables, i and j, come into existence
when f() is called. i and j "live" until the
function returns.

If f is called many times, i and j come to life and
then die many times.

If f is recursive, there may be many instances of
i and j alive at the same time––each active call
will have its own copies of them.

Local variables are said to have automatic storage duration, one of four types of
"storage durations" by the C11 standard. (The other three are static, allocated, and
thread.)

In a typical C implementation, variables with automatic storage duration reside on
the execution stack but the standard does not require that a stack be present. The
standard simply requires that space be reserved somewhere when the local
variables are live.

A note on nomenclature:

The standard does not contain the term "local variable". Such variables are
referred to as "objects with automatic storage duration".

An in-between term is automatic variable.

CSC#352#Fall#2015,#C#Slide#149#

Local variables, continued

Automatic variables can also be declared in a compound statement. (A compound
statement is another type of block.)

In C, inner declarations hide outer declarations.

int main(int argc, char *args[])
{
 int a = 1, b = 2;
 if (...) {
 int c = 3, d = 4;
 // Can use a, b, c, d here

 if (...) {

 int a = 5; // hides outer a
 int c = 6; // hides outer c

 // a is 5, b is 2, c is 6, d is 4
 }

 // What are the values of a, b, c, and d here?
 }

 // What are the values of a, b, c, and d here?
}

CSC#352#Fall#2015,#C#Slide#150#

Local variables, continued

Note that C allows hiding that Java does
not: The inner declaration of a and c
would be considered an error in Java.

Inadvertently hiding a local variable or
parameter can produce a hard-to-find bug.

Fact 1:
The value of an automatic variable is not guaranteed to survive between lifetimes.

Fact 2:

Because storage for automatic variables is reused and variables are not initialized by
default, an automatic variable might happen to have a "leftover" value.

Example:
 int f(int i);

int main(int argc, char *args[]) // local1.c
{
 int a = f(1);
 int b = f(0);

 printf("a = %d, b = %d\n", a, b);
}

int f(int i)
{
 int v;

 if (i == 1) v = 10;

 return v;
}

CSC#352#Fall#2015,#C#Slide#151#

An "(un)lucky" program

Output:
a = 10, b = 10

Even though v is never assigned a value in
the second call of f, a reasonable value, 10,
is returned!

gcc does not produce a warning!

 int f(int i);
int main(int argc, char *args[]) // local1.c
{
 int a = f(1);
 int b = f(0);

 printf("a = %d, b = %d\n", a, b);
}

int f(int i)
{
 int v;

 if (i == 1) v = 10; // Imagine a block of complex code here, not

 // just "v =10". It might not be obvious that v is
 // never given a value.

 return v;
}

I call this a "lucky program"—its behavior is undefined by the standard but it produces
a reasonable-looking result.

In fact, this behavior is most unlucky because a change can produce a malfunction in
seemingly unrelated code.

CSC#352#Fall#2015,#C#Slide#152#

An "(un)lucky" program, continued

Let's add a trivial function g and call it between the two calls to f:

int f(int i);
void g() { int a = 99; }
int main(int argc, char *args[])
{
 int a = f(1);
 g();
 int b = f(0);

 printf("a = %d, b = %d\n",
 a, b);
}

int f(int i)
{
 int v;
 if (i == 1)
 v = 10;
 return v;
}

 CSC#352#Fall#2015,#C#Slide#153#

An "(un)lucky" program, continued

Output:
a = 10, b = 99

In real-world terms, a C program that has
worked "perfectly" for years might break
due to insertion of a seemingly innocuous
function call.

Similarly, simply removing an unused
variable might cause a "lucky" alignment to
disappear.

Is there a possibility of a bug like this in
Java? How can bugs like this be prevented
in C?

A variable declaration can appear outside of a function. Such a variable is called a
global variable or an external variable.

A global variable can be accessed or modified by any function.

Here is a cat-like program that uses a global variable to hold the character
currently being processed: (glob1.c)

int c; // c is a global variable

void gchar() { c = getchar(); }
void pchar() { putchar(c); }
int main(int argc, char *args[]) {
 while (1) {
 gchar();
 if (c == -1) break;
 pchar();
 }
}

CSC#352#Fall#2015,#C#Slide#154#

Global variables

The declaration of a global variable must
precede any use of the variable.

Note: This is not a good use of a global
variable; it simply shows the mechanics.

What happens if a we intend a function
to a have a local int c; but forget the
declaration?

It will use the global variable!

Using the "One Big Class" analogy, a global variable in C is analogous to a class
variable in Java.

Here's a Java approximation of the preceding C program.

public class cat0 {
 static int c;
 public static void main(String args[]) throws Exception {
 while (true) {
 gchar();
 if (c == -1)
 break;
 pchar();
 }
 }
 static void gchar() throws Exception { c = System.in.read(); }
 static void pchar() { System.out.write(c); }
}

CSC#352#Fall#2015,#C#Slide#155#

Global variables, continued

int debug = 0; // global variable
int main(int argc, char *argv[]) {
 if (/* -d option specified */)
 debug = 1;
 ...
}

void f(...)
{
 if (debug)
 printf(...);
 ...
}

void g(...)
{
 if (debug)
 show_mapping();
 ...
}

CSC#352#Fall#2015,#C#Slide#156#

Global variables, continued

One situation in which a global variable is
appropriate is when a variable is used by
so many routines that it would be
cumbersome to propagate it as a
parameter.

Here is a skeletal example that uses a
global variable debug to control the
generation of debugging output.

What's an alternative to having global
debug variable?

Add a debug parameter to all routines
that need to see if debugging is on.

If f() calls g(), g() calls h() and h()
needs debug, then debug needs to
be passed to/through all those routines.

Global variables have static storage duration. Variables with static storage
duration are initialized before execution of the program begins.

An implication of this rule is that an initializer for a global must be an expression
that can be evaluated at compile time. Here are some suitable initializations:

int debug = 0; // OK: Just a constant.

int secs_in_day = 24*60*60; // OK: Expression uses only constants.

int s2 = secs_in_day * 2; // Error: Uses a variable.

int x = h(); // Error: Calls a function. (Assuming h()

 // is not a macro.)

What's the benefit of guaranteed initialization before execution begins?

CSC#352#Fall#2015,#C#Slide#157#

Global variables, continued

Imagine a collection of library functions that require initialization of a data structure before
any of them can be used, but there's no guarantee which might be called first. Here's how
the library might solve the problem:

int library_intialized = 0;
void init_library()
{
 if (!library_intialized) {
 ...library initialization code...
 library_intialized = 1;
 }
}

double f(...)
{
 init_library();
 ...f's computations...
}

double g(...)
{
 init_library();
 ...g's computations...
}
 CSC#352#Fall#2015,#C#Slide#158#

Global variables, continued

If we couldn't count on library_initialized
being zero we'd need to require the user to
call init_library before using any of the
functions. (But would that really be a
burden?)

Recall that in our I/O examples we didn't
need to do anything special before calling
getchar(). Convenient, huh?

Unlike local variables, the standard specifies that variables with static storage
duration (such as globals) are initialized to zero (in lieu of explicit initialization).

The standard guarantees that the program below will output "x = 0" even though
there's no initializing value specified for x.

int x; // global
int main(int argc, char *args[])
{
 printf("x = %d\n", x);
}

Globals that are float or double are similarly set to an arithmetic zero. Various
types we haven't seen yet are similarly set to a type-specific "zero".

We'll see later see some cases where this zero-initialization guarantee provides
significant performance improvements with arrays.

CSC#352#Fall#2015,#C#Slide#159#

Global variables, continued

If a variable inside a function is declared as static, its value survives across
function invocations. Example:

int gen_id() // static3.c
{
 static int next_id = 1000;
 return next_id++;
}

int main(int argc, char *args[])
{
 iprint(gen_id());
 iprint(gen_id());
 iprint(gen_id());
}

Would a global variable next_id work just as well?

With a static local variable we be sure that only the code in the function has
access to the variable. (Not counting a wild memory reference elsewhere!)

CSC#352#Fall#2015,#C#Slide#160#

Static variables

Output:
gen_id() is 1000
gen_id() is 1001
gen_id() is 1002

In essence, a static local is a global variable that can be referenced by only one
function. Along with limiting the variables scope to the function it is self-
documenting code that clearly indicates that the variable is associated with the
function.

Conceptually, a static local is initialized on the first call of the function that
contains it.

Static locals have static storage duration, just like globals, and follow the same
initialization rules:

•  An initializer for a static variable must be an expression that can be
evaluated at compile-time.

•  If no initializer is specified, the initial value is a type-appropriate zero.

There is no counterpart in Java for static local variables.

CSC#352#Fall#2015,#C#Slide#161#

Static variables, continued

A little Java review:
A Java method is an encapsulation of code that has access to some number of
fields that are implicitly associated with it by virtue of being in the same class.

•  static methods have access to static fields, which are often called class
variables.

•  non-static methods have access to both static and non-static fields. Non-
static fields are often called instance variables.

Like a Java method, a C function is an encapsulation of code.

Unlike a Java method, there is no implicit association of data with a C function,
other than the function's local variables.

CSC#352#Fall#2015,#C#Slide#162#

Java methods vs. C functions

Java:
Programs are composed of classes, which associate code (methods) and data
(fields).

Access to the fields of a class can be controlled with access modifiers like
public and private.

C:

Programs are composed of functions that have access to all "global" variables
and file-scope variables in the same file.

CSC#352#Fall#2015,#C#Slide#163#

Java methods vs. C functions, continued

A little gdb

CSC#352#Fall#2015,#C#Slide#164#

gdb is the GNU Debugger.

There are two common uses of gdb:

1)  gdb can be used to control the execution of a program, setting breakpoints,
executing line by line, and examining variables as desired.

2)  gdb can be used to examine a "core dump" (a core file) and determine the
state of the program when the operating system terminated its execution.

gdb relies heavily on "debugging information" that by default is not included in
an executable.

gcc's -g option directs gcc to include debugging information in an executable.

Our gcc alias includes -g.

CSC#352#Fall#2015,#C#Slide#165#

gdb basics

gdb has very complete built-in documentation. Just typing "help" shows the
various categories of gdb commands:

% gdb -q # -q for "quiet" startup
(gdb) help
List of classes of commands:

aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without stopping the
program
user-defined -- User-defined commands
...more...
(gdb)

CSC#352#Fall#2015,#C#Slide#166#

gdb basics, continued

We'll be working with examples from fall15/c/gdb.

loop1 is an executable for loop1.c, created with gcc -o loop1 loop1.c.

To run a program under the control of gdb, simply specify the executable on the
command line:

% gdb -q loop1
Reading symbols from /p1/hw/whm/352/loop1...done.
(gdb)

When gdb starts up, it readies the target executable for execution but gdb does
not start it running.

The (gdb) prompt indicates that gdb is ready to proceed.

CSC#352#Fall#2015,#C#Slide#167#

A gdb session

gdb's list command is used to display the source code associated with the
executable. If loop1.c were not in the same directory as loop1, we'd need to
take an additional step to tell gdb the location of loop1.c.

 % gdb -q loop1
Reading symbols from /p1/hw/whm/352/loop1...done.
(gdb) list
2
3 void print(int n)
4 {
5 if (n % 2 == 1)
6 printf("The value %d is odd\n", n);
7 }
8
9 int main(int argc, char *args[])
10 {
11 int i = 1, N = 10;

CSC#352#Fall#2015,#C#Slide#168#

A gdb session

To see more of the program we might press RET (ENTER), which causes the last
command (list, in this case) to be repeated:

(gdb) RET
12
13 while (i <= N) {
14 print(i);
15 i++;
16 }
17
18 printf("All done!\n");
19 }
(gdb) RET
Line number 20 out of range; loop1.c has 19 lines.
(gdb)

The command list 14 shows a "window" of lines around line 14. Try it!

CSC#352#Fall#2015,#C#Slide#169#

A gdb session, continued

Like most gdb commands, list has several forms:
(gdb) help list
List specified function or line.
With no argument, lists ten more lines after or around previous listing.
"list -" lists the ten lines before a previous ten-line listing.
One argument specifies a line, and ten lines are listed around that line.
Two arguments with comma between specify starting and ending lines to list.
Lines can be specified in these ways:
 LINENUM, to list around that line in current file,
 FILE:LINENUM, to list around that line in that file,
 FUNCTION, to list around beginning of that function,
 FILE:FUNCTION, to distinguish among like-named static functions.
 *ADDRESS, to list around the line containing that address.
With two args if one is empty it stands for ten lines away from the other arg.

Examples:
list 3,30 // list lines 3 through 30
list print // list code around the beginning of the 'print' function
list scanner.c:30,90 // list lines 30 through 90 in scanner.c

CSC#352#Fall#2015,#C#Slide#170#

A gdb session, continued

The run command causes the target program to be run:

(gdb) run
Starting program: /p1/hw/whm/352/loop1
The value 1 is odd
The value 3 is odd
The value 5 is odd
The value 7 is odd
The value 9 is odd
All done!
[Inferior 1 (process 21093) exited normally]
(gdb)

The program ran to completion without encountering any errors.

CSC#352#Fall#2015,#C#Slide#171#

A gdb session, continued

A common reason to run a program with gdb is to pause execution at a
designated point (or points). The break command sets a "breakpoint".

If a function name is specified as the argument of break, a breakpoint is
established at the first line of the function that has executable code.

Setting a breakpoint in main gives us a chance to get control as soon as the
program starts running:

(gdb) break main
Breakpoint 1 at 0x40058e: file loop1.c, line 11.

A subsequent run command starts the program running. The breakpoint in main
is hit immediately, and the first line with executable code is displayed:

(gdb) run
Starting program: /p1/hw/whm/352/loop1

Breakpoint 1, main (argc=1, args=0x7fffffffd6c8) at loop1.c:11
11 int i = 1, N = 10;

CSC#352#Fall#2015,#C#Slide#172#

A gdb session, continued

For reference:
(gdb) run
Starting program: /p1/hw/whm/352/loop1

Breakpoint 1, main (argc=1, args=0x7fffffffd6c8) at loop1.c:11
11 int i = 1, N = 10;

Variables can be examined using the print command.

(gdb) print i
$1 = 0
(gdb) print N
$2 = 0

Why are the values of i and N wrong?

 The initializations haven't been done yet.

CSC#352#Fall#2015,#C#Slide#173#

A gdb session, continued

For reference:
Breakpoint 1, main (argc=1, args=0x7fffffffd6c8) at loop1.c:11
11 int i = 1, N = 10;
(gdb) print i
$1 = 0
(gdb) print N
$2 = 0

The next command causes execution of one statement:

(gdb) next
13 while (i <= N) {
(gdb) print i
$3 = 1
(gdb) print N
$4 = 10

CSC#352#Fall#2015,#C#Slide#174#

A gdb session, continued

For reference:
(gdb) next
13 while (i <= N) {

The next command "steps over" function calls.

(gdb) n
14 print(i);
(gdb) RET (ENTER, repeats the last command, n(ext))
The value 1 is odd
15 i++;
(gdb) RET
13 while (i <= N) {
(gdb) RET
14 print(i);
(gdb) RET
15 i++;
(gdb) p i
$5 = 2
(gdb) n
13 while (i <= N) {
(gdb) RET
14 print(i);

CSC#352#Fall#2015,#C#Slide#175#

A gdb session, continued

The step command "steps into" function calls, rather than over them.
(gdb) n
13 while (i <= N) {
(gdb) RET
14 print(i);
(gdb) step
print (n=4) at loop1.c:5
5 if (n % 2 == 1)

The above shows that we've stepped into print, the parameter n is 4, and we're
ready to execute line 5. Let's look around with list:

(gdb) list 2,7
2
3 void print(int n)
4 {
5 if (n % 2 == 1)
6 printf("The value %d is odd\n", n);
7 }

CSC#352#Fall#2015,#C#Slide#176#

A gdb session, continued

The bt command (also known as where) shows a "back trace" of the stack:
(gdb) bt
#0 print (n=4) at loop1.c:5
#1 0x00000000004005a8 in main (argc=1, args=0x7fffffffd6c8) at
loop1.c:14

bt shows that we're in print, at line 5, and that print was called from line 14.
(gdb) list 13,15
13 while (i <= N) {
14 print(i);
15 i++;

CSC#352#Fall#2015,#C#Slide#177#

A gdb session, continued

The print command is not limited to variables; its argument is an arbitrary
expression:

(gdb) p n
$6 = 4
(gdb) p n % 3
$7 = 1
(gdb) p n % 2 == 1
$8 = 0
(gdb) p print(n*2+1) // Note: this calls print
The value 9 is odd
$9 = void
(gdb) p i
No symbol "i" in current context.

i was not found because i is a local variable in main and our current context is
print.

CSC#352#Fall#2015,#C#Slide#178#

A gdb session, continued

At hand: i is not found because i is a local variable in main and our current
context is print.

(gdb) p i
No symbol "i" in current context.

The up and down commands can be used to shift the focus up or down the call
stack:

(gdb) bt
#0 print (n=4) at loop1.c:5
#1 0x00000000004005a8 in main (argc=1, args=0x7fffffffd6c8) at
loop1.c:14
(gdb) up
#1 0x00000000004005a8 in main (argc=1, args=0x7fffffffd6c8) at
loop1.c:14
14 print(i);
(gdb) p i
$10 = 4
(gdb) down
#0 print (n=4) at loop1.c:5
5 if (n % 2 == 1)
(gdb) p n
$11 = 4

CSC#352#Fall#2015,#C#Slide#179#

A gdb session, continued

A break point can be set by line number:
(gdb) list 3,7
3 void print(int n)
4 {
5 if (n % 2 == 1)
6 printf("The value %d is odd\n", n);
7 }
(gdb) b 5
Breakpoint 3 at 0x40054f: file loop1.c, line 5.

The continue command causes execution to resume and continue until a breakpoint is
hit or the program terminates.

(gdb) continue
Continuing.

Breakpoint 3, print (n=5) at loop1.c:5
5 if (n % 2 == 1)
(gdb)
Continuing.
The value 5 is odd

Breakpoint 3, print (n=6) at loop1.c:5
5 if (n % 2 == 1)

 CSC#352#Fall#2015,#C#Slide#180#

A gdb session, continued

A breakpoint can be deleted. "info break" (i b) lists the current set of
breakpoints. d(elete) is used to delete breakpoints.

(gdb) i b
Num Type Disp Enb Address What
1 breakpoint keep y 0x000000000040058e in main at loop1.c:11
 breakpoint already hit 1 time
3 breakpoint keep y 0x000000000040054f in print at loop1.c:5
 breakpoint already hit 2 times
(gdb) d 3

If execution is continued, and no breakpoints are encountered, the program runs to
completion.

(gdb) c
Continuing.
The value 7 is odd
The value 9 is odd
All done!
[Inferior 1 (process 30292) exited normally]

CSC#352#Fall#2015,#C#Slide#181#

A gdb session, continued

A breakpoint can be conditionalized:
(gdb) b 8 if c == '\n'
Breakpoint 2 at 0x40055c: file dumpbytes.c, line 8.
(gdb) run < 3bytes
0000: 57 (9)

Breakpoint 2, main (argc=1, args=0x7fffffffd698) at dumpbytes.c:8
8 printf("%04d: %3d (%c)\n", byte_num++, c, c);
(gdb) p c
$7 = 10
(gdb) c
Continuing.
0001: 10 (
)
0002: 49 (1)
0003: 48 (0)

Breakpoint 2, main (argc=1, args=0x7fffffffd698) at dumpbytes.c:8
8 printf("%04d: %3d (%c)\n", byte_num++, c, c);

CSC#352#Fall#2015,#C#Slide#182#

Conditional breakpoints

If a gdb-controlled program reads from standard input, it waits for the user to
enter a line:

% gdb -q dumpbytes
Reading symbols from /p1/hw/whm/352/dumpbytes...done.

(gdb) b 7
Breakpoint 1 at 0x40055a: file dumpbytes.c, line 7.

(gdb) run
Starting program: /p1/hw/whm/352/dumpbytes

Breakpoint 1, main (argc=1, args=0x7fffffffd6c8) at dumpbytes.c:7
7 while ((c = getchar()) != EOF)
(gdb) n
x1 NOTE: The user typed "x1 RET"
8 printf("%04d: %3d (%c)\n", byte_num++, c, c);
(gdb) p/c c (Print using c(har) format)
$1 = 120 'x'

CSC#352#Fall#2015,#C#Slide#183#

I/O issues

The user entered x1RET. We're stopped at line 8:
8 printf("%04d: %3d (%c)\n", byte_num++, c, c);
(gdb) p/c c
$1 = 120 'x'

Let's execute one line with next:
(gdb) n
0000: 120 (x) (Output from printf, at line 8)
7 while ((c = getchar()) != EOF)
(gdb)

After output from printf (above) we're ready to read the next character.

(gdb) n
8 printf("%04d: %3d (%c)\n", byte_num++, c, c);
(gdb) n
0001: 49 (1)
7 while ((c = getchar()) != EOF)

Why didn't gdb pause for input when executing the getchar() on line 7?

Because the user has entered three characters: 'x', '1', and newline.
getchar() returned the next unread character, the '1'.

 CSC#352#Fall#2015,#C#Slide#184#

I/O issues, continued

gdb allows shell-like redirection with run:

% gdb -q dumpbytes
(gdb) b 8
(gdb) run < 3bytes

Breakpoint 1, main (argc=1, args=0x7fffffffd698) at dumpbytes.c:8
8 printf("%04d: %3d (%c)\n", byte_num++, c, c);

(gdb) p/c c
$1 = 57 '9'
(gdb) c
Continuing.
0000: 57 (9)

Breakpoint 1, main (argc=1, args=0x7fffffffd698) at dumpbytes.c:8
8 printf("%04d: %3d (%c)\n", byte_num++, c, c);
(gdb) c
Continuing.
0001: 10 (
)

Breakpoint 1, main (argc=1, args=0x7fffffffd698) at dumpbytes.c:8
8 printf("%04d: %3d (%c)\n", byte_num++, c, c);

CSC#352#Fall#2015,#C#Slide#185#

I/O issues, continued

The commands command specifies one or more commands to be executed when a
specific breakpoint is hit.

(gdb) b 8
Breakpoint 1 at 0x40055c: file dumpbytes.c, line 8.
(gdb) commands 1
Type commands for breakpoint(s) 1, one per line. End with a line
saying just "end".
>p/c c
>p byte_num
>end
(gdb) run < 3bytes
Breakpoint 1, main (argc=1, args=0x7fffffffd698) at dumpbytes.c:8
8 printf("%04d: %3d (%c)\n", byte_num++, c, c);
$1 = 57 '9'
$2 = 0
(gdb) c
Continuing.
0000: 57 (9)

Breakpoint 1, main (argc=1, args=0x7fffffffd698) at dumpbytes.c:8
8 printf("%04d: %3d (%c)\n", byte_num++, c, c);
$3 = 10 '\n'
$4 = 1

CSC#352#Fall#2015,#C#Slide#186#

The commands command

If continue is the last command, execution will
continue after executing the breakpoint's commands.

There's a lot more that can be done with gdb. A sampling:
•  finish Run the current function to completion.
•  search Search source code for a string.
•  whatis Show the type of an expression.
•  x Examine memory.

The info command can show information about dozens of things. Two of them:
•  info locals Shows the value of all local variables in the current function.
•  info reg Shows the machine registers.

Remember that the print command handles arbitrary expression, including
function calls. It can also be used to set variables: p i = 7

Keep in mind that RET repeats the last command—very handy!

CSC#352#Fall#2015,#C#Slide#187#

Lots more with gdb

Memory layout

CSC#352#Fall#2015,#C#Slide#188#

C's unary & operator is relatively unique among programming languages: it
produces the memory address of its operand, which is often a variable.

int main(int argc, char **argv) // amp1.c
{
 int i; float f; int j;
 psize(&i);
 printf("&argc = %lu (%p)\n",
 &argc, &argc);
 printf("&i = %lu (%p)\n", &i, &i);
 printf("&f = %lu (%p)\n", &f, &f);
 printf("&j = %lu (%p)\n", &j, &j);
}

Output:

sizeof(&i) is 8
&argc = 140725604223324 (0x7ffd3ba6895c)
&i = 140725604223332 (0x7ffd3ba68964)
&f = 140725604223336 (0x7ffd3ba68968)
&j = 140725604223340 (0x7ffd3ba6896c)

CSC#352#Fall#2015,#C#Slide#189#

Using & to explore memory layout

psize(&i) shows that addresses are
eight bytes long––64 bits.

The %lu format specifier means
long unsigned; %p means
pointer. Both expect a 64-bit value.

%lu generates warnings but we'll
use it because it's decimal, not hex.

int main(int argc, char **argv) // amp1a.c
{
 int i; float f; int j;
 printf("&argc = %lu\n", &argc);
 printf("&i = %lu\n", &i);
 printf("&f = %lu\n", &f);
 printf("&j = %lu\n", &j);
}

fall15/bin/dstack is an Icon program that looks for strings of the form &<id> =
<number> and draws an ASCII picture of memory.

% amp1a | dstack (fall15/bin is in my PATH)
 |------------|
140729361409420 | j |
 |------------|
140729361409416 | f |
 |------------|
140729361409412 | i |
 |------------|
140729361409408 | ... |
 |------------|
140729361409404 | argc |
 |------------|

CSC#352#Fall#2015,#C#Slide#190#

Memory layout, continued

Note that dstack orders objects
so that addresses descend down
the page––high memory is on
top.

Let's explore a function call.
int sum(int a, int b);

int main(int argc, char *args[]) // amp2.c
{
 int i = 10, j = 20;

 printf("&i = %lu, &j = %lu\n",

 &i, &j);
 sum(i, j);
}

int sum(int a, int b)
{
 int result;

 printf("In sum, &a = %lu, &b = %lu\n",
 &a, &b);
 printf("&result = %lu\n", &result);
 result = a + b;
 return result;
}

CSC#352#Fall#2015,#C#Slide#191#

Memory layout, continued
 % amp2 | dstack -4
 |------------|
...4860 | j |
 |------------|
...4856 | i |
 |------------|
 <10 words>
 |------------|
...4812 | result |
 |------------|
 <3 words>
 |------------|
...4796 | a |
 |------------|
...4792 | b |
 |------------|

Because the parameters and local of sum are at lower addresses
on the stack than main, we say that the stack is down-growing—
it grows towards the low end of memory. This is common.

Another aspect of memory layout is the placement of global variables and static
locals.

int gi1; // global variable
float gf1; // ditto
int gi2; // ditto
int main(...) // amp3.c
{
 int i;
 static int s;

 paddr(&gi1); // new macro!
 paddr(&gf1);
 paddr(&gi2);
 paddr(&i);
 paddr(&s);
 paddr(&main);
 paddr(&printf);
}

CSC#352#Fall#2015,#C#Slide#192#

Memory layout, continued

 |------------|
140725062457132 | i |
 |------------|
 5181264m words
 |------------|
 6295612 | gi2 |
 |------------|
 6295608 | gi1 |
 |------------|
 6295604 | gf1 |
 |------------|
 6295600 | s |
 |------------|
 <525002 words>
 |------------|
 4195588 | main |
 |------------|
 <64 words>
 |------------|
 4195328 | printf |
 |------------| Note that it's possible to get the address of

executable code for a function.

Different C compilers may use different stack layouts even though the target
architecture is the same. Let's try clang on OS X.

% clang --version
Apple LLVM version 6.0 (clang-600.0.56) (based on LLVM 3.5svn)
Target: x86_64-apple-darwin14.0.0
Thread model: posix
% clang amp2.c
% a.out | dstack
 |------------|
140734661251196 | i |
 |------------|
140734661251192 | j |
 |------------|
 <6 words>
 |------------|
140734661251164 | a |
 |------------|
140734661251160 | b |
 |------------|
140734661251156 | result |
 |------------|

CSC#352#Fall#2015,#C#Slide#193#

Memory layout, continued

% amp2 | dstack (gcc on lectura)
 |------------|
140729433561660 | j |
 |------------|
140729433561656 | i |
 |------------|
 <10 words>
 |------------|
140729433561612 | result |
 |------------|
 <3 words>
 |------------|
140729433561596 | a |
 |------------|
140729433561592 | b |
 |------------|

Most Java programmers have no knowledge of typical memory layouts in Java
virtual machines and are none the worse for it.

The C standard specifies nothing at all about memory layout, and doesn't even
require a stack.

Is it important to be cognizant of memory layout in C?

CSC#352#Fall#2015,#C#Slide#194#

Memory layout––who cares?

We've been writing main like this:
int main(int argc, char *args[])
{

 ...
}

The C11 standard allows this, too:

int main(void)
{

 ...
}

The standard also allows this:
int main()
{

 ...
}

We'll start avoiding the clutter when we're not using main's arguments.

CSC#352#Fall#2015,#C#Slide#195#

A loose end––many ways to say main

Arrays

CSC#352#Fall#2015,#C#Slide#196#

Like most languages, C supports the concept of an array—a named sequence of
values that can be accessed with integer subscripts.

General form of an array declaration:
type name[number_of_elements];

Example:

int main()
{
 int a[3];
 ...
}

a is declared to be an array that has space for three int values.

Like Java, C uses zero-based array indexing: the first element in a is a[0], the
second is a[1], and the third is a[2].

An array can be declared as a local, as above, or a global.

CSC#352#Fall#2015,#C#Slide#197#

Array basics

Contrast with Java:
int a[] = new int[3];

At hand:
int main()
{
 int a[3];
 ...
}

In the same function where an array is declared the size of the array in bytes
can be queried with sizeof:

sizeof(a) // produces 12, assuming sizeof(int) is 4

Note that sizeof produces the number of bytes. Here's a good way to calculate
the number of elements in a local or global array named a:

 sizeof(a) / sizeof(a[0])

There is no analog for Java's array.length.

As an alternative, how about sizeof(a) / sizeof(int) instead?

If the type of a is changed the divisor, sizeof(a[0]), is still correct.

CSC#352#Fall#2015,#C#Slide#198#

Array basics, continued

C expressions involving array elements are identical to the equivalent expression
in Java. A simple example:

int main() // array4.c
{
 int values[5]; // An array of 5 ints

 values[0] = 1;
 values[1] = 2;
 values[2] = values[0] + values[1];
 values[values[2]] = 10;
 values[4] = 20;

for (int i = 0; i < sizeof(values) / sizeof(values[0]); i++)
 printf("values[%d] = %d\n", i, values[i]);
}

Exercise: Step through the program with gdb. (The sooner you get comfortable
with gdb, the better!)

CSC#352#Fall#2015,#C#Slide#199#

Array basics, continued

Output:
values[0] = 1
values[1] = 2
values[2] = 3
values[3] = 10
values[4] = 20

In Java, arrays ALWAYS reside in the heap.

In C, arrays that have automatic storage duration (i.e., are locals) reside on the
stack, alongside other local variables. Array elements are always stored in
consecutive, ascending memory locations.

int main() // array1.c
{
 int i;
 int a[3];
 int j;

 printf("&i = %u\n", &i);
 for (i = 0; i < 3; i++)
 printf("&a[%d] = %u\n",
 i, &a[i]);
 printf("&j = %u\n", &j);
}

CSC#352#Fall#2015,#C#Slide#200#

Array basics, continued

% array1 | dstack -4
 |------------|
...6796 | j |
 |------------|
...6792 | i |
 |------------|
 <3 words>
 |------------|
...6776 | a[2] |
 |------------|
...6772 | a[1] |
 |------------|
...6768 | a[0] |
 |------------|

Arrays can be initialized by specifying a sequence of values in braces:
double vals[5] = {1.23, 1e2, .023, 7.5, 1e-2};

for (i = 0; i < sizeof(vals)/sizeof(vals[0]); i++)

 printf("vals[%d] = %g\n", i, vals[i]);

Output:

vals[0] = 1.23
vals[1] = 100
vals[2] = 0.023
vals[3] = 7.5
vals[4] = 0.01

If initialization is specified, the size can be omitted:

short primes[] = { 3, 5, 7, 11, 13 };
printf("sizeof(primes) = %d\n", sizeof(primes));

Output:

sizeof(primes) = 10

CSC#352#Fall#2015,#C#Slide#201#

Array initialization

Previous examples:
double vals[5] = {1.23, 1e2, .023, 7.5, 1e-2};

short primes[] = { 3, 5, 7, 11, 13 };

Given a size specification, if too many initializers are specified it is a compile-
time warning or error. If too few initializers are specified, the remaining values
are initialized with a type-appropriate zero.

Examples:

int a[10] = {10, 2, 4} ; // initializes a[3] through a[9] with 0

double b[1] = {}; // initializes b[0] with 0.0

int c[2] = {10, 2, 4}; // warning with gcc

What's the difference between the following two?

int x1[10];
int x2[10] = {};

CSC#352#Fall#2015,#C#Slide#202#

Array initialization, continued

The size of a local array can be specified at run-time:
void f(int n); // vla1.c
int main()
{
 f(9);
 f(3);
}
void f(int n)
{
 int a[n];
 printf("sizeof(a) = %zu\n", sizeof(a));
}

a is a variable length array, or VLA.

Once created, the size of a VLA doesn't vary. The potential variability is between
different instantiations (lifetimes) of the array.

VLAs create a special case for sizeof—the size of a VLA cannot be computed
until the array is created.
 CSC#352#Fall#2015,#C#Slide#203#

Variable length arrays

Output:
sizeof(a) = 36
sizeof(a) = 12

For reference:
void f(int n)
{
 int a[n];
 printf("sizeof(a) = %d\n", sizeof(a));
}

Here's what a looks like in gdb:

(gdb) n
11 int a[n];
(gdb) p a
$1 = 0x4005a0

We can use an artificial array to examine a:

(gdb) p a[0]@n
$5 = {611092808, 1686719704, -1924603868, 537424685, 630017024,
2099308, 611092812, 1955155176, -1991446492}

p a[0]@n directs gdb to imagine there's an n-element array that starts with a[0], and
print it.

Note that the artificial array syntax is gdb-specific; it is not a part of C.

CSC#352#Fall#2015,#C#Slide#204#

Variable length arrays, continued

In Java, array accesses are bounds-checked: an out of bounds reference generates an
exception.

In C, array accesses are not bounds checked. Example:

int main() // arrayoob1.c
{
 int i = 1;
 int a[3];
 int j = 2;

 a[0] = 10;
 a[6] = 50;
 a[7] = 60;

 printf("i = %d, j = %d\n", i, j);
}

Output:

i = 50, j = 60

What happened?

CSC#352#Fall#2015,#C#Slide#205#

Out-of-bounds references

Let's add some prints for dstack:
 int main() // arrayoob1.c

{
 int i = 1;
 int a[3];
 int j = 2;

 a[0] = 10;
 a[6] = 50;
 a[7] = 60;

 printf("i = %d, j = %d\n", i, j);

 for (i = 0; i <= 7; i++)
 printf("&a[%d] = %lu\n", i, &a[i]);

 paddr(&i);
 paddr(&j);
}

CSC#352#Fall#2015,#C#Slide#206#

Out-of-bounds references, continued

Output:
i = 50, j = 60

% arrayoob1|dstack -4
 |------------|
...8476 | a[7],j |
 |------------|
...8472 | a[6],i |
 |------------|
...8468 | a[5] |
 |------------|
...8464 | a[4] |
 |------------|
...8460 | a[3] |
 |------------|
...8456 | a[2] |
 |------------|
...8452 | a[1] |
 |------------|
...8448 | a[0] |
 |------------|

Let's get rid of j:
int main() // arrayoob1a.c
{
 int i = 1;
 int a[3];

 a[0] = 10;
 a[6] = 50;
 a[7] = 60;

 printf("i = %d\n", i);

 for (i = 0; i <= 7; i++)
 printf("&a[%d] = %lu\n", i, &a[i]);
 paddr(&i);
}

CSC#352#Fall#2015,#C#Slide#207#

Out-of-bounds references, continued
% arrayoob1a
i = 1
&a[0] = 140723248558656
&a[1] = 140723248558660
&a[2] = 140723248558664
&a[3] = 140723248558668
&a[4] = 140723248558672
&a[5] = 140723248558676
&a[6] = 140723248558680
&a[7] = 140723248558684
&i = 140723248558668
Segmentation fault (core dumped)

% gdb -q arrayoob1a core
...
(gdb) bt
#0 0x0000003c00000032 in ?? ()
#1 0x0000000000000000 in ?? ()

With j no longer "taking the bullet",
more critical data gets hit!

Arrays as function parameters

CSC#352#Fall#2015,#C#Slide#208#

An array can be passed as an argument to a function.

Here's a function that fills an array a with N copies of value:
void fill(int a[], int N, int value)
{
 for (int i = 0; i < N; i++)
 a[i] = value;
}

Usage:
int main() // arraypar1.c
{
 int vals[5];
 fill(vals, sizeof(vals) / sizeof(vals[0]), 100);
}

When done, all five elements of vals hold 100.

Why not do fill(vals, 5, 100)?

Exercise: Use gdb to confirm that fill() works.

CSC#352#Fall#2015,#C#Slide#209#

Arrays as parameters

When an array is an argument, the parameter essentially becomes another name
for the caller's array. Example:

void fill(int a[], int N, int value)
{
 printf("&a[0] = %lu\n", &a[0]);
 for (int i = 0; i < N; i++)
 a[i] = value;
}
int main() // arraypar1a.c
{
 int vals[5];
 printf("&vals[0] = %lu\n", &vals[0]);
 fill(vals, sizeof(vals) / sizeof(vals[0]), 100);
}

A simple but accurate view: a in fill is another name for vals in main.

Inside fill, a[i] refers to the same word (an int) in memory as vals[i]. An
assignment to a[i] in fill changes vals[i] in main.

CSC#352#Fall#2015,#C#Slide#210#

Arrays as parameters, continued

Output:
&vals[0] = 140736139990368
&a[0] = 140736139990368

Another example:
void reverse(int src[], int dest[], int nelems);
void a_print(int a[], int nelems);

int main() // array8.c
{
 int N = 10, vals[N], rvals[N];

 for (int i = 0; i < N; i++)
 vals[i] = i*i;

 a_print(vals, N);
 reverse(vals, rvals, N);
 a_print(rvals, N);
}

void reverse(int src[], int dest[], int nelems)
{
 int spos = nelems - 1, dpos = 0;

 while (dpos < nelems)
 dest[dpos++] = src[spos--];
}

CSC#352#Fall#2015,#C#Slide#211#

Arrays as parameters, continued

Output:
 0 1 4 9 16 25 36 49 64 81
81 64 49 36 25 16 9 4 1 0

void a_print(int a[], int nelems)
{
 for (int i = 0; i < nelems; i++)
 printf("%2d ", a[i]);
 printf("\n");
}

Problem: Write int count_equal(int value, int a[], int nelems), that returns the
number of elements in a that are equal to value.

Usage:

int a1[] = {2, 3, 1, 5, 4, 1, 1, 4};
int n = sizeof(a1) / sizeof(a1[0]);
iprint(count_equal(1, a1, n));
iprint(count_equal(5, a1, n));

Solution:
int count_equal(int value, int a[], int nelems) // arraypar3.c
{
 int count = 0;
 for (int i = 0; i < nelems; i++)
 if (a[i] == value)
 count++;
 return count;
}

CSC#352#Fall#2015,#C#Slide#212#

Arrays as parameters, continued

Output:
count_equal(1, a1, n) is 3
count_equal(5, a1, n) is 1

This Java method calculates the sum of the integers in an array:
static int sum(int a[])
{
 int sum = 0;
 for (int i = 0; i < a.length; i++) // Java code!!
 sum += a[i];
 return sum;
}

Here is an attempt at a C version, but IT DOES NOT WORK!!

int sum(int a[])
{
 int sum = 0;
 for (int i = 0; i < sizeof(a)/sizeof(a[0]); i++)
 sum += a[i];
 return sum;
}
intmain() // arraypar2.c
{
 int a[] = {10, 20, 30};
 printf("sum = %d\n", sum(a)); // Output: sum = 30 (!)
}

CSC#352#Fall#2015,#C#Slide#213#

Pitfall: Using sizeof with an array parameter

Let's investigate:
int sum(int a[])
{
 printf("sizeof(a) = %zu, sizeof(a[0]) = %zu\n",

 sizeof(a), sizeof(a[0]));
 int sum = 0;
 for (int i = 0; i < sizeof(a)/sizeof(a[0]); i++)
 sum += a[i];
 return sum;
}

Call:
int a[] = {10, 20, 30};
printf("sum = %d\n", sum(a));

Output:

sizeof(a) = 8, sizeof(a[0]) = 4
sum = 30

What's going on?

CSC#352#Fall#2015,#C#Slide#214#

Pitfall: Using sizeof with an array parameter, continued

Given an array a,
 int a[5];

the expression
a

is equivalent to

&a[0]

Therefore, the call

 sum(a)

is completely equivalent to

 sum(&a[0])

When an array is a function argument, what the function actually gets called with
is the address of the first element of the array!

CSC#352#Fall#2015,#C#Slide#215#

Sidebar: a and &a[0]

At hand:
The calls sum(a) and sum(&a[0]) are completely equivalent. In both cases
what actually gets passed to sum is the address of the first element of a.

Here's sum again:

int sum(int a[])
{
 printf("sizeof(a) = %%zu, sizeof(a[0]) = %zu\n", sizeof(a),
sizeof(a[0]));
 ...
}

Output:
sizeof(a) = 8, sizeof(a[0]) = 4

Given sum(int a[]), and the equivalence of a and &a[0],
 sizeof(a) is equivalent to sizeof(&a[0])

The size of an address with gcc defaults on lectura is 8 bytes, so sizeof(a) is 8!

CSC#352#Fall#2015,#C#Slide#216#

Sidebar: a and &a[0], continued

Here's the faulty routine again:
int sum(int a[])
{
 int sum = 0;
 for (int i = 0; i < sizeof(a)/sizeof(a[0]); i++)
 sum += a[i];
 return sum;
}

CSC#352#Fall#2015,#C#Slide#217#

Pitfall: Using sizeof with an array parameter, continued

sizeof(a), for any array parameter a of any type and size is 8!

(with gcc as we're using it)

NEVER USE sizeof(a) TO COMPUTE THE LENGTH OF AN
ARRAY PASSED AS A FUNCTION PARAMETER.

In Java, array.length works because the array's internal data structure (usually)
includes a length field. If we ran the JVM executable with gdb, we could
examine each array and find its length.

We can say, "Java maintains run-time array length information."

C does not maintain run-time array length information (with the exception of
variable length arrays––VLAs.)

Imagine one million two-element char arrays. How many bytes would be
required to store those arrays?

Two million bytes.

Imagine that each array had run-time length information: a four-byte int. How
many bytes would be required to hold the length information for those one million
arrays?

Four million bytes.
(Twice as much as the data itself––200% overhead!)

CSC#352#Fall#2015,#C#Slide#218#

Run-time array length information

Let's compile this C function without -g:
% cat arraylen1.c
void f()
{
 int a[17],
 b[34],
 c[1000],
 d[888];
}
% \gcc -S arraylen1.c

CSC#352#Fall#2015,#C#Slide#219#

Run-time array length information, continued
 % cat arraylen1.s
.file "arraylen1.c"
 .text
 .globl f
 .type f, @function
f:
.LFB0:
 .cfi_startproc
 pushq %rbp
 .cfi_def_cfa_offset 16
 .cfi_offset 6, -16
 movq %rsp, %rbp
 .cfi_def_cfa_register 6
 subq $7656, %rsp
 leave
 .cfi_def_cfa 7, 8
 ret
 .cfi_endproc
.LFE0:
 .size f, .-f
 .ident "GCC: ... 4.6.3"
 .section .note.GNU-stack...

The generated assembly code is on the right.
There's no 17, 34, 1000, or 888 but there is
some evidence of the arrays. What is it?

The instruction subq $7656, %rsp makes
space on the stack for 7656 bytes:
 sizeof(a)+sizeof(b)+sizeof(c)+sizeof(d)

(Well, almost...that sum is 7756!)

Let's see what dstack shows.
int main()
{
 int a[17], b[34], c[1000], d[888];

 paddr(&a[0]); paddr(&a[16]);
 paddr(&b[0]); paddr(&b[33]);
 ...
}

CSC#352#Fall#2015,#C#Slide#220#

Run-time array length information, continued
 |------------|
140734228016576 | a[16] |
 |------------|
 <15 words>
 |------------|
140734228016512 | a[0] |
 |------------|
140734228016508 | ... |
 |------------|
140734228016504 | ... |
 |------------|
140734228016500 | b[33] |
 |------------|
 <32 words>
 |------------|
140734228016368 | b[0] |
 |------------|
140734228016364 | d[887] |
 |------------|
 <886 words>
 |------------|
140734228012816 | d[0] |
 |------------|
140734228012812 | c[999] |
 |------------|
 <998 words>
 |------------|
140734228008816 | c[0] |
 |------------|

When a C program is being compiled, the
compiler determines the size and location of all
memory objects but the only trace of that left at
run-time are constants that are pieces of
machine instructions.

C arrays are an example of "What you write is
what you get." If you say int vals[10], space is
consumed for ten ints and nothing more.

Here again is our faulty sum function:
int sum(int a[])
{
 int sum = 0;
 for (int i = 0; i < sizeof(a)/sizeof(a[0]); i++)
 sum += a[i];
 return sum;
}

Unless we want to introduce a sentinel value to signal the end of the data, our only
choice is to pass an element count:

int sum(int a[], int nelems)
{
 int sum = 0;
 for (int i = 0; i < nelems; i++)
 sum += a[i];
 return sum;
}

CSC#352#Fall#2015,#C#Slide#221#

Run-time array length information, continued

Passing an element count does provide some flexibility:

int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; //arraypar2a.c

for (int i = 1; i <= sizeof(a)/sizeof(a[0]); i++)

 printf("sum of first %d = %d\n", i, sum(a, i));

Let's compute sums working backwards:

int alen = sizeof(a)/sizeof(a[0]);
for (int i = alen - 1; i >= 0; i--)
 printf("sum of last %d = %d\n",

 alen - i, sum(&a[i], alen - i));

CSC#352#Fall#2015,#C#Slide#222#

An element count is not a length(!)
Output:

sum of first 1 = 1
sum of first 2 = 3
sum of first 3 = 6
sum of first 4 = 10
sum of first 5 = 15
...

Output:
sum of last 1 = 10
sum of last 2 = 19
sum of last 3 = 27
sum of last 4 = 34
sum of last 5 = 40
... Because a C array parameter is nothing more than the

address of the "first" element, a function can operate
on a sequence of elements in the middle of an array!
(But, we must be careful to stay in bounds.)

Is the loop above "lucky", with an off-by-one error?

Unlike Java, an array variable cannot be the target of assignment. Example:
% cat array9.c
int main()
{
 int a[5], b[5];
 a = b;
}

% gcc array9.c
array9.c:4:7: error: incompatible types when assigning to type
‘int[5]’ from type ‘int *’

How does the compiler view a = b?
&a[0] = &b[0];

We'll later see how to achieve a similar effect using pointers.

CSC#352#Fall#2015,#C#Slide#223#

You can't assign to an array variable!

Character strings

CSC#352#Fall#2015,#C#Slide#224#

There is no character string type in C.

However, there is a well-established convention: a character string is represented
by a zero-terminated sequence of char values.

One way to create a "string" is by initializing a char array with a sequence of
values, being sure the last value is zero.

char s[] = { 'H', 'e', 'l', 'l', 'o', '!', '\n', 0 };

Here's a loop that prints the characters in s:
for (int i = 0; s[i] != 0; i++)
 printf("s[%d] = '%c' (%d)\n", i, s[i], s[i]);

CSC#352#Fall#2015,#C#Slide#225#

Character string basics

Output:
s[0] = 'H' (72)
s[1] = 'e' (101)
s[2] = 'l' (108)
s[3] = 'l' (108)
s[4] = 'o' (111)
s[5] = '!' (33)
s[6] = '
' (10)

What's s[7]?#

For reference:
char s[] = { 'H', 'e', 'l', 'l', 'o', '!', '\n', 0 };

Here are two completely equivalent ways to initialize s:

char s[] = { 72, 101, 108, 108, 111, 33, 10, 0};

char s[] = { 72, 'e', 108, 25*4+8, 0x6F, '\041', sizeof("abcd")*2, 0};

Is the following valid?

char s2[] = { 'H', 'e', 'l', 'l', 'o', '!', '\n', 0, 'x', 0 };

CSC#352#Fall#2015,#C#Slide#226#

Character string basics, continued

Problem: Write a routine void pstring(char s[]) that prints the chararacters in
the "string" s on standard output. Example:

void pstring(char s[]);
int main() // string1.c
{
 char s1[] = { 'H', 'e', 'l', 'l', 'o', '!', '\n', '\0' };

 char s2[] = { 72, 101, 108, 108, 111, 33, 10, 0};

 char s3[] = { 'H', 'e', 'l', 'l', 'o', '!', 10, 0, 'x', 'y', 'z', 0 };

 pstring(s1);
 pstring(s2);
 pstring(&s3[1]);
}

Output:
Hello!
Hello!
ello!

 CSC#352#Fall#2015,#C#Slide#227#

Character string basics, continued

One solution:
void pstring(char s[])
{
 for (int i = 0; s[i] != 0; i++)
 putchar(s[i]);
}

A more idiomatic solution:
void pstring(char s[])
{
 for (int i = 0; s[i]; i++)
 putchar(s[i]);
}

Which do you prefer?

Exercise: The library routine puts is similar to pstring. Do man puts and see
how puts differs from pstring. Ignore the argument type of puts and write a
simple test of puts. As the SYNOPSIS shows, you'll need to include stdio.h.

CSC#352#Fall#2015,#C#Slide#228#

Character string basics, continued

Problem: Write a routine int length(char s[]) that returns the length of string s.
int length(char s[]);
int main() // string1a.c
{
 char line[] = { 'a', 'b', 'c', 0};

 for (int i = 0; i < sizeof(line); i++)
 printf("length(&line[%d]) = %d\n",
 i, length(&line[i]));

}

A solution:
int length(char s[])
{
 int i = 0;
 while (s[i])
 i++;

 return i;
}

strlen in the library is very similar to length above. Use man to see how it differs.

CSC#352#Fall#2015,#C#Slide#229#

Character string basics, continued

Output:
length(&line[0]) = 3
length(&line[1]) = 2
length(&line[2]) = 1

Consider this code:
char line[] = { 'a', 0, 'b', 'c', 0, 'd', 'e', 'f', 0 };

for (int i = 0; i <= sizeof(line); i++)
 printf("length(&line[%d]) = %d\n", i, length(&line[i]));

Output:
length(&line[0]) = 1
length(&line[1]) = 0
length(&line[2]) = 2
length(&line[3]) = 1
length(&line[4]) = 0
length(&line[5]) = 3
length(&line[6]) = 2
length(&line[7]) = 1
length(&line[8]) = 0
length(&line[9]) = 2

How many strings are in line?
Any bugs in the loop above?

CSC#352#Fall#2015,#C#Slide#230#

Character string basics, continued

Problem: Write a function int pos(char s[], char c) that returns the position of
the first occurrence of c in s. pos returns -1if c is not found in s.
 0 1 2 3 4 5 6 7 8

char s[] = { 't', 'e', 's', 't', 'i', 'n', 'g', '\n', 0};

iprint(pos(s, 's'));
iprint(pos(s, 'x'));
iprint(pos(s, 1101 / 10));
iprint(pos(&s[1], 't'));

Solution:

int pos(char s[], char c)
{
 for (int i = 0; s[i]; i++)
 if (s[i] == c)
 return i;

 return -1;
}

CSC#352#Fall#2015,#C#Slide#231#

Character string basics, continued

Output:
pos(s, 's') is 2
pos(s, 'x') is -1
pos(s, 1101 / 10) is 5
pos(&s[1], 't') is 2

Note: There's no direct C library equivalent for
pos. strchr(s, c) searches for the character c
in the string but it returns the address of the
character instead of its "index".

Here are three constants that are commonly confused:
 0
 '\0'

 '0'

One by one:
 What's 0?

0 is an int constant.

 What's '\0'?
'\0' is an octal character constant. The surrounding single quotes
designate a character constant. Inside a character constant, a backslash
followed by one, two or three octal digits is the specification of a
character by its octal code.

Note that '\0' == 0, just like '\101' == 65

'\0' and 0 are two ways to specify the same numeric value: zero! Here
are two more ways to specify zero: 0x0 and '\x00'.

CSC#352#Fall#2015,#C#Slide#232#

Sidebar: 0 vs. '\0' vs. '0'

What's '0'?
'0' is a character constant that represents the 49th character in the
ASCII character set, that has code 48. Here is the graphic for it: 0

Note that '0' == '\060' and '\060' == 48

Remember that the type of a character constant is int, not char.

Another value in the swirl for some is "0". We'll focus on it soon!

CSC#352#Fall#2015,#C#Slide#233#

Sidebar: 0 vs. '\0' vs. '0', continued

Needless to say, it's tedious to initialize an array of char values like this:
char s[] = { 'a', 'b', 'c', 0 }; // Equivalent: {97, 98, 99, 0}

As a convenience, C allows a string literal to be used to initialize a char array.

Here is a completely equivalent initialization:
char s[] = "abc";

Note that there is no trailing zero. The convention of zero-termination of strings
is so strong that a zero-valued byte is added to every C string literal.

The initialization
char s1[] = "abc\0";

is equivalent to this:

char s1[] = { 'a', 'b', 'c', 0, 0 };

Speculate: What does char s2[] = "" create?
 char s2[] = { 0 };

CSC#352#Fall#2015,#C#Slide#234#

String literals

We've seen printf calls like this:
printf("%d\n", i);

The end result of the above line is very similar to this:

char _tmp273[] = "%d\n";
printf(_tmp273, i); // recall: just like printf(&_tmp273[0], i);

(We're imagining that _tmp273 is an internal, compiler-generated identifier.)

The above in turn is identical to this:

char _tmp273[] = { '%', 'd', '\n', 0};
printf(_tmp273, i);

CSC#352#Fall#2015,#C#Slide#235#

String literals, continued

What is sizeof("abc")?
4
 { 'a', 'b', 'c', 0 }

What is sizeof("\n\n")?
3
 { '\n', '\n', 0 }

What is sizeof("")?
1
 { 0 }

What is sizeof("\0")?
2
 { 0, 0 }

What is sizeof("\0/")?
3
 { 0, '/', 0 }

CSC#352#Fall#2015,#C#Slide#236#

String literals, continued

Let's combine literals with some of the string functions we've written:

 pstring("Hello!\n");

 pstring(&"Hello!\n"[5]);

 iprint(pos("testing", 's'));

 iprint(length(&"string"[2]));

 iprint(length("abc\0def"));

CSC#352#Fall#2015,#C#Slide#237#

String literals, continued

Output:
Hello!

!

pos("testing", 's') is 2

length(&"string"[2]) is 4

length("abc\0def") is 3

For reference:
void pstring(char s[])
{
 for (int i = 0; s[i]; i++)
 putchar(s[i]);
}

In essence, the argument of pstring is assumed to be the starting address of a
sequence of char values to print. pstring calls putchar() with each value in
turn until a zero is reached.

The %s format specifier of printf does essentially the same work as pstring:
given a starting address it outputs char values as characters until a zero is
reached. Given

char greeting[] = "Hello\n";

then the same output is produced by both of these statements:

pstring(greeting);
printf("%s", greeting);

CSC#352#Fall#2015,#C#Slide#238#

pstring vs. printf("%s", ...)

Wikipedia says,
"Syntactic sugar is syntax within a programming language that is designed to
make things easier to read or to express. It makes the language "sweeter" for
human use: things can be expressed more clearly, more concisely, or in an
alternative style that some may prefer."

In C, char s[] = "abc" is syntactic sugar. It means exactly the same thing as
char s[] = { 'a', 'b', 'c', 0 } but it's much more convenient.

Are character constants an example of syntactic sugar? Wouldn't 65 do for 'A'?

Are while, do-while, and/or for examples of syntactic sugar? How about goto?

Given int a[5], is the a and &a[0] equivalence an example of syntactic sugar?

What are examples of syntactic sugar in Java?

Wikipedia says the term "syntactic sugar" was coined by Peter J. Landin in 1964.

"Syntactic sugar causes cancer of the semi-colons."––Alan Perlis

CSC#352#Fall#2015,#C#Slide#239#

Sidebar: Syntactic sugar

Here is a "lucky" program:
int main() // luckystring1.c
{
 char s[10];

 printf("s = >%s<\n", s);
}

Output:
% (gcc luckystring1.c && a.out) | cat -v
s = ><

What's lucky (or not) about the program?

s is uninitialized!

What can be said about s[0], based on the output above?
 Since no characters appear between > and <, s[0] must be zero.

How about s[1]?

Nothing is apparent about s[1].

CSC#352#Fall#2015,#C#Slide#240#

Strings and "lucky" programs

A revision:
int main() // luckystring1.c
{
 char s[25]; // was char s[10];
 printf("s = >%s<\n", s);
}

Output:
% (gcc luckystring1.c && a.out) | cat -A
s = >M-^?M-2M-p<$

% (gcc luckystring1.c && a.out) | od -td1
0000000 115 32 61 32 62 -1 -78 -16 60 10
0000012

What's happening?
When we change the size of s, its starting point also changes. If a zero byte
happens to be where s[0] is, we get just s = ><. If non-zero byte happens to be
where s[0] is, we get one or more random characters output between > and <.

CSC#352#Fall#2015,#C#Slide#241#

Strings and "lucky" programs, continued

This program prints the values for the first few bytes of s. But, what's SIZE?
int main() // luckydump1.c
{
 char s[SIZE];
 for (int i = 0; i < 10; i++)
 printf("%5d", s[i]);
 printf("\n");
 printf(">%s<\n", s);
}

Using -DMACRO=VALUE on the command line has the same effect as if we had
the following #define as the first line of luckydump1.c:

 #define MACRO VALUE

Example:

% gcc -DSIZE=10 luckydump1.c && a.out | cat -v
 0 0 0 0 0 0 0 0 -48 4
><

CSC#352#Fall#2015,#C#Slide#242#

Strings and "lucky" programs, continued

Let's do -DSIZE=10 again, and a few more:
% gcc -DSIZE=10 luckydump1.c && a.out | cat -v
 0 0 0 0 0 0 0 0 -48 4
><
% gcc -DSIZE=5 luckydump1.c && a.out | cat -v
 -64 -6 18 -33 -4 127 0 0 0 31
>M-@M-z^RM-_M-|^?<
% gcc -DSIZE=1000 luckydump1.c && a.out | cat -v
 0 0 0 0 1 0 0 0 -126 8
><
% gcc -DSIZE=1000000 luckydump1.c && a.out | cat -v
 0 0 0 0 0 0 0 0 0 0
><

Let's make a bash loop!
% for size in $(seq 10 100 50000)
> do
> echo $size...
> gcc -DSIZE=$size luckydump1.c && a.out | cat -v
> done

CSC#352#Fall#2015,#C#Slide#243#

Strings and "lucky" programs, continued

It is essential to understand the following:

•  A function f(char s[]) has no way to know whether the memory
referenced by the parameter s is valid data.

•  f has no choice but to assume that s references valid data and
proceed.

•  A string-processing function f will typically process characters until it
reaches a character whose value is zero.

CSC#352#Fall#2015,#C#Slide#244#

Strings and "lucky" programs, continued

Here is a routine that creates a string in s that is n copies of a character c.
void fill(char s[], char c, int n) // luckystring3.c
{
 for (int i = 0; i < n; i++)
 s[i] = c;
}

Usage:
char buf[30];

fill(buf, 'a', 3);
printf("%s\n", buf);

fill(buf, 'x', 10);
printf("%s\n", buf);

fill(buf, 'e', 5);
printf("%s\n", buf);

CSC#352#Fall#2015,#C#Slide#245#

Strings and "lucky" programs, continued

Execution:
% a.out | cat -v
aaa
xxxxxxxxxx@
eeeeexxxxx@

What's happening?
fill isn't following the n copies of c with a
zero-valued byte.

s[3] happened to be zero.

s[10] happened to hold '@', and s[11]
happened to be zero.

The five e's overwrote the first five x's
but nothing more.

Let's fix fill by "capping off" the result in s with a zero:
void fill(char s[], char c, int n) // luckystring3a.c
{
 for (int i = 0; i < n; i++)
 s[i] = c;
 s[n] = 0; // Added
}

Usage: (unchanged)
char buf[30];

fill(buf, 'a', 3);
printf("%s\n", buf);

fill(buf, 'x', 10);
printf("%s\n", buf);

fill(buf, 'e', 5);
printf("%s\n", buf);

CSC#352#Fall#2015,#C#Slide#246#

Strings and "lucky" programs, continued

Execution:
% a.out | cat -v
aaa
xxxxxxxxxx
eeeee

Consider the problem of "assignment" with strings. This does not work:
char a[] = "pickles", b[10];

b = a; // Compilation error! (&b[0] = &a[0])

The workable alternative is a routine: copy(char to[], char from[])

Usage:
char a[] = "pickles", b[10];

copy(b, a); // Sort of like 'b = a'

printf("b = >%s<\n", b); // Output: b = >pickles<

The right-to-left "movement" mimics the assignment operator.

Problem: Write it!

CSC#352#Fall#2015,#C#Slide#247#

Working with strings

For reference:
char a[] = "pickles", b[10];

copy(b, a); // Sort of like 'b = a'

printf("b = >%s<\n", b); // Output: b = >pickles<

An implementation of copy:
void copy(char to[], char from[])
{
 int i = 0;
 while ((to[i] = from[i])) // extra parens to avoid warning
 i++;
}

Do we need to[i] = 0, too?

CSC#352#Fall#2015,#C#Slide#248#

Working with strings, continued

What's the output of the following code? (from strexcopy1.c)
char a[] = "pickles", b[10];

copy(b, "noodles");
printf("b = >%s<\n", b);

 // Output: b = >noodles<

copy(b, "chicken noodle soup");
printf("b = >%s<\n", b);

 // Output: b = >chicken noodle soup<

printf("a = >%s<\n", a);

 // Output: a = >oup<

Why?

 b is too small for "chicken noodle soup"

What can we say about the relative position of a and b?

 Since b's overrun overwrote a, a must follow b.
CSC#352#Fall#2015,#C#Slide#249#

Working with strings, continued

At hand:
void copy(char to[], char from[])
{
 int i = 0;
 while ((to[i] = from[i]))
 i++;
}
int main()
{
 char b[10];
 copy(b, "chicken noodle soup");
}

Problem: Modify copy so that it detects a too-small to array, like above.

 Impossible!
Here's what we might see in some call to copy when we look at values in to:

 43 167 207 112 45 13 24 3 34 187 88 78 92 133 235
What's the last byte in to?

How about in this one?

 97 98 99 0 0 0 0 48 49 50 51 0 1 0 1 216 70 60 198 CSC#352#Fall#2015,#C#Slide#250#

Working with strings, continued

Consider the following routine:
int rln(char s[])
{
 int c, spos = 0;

 while ((c = getchar()) != EOF) {
 if (c == '\n')
 break;
 s[spos++] = c;
 }

 if (c == EOF && spos == 0)
 return EOF;
 s[spos] = 0;
 return spos;
}
// strexrln.c
// In h/strfuncs.h, too.

CSC#352#Fall#2015,#C#Slide#251#

Working with strings, continued
What high-level operation does it perform?

Reads a newline-terminated line into s.

What does a call look like?
char line[100];
rln(line);

What assumptions does rln make?
rln assumes that line is big enough!

How could rln be exploited by an attacker?
A carefully constructed input string
could overflow the caller's "buffer" and
overwrite data in the caller's "stack
frame". Ultimately, an attacker could
"execute arbitrary code".

Code using rln is subject to a buffer
overflow (overrun) attack.

Problem: Write a routine concat(char to[], char new[]) that appends the contents
of the string new to the string to. Example:

char s[100];

copy(s, "just");
concat(s, " testing");
concat(s, " this");
printf("s = >%s<\n", s); // Output: s = >just testing this<

Solution:
void concat(char to[], char from[])
{
 int topos = 0, frompos = 0;

 while ((to[topos]))
 topos++;

 while ((to[topos++] = from[frompos++]))
 ;
}

Would it be better to write concat with length and copy instead? (Do it!)
CSC#352#Fall#2015,#C#Slide#252#

Working with strings, continued

Consider the following program. Note that readline() is rln() from slide 251.
int main() // strex3.c
{
 char buf[1000000], line[1000];

 while (readline(line) != EOF) {
 concat(buf, ">");
 concat(buf, line);
 concat(buf, "<\n");
 }

 printf("%s", buf);
}

CSC#352#Fall#2015,#C#Slide#253#

Working with strings, continued

In broad terms, what does the program do?

What assumptions does it make?
No line is longer than 999 bytes.

Full input plus wrapping '>'s and '<'s is
less than a million characters.

What vulnerabilities does it have?
See assumptions!

Are there any bugs?
What is the initial value of buf[0]?
What's a three-character fix?
 char buf[1000000] ={}

Characterize the running time using O(n)
notation.

The functions pstring, length, copy, concat, and rln/readline presented in the
preceding slides are simplified versions of C library functions.

.

To use the functions from the slides, #include "strfuncs.h". Prototypes for the
str* functions are in <string.h>. Prototypes for gets and puts are in <stdio.h>.

CSC#352#Fall#2015,#C#Slide#254#

C library counterparts for examples

Slides C library Notes
pstring puts#
length# strlen# strlen returns a value of type size_t, which is a

"typedef" for an unsigned long, but for our
purposes strlen's result can be safely assigned to an
int. Use a %zu format when a strlen call is an
argument to printf: printf("%zu\n", strlen("x")).

copy# strcpy# strcpy returns the address of the destination string
instead of void. See also strncpy.

concat# strcat# strcat returns the address of the destination string
instead of void. See also strncat.

readline
(a.k.a. rln)

gets gets returns its argument when successful, but
NULL (a "null pointer") at EOF.

Pointers

CSC#352#Fall#2015,#C#Slide#255#

Given 'int i;' then &i produces the address of i.

The type of &i is said to be pointer to int, or int *, or "int star".

A pointer variable can hold an address. A pointer variable is declared by
preceding the variable's name with an asterisk:

 int *p;

The type of p is "pointer to int".

A value with the type "pointer to int" can be assigned to p:

 p = &i;

We might now say "p points to i", or "p references i", or "p holds the address of
i". (Three ways to say the same thing.)

Note that i is not initialized. It's ok for a pointer to reference uninitialized
memory.

CSC#352#Fall#2015,#C#Slide#256#

Pointer basics

Like any other variable, the value of a pointer variable can be changed.

Let's work through the following code with pictures.
int i, j, a[2];
int *p;

p = &i;

p = &j;

p = &a[0];

p = &a[1];

p = a;

p = &a[100];

CSC#352#Fall#2015,#C#Slide#257#

Pointer basics, continued

Given int *p,
the value of the expression *p is the value of the int that's referenced by p.

Example:
int i = 7, j, k;
int *p;

p = &i;

j = *p; // assigns 7 to j

k = *p + *p; // assigns 14 to k

CSC#352#Fall#2015,#C#Slide#258#

Pointer basics, continued

If *p appears on the left hand side of an assignment, the int referenced by p is the
target of the assignment.

int i = 7, j, k;
int *p;

p = &i;

*p = 5;

p = &j;

*p = 10;

*p *= 2;

int *q = &i;

*q = *p;

CSC#352#Fall#2015,#C#Slide#259#

Pointer basics, continued

Here's an important observation about C:
 Declaration mimics use

The declaration

 int i;
can be thought of as saying "If you see the expression i, it is an int."

Similarly,

 int a[5];
can be thought of as saying "If you see the expression a[n], it is an int."

Likewise,

 int *p;
can be thought of as saying "If you see the expression *p, it is an int."

What does int *a, b, *c, d; declare?

 a is a "pointer to int".
 b is an int.
 c is "pointer to int".
 d is an int.

 CSC#352#Fall#2015,#C#Slide#260#

Sidebar: Declaration mimics use

How about int* p1, p2, p3?
 p1 is a pointer; p2 and p3 are ints.
 (whitespace makes no difference)
 How could you check it?

All three can be declared at once:
 int i, *p, a[5];

Again: i is an int, *p is an int, a[n] is an int.

Imagine that "declaration mimics use" wasn't used. What's an alternative syntax
that might have been chosen?

declare i: int, p: address of int, a: array of 5 int;

What's a downside to this more English-like form?

•  We'd need to know two forms instead of one.
•  The compiler would definitely need entirely separate code to parse it.
•  The standard would need to fully describe this alternate system.

"Declaration mimics use" gives C a smaller "mental footprint": if you know how
you want to use something in C, you know how to declare it. (Mostly...)

CSC#352#Fall#2015,#C#Slide#261#

Sidebar: Declaration mimics use, continued

Here's a loop that fills an array a with squares of 0 through 4:
int a[5];

for (int i = 0; i < sizeof(a)/sizeof(a[0]); i++) {
 int *p = &a[i]; // Equivalent: int *p; p = &a[i];
 *p = i * i;
 }

Here's a loop that sums the values in the array a:

int sum = 0;

for (int i = 0; i < sizeof(a)/sizeof(a[0]); i++) {
 int *p = &a[i];
 sum += *p;
 }

Note that the above is a non-idiomatic mix of pointers and array subscripting; it's
just illustrating some mechanics.

CSC#352#Fall#2015,#C#Slide#262#

Pointer basics, continued

The value of a pointer variable may be assigned to another variable of the same
pointer type.

Any number of pointers may reference the same object in memory.

int i, j;
int *p1, *p2;

p1 = &i;
p2 = p1;

*p1 = 15;

j = *p2;

printf("i = %d, j = %d\n", i, j);

 // Output: i = 15, j = 15

CSC#352#Fall#2015,#C#Slide#263#

Pointer basics, continued

A pointer can be passed to a function as an argument:
int twice(int *p);
int main() // twice.c
{
 int i = 7;
 int *p = &i;
 paddr(p);
 i = twice(p);
 iprint(i);
}
int twice(int *ip)
{
 paddr(ip);
 return *ip * 2;
}

Output:
p = 140734133231676
ip = 140734133231676
i is 14

CSC#352#Fall#2015,#C#Slide#264#

Pointers as arguments

How does this variant, twice2, differ from twice?
void twice2(int *p);

int main() //twice2.c
{
 int i = 7;
 int *p = &i;

 twice2(p);
 iprint(i);
}

void twice2(int *ip)
{
 *ip = *ip * 2;
}

Output:
 i is 14

CSC#352#Fall#2015,#C#Slide#265#

Pointers as arguments, continued

int twice(int *ip), on the previous slide, takes a
pointer to an int and returns twice the value of
the integer.

void twice2(int *ip) takes a pointer to an int
and doubles its value in place. Note that twice2
does not return a value!

Does this example conflict with the claim that C
uses call-by-value?

No. The value of p is being passed to
twice2, but that value is the address of the
variable i.

Here's another view:
 twice2(A) doubles the int at address A.

Problem: Write a swap function. Example: (swap0.c)

int i = 7, j = 11;

swap(&i, &j);

printf("i = %d, j = %d\n", i, j); // Output: i = 11, j = 7

Solution:

void swap(int *ap, int *bp)
{
 int t = *ap;
 *ap = *bp;
 *bp = t;
}

Can we write a Java analog for swap?

 No.
Exercise: Draw a diagram of memory and work your way through a call to swap.

CSC#352#Fall#2015,#C#Slide#266#

Pointers as arguments, continued

At hand:
void swap(int *ap, int *bp)
{
 int t = *ap;
 *ap = *bp;
 *bp = t;
}

What is the result of the following code?
int i = 7, j = 11, a[2];

swap(&i, &a[0]);
swap(&j, &a[1]);

printf("a[0] = %d, a[1] = %d\n", a[0], a[1]);
printf("i = %d, j = %d\n", i, j);

Output:
a[0] = 7, a[1] = 11
i = -365601136, j = 32764

CSC#352#Fall#2015,#C#Slide#267#

Pointers as arguments, continued

Here's a routine that tallies the number of even and odd values in an array:
void tally_eo(int a[], int size, int *evenp, int *oddp) // tally_eo.c
{
 int evens = 0, odds = 0;

 for (int i = 0; i < size; i++)
 if (a[i] % 2 == 0)
 evens += 1;
 else
 odds += 1;

 *evenp = evens;
 *oddp = odds;
}

CSC#352#Fall#2015,#C#Slide#268#

Pointers as arguments, continued

Usage:
int a[] = { 1, 3, 4, 5, 7}, e, o;
tally_eo(a, sizeof(a)/sizeof(a[0]), &e, &o);
printf("evens = %d, odds = %d\n", e, o);
 // Output: evens = 1, odds = 4

Does tally_eo need the locals evens and odds?

How would tally_eo be formulated in Java?

Exercise: What does the following statement do?

 tally_eo(&a[2], sizeof(a)/sizeof(a[0]),
 &a[1], a);

Here is a function that returns a pointer to the largest value in an array of one or
more values:

int *maxval(int vals[], int nelems) // maxval.c
{
 int *maxp = &vals[0];
 for (int i = 1; i < nelems; i++)
 if (vals[i] > *maxp)
 maxp = &vals[i];

 return maxp;
}

Usage:

int a[] = {10, 17, 3, 18, 27};
printf("max is %d\n", *maxval(a, 5)); // Output: max is 27

Declaration mimics use: The type of the expression *maxval(...) is int.

CSC#352#Fall#2015,#C#Slide#269#

Pointers as return values

Another use of maxval:
int a[] = {10, 17, 3, 18, 27};

for (int n = 1; n <= sizeof(a)/sizeof(a[0]); n++) {
 int *mp = maxval(a, n);
 printf("max in first %d, at %p, is %d\n", n, mp, *mp);
 }

Output:

max in first 1, at 0x7ffcfa426fb0, is 10
max in first 2, at 0x7ffcfa426fb4, is 17
max in first 3, at 0x7ffcfa426fb4, is 17
max in first 4, at 0x7ffcfa426fbc, is 18
max in first 5, at 0x7ffcfa426fc0, is 27

Which is more useful, the index of an element in an array or the address of the
element?

One fact: An address is sufficient to access a value but an index needs to be
paired with an array.
Another fact: Sometimes we want to know the position of a value in an array.

CSC#352#Fall#2015,#C#Slide#270#

Pointers as return values, continued

It is important to understand that int *p doesn't simply declare p to be a pointer.
It declares p to be a pointer to an int. This creates a pair of requirements for p:

•  The expression *p can only be used in contexts where an int is permitted.

•  The type of a value assigned to p must be "pointer to int".

Given char c, the type of &c is "pointer to char". Assigning pointer values of
incompatible types generates a warning (but not an error). Example:

char c;
int *p;

p = &c; // warning: assignment from incompatible pointer type

int i;
char *p2;
p2 = &i; // warning: assignment from incompatible pointer type

CSC#352#Fall#2015,#C#Slide#271#

Pointers and types

On lectura with gcc, pointers are simply 64-bit integers but attempting to use a
pointer as an integer (or vice-versa) generates a warning:

int *p; long i;

i = &i; // "assignment makes integer from pointer without a cast"

p = 1000; // "assignment makes pointer from integer without a cast"

As the warnings suggest, a cast silences the warnings:
i = (long)&i; // No warning

p = (int*)0x7ffcfa426fb0; // No warning

Casts in C are essentially the same as casts in Java: A type name enclosed in
parentheses preceding an expression indicates a desired type for the resulting
value.

Our paddr macro uses a cast to treat a pointer as a long unsigned:
#define paddr(a) printf(#a " = %lu\n", (long unsigned)a)

CSC#352#Fall#2015,#C#Slide#272#

Pointers and types

Speculate: If pointers are simply 64-bit integers, why not allow the following?
long i, p;
p = &i
*p = 7; // (1)

That is, do we really need pointer types? Why not just store addresses in longs?

Let's add more code to the picture:

char s[] = "abc";
p = &s[1];
*p = 'x'; // (2)

How many bytes should change on line (1)?
 p points to the long i, so the eight bytes of i should be changed to hold 7.

How about line (2)?

 p points to a char in s, so one byte should be changed to hold 'x'.

Is there an inconsistency between (1) and (2)?

CSC#352#Fall#2015,#C#Slide#273#

Sidebar: Are pointer types really needed?

At hand:

long i, p;
p = &i
*p = 7; // should change eight bytes

char s[] = "abc";
p = &s[1];
*p = 'x'; // should change one byte

The problem: without knowing the size of a pointed-to memory object, the
compiler doesn't know how many bytes to move!

A declaration like int *p2 says that p2 is a pointer that points to an int.

The expression *p2 = 5 says to change sizeof(int) bytes at the address held in
p2.

Bottom line: In addition to detecting inconsistencies at compile-time, pointer type
information implies the size of memory objects.

CSC#352#Fall#2015,#C#Slide#274#

Sidebar: Are pointer types really needed?

How are data value sizes specified in assembly language?
•  Some machines have specific instructions to move 1, 2, 4, or 8 bytes.
•  Some machines have instructions with width fields.
•  And more...

Recall this from the history slides:

Thompson starts to write a FORTRAN compiler but changes direction and
creates a language called "B", a cut-down version of BCPL. ("Basic
Combined Programming Language")

B was interpreted and was oriented towards untyped word-sized objects.
Dennis Ritchie adds types and writes a compiler. Ritchie initially calls it NB
for New B, but renames it C. (1972)

With "untyped word-sized objects", all pointers reference objects of the same size:
a word!

CSC#352#Fall#2015,#C#Slide#275#

Sidebar: Are pointer types really needed?

The constant 0 (zero) can be used as a pointer value of any type:
int *p1 = 0; // No warning...
char *p2 = 0; // No warning...

A zero that is used as a pointer is called a null pointer. Given the initializations
above we can say that p1 and p2 are null pointers.

The C11 standard requires that <stddef.h> define a macro NULL that expands to
a null pointer constant. With gcc on lectura, the macro NULL expands to
((void *)0).

Here are three completely equivalent ways to see if a p is null pointer:

if (p == NULL) ...
if (p == 0) ...
if (!p) ...

There are some detailed rules regarding the internal representation of null
pointers. One example, from old notes: p1 = 0 and p2 = (int*)(i - i) might not
produce the same value in p1 and p2!

CSC#352#Fall#2015,#C#Slide#276#

Null pointers

It is common (but not guaranteed) that the sizes of all pointers are the same. Here
are sizes produced with gcc on lectura:

sizeof(char *) // 8
sizeof(int *) // 8
sizeof(double *) // 8
sizeof(long long *) // 8

CSC#352#Fall#2015,#C#Slide#277#

Sizes of pointers

Given
char *cp;
int *ip;
long *lp;

What are these?
sizeof(cp)

 8
sizeof(*cp)

 1
sizeof(ip)

 8
sizeof(*ip)

 4
sizeof(lp)

 8
sizeof(*lp)

 8

L-values and R-values

CSC#352#Fall#2015,#C#Slide#278#

A simple understanding of the unary * operator is that in an expression, *p
produces a value but as the target of an assignment it specifies a destination in
memory. A deeper understanding is required to use C effectively.

An important concept in C is that of the "L-value":

An L-value is an expression that specifies an object in memory.

The simplest example of an L-value is a variable name:

Given a declaration such as int x, the expression x refers to an int-sized
memory object (simply four contiguous bytes of memory) that is reserved to
hold the value of x whenever x is "live".

Here is the general form of the unary ampersand operator:

 &L-value

Assuming that x is in scope, an expression such as &x is permitted because x
specifies an object in memory.

CSC#352#Fall#2015,#C#Slide#279#

L-values and R-values

For reference:
An L-value is an expression that specifies an object in memory.

Given char s[5], is s[0] an L-value?
Yes. s[0] specifies the memory object that is the first element of s, a char.

Given char s[5], is s[100] an L-value?
&s[100] will compile without error, proving that the compiler considers
s[100] to be an L-value but run-time behavior is undefined if we use it.

An expression such as x + y is not an L-value: the standard does not guarantee
that the result of the addition will ever have a memory object associated with it.

Because x + y is not an L-value, the expression &(x + y) is not valid.

Is &100 valid?
No. There's no guarantee that there will ever be a 100 at any specific place in
memory.

CSC#352#Fall#2015,#C#Slide#280#

L-values and R-values, continued

For reference:
An L-value is an expression that specifies an object in memory.

Don't confuse L-values and addresses. An L-value specifies an object in memory.
In turn, every object in memory has an address.

The "L" in "L-value" comes from "left". Here's an informal definition:

"An L-value is something that can appear on the left-hand side of an
assignment."

Consider:

int x, y;
char s[5];
x = 3;
s[2] = 'z';

(x + y) = 5; // error: lvalue required as left operand of assignment
10 = 20; // ditto

CSC#352#Fall#2015,#C#Slide#281#

L-values and R-values, continued

For reference:
An L-value is an expression that specifies an object in memory.

Consider this expression:

 x = y

In C, like most languages, it means this:

 "Fetch the value contained in y and store it in x."

One perspective the compiler has on x = y is this:

 L-value = L-value

The two L-values are treated differently based on their context:

•  The L-value on the left-hand side of the assignment names the destination of
the assignment.

•  The L-value on the right-hand side names the source of the value to be

assigned.

CSC#352#Fall#2015,#C#Slide#282#

L-values and R-values, continued

The value contained in a memory object is sometimes called the R-value.

Given int x, y = 7, the R-value of y is 7. (Remember that x and y are L-values.)

An important rule:
If an L-value is provided but an R-value is needed, the value contained in the
memory object named by the L-value is fetched.

For a simple assignment involving two variables, the compiler ultimately wants to
arrive at this:

L-value = R-value

For x = y the goal is achieved by fetching the value contained in y and storing it
in the memory designated for x.

CSC#352#Fall#2015,#C#Slide#283#

L-values and R-values, continued

In general, if an expression contains L-values the computation is performed using
the R-value of each L-value.

Constants such as 7, 2.345, and 'a' have an R-value but no L-value.

Consider this expression:
 a[i-j] = x + y * 2 - z / 3

What are the L-values in it?

a, i, j, a[i-j], x, y, and z

Contrast:
In the BLISS programming language, the expression x = y means "Assign
the address of y to x." (like x = &y in C).

If the value of y is to be assigned, the appropriate BLISS expression is this:
x = .y

(The unary dot operator specifies that the R-value of y is desired.)

CSC#352#Fall#2015,#C#Slide#284#

L-values and R-values, continued

Earlier, this was said:
"Given int *p the expression *p has the value of the int that is referenced by p."

In fact, the result of *p is an L-value that specifies the object referenced by p.

Remember: An L-value is an expression that specifies an object in memory.

Consider this code:
int i, j = 7;
int *p1 = &i, *p2 = &j;
*p1 = *p2;

The compiler regards

*p1 = *p2
as

L-value = L-value

Because *p1 is on the left-hand side of the assignment, the memory object it
references is the target of the assignment. Because *p2 is on the right, where an
expression is required, the R-value of *p2 is used.
 CSC#352#Fall#2015,#C#Slide#285#

L-values and R-values, continued

For reference:
int i, j = 7;
int *p1 = &i, *p2 = &j;

*p1 = *p2;

Because *p1 and *p2 are L-values, this code is valid:

int *p3, *p4;

p3 = &*p1;
p4 = &*p2;

Problem: Describe the values held in p3 and p4.

CSC#352#Fall#2015,#C#Slide#286#

L-values and R-values, continued

Here are two definitions from The C Programming Language, 1st edition:

&L-value
The result of the unary & operator is a pointer to the object referred to by the
L-value.

If the type of the L-value is '...' then the type of the result is 'pointer to ...'.

*expression
The unary * operator means indirection: the expression must be a pointer, and
the result is an L-value referring to the object to which the expression points.

If the type of the expression is 'pointer to ...', the type of the result is '...'.

Given int x, what is the type of &x?
x is an L-value. The type of x is int. The type of &x is pointer to int.

Given int *p, what is the type of *p?
The type of p is pointer to int. The type of *p is int. *p is an L-value.

CSC#352#Fall#2015,#C#Slide#287#

L-values and R-values, continued

For reference:
If the type of an L-value is '...' then the type of &L-value is 'pointer to ...'.

If the type of p is 'pointer to ...', the type of *p is '...'.

Let's work with these declarations:
int i = 7 , *p = &i; // assume &i is 100
int a[5] = { 33 }; // assume &a[0] is 120

CSC#352#Fall#2015,#C#Slide#288#

L-values and R-values, continued

Expression# Type# Is it an L-value?# What is the R-value?#

 #

i# int# yes#
no#
yes#
yes#
no#

7#
&i# pointer to int# 100#
p# pointer to int# 100#

*p# int# 7#
7# int# 7#

a[0]# int# yes# 33#
&a[0]# pointer to int# no# 120#
&*p# pointer to int# no# 100#

Pointers can participate in a limited set of arithmetic operations. One operation
that's permitted is addition of a pointer and an integer.

Example: (ptrarith1.c)
char s[] = "abc";
char *p;
p = s; // Like p = &s[0];

while (*p) { // Was *p != 0 -- Doh!
 printf("p = %lu, *p = %lu (%c)\n", p, *p, *p);
 p = p + 1;
 }

Output:
p = 140726812704416, *p = 97 (a)
p = 140726812704417, *p = 98 (b)
p = 140726812704418, *p = 99 (c)

CSC#352#Fall#2015,#C#Slide#289#

Pointer arithmetic

What are alternatives for p = p + 1?
p += 1

p++

++p

p = 1 + p

Here's another example of pointer arithmetic:
int a1[] = {13, 4, 109};

int *ip = a1;
for (int i = 1; i <= 3; i++) {
 printf("ip = %lu, *ip = %d\n", ip, *ip);
 ip++;
 }

Output:
ip = 140733814619776, *ip = 13
ip = 140733814619780, *ip = 4
ip = 140733814619784, *ip = 109

Is there anything surprising in that output?

 How much does ip++ add to ip?
 4
 140733814619776 + 1 == 140733814619780 (!?)
 Why?

CSC#352#Fall#2015,#C#Slide#290#

Pointer arithmetic, continued

An important rule:
If an integer is added to or subtracted from a pointer, the integer is "scaled"
by the size of the pointed-to object.

In general, given T *p; then the value of

 p + n
is

 (int)p + n * sizeof(*p) // Type of result: T*

Similarly, given T *p,

 p - n
is

 (int)p - n * sizeof(*p) // Type of result: T*

Examples: (remember that paddr(a) is our address-printing macro)
paddr((char *)100 + 1); // 101
paddr((short *)100 + 1); // 102
paddr((int *)100 + 1); // 104
paddr((long *)100 + 1); // 108

CSC#352#Fall#2015,#C#Slide#291#

Pointer arithmetic, continued

At hand:
If an integer is added to or subtracted from a pointer, the integer is "scaled"
by the size of the pointed-to object.

What are the following values?

(char *)100 - 1
 99

(short *)100 - 5

 90

(int *)100 - 10

 60

(double *)100 - 10

 20

(long double _Complex *)100 - 1

 68

CSC#352#Fall#2015,#C#Slide#292#

Pointer arithmetic, continued

The expression *p++ is an idiom that is important to understand.

First, note that *p++ means *(p++). p++ is evaluated first, producing p.

Consider this code that computes the length of a string:
char s[] = "test"; char *p = s; int len = 0;
while (*p++)
 len++;

Above, the expression *p++ is an L-value that specifies an element of s.

Before the first iteration of the loop, the L-values *p, *p++, and s[0] all specify
the same memory object: the char that's the first element of s.

The compiler desires while (R-value) statement. Because *p++ is an L-value
it fetches the value contained in the object, a char, and executes the body of the
loop if that char value is non-zero.

Bottom line: The R-value of *p++ is the value contained in the memory object
referenced by p. As a side-effect, p is "incremented".
 CSC#352#Fall#2015,#C#Slide#293#

Sidebar: *p++

Here's another way to compute the sum of the elements in an array:
int sum(int a[], int nelems) // ptrarith3.c
{
 int sum = 0;
 int *p = a;

 while (nelems--)
 sum += *p++; // *(p++)

 return sum;
}

Usage:
int vals[] = { 10, 2, 4 };
iprint(sum(vals, 3));
iprint(sum(&vals[1], 2));

Exercise: Draw a memory diagram and work through a call to sum.

CSC#352#Fall#2015,#C#Slide#294#

Sidebar: *p++, continued

Less straightforward but entirely valid:
int rsum(int a[], int nelems)
{
 int sum = 0;
 int *p = &a[nelems]-1;

 while (nelems--)
 sum += *p--; // *(p--)

 return sum;
}

Work through rsum with a diagram, too.

Here is another formulation of the character-replicating fill() routine shown earlier:
void fill(char s[], char c, int n)
{
 char *p = s;

 while (n--)
 *p++ = c; // *(p++)

 *p = 0;
}

p can be thought as a "flyweight" iterator: it maintains a position in a data structure.

Here is a previously-shown related example:
char s[] = "test"; char *p = s; int len = 0;
while (*p++)
 len++;

*p++ iterates over the characters in s, producing a zero when the end is reached.

CSC#352#Fall#2015,#C#Slide#295#

Sidebar: *p++, continued

A pointer can be subtracted from another pointer of the same type. The difference
is scaled by the size of the pointed-to objects. Example:

int a[5];

int *p0 = &a[0];
int *p4 = &a[4];

paddr(p0);
paddr(p4);

printf("p4 - p0 = %td\n", p4 - p0); // Use %td for pointer difference
printf("p0 - p4 = %td\n", p0 - p4);

Output:
p0 = 140734059040144
p4 = 140734059040160
p4 - p0 = 4
p0 - p4 = -4

CSC#352#Fall#2015,#C#Slide#296#

Subtraction of pointers, continued

Speculate: What is the type of pointer - pointer?

The standard says,

When two pointers are subtracted, both shall point to elements of the same
array object, or one past the last element of the array object; the result is the
difference of the subscripts of the two array elements. The size of the result is
implementation-defined, and its type (a signed integer type) is ptrdiff_t
defined in the <stddef.h> header.

Here's an example of using ptrdiff_t:
#include <stddef.h>
...
double x[50];
ptrdiff_t diff = &x[10] - x;
printf("difference: %td\n", diff); // difference: 10

We'll learn all about typedefs later, but here is ptrdiff_t on lectura:
 typedef long int ptrdiff_t;

CSC#352#Fall#2015,#C#Slide#297#

Subtraction of pointers, continued

From the previous slide:
"When two pointers are subtracted, both shall point to elements of the same
array object, or one past the last element of the array object..."

If the two pointers do not point to elements of the same array, the result is
undefined.

int a[5];
int x, y, z;

&a[3] - &a[0] // OK

&a[5] - &a[0] // OK: a[5] is "one past"

&a[-1] - &a[0] // Undefined: a[-1] is not in a or "one past"

&a[10] - &a[0] // Undefined: a[10] is not in a or "one past"

CSC#352#Fall#2015,#C#Slide#298#

Subtraction of pointers, continued

Here is a type algebra for pointer arithmetic:

T* + integer —> T*

integer + T* —> T*

T* - integer —> T*

T* - T* —> signed integer, implementation specific (ptrdiff_t)

Adding two pointers is not permitted. Why not?

Consider a similiar problem:
What's July 2, 2015 minus June 1, 2014?

395 days

What's July 2, 2015 plus June 1, 2014?

CSC#352#Fall#2015,#C#Slide#299#

Subtraction of pointers, continued

Pointers can be compared in various ways.

Two pointers of the same type can be tested for equality or inequality:

int *p1 = ..., *p2 = ...;

if (p1 == p2)
 ...

if (p1 != p2)
 ...

CSC#352#Fall#2015,#C#Slide#300#

Comparison of pointers

Comparing a pointer to an integer generates a warning unless the integer is a zero-
valued constant.

if (p1 == 400) // Warning: comparison between pointer and integer
 ...

if (p2 == 0) // No warning
 ...

if (p3 == NULL) // No warning
 ...

Pointers are often directly used to drive control structures:

if (!p1)
 ...

while ((p2 = findnext(val, values)))
 ...

CSC#352#Fall#2015,#C#Slide#301#

Comparison of pointers, continued

The relational operators <, >, <=, and >= can be applied to pointers.

Here's yet another way to sum the elements in an array:

int sum(int a[], int nelems)
{
 int sum = 0;
 int *p = a;

 while (p < &a[nelems])
 sum += *p++;

 return sum;
}

Pointers being compared are subject to the same restriction as pointers that are
being subtracted: they must reference elements in the same array, or one past the
last element.

CSC#352#Fall#2015,#C#Slide#302#

Comparison of pointers, continued

Consider a loop that sets each element of an array to its index:
int a[10];

for (int i = 0; i < 10; i++)

 a[i] = i;

This loop produces the same result:

for (int i = 0; i < 10; i++)
 *(a + i) = i;

A VERY important rule:

If a is an array, the expressions

 a[i]
and

 *(a + i)
are completely equivalent.

This mechanical transformation can be applied to every array reference in any C
program written, and it is guaranteed to work!
 CSC#352#Fall#2015,#C#Slide#303#

Pointers and arrays

For reference, given int a[10], these two loops are equivalent:

The examples below are equivalent to each other, and illustrate another rule.
Speculate: What's the rule?

The code above illustrates this rule:

If p is a pointer, the expressions
 *(p + i)

and
 p[i]

are equivalent.

This mechanical transformation can be applied to any array reference in any C
program, and it is guaranteed to work!

CSC#352#Fall#2015,#C#Slide#304#

Pointers and arrays, continued

for (int i = 0; i < 10; i++)
 a[i] = i;

for (int i = 0; i < 10; i++)
 *(a + i) = i;

int *p = a;
for (int i = 0; i < 10; i++)

 *(p + i) = i;

int *p = a;
for (int i = 0; i < 10; i++)

 p[i] = i;

A curious program:
int main()
{
 int i = 0;
 while (i < 7)
 putchar(i++["Hello!\n"]);
}

Output:
Hello!

For fun: Explain it!

For more code like this, see Obfuscated C and Other Mysteries, by Don Libes.

CSC#352#Fall#2015,#C#Slide#305#

Pointers and arrays, continued

Recall that if an array is passed to a function, sizeof reports that the size is 8:
int f(int a[])
{
 psize(a); // prints 8, regardless of actual argument passed
 ...
}

In fact, C considers an array parameter to simply be a pointer.

Here's how the compiler "sees" f:
int f(int *a)
{
 ...
}

Any one-dimensional array parameter in any function can be changed to a pointer.

Any pointer parameter in any function can be changed to a one-dimensional array.

CSC#352#Fall#2015,#C#Slide#306#

Revisiting: Arrays as function parameters

Recall our swap function:
void swap(int *ap, int *bp)
{
 int t = *ap;
 *ap = *bp;
 *bp = t;
}

Problem: Sadly, your 8/* key stopped working just before you started to type in
the above. Rewrite swap without using an asterisk.

Solution:

void swap(int a[], int b[])
{
 int t = a[0];
 a[0] = b[0];
 b[0] = t;
}

CSC#352#Fall#2015,#C#Slide#307#

Pointers and arrays, continued

String manipulation using
pointers

CSC#352#Fall#2015,#C#Slide#308#

String manipulation routines are most commonly written using pointers rather
than array indexing.

Comparing array-based and pointer-based versions of the same routine provides
insight into the shift in thinking that should take place when you grasp the full
power of pointers.

Here are array-based and pointer-based versions of pstring:

Remember that a pointer can be thought of as a flyweight iterator that specifies a
position in a sequence of values.
 CSC#352#Fall#2015,#C#Slide#309#

String manipulation using pointers

void pstring(char s[])
{
 for (int i = 0; s[i]; i++)
 putchar(s[i]);
}

void pstring(char *p)
{
 while (*p)
 putchar(*p++);
}

t e s t i n g \0

100 106

p

From the previous slide:

It's important to "think pointers". If you're still thinking in terms of arrays, but try
to use pointers, you might end up with a pstring like this:

void pstring(char *p)
{
 for (int i = 0; *(p + i); i++)
 putchar(*(p + i));
}

CSC#352#Fall#2015,#C#Slide#310#

String manipulation using pointers, continued

void pstring(char s[])
{
 for (int i = 0; s[i]; i++)
 putchar(s[i]);
}

void pstring(char *p)
{
 while (*p)
 putchar(*p++);
}

Here's the pos routine written in both styles. Recall that pos returns the 0-based
position of the first occurrence of a character in a string.

Note that when p is pointing at an occurrence of the character of interest, pointer
subtraction is used to calculate an integral position to return.

Because parameters that are pointers are completely equivalent to parameters that
are arrays, the array-based version could be declared as int pos(char *s, char c)
and the pointer-based version could be declared as int pos(char p0[], char c).

How could we turn it into char *pos(char *p0, char c)? Would that be better?

CSC#352#Fall#2015,#C#Slide#311#

String manipulation using pointers, continued

int pos(char s[], char c)
{
 for (int pos = 0; s[pos]; pos++)
 if (s[pos] == c)
 return pos;

 return -1;
}

int pos(char *p0, char c)
{
 for (char *p = p0; *p; p++)
 if (*p == c)
 return p - p0;

 return -1;
}

Here are two ways to copy a string:

CSC#352#Fall#2015,#C#Slide#312#

String manipulation using pointers, continued

void copy(char to[], char from[])
{
 int i = 0;
 while ((to[i] = from[i]))
 i++;
}

void copy(char *to, char *from)
{
 while ((*to++ = *from++))
 ;
}

a b c \0 b x $ ~

100 101 102 103 104 105 106 107

to

from

200 201 202 203 204 205 206 207

void concat(char to[], char from[])
{
 int topos = 0;

 while (to[topos])
 topos++;

 int frompos = 0;
 while (to[topos++] = from[frompos++])
 ;
}

void concat(char *to, char *from)
{
 while (*to)
 to++;

 while (*to++ = *from++)
 ;
}

CSC#352#Fall#2015,#C#Slide#313#

String manipulation using pointers, continued
Here's string concatenation with arrays and pointers:

p o i n t \0 \0 . 8 2 =

i n g \0 u p \0 }

from

to

Here's another array-based version of concat:
void concat(char to[], char from[])
{
 int i = 0, j = 0;
 while (to[i])
 i++;

while (to[j++] = from[i++])
 ;
}

Is it correct?
No. i and j are transposed in the second while!

Note that the pointer-based version eliminates the possibility of mismatching
arrays and indices. A pointer is inseparable from the data it references!

Another lesson from above: Use better variable names!

CSC#352#Fall#2015,#C#Slide#314#

String manipulation using pointers, continued

Consider this declaration:
 char *s = "abc";

Remember: a string literal is syntactic sugar for an array initialization. A simple
view of the declaration above is this,

 char _tmp918[] = { 'a', 'b', 'c', 0 };
 char *s = _tmp918;

but the following is more accurate:
 const char _tmp918[] = { 'a', 'b', 'c', 0 };
 char *s = _tmp918;

The const qualifier specifies that the values in the array should not be changed.
The C compiler is then free to direct that the array be placed in a region of memory
that the operating system treats as read-only. (We'll learn more about const later.)

The following code produces a segmentation fault:

 char *s = "abc";
 *s = 'X';

Because the literal string is placed in read-only memory, the assignment, which
would change the 'a' to an 'X', generates a fault.

CSC#352#Fall#2015,#C#Slide#315#

A little more on string literals

Calling a function and specifying a string literal for a string argument that is
modified by the function leads to a fault.

Consider a copy call with reversed operands:
 char buf[20] = "x";
 copy("testing", buf);

The above code is roughly equivalent to this:
char buf[20] = {'x', 0 }
const char _tmp623[] = {'t', 'e', 's', 't', 'i', 'n', 'g', 0 }; // Note the const
copy(_tmp623, buf);

Essentially, the first action performed by copy is _tmp623[0] = buf[0] and
because tmp is in a block of memory marked as read-only by the operating
system, a fault is generated.

Exercise: The above code is in lit2.c. Compile with -S to generate assembly
code, and then look for testing in lit2.s. You'll that it's preceded by ".section
rodata", which directs that data, the string "testing", to be in read-only memory.

CSC#352#Fall#2015,#C#Slide#316#

A little more on string literals, continued

Executive summary:
As a rule, string literals cause the creation of immutable arrays of char
values. The exception is when a string literal is used to initialize a char array.

Example:
char text1[] = "some text"; // text1[i] can be changed, but

 // text1 cannot be changed.

text1[0] = 'x'; // OK
text1++; // NOT ALLOWED

char *text2 = "more text"; // text2[i] can't be changed, but

 // text2 can be changed.

text[0] = 'x'; // NOT ALLOWED
text2++; // OK—*text2 is 'o'

CSC#352#Fall#2015,#C#Slide#317#

A little more on string literals, continued

Here is a very lucky program:
int main()
{
 char *s;

 strcpy(s, "testing");
 strcat(s, " this");

 printf("s = '%s'\n", s);
}

Output:

s = 'testing this'

What's lucky about it?

 s is an uninitialized pointer! s apparently holds junk that's a valid address.

gcc does warn that s is uninitialized but in a more complex case it might not
be detected.

CSC#352#Fall#2015,#C#Slide#318#

A common error

Confession:
This example used to "work" but no longer
does.

Challenge:

Leave char *s; unchanged and add a
declaration before it that does make this
example work. (See slides 242-243 for a
potentially useful technique.)

Consider the following code.
char *replicate(char c, int n)
{
 char result[n+1];
 char *p = result;

 while (n--)
 *p++ = c;
 *p = 0;
 return result;
}

int main()
{
 char *xs = replicate('x', 10);
 int len = strlen(xs);
 printf("xs = '%s' (%d)\n", xs, len);
}

CSC#352#Fall#2015,#C#Slide#319#

Another common error

Some runs:
% a.out
xs = '`m#{#�' (10)

% a.out
xs = '##&9######0)

% a.out
xs = '`###�' (10)

% a.out
xs = '' (10)

What's wrong?

We're getting junk from this:
char *replicate(char c, int n)
{
 char result[n+1];
 char *p = result;

 while (n--)
 *p++ = c;
 *p = 0;
 return result;
}

int main() // lucky4.c
{
 char *xs = replicate('x', 10);
 int len = strlen(xs);
 printf("xs = '%s' (%d)\n", xs, len);
}

We do get a gcc warning: function returns address of local variable

CSC#352#Fall#2015,#C#Slide#320#

Another common error, continued
The array result is a local variable in replicate.

Because result is a local variable, it has
automatic storage duration.

Space for result is reserved on the stack for the
lifetime of replicate, but after replicate
returns, that space can be used by another
function!

It seems that result is getting clobbered
sometime after strlen computes the length but
before printf outputs the first character of result,
but how could we investigate further?

 Use gdb!

In general, it's always a mistake to return the address of a local because the
contents of that local are undefined after a function returns.

int *f(...)
{
 int a[10], x;

 ...

 if (...)
 return a;
 else if (...)
 return &a[n];
 else
 return &x;
}

The memory where a and x reside is "up for grabs" as soon as f returns!

In C we must always be always be cognizant of object lifetimes, lest we use a
corpse!

CSC#352#Fall#2015,#C#Slide#321#

Returning the address of a local is always a mistake

Is it ok to directly return an element from a local array?
int f()
{
 int a[10];

 ...
 return a[n]; // Ok?
}

Yes, a[n] is simply a value. There's no concept of lifetimes with values.

CSC#352#Fall#2015,#C#Slide#322#

Is it ok?

It is ok to pass the address of a local array, or an element in a local array to a
function?

int f2(...)
{
 int a[10], x;
 ...
 g(a); // Ok?
 g(&a[2]); // Ok?
 g(&x); // Ok?
}

The above calls are ok because a and x live until f2 returns, and f2 can't return
until all of the calls to g have returned.

Is it ok to return a pointer difference of two locals?

 ...in f2 above...
 return &a[i] - &a[j];

Yes. We're relying on the distance between the values, not the values themselves.

CSC#352#Fall#2015,#C#Slide#323#

Is it ok?

Arrays of pointers

CSC#352#Fall#2015,#C#Slide#324#

The first step in understanding arrays of pointers is to understand the declaration
of an array of pointers.

Consider this declaration:
 char *a[3];

By virtue of "declaration mimics use" we know this:

 *a[n] is char

Let's remove the lowest precedence operation from the left column and prepend
an English equivalent in the right-hand column:

 a[n] is pointer to char

Let's repeat the process, reaching only an identifier:
 a is array of pointer to char

Thus, char *a[3] declares a to be an array of three pointers that reference chars.

CSC#352#Fall#2015,#C#Slide#325#

Understanding a declaration

Let's review that process.

Here's the declaration. Swap the two parts and put "is" in the middle.
 char *a[3];

 *a[n] is char

Let's rewrite the lowest-precedence operator in English
 *a[n] is char

 a[n] is pointer to char

Repeat, until we reach a simple identifier.
 a[n] is pointer to char

 a is array of pointer to char

Some systems have cdecl(1), but cdecl is web-enabled at cdecl.org.

CSC#352#Fall#2015,#C#Slide#326#

Understanding a declaration, continued

Note that the intermediate form is
correct, too: if we see a[n], we
know it is a pointer to char.

In summary, the declaration
 char *a[3];

shows us three ways to use a:

 *a[n] is char
 a[n] is pointer to char

 a is array of pointer to char

The following expressions are valid:

 a[0] = "testing";

 int len = strlen(a[0]);

 *a[0] = 'x';

 putchar(*a[0]);

CSC#352#Fall#2015,#C#Slide#327#

Understanding a declaration, continued

Code:
int main()
{
 char s1[] = "abc";
 char *s2 = "testing";
 char *s3 = s2 + 4;

 char *a[3];
 a[0] = s1; // &s1[0]
 a[1] = s2;
 a[2] = ++s3;

 for (int i = 0; i < sizeof(a)/sizeof(a[0]); i++)
 printf("%s (%lu chars)\n", a[i], strlen(a[i]));
}

Output:

abc (3 chars)
testing (7 chars)
ng (2 chars)

CSC#352#Fall#2015,#C#Slide#328#

Example

s2

s3

a[0]

a[1]

a[2]

<N#8#bytes#N>#

s1 a b c \0
100 101 102 103

t e s t i n g \0
300 301 302 303 304 305 306 307

Each of the three values in a is the address of a zero-
terminated sequence of char values.

An array of pointers can be initialized with a sequence of values:

char *a[] = { "XX", "XIX", "XVIII" };

for (int i = 0; i < sizeof(a)/sizeof(a[0]); i++) // ap1a.c
 printf("%s\n", a[i]);

Output:

XX
XIX
XVIII

Memory might look like this:

CSC#352#Fall#2015,#C#Slide#329#

Initializing an array of pointers

X X \0 X I X \0 X V I I I \0 ...
300 301 302 303 304 305 306 307 308 309 310 311 312

a[0] 300

a[1] 303

a[2] 307

<N#8#bytes#N>#

It's common to see a null pointer mark the end of an array of pointers. I've grown
to prefer using 0 rather than NULL.

char *s = "abcd";
char *a[] = { "XX", "XIX", "XVIII" };
char *b[] = { s, s+1, &s[2], a[1], a[2]+2, 0 };

for (int i = 0; b[i]; i++)
 printf("%s\n", b[i]);

Output:

Exercise: Do this with gdb, too!

CSC#352#Fall#2015,#C#Slide#330#

Initializing an array of pointers, continued

b[0]

b[1]

b[2]

b[3]

b[4]

b[5]

b[6]

s a b c d \0
100 101 102 103 104

a[0] 300

a[1] 303

a[2] 307

<N#8#bytes#N>#

X X \0 X I X \0 X V I I I \0 ...
300 301 302 303 304 305 306 307 308 309 310 311 312

We've now got four distinct ways of dealing with array length!

1.  If an array is a local or a global, we can use sizeof(a)/sizeof(a[0]), or the

slightly shorter sizeof(a)/sizeof(*a).

2.  If an array is passed to a function, all that's passed is the address of an
element. Unless there's a sentinel value, which is uncommon with numeric
quantities, an element count must be passed, too.

3.  If we've got a char array that represents a C string, we can assume zero-
termination. This is the only case where strlen() works!

4.  With arrays of pointers, a null pointer (0 or NULL) is a perfect sentinel value
because C guarantees that no object will ever be assigned that address (which
is usually 0.)

CSC#352#Fall#2015,#C#Slide#331#

Sidebar: Lots of ways to handle array lengths

Now (and only now!) can we fully understand a C program that prints the
command line arguments:

% cat args.c
#include <stdio.h>

int main(int argc, char *argv[])
{
 for (int i = 0; i < argc; i++)
 printf("|%s|\n", argv[i]);
}

% gcc args.c && a.out just ' "testing" ' "t h i s"
|a.out|
|just|
| "testing" |
|t h i s|

Note that the first element (argv[0]) is the program name, not the first argument.

CSC#352#Fall#2015,#C#Slide#332#

Command line arguments

Another way: (late addition)
int main(int argc, char *argv[])
{
 for (char **ap = argv; *ap; ap++)
 printf("|%s|\n", *ap);
}
Note to self: above uses char **--too soon!

I lied a little. I actually see the following. Why?
% a.out just '"testing"' "t h i s"
|./a.out|
|just|
|"testing"|
|t h i s|

We'll see in argv[0] whatever path a program is run with:
% gcc -o args args.c
% $fall15/c/args hello!
|/cs/www/classes/cs352/fall15/c/args|
|hello!|

What's something interesting we could do by looking at the program name?

 We could vary program behavior based on program name.

We can use a symlink to run a program using a different name:

% ln -s args hello
% hello
|hello|

CSC#352#Fall#2015,#C#Slide#333#

Command line arguments, continued

Pointers to pointers

CSC#352#Fall#2015,#C#Slide#334#

Given char *a[3], let's consider the expression a:

•  Because a is an array, a is equivalent to &a[0].

•  The type of a[0] is pointer to char.

•  The type of &a[0] is pointer to pointer to char.

The expression a is a pointer to a pointer. It is the address of an address that holds
a char.

CSC#352#Fall#2015,#C#Slide#335#

Pointers to pointers

Here is a declaration for a pointer to a pointer:

char **p2p;

To understand the type of p2p, we can swap the two parts, and then repeatedly
remove the lowest precedence operation from the left column, and prepend an
English equivalent in the right-hand column, until reaching a simple identifier.

 char **p2p;

**p2p is char

*p2p is pointer to char

 p2p is pointer to pointer to char

CSC#352#Fall#2015,#C#Slide#336#

Pointers to pointers, continued

Let's use a pointer to a pointer to step through an array of character pointers.
int main()
{
 char *a[] = { "one", "two", "three"};

 char **p2p;
 p2p = a;

 char *p1 = *p2p;
 puts(p1);
 p2p++;
 puts(*p2p);
 puts(*++p2p);
 printf("%td\n", p2p - a);
}

CSC#352#Fall#2015,#C#Slide#337#

Pointers to pointers, continued

For reference:
char **p2p;

**p2p is char
*p2p is pointer to char
 p2p is pointer to pointer to char

address

a[0] 300 100

a[1] 304 108

a[2] 308 116

p2p 124

p1 132

<N#8#bytes#N>#

o n e \0 t w o \0 t h r e e \0
300 301 302 303 304 305 306 307 308 309 310 311 312 313

Imagine a function that returns a pointer to the pointer to the longest string in a
zero-terminated array of char pointers:

char *a[] = { "Give", "me", "more", "pointers", "please!", 0 };
char **lng = longest(a);
printf("The longest word is '%s'\n", *lng);

Implementation:
char **longest(char **strings) // ptr2ptr2.c
{
 char **longest = 0, **p2p;

 for (p2p = strings; *p2p; p2p++)
 if (longest == 0)
 longest = p2p;
 else if (strlen(*p2p) > strlen(*longest))
 longest = p2p;

 return longest;
}

CSC#352#Fall#2015,#C#Slide#338#

Pointers to pointers, continued

What's a simple efficiency improvement?
 Store strlen(*longest), too.

Just as f(char *p) and f(char a[]) are equivalent, so are f(char **p) and
f(char *a[]). Here's another way to write longest, albeit less idiomatic:

char **longest(char *strings[])
{
 char **longest = 0;

 for (int i = 0; strings[i]; i++)
 if (longest == 0)
 longest = &strings[i];
 else if (strlen(strings[i]) > strlen(*longest))
 longest = &strings[i];

 return longest;
}

Both definitions of longest can use
 char **longest(char *strings[]) ...

or
 char **longest(char **strings) ...

CSC#352#Fall#2015,#C#Slide#339#

Pointers to pointers, continued

Example: a simple tac

CSC#352#Fall#2015,#C#Slide#340#

Recall that tac(1) reads lines from standard input and prints them in reverse order,
first line last, last line first.

Let's implement a simplified version of tac. It has two limitations: its input must
be less than MAX_BYTES in length and can have no more than MAX_LINES
lines.

I have a representation in mind that uses two arrays:

char *lines[MAX_LINES];
char bytes[MAX_BYTES];

What have I got in mind?

CSC#352#Fall#2015,#C#Slide#341#

Potential representation

lines

lines[0]

lines[1]

lines[2]

...

...
300 301 302 303 304 305 306 307 308 309 310 311 312 ...

bytes

At hand:
char *lines[MAX_LINES];
char bytes[MAX_BYTES];

My idea: Lets store the content of input lines consecutively in bytes, and store in
lines a series of pointers to the start of each line contained in bytes.

Here's a simple input:

% cat tac.1
one
two
three

Here's snapshot of memory
after reading those lines:

CSC#352#Fall#2015,#C#Slide#342#

Potential representation, continued

lines

lines[0] 300

lines[1] 304

lines[2] 308

...

o n e \0 t w o \0 t h r e e \0 ...
300 301 302 303 304 305 306 307 308 309 310 311 312 314 ...

bytes

#define MAX_LINES 10000
#define MAX_BYTES 1000000
int main() // tac.c
{
 char *lines[MAX_LINES],
 char **nextLine = lines;
 char bytes[MAX_BYTES];
 char *nextByte = bytes;

 while (gets(nextByte)) {
 *nextLine++ = nextByte;
 nextByte += strlen(nextByte) + 1;
 }

 while (nextLine > lines)
 puts(*--nextLine);
}

CSC#352#Fall#2015,#C#Slide#343#

Implementation

nextLine

lines[0] 100

lines[1] 108

lines[2] 116

lines[3] 124

...

lines[M.L.]

nextByte

...
300 301 302 303 304 305 306 307 308 309 310 311 312 314 ...

bytes

Input:
one
two
three

Output:

Let's warn the user if our assumptions are violated.
#include <assert.h> // get the assert macro
...
int main()
{
 char *lines[MAX_LINES]; char **nextLine = lines;
 char bytes[MAX_BYTES]; char *nextByte = bytes;

 while (gets(nextByte)) {
 assert(nextLine < lines + MAX_LINES);
 *nextLine++ = nextByte;
 nextByte += strlen(nextByte) + 1;
 assert(nextByte < bytes + MAX_BYTES);
 }
 ...
}

CSC#352#Fall#2015,#C#Slide#344#

Refinement: assertions

Interaction:
% seq 10001 | a.out
a.out: tac.c:16: main: Assertion 'nextLine < lines + 10000' failed.
Aborted (core dumped)

% yes $(seq 37) | head -c1000000 | a.out
a.out: tac.c:19: main: Assertion 'nextByte <= bytes + 1000000' failed.
Aborted (core dumped)

It's very common to see both pointers, and pointers to pointers in C code but
pointers to pointers to pointers (and beyond) are relatively uncommon.

Here is a trivial example that uses a char ***:
int main()
{
 char *a[] = { "Give", "me", "more", "pointers", "please!", 0 };
 char *b[] = { "More", "Gooooooooogle", "results", 0 };

 char **ap[] = { a, b }; // array of pointer to pointer to char

 char ***p = ap; // pointer to pointer to pointer to char

 printf("%c\n", ***p); // G
 printf("%s\n", **p); // Give
 printf("%s\n", *p[1]); // More (Note that *p[1] is *(p[1]).)
 printf("%c\n", **p[1]); // M
}

CSC#352#Fall#2015,#C#Slide#345#

Pointers to pointers to pointers to ...

Imagine a generalized version of swap that takes two addresses and swaps N
bytes at those addresses:

int i = 10, j = 20;
swap(&i, &j, sizeof(int));

double x = 12.34, y = 56.78;
swap(&x, &y, sizeof(double));

What should be the type of swap's first two arguments?
 swap(int *a, int *b, int nbytes)?
 swap(double *a, double *b, int nbytes)?

swap takes two pointers to "something". We can use void * to express that:

 swap(void *a, void *b, int nbytes)

CSC#352#Fall#2015,#C#Slide#346#

void *

void * gives us a way to say "pointer to something".

Given void *vp, any pointer can be assigned to vp. No cast is needed.

The following code generates no warnings:

int main(int argc, char *argv[])
{

 double a[3];
 void *vp;

 vp = &argc; // pointer to int
 vp = a; // pointer to double
 vp = "abc"; // pointer to char
 vp = argv; // pointer to pointer to char
 vp = argv[1]; // pointer to char
 void *ptrs[] = { &argc, a, "abc", argv, argv[1] };

}

At present, it is common for all pointer types to be the same size, but if pointers are
different sizes, void * must be big enough to represent the largest.

Fine point: a void * like vp above may actually hold both a pointer and type
information that indicates what kind of pointer is being held.

CSC#352#Fall#2015,#C#Slide#347#

void *, continued

The previous slide showed that a pointer of any type can be assigned to a void *
without needing a cast.

Similarly, a void * can be assigned to a pointer of any type without needing a cast.

void *vp;
int *ip;
int i;

vp = &i;
ip = vp;

What's something that we can't do with void *vp?

 We can't indirect through it. *vp isn't valid! Why not?
 How big is the memory object specified by the L-value *vp?

Is vp++ valid?

 Yes, but that surprises me!

CSC#352#Fall#2015,#C#Slide#348#

void *, continued

Memory allocation

CSC#352#Fall#2015,#C#Slide#349#

C's fixed-size arrays are at odds with a common need of programs: holding an
arbitrary number of things.

Our simple tac program has limits specified with #defines, and those could be
raised, but should tac really be subject to any limits?

tac should be able to reverse any input that will fit in memory.

What's the maximum resolution that an image editor should be able to handle?
 It should be able to handle any image that will fit in memory.

What limits should a browser place on the number of elements in an HTML
document?

If an HTML document and its graphical representation fit in memory, a
browser should be able to display it.

A general principle of industrial-strength software design:
A program should be able to utilize all available memory to meet the needs of
a user.

CSC#352#Fall#2015,#C#Slide#350#

What's the problem we're about to solve?

How do Java programs accommodate indefinitely large inputs?
•  Instances of classes like ArrayList expand as needed.

•  Methods like BufferedReader.readLine() can read arbitrarily long lines of
input.

•  Data structures like linked lists and trees can extend arbitrarily; we just create

new nodes with new and add them to the structure as needed.

•  Simple arrays are not expandable, but a new, larger array can be allocated, and
elements can then be copied in from an old array.

These very same techniques work in C but there's an additional burden:

 When we're done using a block of memory, we need to explicitly release it.

CSC#352#Fall#2015,#C#Slide#351#

The problem, continued

We've studied two types of storage duration in C:
Automatic

Local variables have automatic storage duration. When a block of code
is entered, space is reserved for locals declared in the block. When the
block is exited, that space is reclaimed.

Static
Global variables and static locals have static storage duration. Space is
reserved for globals and static locals before execution begins, and not
released until the program terminates.

The third type of storage duration is "allocated".
•  The lifetime of allocated storage is controlled by the program.
•  When memory is needed, it is allocated by calling a library routine.
•  When allocated memory is no longer needed, it is released by calling a

library routine.

The C11 standard provides four functions for memory allocation: malloc, calloc,
realloc, and aligned_alloc. We'll study the first three, and some additional
functions that are outside the standard, such as strdup and asprintf.
 CSC#352#Fall#2015,#C#Slide#352#

The third type of storage duration

The most commonly used allocation function is malloc. The standard says this:
7.22.3.4 The malloc function
Synopsis

#include <stdlib.h>
void *malloc(size_t size);

Description

The malloc function allocates space for an object whose size is
specified by size and whose value is indeterminate. [Recall that size_t
is a typedef for unsigned long. We'll think of it as an int for now.]

Returns
The malloc function returns either a null pointer or a pointer to the
allocated space.

Note that malloc's return type is void *, expressing that the memory is thought
of as not holding an object of any particular type. Note the the object (singular)
may be an array.

What does "...whose value is indeterminate." mean?

CSC#352#Fall#2015,#C#Slide#353#

malloc

For reference:
void *malloc(int nbytes);

Let's request a block of allocated memory that is large enough for 25 int values:

int *p = malloc(25 * sizeof(int)); // Note: no (int *) cast required
printf("p = %lu (%p)\n", p, p);

 // Output: p = 31002640 (0x1d91010)

Let's fill the newly allocated memory with some values:

int *p2 = p, i = 1;
while (p2 < p + 25)
 *p2++ = i++ * 2;

Let's see what gdb shows, including a little extra on each side:
(gdb) p p[-2]@29
$1 = {113, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38,
40, 42, 44, 46, 48, 50, 0, 135057}
(gdb) p p2-p
$2 = 25
(gdb) p *p2
$3 = 0

CSC#352#Fall#2015,#C#Slide#354#

malloc, continued

It's common to have a function return a pointer to a block of allocated memory
that holds the result of a computation. Example:

char *replicate(int n, char c)
{
 char *buf = malloc((n+1)*sizeof(char));
 char *p = buf;

 while (n--)
 *p++ = c;
 *p = 0;

 return buf;
}

About malloc((n+1)*sizeof(char))...
 Why (n+1)?
 Allows space for terminating zero.
 Is sizeof(char) really needed?
 No, but it makes the intent clear.

Are both buf and p really needed?

CSC#352#Fall#2015,#C#Slide#355#

malloc, continued

Usage:
char *As = replicate(5, 'A');
char *dots = replicate(3, '.');

printf("%s%s%s\n", As, dots, As);
 // Output: AAAAA...AAAAA

For reference:
int *p = malloc(25 * sizeof(int))

The Java analog:
 int p[] = new int[25];

What's a key difference between the two?

 Java can detect a mismatch like this:
 int a[] = new char[n];

 C won't detect this:
 int *a = malloc(n*sizeof(char));

Another difference: we don't have to put ints in the memory allocated by
malloc(25*sizeof(int)). We could use it to store 100 chars instead; it's just a
chunk of memory!

CSC#352#Fall#2015,#C#Slide#356#

malloc, continued

For reference:
int *p = malloc(25 * sizeof(int))

Just as we can go outside the bounds of an array, we can go outside the bounds of
an allocated block. The following code will likely execute without an immediate
error:

 int x = p[25];
 p[-1] = 100;
 p[25] = 200;

There are numerous designs for memory allocators. In some allocators, data
structures used by the allocator immediate precede or follow the region of
memory given to the user. An overrun or underrun might corrupt the allocator's
data structures.

As with any other stray read or write to memory, out of bounds references with
blocks of allocated memory might not manifest themselves for a long time, if
ever.

CSC#352#Fall#2015,#C#Slide#357#

malloc, continued

Are there any errors in the following code?
int *p = malloc(10); // Get space for ten ints
for (int i = 0; i < strlen((char*)p); i++)
 p[i] = i;

Despite the comment, we are actually allocating space for ten chars, not ten ints!
 What should it be?
 int *p = malloc(10*sizeof(int));

What will strlen((char*)p) produce?

It will count bytes until it finds a zero in the indeterminate values in memory
starting at the address in p!

Should we use sizeof(p) instead?
 No, that will produce 8, the size of an int *!

Fact: There's no reliable mechanism to query the size of a block of memory
allocated with malloc.

CSC#352#Fall#2015,#C#Slide#358#

malloc, continued

Memory that we get with malloc can be returned with free.

Here's a trivial "round-trip"––we get a block of memory for ten ints and then
immediately give it back:

int *p = malloc(10*sizeof(int));
free(p);

Note that while we specify an amount of memory to allocate, we don't specify an
amount to free. Instead, the allocator keeps track of the size of all allocated
blocks and given an address, knows the size of a block at an address.

Why is it good to not need to specify a size for free()?

Imagine this code:
int *p = malloc(n*sizeof(int));
...populate p with values...
f(p); // f will call free(p) when done

If free() needed a size, we'd need to pass it along, too: f(p, n*sizeof(int)).

CSC#352#Fall#2015,#C#Slide#359#

The free function

This C loop will run forever:
for (;;) {
 int *p = malloc(1000 * sizeof(int));
 free(p);
 }

Estimate: How many iterations per second of the above loop on lectura?
 About 20 million

 How much slower would it be with malloc(100000 * sizeof(int))?
 Find out, with malloc3.c!

Does every call to malloc return the same address?

 It appears so.

What happens if we remove free(p)?

It eventually consumes all memory available to the process.

malloc returns 0 if the requested memory can't be allocated, but there's more to
the story.

CSC#352#Fall#2015,#C#Slide#360#

free, continued

For reference: (20 million iterations/second)
for (;;) {
 int *p = malloc(1000 * sizeof(int));
 free(p);
 }

A Java analog:

for (;;) {
 int p[] = new int[1000];
 }

Estimate: How many iterations per second?

 About 1.4 million

Why doesn't the Java version run out of memory?

Java provides automatic memory management, also known as garbage
collection: when an allocated object can no longer be accessed its memory is
subject to reclamation.

CSC#352#Fall#2015,#C#Slide#361#

free, continued

Memory management in C and Java are polar opposites.

Java:

A program allocates memory as needed. Java's garbage collector is
responsible for recycling objects that can no longer be reached.

C:
A program allocates memory as needed but is also responsible for returning
memory when no longer needed.

On almost all modern operating systems, the operating system reclaims all
memory in use by a program when the program terminates.

CSC#352#Fall#2015,#C#Slide#362#

Java vs. C

Memory management in C seems simple at first glance:
Free allocated memory when you're done with it.

However, there are several facets to consider:
•  If memory is allocated it must be freed.

•  Don't use memory after it is freed.
Corollary: Don't free memory that will be used later.

•  Don't free a block of memory more than once.

•  Don't free memory that wasn't allocated.

And of course:
Don't use memory outside the bounds of an allocated block.

The fact of it:
 It is very difficult to avoid memory management errors in large C programs.

CSC#352#Fall#2015,#C#Slide#363#

Simple enough, right?

A very common type of memory management error is a memory leak. A memory
leak occurs when memory is no longer needed but is not freed.

Here is an obvious memory leak:
for (;;) {
 int *p = malloc(100 * sizeof(int));
 }

Is there a leak in the following code?
for (int i = 1; i <= 20; i++)
 printf("%s\n", replicate(i, 'A'));

Yes, the memory allocated by replicate is never freed. Here's a fix:

for (int i = 1; i <= 20; i++) {
 char *s = replicate(i, 'A');
 printf("%s\n", s);
 free(s);
 }

But now the user of replicate is burdened. Could replicate do the free itself?

CSC#352#Fall#2015,#C#Slide#364#

Memory leaks

char *replicate(int n, char c)
{
 char *buf =

 malloc((n+1)*sizeof(char));
 char *p = buf;
 while (n--)
 *p++ = c;
 *p = 0;
 return buf;
}

Here's a coding practice to avoid leaks that's practical in some cases:
When you write a call to malloc(), immediately write the corresponding call
to free().

What's a case when that practice is not applicable?
When a function returns an object in allocated memory, like with replicate.

Solution: write the free as soon as you write replicate(...).

If a word processor leaks 1000 bytes every time you save the document, how
likely are you to notice that?

As a rule, the bigger and/or more frequent a leak, the easier it is to find.

A memory leak should never directly cause a program malfunction but
a malfunction will often result if memory is exhausted.

Can there be memory leaks in a Java program?

CSC#352#Fall#2015,#C#Slide#365#

Memory leaks, continued

If a function returns a pointer to allocated memory, the usual practice is to save
the pointer, use the memory, and then free it. Recall:

for (int i = 1; i <= 20; i++) {
 char *p = replicate(i, 'A');
 printf("%s\n", p);
 free(p);
 }

A common error is to free the memory, then use it. Example:

for (int i = 1; i <= 20; i++) {
 char *p = replicate(i, 'A');
 free(p);
 printf("%s\n", p);
 }

This type of error is commonly called "used after freed".

What are likely behaviors for the above code? Is a fault likely?

CSC#352#Fall#2015,#C#Slide#366#

"Used after freed"

Another common memory management error is to free a block of memory twice,
typically due to confusion over which function is responsible for deallocation.

void f()
{
 char *p = replicate(10, 'x');
 g(p);
 free(p);
}

void g(char *p)
{
 printf("f(%s)\n", p);
 free(p);
}

This sort of error is often called a "double free" or "multiple free".

A different manifestation of confusion of responsibility is a leak––f and g might
both assume that the other routine is to free the memory.

CSC#352#Fall#2015,#C#Slide#367#

"Double free"

For reference:
void f()
{
 char *p = replicate(10, 'x');
 g(p);
 free(p);
}

void g(char *p)
{
 printf("f(%s)\n", p);
 free(p);
}

2005 behavior: Ran ok with gcc on lectura. Faulted on Windows XP.

Current behavior with gcc on lectura:

g(xxxxxxxxxx)
*** glibc detected *** ./a.out: double free or corruption (fasttop):
0x0000000000a32010 ***
======= Backtrace: =========

CSC#352#Fall#2015,#C#Slide#368#

"Double free", continued

Another type of error is to free memory that wasn't allocated. Here's a goofy case
that once ran without error with gcc on lectura:

char x[10];
free(x);

A more subtle error is to adjust a pointer that was initially provided by malloc:

int *p = malloc(...);
...
if (...) {
 ...
 *p++ = ...
 ...
 }

free(p);

It's only valid to call free with an exact address produced by malloc. In the
above case, if malloc returns 1000 and the if block is executed, free is called
with 1004, not 1000. I sometimes call this "Freeing an advanced pointer."

CSC#352#Fall#2015,#C#Slide#369#

Freeing non-allocated memory

The C11 standard simply says that behavior is undefined for memory management
errors. The response of allocators to errors varies by implementation.

A simple example of freeing non-allocated memory:

int *p = malloc(10*sizeof(int));
free(p+1);

Current behavior on lectura:

% ./a.out
*** glibc detected *** ./a.out: free(): invalid pointer: 0x02541014 ***
======= Backtrace: =========
...

Current behavior on OS X with clang 6.0:

% ./a.out
a.out(65266,0x7fff74eec300) malloc: *** error for object
0x7f9600c04d34: pointer being freed was not allocated
*** set a breakpoint in malloc_error_break to debug
Abort trap: 6

CSC#352#Fall#2015,#C#Slide#370#

malloc implementations vary

From the malloc man page:
When [the environment variable] MALLOC_CHECK_ is set, a special (less efficient)
implementation is used which is designed to be tolerant against simple errors...

If MALLOC_CHECK_ is set to 0, any detected heap corruption is silently ignored;
if set to 1, a diagnostic message is printed on stderr; if set to 2, abort(3) is called
immediately; if set to 3, a diagnostic message is printed ... and the program is aborted.

One or more environment variables can be set for the duration of a command by
specifying VAR=VALUE at the start of a command line.

% MALLOC_CHECK_=0 a.out
% MALLOC_CHECK_=1 a.out
*** glibc detected *** ./a.out: free(): invalid pointer: 0x01b81014 ***
% MALLOC_CHECK_=2 a.out
Aborted (core dumped)
% MALLOC_CHECK_=3 a.out
*** glibc detected *** ./a.out: free(): invalid pointer: 0x0000000000c30014

======= Backtrace: ========= ...

Use echo $MALLOC_CHECK_ to see if you've got it set. In your ~/.bashrc you can
use export MALLOC_CHECK_=1 to set it "permanently". (See man getenv, too.)

CSC#352#Fall#2015,#C#Slide#371#

Adjusting malloc's behavior

Allocators are typically very complex, but it's not hard to write a simple allocator. Here
are a simple malloc and free that are also, I claim, the world's fastest!

char memory_pool[100000000]; // 100 million bytes
char *next_pool_addr = memory_pool;

void *malloc(int nbytes)
{
 if (next_pool_addr + nbytes <= memory_pool + sizeof(memory_pool)) {
 void *block_addr = next_pool_addr;
 next_pool_addr += nbytes;
 return block_addr;
 }
 else
 return 0;
}
void free(void *block_addr) { }

My malloc is O(1) and very easy to understand, but does it have any limitations?
 There's no provision to actually free memory!

Under what circumstances would it work?
 Total memory "throughput" is less than 100 million bytes. (Easily raised, too!)

CSC#352#Fall#2015,#C#Slide#372#

World's simplest (and fastest) malloc and free!

Problem:
Write a function int *fromTo(int from, int to) that returns a pointer to an
allocated array of int values ranging from from through to, inclusive. Assume
that from <= to.

Example of use, with print_ints from a8:
int *a3 = fromTo(1,3);
print_ints(a3, 3); // Output:{1,2,3}

Solution:

int *fromTo(int from, int to) // fromTo.c
{
 int *buf = malloc((to - from + 1) * sizeof(*buf));
 int *p = buf;

 while (from <= to)
 *p++ = from++;

 return buf;
}

CSC#352#Fall#2015,#C#Slide#373#

Example: fromTo

Why sizeof(*buf)?
It's another way to reduce the chance of a
type mismatch with the sizeof expression.

Nov 9 update: I'm seeing the above idea lead to trouble, so
let's call it a BAD idea. Just use ... * sizeof(int).

Let's allocate three arrays, printing each, and then clean up.
int *a3 = fromTo(1,3);
print_ints(a3, 3);
 // Output: {1,2,3}

int *a3a = fromTo(-3,2);
print_ints(a3a, 6);
 // Output: {-3,-2,-1,0,1,2}

int *a1 = fromTo(100,100);
print_ints(a1-1, 3);
 // Output: {0,100,164}
 // (Note that first and last values are indeterminate.)

int *allocs[] = {a3, a3a, a1, 0};
int **ap = allocs;

while (*ap)
 free(*ap++);

CSC#352#Fall#2015,#C#Slide#374#

fromTo, continued

Are there any issues with the following statement?
 print_ints(fromTo(-1,1), 3);

It's a memory leak! Why?

 We've "lost" the address of the allocated block!

Would it be good for print_ints to free the memory?

 That's not behavior an experienced C programmer would expect.
 And, then we couldn't use print_ints to print a local (non-allocated) array!

Another angle: What if free returned the address it was given, so calls could be
nested, like the following?

 print_ints(free(fromTo(-1,1)), 3);

No good! Why?

 The above is a "used after freed" error.

CSC#352#Fall#2015,#C#Slide#375#

fromTo, continued

a8's print_ints expects the number of values to print as a second argument:
void print_ints(int *first, int n)

Problem:

Write a function print_all that specifically works with the address returned
by fromTo. It prints the values in the newly allocated block, and does not
require a count.

Example:

print_all(fromTo(1,3)); // Output: {1,2,3}

print_all(fromTo(-3,2)); // Output: {-3,-2,-1,0,1,2}

Impossible! Why?
There's no sentinel value and there's no way to know the size of the allocated
block.

CSC#352#Fall#2015,#C#Slide#376#

fromTo, continued

Consider a function char *concat(char *s1, char *s2) that returns a
dynamically allocated string that contains the concatenation of s1 and s2.

Usage:
char *s1 = "concat";
char *s2 = concat(s1, "enate");

puts(s2);

 // Output: concatenate
char *s3 = concat(s2, s2);
puts(s3);

 // Output: concatenateconcatenate

free(s1);
free(s2);
free(s3);

Any bugs above?
Yes! free(s1) is freeing a string literal!

CSC#352#Fall#2015,#C#Slide#377#

concat

At hand:
char *concat(char *s1, char *s2) returns a dynamically allocated string
that contains the concatenation of s1 and s2.

 char *s2 = concat("just", " testing");

Problem: Write it!

Solution:

char *concat(char *s1, char *s2)
{
 int len1 = strlen(s1);
 char *result = malloc((len1+strlen(s2)+1)*sizeof(char));

 strcpy(result, s1);
 strcpy(result + len1, s2);

 return result;
}

As is, two passes are made over the strings: One to get their lengths, and a second
to copy their characters into the allocated memory. Can one pass be eliminated?

CSC#352#Fall#2015,#C#Slide#378#

concat, continued

How about strcat(result, s2) instead?

We can "change" the size of a block of allocated memory with realloc:
 void *realloc(void *ptr, size_t size);

ptr is the address of a previously allocated block. There are two possible results
for realloc:

1.  The allocator simply adjusts its notion of the size of the block. In this case,
realloc returns ptr.

2.  The allocator allocates a new block, copies data from the block referenced

by ptr into the new block, does free(ptr), and returns the address of the
new block.

Imagine an allocator that has two "pools" of blocks: 1000-byte blocks, and
variable-sized blocks.

•  Resizing a 100-byte block to a 300-byte block might only change an int
named size from 100 to 300. (First case above.)

•  Resizing a 100-byte block to a 1001-byte block would cause a variable-size

block to be allocated. Data would then be copied into it from the 100-byte
block, and the 100-byte block would be freed. (Second case above.)

CSC#352#Fall#2015,#C#Slide#379#

realloc

Here's an example that shows the mechanics:
int main()
{
 char *p = malloc(SZ1);
 paddr(p);
 strcpy(p, "testing");

 char *rp = realloc(p, SZ2);
 paddr(rp);

 puts(rp);
 free(rp);
}

CSC#352#Fall#2015,#C#Slide#380#

realloc, continued

Resizing from 10 to 2000 does not cause relocation but going
from 10 to 200,000 does cause relocation:

% gcc -DSZ1=10 -DSZ2=2000 realloc1.c && a.out
p = 28192784
rp = 28192784
testing

% gcc -DSZ1=10 -DSZ2=200000 realloc1.c && a.out
p = 8085520
rp = 139825191907344
testing

Consider the problem of sorting a number of floating-point values read from
standard input. We want to read all the values into memory but we don't know how
many values there may be.

Here's pseudo-code for an approach using realloc:

 N = 100
 vals = malloc(N*sizeof(double))
 while I can read a value
 store the value in the next position in vals
 if vals is full
 N *= 2
 newvals = realloc(vals, N*sizeof(double))
 copy from vals into newvals [brain cramp--realloc does the copy!]
 vals = newvals

The code above starts with space for 100 values. Whenever space runs out, it asks
for twice as much space as the last allocation.

Let's implement it!

CSC#352#Fall#2015,#C#Slide#381#

realloc, continued

int main() // realloc2.c
{
 int slots = 100;
 double *vals = malloc(slots * sizeof(double));
 double *next = vals, *end = vals + slots;

 while (scanf("%lg", next) == 1) { // Note: not &next!
 next++;
 if (next == end) {
 slots *= 2;
 int pos = next - vals;
 vals = realloc(vals, slots * sizeof(double));
 next = vals + pos;
 end = vals + slots;
 }
 }

 int numvals = next - vals;
 printf("%d values loaded:\n", numvals);
 for (int i = 0; i < numvals; i++)
 printf("vals[%d] = %g\n", i, vals[i]);

 free(vals);
}
 CSC#352#Fall#2015,#C#Slide#382#

realloc, continued

Exercise: Using slots = 1,
1. Step through it with gdb. (Use run

< nums inside gdb.)
2. Work through it with pencil and

paper

Pay attention to vals, next, and end.

Here's what the C11 standard shows for calloc:
7.22.3.2 The calloc function
Synopsis

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Description
The calloc function allocates space for an array of nmemb objects,
each of whose size is size. The space is initialized to all bits zero.

Let's get 25 int zeroes:

 int *vals = calloc(25, sizeof(int));

Does the following code produce 25 double values of 0.0?

 double *dvals = calloc(25, sizeof(double));

Fine point: C11 does not require that a double with all bits zero equals 0.0!
The above code is not portable.

Similarly, a pointer with all bits zero might not be == 0. (!)

CSC#352#Fall#2015,#C#Slide#383#

calloc

valgrind
(say "val-grinned")

CSC#352#Fall#2015,#C#Slide#384#

valgrind.org says:
Valgrind is an instrumentation framework for building dynamic analysis
tools. There are Valgrind tools that can automatically detect many memory
management and threading bugs, and profile your programs in detail. You can
also use Valgrind to build new tools.

We'll be using Valgrind's Memcheck tool to help us find memory management
errors.

There are other such tools, such as BoundsChecker and Purify, but Valgrind is
FOSS.

CSC#352#Fall#2015,#C#Slide#385#

What is Valgrind?

Valgrind is dead-simple to use:

% cat -n valgrind1.c
 1 #include <stdlib.h>
 2 int main()
 3 {
 4 char *p = malloc(100);
 5 p[100] = 'x';
 6 }

% gcc valgrind1.c

% valgrind --leak-check=full a.out
==8524== Memcheck, a memory error detector
==8524== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.
==8524== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
==8524== Command: a.out
==8524==
==8524== Invalid write of size 1
==8524== at 0x400512: main (valgrind1.c:5)
==8524== Address 0x51f00a4 is 0 bytes after a block of size 100 alloc'd
==8524== at 0x4C2B6CD: malloc
==8524== by 0x400505: main (valgrind1.c:4)
...and that's not all...

CSC#352#Fall#2015,#C#Slide#386#

Running valgrind

1.  8524 is the process id. (Not useful for us.)

2.  p[100] = 'x' is noted as "Invalid write of
size 1" because it's outside of an allocated
block.

3.  valgrind goes on to say that the write was

just beyond a block allocated at line 4.

[valgrind output, continued]
==8524==
==8524==
==8524== HEAP SUMMARY:
==8524== in use at exit: 100 bytes in 1 blocks
==8524== total heap usage: 1 allocs, 0 frees, 100 bytes allocated
==8524==
==8524== 100 bytes in 1 blocks are definitely lost in loss record 1 of 1
==8524== at 0x4C2B6CD: malloc
==8524== by 0x400505: main (valgrind1.c:4)
==8524==
==8524== LEAK SUMMARY:
==8524== definitely lost: 100 bytes in 1 blocks
==8524== indirectly lost: 0 bytes in 0 blocks
==8524== possibly lost: 0 bytes in 0 blocks
==8524== still reachable: 0 bytes in 0 blocks
==8524== suppressed: 0 bytes in 0 blocks

CSC#352#Fall#2015,#C#Slide#387#

% cat -n valgrind1.c
 1 #include <stdlib.h>
 2 int main()
 3 {
 4 char *p = malloc(100);
 5 p[100] = 'x';
 6 }

Leaked memory

Shows where the leaked
memory was allocated.

The memory managed by malloc is
considered to be "the heap".

% valgrind --leak-check=full a.out
==2002== Command: a.out
==2002==
==2002== Invalid read of size 4
==2002== at 0x4005CE: main (valgrind2.c:16)
==2002== Address 0x51f0040 is 0 bytes inside a
 block of size 40 free'd
==2002== at 0x4C2A82E: free ...
==2002== by 0x40059B: f (valgrind2.c:7)
==2002== by 0x4005C9: main (valgrind2.c:15)
==2002==
*p is 7
==2002==
==2002== HEAP SUMMARY:
==2002== in use at exit: 0 bytes in 0 blocks
==2002== total heap usage: 1 allocs, 1 frees, 40 bytes allocated
==2002==
==2002== All heap blocks were freed -- no leaks are possible

CSC#352#Fall#2015,#C#Slide#388#

"Used after freed" with valgrind
 5 void f(int *p)
 6 {
 7 free(p);
 8 }
 9
10 int main()
11 {
12 int *p =
13 malloc(10*sizeof(int));
14 *p = 7;
15 f(p);
16 iprint(*p);
17 }

Note "stack trace"!

No memory leaks.

Let's use valgrind to check realloc2.c, the realloc example from slide 382.

We'll use valgrind's -q option to suppress output unless there are errors.

% gcc realloc2.c
% seq 3 | valgrind -q --leak-check=full a.out
3 values loaded:
vals[0] = 1
vals[1] = 2
vals[2] = 3
%

Note that we're piping into valgrind. valgrind arranges for its standard input to
be standard input for the program it runs, which is a.out in this case.

If a.out required arguments, we'd just add them to command line. Let's imagine a
--reverse option for realloc2.c:

 % seq 3 | valgrind -q --leak-check=full a.out --reverse
 ...

CSC#352#Fall#2015,#C#Slide#389#

Let's check realloc2.c

Execution:
% gcc realloc2.c
% seq 3 | valgrind ...
3 values loaded:
vals[0] = 1
vals[1] = 2
vals[2] = 3
==29134== Conditional jump or move depends on uninitialised value(s)
==29134== at 0x4E80043: __printf_fp (printf_fp.c:406)
==29134== by 0x4E7D116: vfprintf (vfprintf.c:1596)
==29134== by 0x4E85298: printf (printf.c:35)
==29134== by 0x400720: main (realloc2.c:24)
==29134==
...several more of the above, but at different lines in printf_fp.c...
vals[3] = 0
==29134== 32 bytes in 1 blocks are definitely lost in loss record 1 of 1
==29134== at 0x4C2B7B2: realloc ...
==29134== by 0x400678: main (realloc2.c:15)
==29134==

CSC#352#Fall#2015,#C#Slide#390#

Let's introduce a couple of errors in realloc2.c:
#...
 for (int i = 0; i <= numvals; i++) // should be <
 printf("vals[%d] = %g\n", i, vals[i]);
 //free(vals); // skip the free!
}

We can run valgrind on any executable, although full line-number information might
not be available.

% date | valgrind --leak-check=full /usr/bin/tac
==22441== Command: /usr/bin/tac
==22441==
Wed Nov 4 01:16:36 MST 2015
==22441==
==22441== HEAP SUMMARY:
==22441== in use at exit: 16,971 bytes in 3 blocks
==22441== total heap usage: 166 allocs, 163 frees, 36,821 bytes allocated
==22441==
==22441== 16,388 bytes in 1 blocks are possibly lost in loss record 3 of 3
==22441== at 0x4C2B6CD: malloc ...
==22441== by 0x404338: ??? (in /usr/bin/tac)
==22441== by 0x401854: ??? (in /usr/bin/tac)
==22441== by 0x4E5376C: (below main) (libc-start.c:226)
==22441==
==22441== LEAK SUMMARY:
==22441== definitely lost: 0 bytes in 0 blocks
==22441== indirectly lost: 0 bytes in 0 blocks
==22441== possibly lost: 16,388 bytes in 1 blocks
==22441== still reachable: 583 bytes in 2 blocks
==22441== suppressed: 0 bytes in 0 blocks
...

CSC#352#Fall#2015,#C#Slide#391#

Let's check /usr/bin/tac

Valgrind's Memcheck tool doesn't catch non-heap errors.
% gcc valgrind3.c && valgrind --leak-check=full a.out
==2196== Memcheck, a memory error detector
...
==2196== Command: a.out
==2196==
==2196==
==2196== HEAP SUMMARY:
==2196== in use at exit: 0 bytes in 0 blocks
==2196== total heap usage: 0 allocs, 0 frees, 0 bytes allocated
==2196==
==2196== All heap blocks were freed -- no leaks are possible
==2196==
==2196== For counts of detected and suppressed errors, rerun with: -v
==2196== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 2
from 2)

There is an experimental Valgrind tool, SGcheck, that looks for overruns in stack and
global objects. It has issues, but feel free to try it. Example:

% gcc valgrind3.c && valgrind --tool=exp-sgcheck a.out

CSC#352#Fall#2015,#C#Slide#392#

valgrind doesn't catch non-heap errors

% cat valgrind3.c
int main()
{
 int a[3];

 a[3] = a[-1];
}

On most assignment problems that require memory allocation your solutions will
be expected to be "valgrind clean"––no errors detected by valgrind.

Here's a handy alias for your .bashrc:

 alias vg="valgrind --leak-check=full"

Valgrind throws a lot of technology at the problem of manual memory
management but even rudimentary tools can be useful.

A portion of assignments 10 and 11 will be implementing a simple memory
allocator that detects leaks and bad frees.

CSC#352#Fall#2015,#C#Slide#393#

Use valgrind!

Loose end: sprintf et al.

CSC#352#Fall#2015,#C#Slide#394#

It's possible to build up a string using a series of strcpy and strcat calls, other
routines, and ad-hoc code but it's very clumsy and error prone.

Imagine a make_name routine that assembles a name from first/middle/last names:
 char result[100];
 make_name("John", "Quincy", "Adams", result);
 puts(result); // Output: John Q. Adams

Implementation: (ouch!)
void make_name(char *first, char *middle, char *last, char *result)
{

 strcpy(result, first);
 strcat(result, " ");

 char initial[] = "X. ";
 initial[0] = middle[0];
 strcat(result, initial);

 strcat(result, last);

}

CSC#352#Fall#2015,#C#Slide#395#

The problem

The sprintf routine is like printf but instead of writing to standard output,
sprintf writes a string into memory.

Here is its prototype:
int sprintf(char *result, const char *format, ...);

Here is make_name with sprintf:
void make_name(char *first, char *middle, char *last, char *result)
{
 sprintf(result, "%s %c. %s", first, middle[0], last);
}

All the formatting capabilities of printf are available in sprintf.

What's a hazard with sprintf?
 The caller must ensure the target buffer, result, has sufficient room.
 Two safe alternatives, but with complications:

•  asprintf––print to allocated string
•  snprintf––like sprintf but with buffer length specified

CSC#352#Fall#2015,#C#Slide#396#

Solution: sprintf

Imagine a routine that creates a string with a comma-separated list of array values:
int a[] = {5, -10, 30, 7};
char buf[100];
ints_to_str(a, 4, buf); // buf now holds "5, -10, 30, 7"

A solution with sprintf:
void ints_to_str(int *vals, int length, char *result)
{
 if (length == 0) {
 *result = 0;
 return;
 }
 for (int *p = vals; p < vals + length; p++)
 result += sprintf(result, "%d, ", *p);
 result[-2] = 0; // eliminate trailing ", " (hack or "technique"?)
}

The code takes advantage of the that fact that sprintf returns the number of
characters inserted into the target buffer, not counting the terminating zero.

CSC#352#Fall#2015,#C#Slide#397#

sprintf, continued

Structures

CSC#352#Fall#2015,#C#Slide#398#

Structures provide a way to aggregate values as a collection of named elements.

Structure tags are declared with the struct keyword. Example:
struct Rectangle {

 int width;
 int height;
 };

Rectangle is said to have two members: width and height.

The declaration of a structure must appear before it can be used. Structures are
typically declared outside of functions.

Note the family resemblance to Java. structs in C++ look the same.

Unlike Java, there is no way to associate functions with Rectangle. The best we
can do in C is to name functions descriptively, such as area_of_Rectangle or
printRectangle.

IMPORTANT: Don't forget the semicolon at the end of a struct declaration!
 CSC#352#Fall#2015,#C#Slide#399#

Structure basics

For reference:
struct Rectangle {

 int width;
 int height;
 };

The following declaration creates a Rectangle. Note that struct is required.

struct Rectangle r;

This reserves space for a Rectangle named r, just like int x; reserves space for
an int named x.

sizeof can be applied to an instance of Rectangle or the tag:

sizeof(r) // 8
sizeof(struct Rectangle) // 8 (struct is required)

CSC#352#Fall#2015,#C#Slide#400#

Structure basics, continued

For reference:
struct Rectangle {

 int width;
 int height;
 };

struct Rectangle r;

One way to reference members is with the "dot" operator, which is sometimes
called member selection.

r.width = 10;
r.height = 20;

int area = r.width * r.height;

Unlike Java, C has no notion of access control––all members are "public".

In C, there's no simple way to hide the representation of an object. Code all over
a system can come to rely on struct members that we might later want to change.

CSC#352#Fall#2015,#C#Slide#401#

Structure basics, continued

It is possible to get the address of a structure, and addresses
of individual members of a structure.

int main()
{
 int i, j;
 struct Rectangle r1, r2;

printf("&r1 = %lu\n", &r1);
printf("&r1.width = %lu\n", &r1.width);

 ...lots more...
Structure members appear in memory in the order they are
declared. The address of a structure and the address of its
first element are the same.

r1 and r2 are local variables. They have automatic storage
duration and reside on the stack along with other locals.

Like other objects with automatic storage duration, the
members of r1 and r2 are not initialized.

 CSC#352#Fall#2015,#C#Slide#402#

Structure basics, continued

 |-------------|
..156 | j |
 |-------------|
..152 | i |
 |-------------|
 <4 words>
 |-------------|
..132 | r2.height |
 |-------------|
..128 | r2,r2.width |
 |-------------|
 <2 words>
 |-------------|
..116 | r1.height |
 |-------------|
..112 | r1,r1.width |
 |-------------|

We can have an array of structures. Member selection can be applied to elements
of the array.

struct Rectangle { int width; int height; };
int main() // struct1a.c
{
 struct Rectangle rects[5];
 int nrects = sizeof(rects) / sizeof(rects[0]);

 for (int i = 0, w = 3, h = 4; i < nrects; i++, w += 2, h += 3) {
 rects[i].width = w;
 rects[i].height = h;
 }

 int sum_of_areas = 0;
 for (int i = 0; i < nrects; i++)
 sum_of_areas += rects[i].width * rects[i].height;

 printf("Sum of areas: %d\n", sum_of_areas);
}

CSC#352#Fall#2015,#C#Slide#403#

Structure basics, continued

Structures can contain elements of any combination of types. Consider a structure
to represent a serial communication cable:

struct SerialCable {
 double length;
 int conductors;
 char ends[2]; // 'M' or 'F'
 char *manufacturer;
 };

To create and initialize a SerialCable one might do this:
struct SerialCable sc;
sc.length = 5.5;
sc.conductors = 9;
sc.ends[0] = 'M';
sc.ends[1] = 'F';
sc.manufacturer = "Cables 'R Us";

Although an instance of SerialCable holds only 22 bytes of data, sizeof(struct
SerialCable) produces 32! The extra space is padding to satisfy data alignment
requirements.

CSC#352#Fall#2015,#C#Slide#404#

Structure basics, continued

[Added]

Structures can contain other structures:
struct Point {

 double x;
 double y;
 };

struct Line {

 struct Point p1, p2;
 };

struct Line L;

Note that each instance of Line physically contains two instances of Point that each
physically contain two double values.

sizeof(struct Point) is 16, sizeof(struct Line) is 32, and sizeof(L) is 32.

A slope calculation:

L.p1.x = 1; L.p1.y = 1;
L.p2.x = 3; L.p2.y = 4;
double slope = (L.p2.y - L.p1.y) / (L.p2.x - L.p1.x);

L, an instance of struct Rectangle is a single memory object. Imagine the Java
analog for Line. How many objects would be required for an instance of it?

CSC#352#Fall#2015,#C#Slide#405#

Nested structures
 |-----------------|
..624 | L.p2.y |
 |-----------------|
..616 | L.p2, L.p2.x |
 |-----------------|
..608 | L.p1.y |
 |-----------------|
..600 | L, L.p1, L.p1.x |
 |-----------------|

For reference:
struct Point {

 double x;
 double y;
 };

struct Line {

 struct Point p1, p2;
 };

Here is an alternative definition for Line:
struct Line {
 struct Point p[2];
 };

CSC#352#Fall#2015,#C#Slide#406#

Nested structures, continued

A slope calculation:
struct Line L;

L.p[0].x = 1; L.p[0].y = 1;
L.p[1].x = 3; L.p[1].y = 4;

double slope = (L.p[1].y - L.p[0].y) / (L.p[1].x - L.p[0].x);

C's structure initialization syntax is very similar to the array initialization syntax.

For reference:
struct SerialCable {

 double length;
 int conductors;
 char ends[2];
 char *manufacturer;
 };

An instance can be defined and initialized like this:

struct SerialCable cable1 = { 1.5, 3, {'M', 'M'}, "Joe's Cables" };
An alternative:

struct SerialCable cable2 = { 2.5, 9, 'M', 'F', "Joe's Cables" };

If an initializer is omitted, the corresponding member is initialized with a type-
appropriate zero.

struct SerialCable cable3 = { 5.0, 9 };
is equivalent to

struct SerialCable cable3 = { 5.0, 9, {0, 0}, 0 };

CSC#352#Fall#2015,#C#Slide#407#

Structure initialization

An array of structures can be initialized with a series of initializers:
struct SerialCable cables[] = {
 { 1.5, 3, {'M', 'M'}, "Joe's Cables" },
 { 2.5, 9, {'M', 'F'}, "Cables 'R Us" },
 { 4.0, 3, {'F', 'M'}, "connectem.com" }
 };

The grouping braces can omitted, albeit with a loss of clarity:
struct SerialCable cables[] = {
 1.5, 3, 'M', 'M', "Joe's Cables", 2.5, 9, 'M', 'F',
 "Cables 'R Us", 4.0, 3, 'F', 'M', "connectem.com"
 };

To create an array of SerialCables with only the length initialized in each, we
can do this:

struct SerialCable cables[] = {{2.2},{1.3},{7},{4},{15}};

All members aside from length are zeroed.

CSC#352#Fall#2015,#C#Slide#408#

Structure initialization, continued

struct SerialCable {
 double length;
 int conductors;
 char ends[2];
 char *manufacturer;
 };

For reference:
struct SerialCable {

 double length;
 int conductors;
 char ends[2];
 char *manufacturer;
 };

C11 supports designated initializers, which allow members to be initialized by
name (and more).

Here's a simple example:
struct SerialCable cables[] = {
 { .conductors = 3,
 .length = 2.0, // Note difference in order vs. struct
 .manufacturer = "Kinky Kables" },
 { .ends = 'M' }
 };

CSC#352#Fall#2015,#C#Slide#409#

Structure initialization, continued

Instances of Line can be initialized like this:
struct Line L1 = {{1, 2}, {3, 4}};
struct Line L2 = {1, 1, -1, -1};
struct Line L3 = {{}, 5, 7};
struct Line a[] = {{1,2}, {}, {3,4}};

One way to explore structure initialization is to print values with gdb:

(gdb) p L1
$1 = {p1 = {x = 1, y = 2}, p2 = {x = 3, y = 4}}
(gdb) p L2
$2 = {p1 = {x = 1, y = 1}, p2 = {x = -1, y = -1}}
(gdb) p L3
$3 = {p1 = {x = 0, y = 0}, p2 = {x = 5, y = 7}}
(gdb) p a
$4 = {{p1 = {x = 1, y = 2}, p2 = {x = 0, y = 0}},

 {p1 = {x = 0, y = 0}, p2 = { x = 0, y = 0}},
 {p1 = {x = 3, y = 4}, p2 = {x = 0, y = 0}}}

The full set of rules for structure initialization is complex and the designated
initializer rules, which apply to simple arrays, too, are even more complex.

CSC#352#Fall#2015,#C#Slide#410#

Structure initialization, continued

struct Point { double x, y; };
struct Line {

 struct Point p1, p2;
 };

It is possible to treat an entire structure as a value. The contents of the structure
are simply copied as a sequence of bytes. Example:

struct Point { double x, y; };
void print_Point(char *label, struct Point pt); // Note type of pt
int main() // struct6a.c
{
 struct Point p1 = {3.1, 4.2}, p2;

 p2 = p1; // copies sizeof(p1) bytes from &p1 to &p2
 p2.x *= 2.0; // p1 is unchanged

 print_point("p1", p1); // pushes sizeof(p1) bytes onto stack
 print_point("p2", p2); // ditto for p2
}

void print_point(char *label, struct Point pt) // call by value for pt
{
 printf("%s: (%g, %g)\n", label, pt.x, pt.y);
}

CSC#352#Fall#2015,#C#Slide#411#

Structures as values

Output:
p1: (3.1, 4.2)
p2: (6.2, 4.2)

struct Point translate(struct Point p, double xdelta, double ydelta)
{
 struct Point newPoint;

 newPoint.x = p.x + xdelta;
 newPoint.y = p.y + ydelta;

 return newPoint;
}

double slope(struct Line L)
{
 return (L.p2.y - L.p1.y) / (L.p2.x - L.p1.x);
}

int main() // struct6.c
{
 struct Line A = {{0,0},{2,4}};

 printf("slope of A = %g\n", slope(A));

 A.p1 = translate(A.p1, 0, 10);

 printf("new slope of A = %g\n", slope(A));
}

CSC#352#Fall#2015,#C#Slide#412#

Structures as values, continued

Which lines treat a structure as a value?

What effect would be produced by the
statement translate(A.p2, 3, 4);?

No effect. A point would be created
and returned but never used.

For reference:
struct Point {
 double x, y;
 };

struct Line {
 struct Point p1, p2;
 };

A pointer variable that can reference an instance of Rectangle is declared like this:
 struct Rectangle *rp;

Let's make a Rectangle named r and point rp at it:
struct Rectangle r;
rp = &r;

We can use the -> operator to reference a member of a pointed-to structure:

rp->width = 5;
rp->height = 7;

int area = rp->width * rp->height;

This operator, like the . ("dot") operator, is sometimes called member selection or
member access, but is usually read as "pointing to". Like "dot", -> has very high
precedence.

A precise reading of rp->width is "the width member of the Rectangle
that rp points to".

CSC#352#Fall#2015,#C#Slide#413#

Pointers to structures

r.width = 5;
r.height = 7;

int area = r.width * r.height

For reference:
struct Rectangle r;
struct Rectangle *rp;
rp = &r;

We can apply * to rp to produce an L-value that specifies r.

Note the types:
rp is pointer to struct Rectangle
*rp is struct Rectangle

Let's assign the contents of r (pointed to by rp) to r2:

struct Rectangle r2;
r2 = *rp;

CSC#352#Fall#2015,#C#Slide#414#

Pointers to structures, continued

Recall that we can take the address of member referenced with "dot":
 int *p1 = &r.width;

Like "dot", the -> operator produces an L-value. This expression is valid:

 int *p2 = &rp->width; // Precedence: &(rp->width)

It says "Assign to p2 the address of the width member of the Rectangle pointed
to by rp.

To swap the width and height of a Rectangle we can do this:

 swap(&rp->width, &rp->height)

CSC#352#Fall#2015,#C#Slide#415#

Pointers to structures, continued

The general form of the . (dot) operator is:
 L-value . member-name

Given struct Rectangle r, r is an L-value: it specifies a particular Rectangle
object in memory.

If the type of rp is struct Rectangle *, then *rp yields an L-value of type struct
Rectangle.

Thus,
 (*rp).width

is completely equivalent to
 rp->width

K&R 2e describes p->m as a shorthand for (*p).m

CSC#352#Fall#2015,#C#Slide#416#

Sidebar: An equivalence with . and ->

A pointer can iterate over an array of structures. Example:
struct Rectangle rects[5];

//...populate rects with widths and heights...

int sum_of_areas = 0;
int nrects = sizeof(rects)/sizeof(*rp);
for (struct Rectangle *rp = rects; rp < rects + nrects; rp++)
 sum_of_areas += rp->width * rp->height;

printf("Sum of areas: %d\n", sum_of_areas);

Notes:

 rp++ adds sizeof(struct Rectangle) to rp, advancing it to the next element.

rects + nrects is equivalent to &rects[nrects].

The for loop continues until rp reaches rects + nrects, which would be the
address of the sixth rectangle, which is non-existent.

CSC#352#Fall#2015,#C#Slide#417#

Pointers to structures, continued

An alternative to passing a structure by value is to pass a pointer to a structure.
void print_Point(char *label, struct Point *pt)
{
 printf("%s: (%g, %g)\n", label, pt->x, pt->y);
}

Usage:
struct Point p1 = {3.1, 4.2};
print_Point("p1: ", &p1);

Contrast with the value-passing version shown earlier:
void print_Point(char *label, struct Point pt)
{
 printf("%s: (%g, %g)\n", label, pt.x, pt.y);
}

Usage:

struct Point p1 = {3.1, 4.2};
print_Point("p1: ", &p1);

CSC#352#Fall#2015,#C#Slide#418#

Pointers to structures, continued

What's a performance consideration when
deciding whether to have a function take a
structure by value vs. passing a pointer?

If a structure is large, passing a pointer
avoids copying it onto the stack.

It's common to have functions that initialize a structure using values passed as
arguments.

void init_cable(struct SerialCable *scp,
 double len, int wires, char end1, char end2, char *mfr)
{
 scp->length = len;
 scp->conductors = wires;
 scp->ends[0] = end1; // Could also be *scp->ends = end1;
 scp->ends[1] = end2;
 scp->manufacturer = strdup(mfr); // Copies to malloc'd memory
}

Usage:
struct SerialCable sc;
init_cable(&sc, 2.0, 10, 'M', 'F', "connectem.com");

struct SerialCable *p = malloc(sizeof(struct SerialCable));
init_cable(p, 3.5, 20, 'F', 'M', "Point-to-Point, Inc.");

Would it be better to put the malloc inside init_cable?
How about a flag to indicate that init_cable should also allocate memory?
 CSC#352#Fall#2015,#C#Slide#419#

Structure initialization with a function

A function that allocates memory for an object, initializes it based on parameters,
and then returns a pointer to it is a rough approximation of a Java constructor.

struct Line *make_line(double x1, double y1, double x2, double y2)
{
 struct Line *lp = malloc(sizeof(struct Line));
 lp->p1.x = x1; lp->p1.y = y1;
 lp->p2.x = x2; lp->p2.y = y2;
 return lp;
}

Usage:
struct Line *lp = make_line(1, 2, 3, 4);

Contrast with Java:

Line line = new Line(1, 2, 3, 4);

make_line is fairly close to a Java constructor. It creates and initializes an object
in the heap and returns a pointer. A pointer to a structure is essentially equivalent
to a reference in Java.

CSC#352#Fall#2015,#C#Slide#420#

An approximation of a Java constructor

Just like returning a pointer to a local array is a mistake, so is returning a pointer
to a structure that's a local variable.

Here's an example of a mistake:

struct Line *make_line(double x1, double y1, double x2, double y2)
{
 struct Line L = { {x1, y1}, {x2, y2} };

 return &L; // DON'T DO THIS!!
}

The lifetime of L ends when make_line returns but the returned pointer will still
reference the memory where L resided during the lifetime of make_line.

It can be said that make_line returns a dangling pointer––it's a pointer that was
once valid but no longer is.

gcc does produce a warning: function returns address of local variable

CSC#352#Fall#2015,#C#Slide#421#

Don't return a pointer to a local structure!

The getpwent() library function is used to iterate through /etc/passwd entries.
Here's the prototype that man getpwent shows:

struct passwd *getpwent(void);

The man page goes on to show this:
 The passwd structure is defined in <pwd.h> as follows:

 struct passwd {
 char *pw_name; /* username */
 char *pw_passwd; /* user password */
 uid_t pw_uid; /* user ID */
 gid_t pw_gid; /* group ID */
 char *pw_gecos; /* user information */
 char *pw_dir; /* home directory */
 char *pw_shell; /* shell program */

 };

uid_t and gid_t are typedefs (type aliases) for unsigned ints.

CSC#352#Fall#2015,#C#Slide#422#

Example: getpwent()

The first call to getpwent() returns a pointer to a structure populated with data
from the first line in /etc/passwd. Let's see what the first line is:

% head -1 /etc/passwd
root:x:0:0:root:/root:/bin/bash

Here's a program that simply reads and prints the first /etc/passwd entry:

#include <stdio.h>
#define __USE_SVID // needed to "see" getpwent() prototype
#include <pwd.h>
int main() //getpwent1.c
{
 struct passwd *ep = getpwent();
 printf("username: %s, real name: %s, home: %s, shell: %s\n",
 ep->pw_name, ep->pw_gecos, ep->pw_dir, ep->pw_shell);
}

Execution:
% gcc getpwent1.c && a.out
username: root, real name: root, home: /root, shell: /bin/bash

CSC#352#Fall#2015,#C#Slide#423#

getpwent(), continued

Let's look for "real name" (pw_gecos) entries that contain a string specified on the
command line. Example:

% getpwent2 Mitchell
[150] username: whm, real name: William H. Mitchell
[286] username: steve, real name: Steven Maury Mitchell
[764] username: mjmitchell, real name: Matthew John Mitchell
...lots more...

Implementation:
int main(int argc, char **argv) //getpwent2.c
{
 struct passwd *ep;
 int entry_num = 0;
 while ((ep = getpwent())) {
 entry_num++;
 if (strstr(ep->pw_gecos, argv[1])) {
 printf("[%d] username: %s, real name: %s\n",
 entry_num, ep->pw_name, ep->pw_gecos);
 }
 }
}

 CSC#352#Fall#2015,#C#Slide#424#

getpwent(), continued

Recall that first example with getpwent():
int main() //getpwent1.c
{
 struct passwd *ep = getpwent();
 printf("username: %s, real name: %s, home: %s, shell: %s\n",
 ep->pw_name, ep->pw_gecos, ep->pw_dir, ep->pw_shell);
}

Where is the instance of struct passwd that ep is pointing to? What is its
lifetime?

From the man page:
The return value may point to a static area, and may be overwritten by
subsequent calls to getpwent(), getpwnam(3), or getpwuid(3). (Do
not pass the returned pointer to free(3).)

CSC#352#Fall#2015,#C#Slide#425#

getpwent(), continued

Here's a skeletal getpwent() implementation:
struct passwd *getpwent(void)
{
 static struct passwd result;
 // ...populate result...
 return &result; // OK because it's static!
}

Because result is declared to be static, it survives across calls to getpwent().
Therefore, it's ok to return a pointer to it.

What's another static data value that getpwent() is apparently using?

 Hint: while ((ep = getpwent())) { ... }

Successive calls to getpwent() read successive lines from /etc/passwd, so
getpwent() perhaps also has a static variable that holds some sort of file
object that tracks the current position in /etc/passwd.

What's a pitfall with getpwent()?
Data "returned" by a call gets overwritten by the next call.

CSC#352#Fall#2015,#C#Slide#426#

getpwent(), continued

C structures are used to implement data structures like linked lists. Here's a
struct that represents nodes in a singly-linked list of ints:

struct node {
 int value;
 struct node *next;
 };

Note that the declaration is self-referential: the member next points to a node.

Here's how the sequence 7, -3, 9 might be represented with three nodes:

Nodes in a linked structure are almost always in allocated memory, with the
possible exception of "head"/"root" nodes in some cases.

CSC#352#Fall#2015,#C#Slide#427#

A linked list

200

value 7

next 300

300

value -3

next 400

400

value 9

next 0

For reference:
struct node {
 int value;
 struct node *next;
 };

Here's code that reads ints from standard input,
building a list and then printing it: (linked1.c)

struct node head = {0, 0};
struct node *last = &head;
int num;

while (scanf("%d", &num) == 1) {
 struct node *new = malloc(sizeof(struct node));
 new->value = num;
 new->next = 0;
 last->next = new;
 last = new;
 }

for (struct node *np = head.next; np; np = np->next)
 printf("%d\n", np->value);

CSC#352#Fall#2015,#C#Slide#428#

A linked list, continued
100

head value

next

num

last

new
np

Input: 7, -3, 9

Problem: Deallocate the memory.

struct node *np = head.next;
while (np) {
 struct node *tofree = np;
 np = np->next;
 free(tofree);
 }

CSC#352#Fall#2015,#C#Slide#429#

A linked list, continued

200

value 7

next 300

300

value -3

next 400

400

value 9

next 0

100 (head)

value 0

next 200

np tofree

Variation: let's maintain the list in sorted order instead of adding nodes at the end.

Step 1: Have the head node hold a minimum value:

struct node head = {INT_MIN, 0};

Step 2: Find a node in the list such that num is >= the node's value and <= the next node's
value. Or, add the new node at the end. Here's the code:

while (scanf("%d", &num) == 1) {
 struct node *new = malloc(sizeof(struct node));
 new->value = num; new->next = 0;

 for (struct node *np = &head; ; np = np->next) {
 if (np->next == 0 ||
 (num >= np->value && num <= np->next->value)) {
 new->next = np->next;
 np->next = new;
 break;
 }
 }
 }

CSC#352#Fall#2015,#C#Slide#430#

A sorted linked list

100 (head)

value INT_MIN

next 200

200

value 7

next 300

300

value 12

next 0

Input: 12, 7, 9, 15

I/O streams and more

CSC#352#Fall#2015,#C#Slide#431#

The C library has a family of functions for working with I/O streams. Prototypes
for the functions are in <stdio.h>.

The fopen() function opens a file and returns a pointer to a data structure that
represents a stream. Here is the prototype:

 FILE *fopen(const char *path, const char *mode);

Let's open a stream to read from the file lines:
FILE *in = fopen("lines", "r");

With gcc, FILE is defined as a typedef:
typedef struct _IO_FILE {
 ...lots...
 } FILE;

The C11 standard requires that there be a FILE type, but the _IO_FILE structure is
gcc-specific. Other implementations of the C library might have a different
underlying struct, but we can count on FILE being present.

CSC#352#Fall#2015,#C#Slide#432#

I/O streams and FILE

There are stream-based counterparts for getchar and putchar:
int fgetc(FILE *stream);
int fputc(int c, FILE *stream);

Here's a simple-minded version of cp(1):
int main(int argc, char *argv[]) // cp0.c
{
 FILE *in = fopen(argv[1], "r");
 FILE *out = fopen(argv[2], "w");

 int c;
 while ((c = fgetc(in)) != EOF) {
 fputc(c, out);
 }

 fclose(in);
 fclose(out);
}

CSC#352#Fall#2015,#C#Slide#433#

fgetc and fputc

Usage:
% cp0 /etc/passwd pw
% diff pw /etc/passwd
%

For reference:
int main(int argc, char *argv[]) // cp0.c
{
 FILE *in = fopen(argv[1], "r");
 FILE *out = fopen(argv[2], "w");
 ...
 int c;
 while ((c = fgetc(in)) != EOF) {
 fputc(c, out);
 }
 ...

Another copy:

% cp0 /etc/password pw
Segmentation fault (core dumped)

Why?

If fopen fails for any reason, it returns NULL (0).

CSC#352#Fall#2015,#C#Slide#434#

An error

An fopen call can fail for any one of several reasons. It is common for failing
library routines to set errno, a global variable.

void perror(char *s) looks up the error code held in errno and prints an
explanatory error message, preceded by s. Example:

int main(int argc, char **argv) // fopen1.c
{
 FILE *fp = fopen(argv[1], argv[2]);

 if (fp != NULL)
 printf("ok!\n");
 else
 perror(argv[1]);
}

CSC#352#Fall#2015,#C#Slide#435#

perror––look up an error message

Usage:
% perror1 /etc/passwd w
/etc/passwd: Permission denied

% perror1 not-here r
not-here: No such file or directory

% perror1 not-here w
ok!

% perror1 . w
.: Is a directory

Three standard streams, of type FILE *, are available: stdin, stdout, and stderr.

Here is yet another trivial cat:
int main()
{
 int c;
 while ((c = fgetc(stdin)) != EOF)
 fputc(c, stdout);
}

Note the analogs:
C Java
stdin System.in
stdout System.out
stderr System.err

CSC#352#Fall#2015,#C#Slide#436#

stdin, stdout, and stderr

The fgets and fputs functions are stream-based counterparts for gets and puts:
char *fgets(char *s, int n, FILE *stream);
int fputs(const char *s, FILE *stream);

Unlike gets, fgets includes a buffer length argument. At most n-1 characters are
read into memory starting at s. A line read by fgets includes the trailing newline;
fputs does not add a newline to the string being written.

Here's cat with fgets and fputs:
int main() // fcat.c
{
 char line[100];
 while (fgets(line, sizeof(line), stdin) != NULL)
 fputs(line, stdout);
}

Would fcat < /bin/ls > myls likely work?

 No. fputs, like puts, assumes a C string, and stops at a zero byte.
What's the minimum size that line can be and still able to handle any text file?

 2
CSC#352#Fall#2015,#C#Slide#437#

fgets and fputs

fprintf is just like printf but a FILE * precedes the format specification. We can
use it with stderr to produce output on standard error:

int main(int argc, char **argv)
{
 if (argc != 3) {
 fprintf(stderr, "Usage: %s from to\n", argv[0]);

 ...

Along with fprintf, there is fscanf. For all practical purposes,
printf(...); and scanf(...);

are equivalent to
fprintf(stdout, ...); and fscanf(stdin, ...);

Any FILE * returned by fopen(..., "r") can be used with fscanf.

Any FILE * returned by fopen(..., "w") can be used with fprintf.

CSC#352#Fall#2015,#C#Slide#438#

fprintf and fscanf

C11 doesn't [appear to] provide any function to read an input line of unlimited
length but POSIX.1-2008 added getline(), orginally a GNU extension.

Here's the prototype:

 ssize_t getline(char **lineptr, size_t *n, FILE *stream);

getline reads bytes from stream until it reaches a newline and returns the
number of bytes read.

If *lineptr is zero, the address of a newly allocated block of memory containing
the bytes read, including a final newline, is assigned to *lineptr.

If *lineptr is non-zero, it assumed to be the address of an allocated block of
memory to hold the line. If it turns out to be too small, it is realloc'd, and
*lineptr is updated.

The size of the allocated block, which may be greater than the number of bytes
read, is assigned to *n.

-1 is returned at end-of-file.

CSC#352#Fall#2015,#C#Slide#439#

getline––read a line of any length

This program uses getline to fill the array lines with pointers to allocated copies
of each line read. lines is fixed size but the input lines may be of any length.

#define _GNU_SOURCE // needed to "see" getline prototype
#include <stdio.h>
int main() // getline2.c
{
 char *lines[10000], **next = lines;

 ssize_t bytes_read; size_t bytes_allocd;
 char *result = 0;
 while ((bytes_read = getline(&result, &bytes_allocd, stdin)) != EOF) {
 *next++ = result;
 result = 0; // Zeroing result forces getline to allocate a new
 } // block each time through the loop.
 ...
}

What would happen if we didn't zero result?

CSC#352#Fall#2015,#C#Slide#440#

getline, continued

At hand:
ssize_t bytes_read; size_t bytes_allocd;
char *result = 0;
while ((bytes_read = getline(&result, &bytes_allocd, stdin)) != EOF) {

 ...

Does getline seem over-complicated?

What would be a simplified interface?

 char *getline(FILE* stream);

We gain simplicity but what would we lose?

•  If we wanted to "delete" the trailing newline we'd need to use strlen.
•  If we need to hold only one line at a time, there would be a lot of unnecessary

memory throughput by allocating a fresh block for every line rather than
letting getline reallocate when needed.

It's the usual dilemma: If we're using C for the sake of efficiency, then don't we
want this sort of fine-grained control of behavior?

CSC#352#Fall#2015,#C#Slide#441#

getline, continued

The duo of fgets and fputs can't handle data that zero-value bytes. fgetc and
fputc handle arbitrary data but there's overhead in their character-by-character
processing.

fread and fwrite provide a way to read or write a large amount of data with a
single call. Here are the prototypes:

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

Note the two middle parameters for both: size and nmemb. fread attempts to
read nmemb objects that are size bytes long. It returns the number actually read.

fwrite writes nmemb objects that are size bytes long. It returns the number
actually written.

CSC#352#Fall#2015,#C#Slide#442#

fread and fwrite

Here's a program that tries to read 4096 bytes and then writes as many as it read:
int main(int argc, char *args[]) // fread1.c
{
 char buf[4096];
 size_t bytes_read;
 bytes_read = fread(buf, sizeof(char), sizeof(buf), stdin);

 fprintf(stderr, "read %zd bytes\n", bytes_read);
 fwrite(buf, sizeof(char), bytes_read, stdout);
}

Execution:
% ls -l /tmp/20m x.c
-rw-rw-r-- 1 whm whm 168888897 Nov 13 02:26 /tmp/20m
-rw-r--r-- 1 whm whm 138 Nov 13 00:27 x.c
% fread1 < x.c >x.c.out
read 138 bytes
% fread1 < /tmp/20m > 20m.out
read 4096 bytes
% ls -l 20m.out x.c.out
-rw-rw-r-- 1 whm whm 4096 Nov 13 03:19 20m.out
-rw-rw-r-- 1 whm whm 138 Nov 13 03:19 x.c.out

 CSC#352#Fall#2015,#C#Slide#443#

fread and fwrite, continued

Here's a simple cp:
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) // cp1.c
{
 FILE *in = fopen(argv[1], "r");
 FILE *out = fopen(argv[2], "w");

 char buf[4096];
 size_t bytes_read;
 while ((bytes_read = fread(buf, sizeof(char), sizeof(buf), in)) != 0) {
 fwrite(buf, sizeof(char), bytes_read, out);
 }

 fclose(in); fclose(out);
}

CSC#352#Fall#2015,#C#Slide#444#

fread and fwrite, continued

Let's compare the performance of cp1 from the previous slide, with cp0 from
slide 433, which uses fgetc/fputc.

% ls -l /tmp/20m
-rw-rw-r-- 1 whm whm 168888897 Nov 13 02:26 /tmp/20m

% time cp0 /tmp/20m x

real 0m4.564s
user 0m2.620s
sys 0m0.200s

% time cp1 /tmp/20m x

real 0m2.206s
user 0m0.016s
sys 0m0.236s

Experiment: Try cp1 with other buffer sizes, like 1K, and 100K.

CSC#352#Fall#2015,#C#Slide#445#

fread and fwrite, continued

split(1) breaks a file into pieces. Let's write a simple version of it. Usage:
% ls -l x.c
-rw-r--r-- 1 whm whm 138 Nov 13 00:27 x.c

% split0 x.c 50

% ls -l x.c.*
-rw-rw-r-- 1 whm whm 50 Nov 13 03:48 x.c.000
-rw-rw-r-- 1 whm whm 50 Nov 13 03:48 x.c.001
-rw-rw-r-- 1 whm whm 38 Nov 13 03:48 x.c.002

% cat x.c.*
#include <stdio.h>

int main()
{
 char line[100];

 while (fgets(line, sizeof(line), stdin) != NULL)
 fputs(line, stdout);
}

CSC#352#Fall#2015,#C#Slide#446#

Example: split0.c

int main(int argc, char *args[])
{
 FILE *in = fopen(args[1], "r");
 int size = atoi(args[2]), n = 0;

 while (1) {
 char buf[size]; // shortcut: size the buffer so that one fread does it.
 int bytes = fread(buf, sizeof(char), sizeof(buf), in);
 if (bytes == 0)
 break;

 char name[strlen(args[2])+20];
 sprintf(name, "%s.%03d", args[1], n++);
 FILE *out = fopen(name, "w");

 fwrite(buf, sizeof(char), bytes, out);
 fclose(out);
 }
}

CSC#352#Fall#2015,#C#Slide#447#

split0.c, continued

A system call is a direct interface to a service provided by the operating system
kernel.

The library function fopen eventually uses the open system call to actually open
a file. fread eventually uses the read system call actually read bytes.

System calls are described in section 2 of the manual, but library functions are
described in section 3. We might say that fopen(3) uses open(2) to make it
clear that fopen is a library function but open is a system call.

System calls are typically things that require special privileges. For example,
open(2) takes file permissions into account. kill(2) takes process ownership into
account before allowing a process to be killed.

System calls almost always have wrapper functions, so you can use a system call
like any other function but the code resides in the kernel, not the library.

Do man 2 intro and man 2 syscalls to read more about system calls.

CSC#352#Fall#2015,#C#Slide#448#

Sidebar: System calls

stat is a system call that returns information about a file. Here's the prototype for
the wrapper function:

 int stat(const char *path, struct stat *buf);

Here's the stat structure:
struct stat {

 dev_t st_dev; /* ID of device containing file */
 ino_t st_ino; /* inode number */
 mode_t st_mode; /* protection */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device ID (if special file) */
 off_t st_size; /* total size, in bytes */
 blksize_t st_blksize; /* blocksize for file system I/O */
 blkcnt_t st_blocks; /* number of 512B blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last status change */

};

 CSC#352#Fall#2015,#C#Slide#449#

stat(2)

Let's use stat to write a program that simply prints the sizes of files named on the
command line:

% stat1 stat1.c stat1 /tmp/20m
stat1.c: 348 bytes
stat1: 10632 bytes
/tmp/20m: 168888897 bytes

Code: (Note the includes needed, as shown by man 2 stat.)

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int main(int argc, char *args[]) // stat1.c
{
 struct stat statbuf;
 for (char **ap = args+1; ap < args+argc; ap++) {
 if (stat(*ap, &statbuf) == -1)
 perror(*ap);
 else
 printf("%s: %zu bytes\n", *ap, statbuf.st_size);
 }
}

CSC#352#Fall#2015,#C#Slide#450#

stat(2), continued

stat2.c uses the stat-specific macros S_ISREG and S_ISDIR to classify files as
regular files, directories, or "other".

int main(int argc, char *args[])
{
 struct stat statbuf;
 for (char **ap = args+1; ap < args+argc; ap++) {
 if (stat(*ap, &statbuf) == -1)
 perror(*ap);
 else {
 char *type;
 if (S_ISREG(statbuf.st_mode))
 type = "regular file";
 else if (S_ISDIR(statbuf.st_mode))
 type = "directory";
 else
 type = "other";
 printf("%s: %zu bytes (%s)\n",
 *ap, statbuf.st_size, type);
 }
 }
}

CSC#352#Fall#2015,#C#Slide#451#

stat(2), continued

Usage:
% stat2 stat1.c .. /dev/null
stat1.c: 348 bytes (regular file)
..: 110 bytes (directory)
/dev/null: 0 bytes (other)

Input and output streams have a notion of current position. ftell(3) returns the file
position indicator for a stream. Here's its prototype:

 long ftell(FILE *stream);

Here's a program that queries the position of a stream after reading each line:

#define _GNU_SOURCE
#include <stdio.h>

int main(int argc, char **argv) // ftell1.c
{
 FILE *f = fopen(argv[1], "r");
 char *result = 0;
 ssize_t bytes_read; size_t bytes_allocd;

 while ((bytes_read = getline(&result, &bytes_allocd, f))
 != EOF) {
 fprintf(stdout, "pos: %ld\n", ftell(f));
 }
}

CSC#352#Fall#2015,#C#Slide#452#

Stream positioning

Usage:
% ftell1 ftell1.c
pos: 20
pos: 39
pos: 40
pos: 72
pos: 74
...

fseek(3) can be used to set the file position indicator. Here's the prototype:
int fseek(FILE *stream, long offset, int whence);

Here's a program that "seeks" to a specified position in a file and then reads and
displays some number of bytes beginning at that position:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 FILE *f = fopen(argv[1], "r");
 long offset = atoi(argv[2]);
 int length = atoi(argv[3]);
 fseek(f, offset, SEEK_SET);

 char buf[length];
 fread(buf, sizeof(char), length, f);
 fwrite(buf, sizeof(char), length, stdout);
 fputc('\n', stdout);
}

CSC#352#Fall#2015,#C#Slide#453#

Stream positioning, continued

Usage:
% fseek1 fseek1.c 45 25
ain(int argc, char *argv[

% fseek1 $a6/a6/256.chars 97 10
abcdefghij

% fseek1 /tmp/20m 168888888 8
20000000

fseek1.c used a whence of SEEK_SET to go to an absolute position. The
program below uses SEEK_CUR to do relative repositioning.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 FILE *f = fopen(argv[1], "r");
 long skiplen = atoi(argv[2]);

 int N = 3;
 while (1) {
 char buf[N];
 if (fread(buf, sizeof(char), N, f) != N)
 break;
 fwrite(buf, sizeof(char), N, stdout);
 fseek(f, skiplen, SEEK_CUR);
 fprintf(stdout, "...");
 }
 fprintf(stdout, "\n");
}

 CSC#352#Fall#2015,#C#Slide#454#

Stream positioning, continued

Usage: (output wraps)
% fseek2 fseek2.c 10
#in...io....e <...
in... ar...arg...
FI...pen..."r"...g s...toi...

 ... 3;... (1... c...;
 ...
(fr...ize...N,eak...fwr...iz
e...N,f, ...EEK... ...std...
);
... ...tdo...
}
...

fseek can be used when writing to files, too. The following program writes the
digits 0-9, skiping 999,999 bytes between each digit.

int main(int argc, char *argv[])
{
 FILE *f = fopen(argv[1], "w");
 for (int i = 0; i < 10; i++) {
 fprintf(f, "%d", i);
 fseek(f, 999999, SEEK_CUR);
 }
 fclose(f);
}

CSC#352#Fall#2015,#C#Slide#455#

Stream positioning, continued

Usage:
% fseek3 big
% ls -l big
-rw-rw-r-- 1 whm whm 9000001 Nov 15 18:32 big
% fseek1 big 0 1
0
% fseek1 big 1000000 1
1
% fseek1 big 9000000 1
9

At hand:
% fseek3 big
% ls -l big
-rw-rw-r-- 1 whm whm 9000001 Nov 15 18:32 big
% fseek1 big 5000000 1
5

Speculate: What data is between those digits?

% fseek1 big 4999998 5 | cat -A
^@^@5^@^@$
% fseek1 big 4999998 5 | $fall15/a6/vis
<#0><#0>5<#0><#0><NL>

If we seek beyond the end of a file and then write data, UNIX fills the gap with
zero-valued bytes.

Let's check that by using tr to delete NULs and see what's left:

% tr -d \\0 < big
0123456789%

CSC#352#Fall#2015,#C#Slide#456#

Stream positioning, continued

For reference:
% fseek3 big
% ls -l big
-rw-rw-r-- 1 whm whm 9000001 Nov 15 18:45 big

du(1) shows how much disk space is being used by a file. The -h flag says to report
in human-readable form. See anything odd?

% du -h big
1.3M big

Zero-filled sections created by seeks and writes past the end of a file aren't necessarily
"there"! It can be said that big is a sparse file.

Here's something odd:

% cp big big2
% du -h big*
1.3M big
512 big2
% cp big2 big3
% du -h big*
1.3M big
8.7M big2
512 big3

CSC#352#Fall#2015,#C#Slide#457#

Stream positioning continued

A few minutes later...
% du -h big*
1.3M big
8.7M big2
8.7M big3

A very useful, but non-C11-standard stream I/O function is popen:
 FILE *popen(const char *command, const char *type);

command is a shell command line. The shell is invoked to run the line.

If type is "r" then reading from the stream produces lines from the standard
output stream of the command. If "w", then writes to the stream become the
standard input of the command.

This program uses popen to count users by reading the output of who:
int main() { // popen1.c
 FILE *who = popen("/usr/bin/who", "r");
 int c, users = 0;

 while ((c = fgetc(who)) != EOF)
 if (c == '\n') users++;

 pclose(who);
 fprintf(stdout, "%d users currently logged in\n", users);
}

CSC#352#Fall#2015,#C#Slide#458#

The popen function

Let's use popen to implement a simplified version of picklines: no negative
values.

The ed editor's p command prints lines. Examples: 7p, 3,20p Let's use popen
to send p commands to ed!

int main(int argc, char **argv)
{
 char cmd[strlen(argv[1])+15];
 sprintf(cmd, "/bin/ed -s %s", argv[1]);
 FILE *ed = popen(cmd, "w");

 argv += 2;
 while (*argv) {
 char *p = strchr(*argv, ':');
 if (p) *p = ',';
 fprintf(ed, "%sp\n", *argv++);
 }

 pclose(ed);
}

CSC#352#Fall#2015,#C#Slide#459#

popen, continued

Usage:
% plines popen1.c 1:3 6 9
#include <stdio.h>

int main()
 int c, users = 0;
 if (c == '\n')

popen lets us communicate with a command but sometimes we just want to run a
command. The system function is good for that. Here's the prototype:

int system(const char *command);

Imagine a program that creates a tree of temporary files in the current directory.
When it's done, it could call system to remove that directory:

int main(int argc, char *args[])
{
 ...lots...
 if (system("rm -r .program_tmp 2>/dev/null") != 0)
 fprintf(stderr, "Warning: cleanup failed\n");
}

We use redirection to discard error output from rm. We check rm's exit code,
returned by system, to see if the cleanup failed for some reason.

Do we need both popen and system?

Could we implement the above using popen instead of system?
Could we implement our plines.c using system instead of popen?

CSC#352#Fall#2015,#C#Slide#460#

The system function

The strace command can be used to observe the system calls made by a program.
Here's a simple test:

int main() // strace2.c
{
 printf("IN MAIN\n"); // so we can see when we get to here
 char *p = malloc(1);
}

Let's run it with strace:
% strace strace2
execve("/home/whm/cw/c/strace2", ["strace2"], [/* 156 vars */]) = 0
...lots...
write(1, "IN MAIN\n", 8IN MAIN
) = 8
brk(0) = 0x1bf9000
brk(0x1c1a000) = 0x1c1a000
exit_group(0) = ?

Note that printf ends up invoking the write system call. The calls to brk are
caused by malloc––it's apparently expanding the data segment size by 132K.

CSC#352#Fall#2015,#C#Slide#461#

The strace command

int main(int argc, char *args[])
{
 printf("IN MAIN\n");
 FILE *f = fopen(args[1], "r+");
 printf("FOPEN DONE\n");
 char c = fgetc(f);
 fseek(f, -1, SEEK_CUR);
 fputc(c, f);
 fclose(f);
}

CSC#352#Fall#2015,#C#Slide#462#

strace, continued

write(1, "IN MAIN\n", 8IN MAIN
) = 8
brk(0) = 0x24f8000
brk(0x2519000) = 0x2519000
open("x.c", O_RDWR) = 3
write(1, "FOPEN DONE\n", 11FOPEN DONE
) = 11
fstat(3, {st_mode=S_IFREG|0644, st_size=1048, ...}) = 0
mmap(NULL, 1048576, PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fc617e6d000
read(3, "#define _GNU_SOURCE\n#includ"..., 1048576) = 1048
lseek(3, -1048, SEEK_CUR) = 0
write(3, "#", 1) = 1
close(3) = 0
munmap(0x7fc617e6d000, 1048576) = 0
exit_group(0) = ?

CORRECTED

Here's buffer1.c:
int main(int argc, char *args[])
{
 printf("IN MAIN\n");
 int c;
 while ((c = getchar()) != EOF)
 putchar(c);
}

Execution with strace:

% seq 10 | strace buffer1 > x
...lots...
read(0, "1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n", 4096) = 21
read(0, "", 4096) = 0
write(1, "IN MAIN\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n", 29) = 29

What's surprising about the trace?
The code first does a printf and then alternately reads and writes characters,
but the trace shows one big read and one big write!
This is I/O buffering in action!

CSC#352#Fall#2015,#C#Slide#463#

I/O buffering

For reference:
% seq 10 | strace buffer1 > x
...lots...
read(0, "1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n", 4096) = 21
read(0, "", 4096) = 0
write(1, "IN MAIN\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n", 29) = 29

The motivation for buffering is that system calls like read and write are
relatively slow and resource intensive––there's a context switch from user mode to
kernel mode and back.

With buffering we batch many program-level input or output operations into a
single system-level input or output operation, sometimes reducing the number of
system calls by factors of hundreds or thousands.

CSC#352#Fall#2015,#C#Slide#464#

I/O buffering, continued

buffer2.c uses the read and write system calls directly. File descriptors 0 and 1
are standard input and standard output, respectively.

#include <unistd.h>
int main()
{
 char c;
 while (read(0, &c, 1) != 0)
 write(1, &c, 1);
}

buffer1.c, for reference:

int main(int argc, char *args[])
{
 printf("IN MAIN\n");
 int c;
 while ((c = getchar()) != EOF)
 putchar(c);
}

CSC#352#Fall#2015,#C#Slide#465#

I/O buffering, continued

Let's compare the two:
% seq 1000000 > 1m

% time buffer1 < 1m > x
real 0m0.446s
user 0m0.184s
sys 0m0.012s

% time buffer2 < 1m > x
real 0m6.176s
user 0m0.384s
sys 0m5.580s

Where's the big difference?
In "system" time––time spent in the
kernel on the program's behalf.

For reference:
% seq 10 | strace buffer1 > x
...lots...
read(0, "1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n", 4096) = 21
read(0, "", 4096) = 0
write(1, "IN MAIN\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n", 29) = 29

Is the user aware of buffering?

The user expects to see "IN MAIN" followed by 1 to 10 end up in x, and
that's exactly what they see.

CSC#352#Fall#2015,#C#Slide#466#

I/O buffering, continued

Instead of writing to a file with seq 10 | strace buffer1 > x, let's write to the screen.
Program output is shown in bold and underlined.

% echo $'just\ntesting\nthis' | strace buffer1
write(1, "IN MAIN\n", 8IN MAIN
) = 8
read(0, "just\ntesting\nthis\n", 4096) = 18
write(1, "just\n", 5just
) = 5
write(1, "testing\n", 8testing
) = 8
write(1, "this\n", 5this
) = 5
read(0, "", 4096) = 0
exit_group(0) = ?

What's different?
A write is done for each line. That's because when standard output is the screen,
output is line buffered by default, so that the user will see a line at a time.

Exercise:
 Try strace buffer1 (no piping or redirection) and see how things differ.

CSC#352#Fall#2015,#C#Slide#467#

I/O buffering, continued

Here's a program that prints a N-second countdown and then "Go!":
int main(int argc, char **argv) // buffer3.c
{
 for (int i = atoi(argv[1]); i >= 1; i--) {
 fprintf(stdout, "%d...", i);
 sleep(1);
 }

 printf("Go!\n");
}

Let's run it live.

% buffer3 5
5...4...3...2...1...Go!

Because standard output is line-buffered, the user doesn't see any output until a
newline is output.

CSC#352#Fall#2015,#C#Slide#468#

I/O buffering, continued

We can force the countdown to appear second by second by flushing the stream.
int main(int argc, char **argv) // buffer3a.c
{
 for (int i = atoi(argv[1]); i >= 1; i--) {
 fprintf(stdout, "%d...", i);
 fflush(stdout); // added
 sleep(1);
 }

 printf("Go!\n");
}

When a stream is associated with the screen, fflush causes output to immediately
appear.

When a stream is associated with a file, ensuring that data has been physically
written to the disk is more involved. The details begin with fsync(2).

Start with man setbuf to learn more about buffering.

CSC#352#Fall#2015,#C#Slide#469#

I/O buffering, continued

Some things I should
have talked about sooner...

unsigned values
typedef

const

CSC#352#Fall#2015,#C#Slide#470#

Each of the integral types in C has an unsigned counterpart that has the same size
but no sign. An unsigned instance of a type is declared by adding unsigned to
the type.

On lectura, a two-byte, 16-bit signed short has the range -32,768 to 32767.
(SHRT_MIN to SHRT_MAX.)

An unsigned short is declared like this:

unsigned short i;

Or this:
 short unsigned i;

The variable i declared above has the range 0 to 65535 (USHRT_MAX).

C11 requires this:
 sizeof(unsigned TYPE) == sizeof(TYPE)

CSC#352#Fall#2015,#C#Slide#471#

Unsigned types

With an unsigned type, arithmetic is odometer-like: Adding one to the largest
number produces zero. Subtracting one from zero yields the largest number.

Example:
unsigned short i = USHRT_MAX; // 65535

printf("i = %u\n", i);
 // Output: i = 65535

i++;
printf("i = %u\n", i);
 // Output: i = 0

i--;
printf("i = %u\n", i);
 // Output: i = 65535

i = 32771; // 32768 + 3 == 32771
i *= 4;
printf("i = %u\n", i);
 // Output: i = 12

CSC#352#Fall#2015,#C#Slide#472#

Unsigned types, continued

Assignment of an unsigned value to a signed variable produces the same value if
the unsigned value can be represented by the variable.

unsigned int ui = 1000000000; // one billion
int si = ui;

printf("si = %d\n", si);

 // Output: si = 1000000000

If the unsigned value can't be represented by the signed variable the end result is a
"wrapped around" negative value in the signed variable:

ui = 3000000000U; // Trailing 'U' avoids a warning
si = ui;
printf("si = %d\n", si);

 // Output: si = -1294967296

However, both si and ui have the same internal representation:
printf("si = %x, ui = %x\n", si, ui);

 // Output: si = b2d05e00, ui = b2d05e00

CSC#352#Fall#2015,#C#Slide#473#

Unsigned types, continued

Another case:

int si = -1;

unsigned int ui = si;

printf("ui = %u\n", ui);

 // Output: ui = 4294967295 (max value)

printf("si = %x, ui = %x\n", si, ui);

 // Output: si = ffffffff, ui = ffffffff

si++;
ui++;
printf("si = %d, ui = %u\n", si, ui);

 // Output: si = 0, ui = 0

CSC#352#Fall#2015,#C#Slide#474#

Unsigned types, continued

The basic concept of an unsigned quantity is simple but some complex and
sometimes counterintuitive rules come into play when signed and unsigned
quantities are mixed.

Example:
int i = -1;
unsigned int j = 1;
printf("i < j = %d\n", i < j);
 // Output: i < j = 0

 i (-1) is not less than j (1)!
 Why: i is converted to an unsigned int (4294967295) yielding
 i < j

 4294967295 1

A simple rule of thumb for novices:

Use unsigned types only when you must.

CSC#352#Fall#2015,#C#Slide#475#

Unsigned types, continued

Again, a simple rule of thumb for novices:
 Use unsigned types only when you must.

One situation in which you must use an unsigned type is when the language or a
library routine dictates it. Two examples:

C11 specifies that sizeof produces an unsigned integer value with
implementation-specific size. With gcc on lectura it is an unsigned int.

The sizing parameters of malloc, calloc, and realloc are unsigned integers.

Another situation where an unsigned type is appropriate is when a low-level
representation of data is unsigned. For example, if a network packet has a 16-bit
length field, then representing that field with an unsigned short is a good
choice, assuming that a short is 16 bits.

CSC#352#Fall#2015,#C#Slide#476#

Unsigned types, continued

C11 says that whether char is signed or unsigned is implementation-specific!

Let's see what we've got:

iprint((char)0 < (char)150);
iprint((unsigned char)0 < (unsigned char)150);
iprint((signed char)0 < (signed char)150);

Output:
(char)0 < (char)150 is 0
(unsigned char)0 < (unsigned char)150 is 1
(signed char)0 < (signed char)150 is 0

Here's another way to confirm that with gcc on lectura, char is signed char.
iprint(CHAR_MIN);
iprint(CHAR_MAX);

Output:

CHAR_MIN is -128
CHAR_MAX is 127

CSC#352#Fall#2015,#C#Slide#477#

char can be signed or unsigned

The following program attempts to tally byte values in the first 4K of stdin.
What's wrong with it?

int main() // uns2.c
{
 int counts[256];
 char buf[4096];
 fread(buf, sizeof(char), sizeof(buf), stdin);

 for (char *p = buf; p < buf + sizeof(buf); p++)
 counts[*p]++;
}

There's a warning on counts[*p]++:

 array subscript has type ‘char’ [-Wchar-subscripts]

Byte values above 127 will be treated as negative values. The counts will end up
in counts[-128] through counts[127]!

CSC#352#Fall#2015,#C#Slide#478#

char can be signed or unsigned, continued

The typedef specifier is used to create new datatype names.

For example,
typedef int integer;

makes integer a synonym for int.

This specification essentially extends the language by creating a new type, named
integer, that can be used at any place in code where a type is expected.

Given the above typedef, the following code is valid:
integer i;
integer *a[10];
i = (integer)2.5;
integer *p = &i;
sizeof(integer)

Note that a typedef alters the syntax of C! The above code would be
syntactically invalid if typedef int integer; didn't precede it.

CSC#352#Fall#2015,#C#Slide#479#

typedef

typedefs let us create type names that express qualities and/or typical usage of
values of that type.

For example, the standard specifies that sizeof produces a value of type size_t. It
requires that size_t be an unsigned integer type but it doesn't require it to be any
particular size, like int or long.

The implementation, gcc on lectura for us, provides a typedef in <stddef.h>:
typedef long unsigned int size_t;

Functions that work with sizes of memory objects are then written using size_t:
size_t strlen(const char *s);
void *malloc(size_t size);
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

typedefs let us rendezvous on a type name but avoid a possibly burdensome
requirement about the range of values.

The standard says to use size_t. The implementation says what size_t is.

CSC#352#Fall#2015,#C#Slide#480#

typedef, continued

There are lots of typedefs.

The difference of two pointers is a ptrdiff_t:

 typedef long int ptrdiff_t;

<pwd.h> uses uid_t, which is defined with an intermediate typedef, __uid_t:

typedef unsigned int __uid_t;
typedef __uid_t uid_t;

getline(3) returns an ssize_t, a signed quantity:

typedef long int __ssize_t;
typedef __ssize_t ssize_t;

A convention with types used by library functions is that typedef'd names end
with _t but the standard does not require that.

CSC#352#Fall#2015,#C#Slide#481#

typedef, continued

Microsoft's Win32 API relies heavily on typedefs. Here are a few of them:
typedef char *PSZ;
typedef unsigned long DWORD;
typedef int BOOL;
typedef unsigned char BYTE;
typedef BYTE *PBYTE;
typedef unsigned short WORD;
typedef int *LPINT;
typedef unsigned int UINT;
typedef unsigned int *PUINT;

Given the above, what does PBYTE x; declare?
x is pointer to unsigned char.

Function prototypes in the Win32 API use the defined types. One example:
HICON CreateIconFromResource(PBYTE presbits,
 DWORD dwResSize, BOOL fIcon, DWORD dwVer);

CSC#352#Fall#2015,#C#Slide#482#

typedef, continued

Recall that the following declaration defines a structure tag named Rectangle.
struct Rectangle {
 int width;
 int height;
 };

To define an instance of the structure, both struct and the tag name must be used:

 struct Rectangle r1;

A typedef can be used to create a Rectangle type based on the structure tag:

 typedef struct Rectangle Rectangle;

With the typedef in place, Rectangle can be used like any other type:

Rectangle r, *rp, rects[5];

int area_rectangle(Rectangle *p);

Rectangle rotate_rectangle(Rectangle r);

CSC#352#Fall#2015,#C#Slide#483#

typedef and structures

Some variations are possible. One is to define a type, but not a tag:
typedef struct {
 double x,y;
 } Point;

Given the above, Point can be used as type, but not a tag:
Point p1; // OK
struct Point p2; // Error: storage size of 'p2' isn't known

This specification defines both a tag and a type:
typedef struct Point {
 double x,y;
 } Point;

Here's a self-referential structure. The tag is required.
typedef struct Node {
 int value;
 struct Node *next;
 } Node;

CSC#352#Fall#2015,#C#Slide#484#

typedef and structures, continued

Slide 432 shows a simplified typedef for FILE:
typedef struct _IO_FILE {
 ...lots...
 } FILE;

Here's what <stdio.h> actually does:
struct _IO_FILE;

typedef struct _IO_FILE FILE;

struct _IO_FILE {
 int _flags;
 char* _IO_read_ptr;
 char* _IO_read_end;
 ...lots...
 };

CSC#352#Fall#2015,#C#Slide#485#

typedef and structures, continued

A typedef has scope just like a variable:

typedef int GLOBAL_INT; // Usable in all code that follows

void f()
{
 typedef int LOCAL_INT; // Usable only in f()

 GLOBAL_INT i;
 LOCAL_INT j;
}

void g()
{
 GLOBAL_INT a;
 LOCAL_INT b; // Error: LOCAL_INT is local to f()
}

CSC#352#Fall#2015,#C#Slide#486#

typedef scope

The const qualifier can be added to a declaration to indicate that a value is not to
be changed.

The simplest use of const is to apply it to a scalar variable:
 const int couple = 2;

An attempt to change couple produces a compilation error:
 couple = 3; // error: assignment of read-only variable 'couple'

 couple++; // error: increment of read-only variable 'couple'

Here's one way to view const int couple = 2:
"I do not intend to change couple. Stop me if I try to change it."

The Java counterpart for const is final:
final int couple = 2;

CSC#352#Fall#2015,#C#Slide#487#

The const qualifier

const can be applied to the object referenced by a pointer:
char s[] = "abc";
const char *p = s; // "Stop me if I try to change *p"

An expression that would change the object referenced by *p produces
a compilation error:

*p = 'x'; // error: assignment of read-only location

p[0] = 'x'; // error: assignment of read-only location

(*p)++; // error: increment of read-only location

Surprise: I can't use *p to make a change but I can change the contents of s
directly!

 s[0] = 'x';
 *s = 'x';

How could the two changes above be prohibited?

 const char s[] = "abc";

CSC#352#Fall#2015,#C#Slide#488#

const, continued

At hand:
char s[] = "abc";
const char *p = s; // "Stop me if I try to change *p"

Note that it is only *p that is considered to be read-only. The value of p can be
changed:

p = "xyz"; // OK
 char c = *p++; // OK

Speculate: how could we make p "unchangeable", too?

const char *const p = s;

To understand what const applies to, look at the next word:

 const char *const p = s;

 const int couple = 2;

CSC#352#Fall#2015,#C#Slide#489#

const, continued

Perhaps the most common use of const is to apply it to pointer parameters. Here's
the prototype for strlen:

 size_t strlen(const char *s);

It promises that strlen will change no characters in the string whose length is
being calculated.

Here is strcpy:
char *strcpy(char *dest, const char *src);

Which way does the data move in the following function?
void movebytes(const void *p1, void *p2, size_t n);

Because the first parameter is const void * and the second is void *, it appears
that p1 is the source and p2 is the destination.

CSC#352#Fall#2015,#C#Slide#490#

const in parameters

const pointer parameters provide two benefits:
•  The prototype informs a user whether the function might modify data

referenced by a pointer.

•  The author of the function is notified of a violation of that promise at compile
time.

Here's a function with an error that is caught at compile-time:

void copy(char *s1, const char *s2)
{
 while (*s2++ = *s1++)
 ;
}

CSC#352#Fall#2015,#C#Slide#491#

const in parameters, continued

Consider this string length function:
int length(const char *s)
{
 char *s0 = s; // warning: initialization discards qualifiers
 // from pointer target type

 while (*s++)
 ;

 return s - s0 - 1;
}

What's the problem?
•  I first say that I don't intend to change characters referenced by s.
•  I then declare s0, a copy of s with which I can change the referenced

characters.
•  The compiler warns me of the apparent contradiction.

CSC#352#Fall#2015,#C#Slide#492#

const in parameters, continued

If const is used in some cases but not others, it can create headaches. Example:

int twice(int *p)
{
 return *p * 2;
}

int f(const int *p)
{
 return twice(p); // warning: passing arg 1 of 'twice' discards
 // qualifiers from pointer target type
}

As rule, developers collaborating on a body of code of need to decide as a group
whether to use const.

CSC#352#Fall#2015,#C#Slide#493#

const in parameters, continued

A const qualification can be cast away. This code compiles and runs with gcc on
lectura:

int main() // const3.c
{

 const int four = 4;

 int *p = (int*)&four;

 *p = 10;

 printf("four = %d\n", four);
 // Output: four = 10

}

However, the standard says this:

"If an attempt is made to modify an object defined with a const-qualified
type through use of an L-value with non-const-qualified type, the behavior is
undefined."

CSC#352#Fall#2015,#C#Slide#494#

Casting away const

An enum declaration defines a set of named integer constants. Example:
 typedef enum { Open, Closed, Unknown } ValvePosition;

By default, a value of zero is assigned to the first name. Following names are given
the value of the preceding name plus one. In this case, Open is 0, Closed is 1,
Unknown is 2.

Usage:
ValvePosition vpos = Closed;
printf("vpos = %d\n", vpos); // Output: vpos = 1

Another example:
ValvePosition vpos = sense_valve(valve_num);

switch (vpos) {
 case Open: ...
 case Closed: ...
 case Unknown: ...
}

 CSC#352#Fall#2015,#C#Slide#495#

Enumerations

A common use of enumerations is to produce a sequence of integer constants.
Numbering in the following enum starts at 1, and then has skips to 125 and 140.

 enum AtomicNumbers { Hydrogen=1, Helium, Beryllium, Boron, Carbon,
 ...lots more...
 Unobtainium = 125, Eludium, Hardtofindium = 140, Impossibrium,
 Buzzwordium, Phlebotinum };

With #define, we'd have to provide each number, which could be error-prone.
#define Hydrogen 1
#define Helium 2
#define Beryllium 3
...

The names in an enum must be unique, but the values do not.

enums are somewhat between #defines and consts: the values are considered to
be constants (and can be used in a switch, for example) but enums are scoped.

CSC#352#Fall#2015,#C#Slide#496#

Enumerations, continued

Unions

CSC#352#Fall#2015,#C#Slide#497#

A union can be thought of as a structure in which all members start at the same
address.

A union declaration looks like a structure declaration but with the union
keyword instead of "struct":

typedef union {
 int i;
 long L;
 unsigned char c;
 unsigned char bytes[sizeof(long)];
 } type_u;

type_u U;

The size of a union is the size of its largest member.

What is sizeof(U)?
8

Which members determine the size of an instance of type_u?

 L and bytes are both eight bytes in size.

CSC#352#Fall#2015,#C#Slide#498#

Unions

Another way to think about it:
U might be an int i, or a long L,
or an unsigned char c, or ...

At hand:
typedef union { // union1.c
 int i;
 long L;
 unsigned char c;
 unsigned char bytes[sizeof(long)];
 } type_u;

type_u U; // sizeof(U) is 8

Problem: Prove that all members start at the same address.

Let's use paddr from 352.h:

paddr(&U.i);
paddr(&U.L);
paddr(&U.c);
paddr(&U.bytes);
paddr(&U);

CSC#352#Fall#2015,#C#Slide#499#

Unions, continued

Output:
&U.i = 140732672934400
&U.L = 140732672934400
&U.c = 140732672934400
&U.bytes = 140732672934400
&U = 140732672934400

A common technique is to have a structure that consists of a type and a union. The
type indicates how to interpret the union.

Imagine a simple robot with three commands: move, rotate camera, and beep.

Here is a structure to represent commands. It has two fields: type and command.
typedef struct {
 enum CmdType { Move, RotateCam, Beep } type;

 union {
 struct MoveCommand {
 char direction; // N, S, E, W
 int distance;
 } move;

 struct RotateCamCommand {
 int degrees;
 } rotate_cam;

 struct BeepCommand {
 char sequence[MAX_BEEP+1];
 } beep;
 } command;

 } RobotCommand;

CSC#352#Fall#2015,#C#Slide#500#

Union example: robot control

Let's make three commands and send them to the robot.
RobotCommand cmds[3], *cmdp = cmds;

cmdp->type = Move;
cmdp->command.move.direction = 'N';
cmdp->command.move.distance = 10;
cmdp++;

cmdp->type = RotateCam;
cmdp->command.rotate_cam.degrees = 180;
cmdp++;

cmdp->type = Beep;
strcpy(cmdp->command.beep.sequence,

 "321__248");
cmdp++;

send_commands(cmds, 3); // send via communication link

Using a union reduces the amount of data that needs to be transmitted.

CSC#352#Fall#2015,#C#Slide#501#

Robot control, continued

typedef struct {
 enum CmdType { ... } type;
 union {
 struct MoveCommand {
 char direction;
 int distance;
 } move;
 struct RotateCamCommand {
 int degrees;
 } rotate_cam;
 struct BeepCommand {
 char sequence[MB+1];
 } beep;
 } command;
 } RobotCommand;

The robot processes each command with this routine:
void process_command(RobotCommand *cmd)
{
 switch (cmd->type) {
 case Move:
 do_move(cmd->command.move.direction,
 cmd->command.move.distance);
 break;
 case RotateCam:
 do_rotate(
 cmd->command.rotate_cam.degrees);
 break;
 case Beep:
 do_beep(cmd->command.beep.sequence);
 break;
 }
}

CSC#352#Fall#2015,#C#Slide#502#

Robot control, continued
typedef struct {
 enum CmdType { ... } type;
 union {
 struct MoveCommand {
 char direction;
 int distance;
 } move;
 struct RotateCamCommand {
 int degrees;
 } rotate_cam;
 struct BeepCommand {
 char sequence[MB+1];
 } beep;
 } command;
 } RobotCommand;

At hand:
typedef union {
 int i;
 long L;
 unsigned char c;
 unsigned char bytes[sizeof(long)];
 } type_u;

Experiment: (union2.c)

type_u U;

U.L = 0x1122334455667788;

printf("U.bytes[0] = %x\n", U.bytes[0]);
printf("U.bytes[7] = %x\n", U.bytes[7]);

Output:
U.bytes[0] = 88
U.bytes[7] = 11

CSC#352#Fall#2015,#C#Slide#503#

Architectural experiment

The output demonstrates that the x86 is a
little-endian architecture.

See Endianess on Wikipedia for more.

A common use-case for a union is to represent an array that's a heterogeneous
collection of values.

With the robot example, the heterogeneous collection consisted of move, rotate
camera, and beep commands.

How would we likely have implemented the robot example in Java?

 With inheritance:
abstract class RobotCommand { ... }
class MoveCommand extends RobotCommand { ... }
class RotateCamCommand extends RobotCommand { ... }
class BeepCommand extends RobotCommand { ... }

Here's a union from the bash 4.2 source:

typedef union {
 int dest; /* Place to redirect REDIRECTOR to, or ... */
 WORD_DESC *filename; /* filename to redirect to. */
} REDIRECTEE;

CSC#352#Fall#2015,#C#Slide#504#

Unions in general

Pointers to functions

CSC#352#Fall#2015,#C#Slide#505#

It's possible to have a pointer to a function.

Here's a declaration for a variable named fp. The variable fp can hold a pointer to
any function that takes two int arguments and returns an int:

int (*fp)(int, int);

Given this function,
int add(int a, int b)
{
 return a + b;
}

one can say:

fp = add;
int i = fp(5, 10); // produces 15

The call fp(5,10) says "Call the function whose address is held in fp and pass it
the arguments 5 and 10."

CSC#352#Fall#2015,#C#Slide#506#

Pointers to functions

The declaration at hand:
int (*fp)(int, int);
 // fp points to a function that takes two ints and returns an int

The type of a function pointer includes both the type of the arguments and the
return type of the function.

What's the error in each of the following?
int i = fp(7);

 // too few arguments to function

int i = fp(2, "3");

 // bad type for second argument

char *p = fp(3,4);

 // assigning int result to a pointer

CSC#352#Fall#2015,#C#Slide#507#

Pointers to functions, continued

The declaration at hand:
int (*fp)(int, int);

 // fp points to a function that takes two ints and returns an int

Is the following assignment valid?
fp = strlen;

 // warning: assignment from incompatible pointer type

What's the type of strlen?
size_t strlen(const char *s)

Problem: Write a declaration for fp2 such that fp2 = strlen works.
size_t (*fp2)(const char *);
fp2 = strlen;

Is the following valid?
 size_t (*fp3)(char *) = strlen;
 // warning: initialization from incompatible pointer type

CSC#352#Fall#2015,#C#Slide#508#

Pointers to functions, continued

Here's an older, but still-valid form that you may encounter and/or prefer:

int (*fp)(int, int);

fp = &add;

int i = (*fp)(5, 10);

Note &add and indirection with (*fp).

CSC#352#Fall#2015,#C#Slide#509#

Pointers to functions, continued

int add(int a, int b) { return a + b; }
int mult(int a, int b) { return a * b; }
// sub and div are similar

typedef struct {
 char op;
 int (*f)(int, int);
 } Op;

Op Ops[] = {
 { '+', add }, { '-', sub },
 { '*', mult }, { '/', div }, {} };

int main() // fp2.c
{
 int i, j; char op;
 while (scanf("%d %c %d", &i, &op, &j) == 3) {
 Op *p;
 for (p = Ops; p->op; p++)
 if (p->op == op) {
 int result = p->f(i, j);
 printf("%d\n", result);
 break;
 }
 }
}
 CSC#352#Fall#2015,#C#Slide#510#

Function pointers in structures

Here's a calculator that accepts input like '3+5'
and '71*82'. It looks up a function that
corresponds to the operator and then calls the
function via a function pointer.

Usage:
% a.out
 71 * 82
5822

What's needed to add an operation to the
calculator?

Just add a function and an entry in Ops.

Is this code cleaner than it would be without
using function pointers?

Here's a typedef for a function pointer that can reference the add, sub, etc.
functions from the previous example:

typedef int (*binop)(int,int); // Declares a type named 'binop'

Here's a function that looks up the function associated with a specified operator:

binop lookup(char op)
{
 for (Op *p = Ops; p->op; p++)
 if (p->op == op)
 return p->f;

 return 0;
}

Standalone usage:

binop f = lookup('+');
int result = f(3,4);

CSC#352#Fall#2015,#C#Slide#511#

Functions that return function pointers

For reference:
typedef struct {
 char op;
 int (*f)(int, int);
 } Op;

Op Ops[] = {
 { '+', add }, { '-', sub },
 { '*', mult }, { '/', div }, {} };

For reference:
 typedef int (*binop)(int,int);
binop lookup(char op)
{
 for (Op *p = Ops; p->op; p++)
 if (p->op == op)
 return p->f;
 return 0;
}

Here's a revised main for the calculator:

int main()
{
 int i, j; char op;
 while (scanf("%d %c %d", &i, &op, &j) == 3) {
 binop opfcn = lookup(op);
 if (opfcn)
 printf("%d\n", opfcn(i, j));
 else
 puts("?");
 }
}

CSC#352#Fall#2015,#C#Slide#512#

Functions that return function pointers, continued

Let's try it without the typedef:
% cat fp4a.c
int (*)(int,int) lookup(char op)
{
 for (Op *p = Ops; p->op; p++)
 if (p->op == op)
 return p->f;

 return 0;
}

% gcc fp4a.c
fp4a.c:1:7: error: expected identifier or ‘(’ before ‘)’ token

Fact: We can't write lookup without a typedef!

CSC#352#Fall#2015,#C#Slide#513#

Sidebar: the typedef is a must!

A number of library routines use function pointers. One of them is qsort, a
sorting routine. Here's how the C11 standard describes it:

 Synopsis

#include <stdlib.h>
void qsort(void *base, size_t nmemb, size_t size,

 int (*compar)(const void *, const void *));
 Description

The qsort function sorts an array of nmemb objects, the initial element of
which is pointed to by base. The size of each object is specified by size.

The contents of the array are sorted into ascending order according to a
comparison function pointed to by compar, which is called with two
arguments that point to the objects being compared. The function shall return
an integer less than, equal to, or greater than zero if the first argument is
considered to be respectively less than, equal to, or greater than the second.

Once upon a time, I believe, qsort used the quicksort algorithm but the standard
does not require that.

CSC#352#Fall#2015,#C#Slide#514#

qsort

Here's a program that sorts the characters in a string:
int main() // qsort2.c
{
 char s[] = "tim korb";
 qsort(s, strlen(s), sizeof(char), compare_chars);
 puts(s);
}

Problem: Write compare_chars.

int compare_chars(const void *vp1, const void *vp2)
{
 char c1 = *(char*)vp1;
 char c2 = *(char*)vp2;

 if (c1 < c2)
 return -1;
 else if (c1 == c2)
 return 0;
 else
 return 1;
}

CSC#352#Fall#2015,#C#Slide#515#

qsort, continued

Can we shorten compare_chars?
int compare_chars2(const void *vp1, const void *vp2)
{
 return *(char*)vp1 - *(char*)vp2;
}

// Output: bikmort

Here's a program that sorts lines read from standard input:
int main() { // qsort3.c
 char *lines[10000], **next = lines;
 ssize_t bytes_read; size_t bytes_allocd; char *result = 0;
 while ((bytes_read = getline(&result, &bytes_allocd, stdin)) != EOF) {
 *next++ = result;
 result = 0;
 }

 int nlines = next - lines;
 qsort(lines, nlines, sizeof(char*), compare_strs);

 for (next = lines; next < lines + nlines; next++)
 fputs(*next, stdout);
}

Problem: write compare_strs.

int compare_strs(const void *vp1, const void *vp2)
{
 const char *s1 = *(char**)vp1;
 const char *s2 = *(char**)vp2;

 return strcmp(s1, s2);
}

CSC#352#Fall#2015,#C#Slide#516#

qsort, continued

Let's sort rectangles by decreasing area:
typedef struct { int w, h; } Rectangle;
int compare_rects(const void *vp1, const void *vp2)
{
 const Rectangle *rp1 = vp1; const Rectangle *rp2 = vp2;
 return rp2->w * rp2->h - rp1->w * rp1->h;
}
int main() { // qsort4.c
 Rectangle rs[] = {{3,4}, {5,1}, {10,2}, {3,3}};
 qsort(rs, sizeof(rs)/sizeof(rs[0]), sizeof(Rectangle), compare_rects);
}

Let's test with gdb:
(gdb) b 12
Breakpoint 1 at 0x400578: file qsort4.c, line 12.
(gdb) r
Breakpoint 1, main () at qsort4.c:12
12 qsort(rs, sizeof(rs)/sizeof(rs[0]), sizeof(Rectangle), compare_rects);
(gdb) n
13 }
(gdb) p rs
$1 = {{w = 10, h = 2}, {w = 3, h = 4}, {w = 3, h = 3}, {w = 5, h = 1}}

CSC#352#Fall#2015,#C#Slide#517#

qsort, continued

Arrays of multiple dimensions

CSC#352#Fall#2015,#C#Slide#518#

C supports arrays of an arbitrary number of dimensions.

Here's a declaration for an array with two rows of three columns:
char a[2][3];

The elements of a are in consecutive memory locations. Arrays are stored in row-
major form: The first row is the first three elements of the array; the second row is
the second three elements. sizeof(a) is 6.

Here's code that prints the address of each element:

for (int r = 0; r < 2; r++) {
 for (int c = 0; c < 3; c++)
 printf("&a[%d][%d] = %lu ", r, c, &a[r][c]);
 puts("");
 }

Output:

&a[0][0] = 6295608 &a[0][1] = 6295609 &a[0][2] = 6295610
&a[1][0] = 6295611 &a[1][1] = 6295612 &a[1][2] = 6295613

CSC#352#Fall#2015,#C#Slide#519#

Arrays of multiple dimensions—basics

Here's a pitfall:
for (int r = 0; r < 2; r++) {
 for (int c = 0; c < 3; c++)
 printf("&a[%d][%d] = %lu ", r, c, &a[r,c]); // should be &a[r][c]
 puts("");
 }

Output: (note the addresses are the same for both rows!)

&a[0][0] = 6295608 &a[0][1] = 6295611 &a[0][2] = 6295614
&a[1][0] = 6295608 &a[1][1] = 6295611 &a[1][2] = 6295614

In the expression a[r,c], the construct r,c is a use of the comma operator, which
evaluates both operands and produces the value of its right-hand operand.

a[r,c] does produce a warning:
 left-hand operand of comma expression has no effect

CSC#352#Fall#2015,#C#Slide#520#

Sidebar: Pitfall with a[r,c]

At hand––an array with two rows of three columns:
char a[2][3];

View it this way:
a[0][0] a[0][1] a[0][2]
a[1][0] a[1][1] a[1][2]

Let's consider the types and sizes of a, a[r], and a[r][c]:

The type of a is char[2][3]; sizeof(a) == 6.

What's the type and size of a[r]?
char[3]
sizeof(a[r]) == 3

What's the type and size of a[r][c]?
char
 sizeof(a[r][c]) == 1

Another way to say it: a is an array of two arrays of three characters each.
 CSC#352#Fall#2015,#C#Slide#521#

Basics, continued

At hand––an array with two rows of three columns:
char a[2][3];

Note that the indexing operation is left-associative:

a[r][c] means (a[r])[c]

Think of a[r][c] as focusing first on a row and then on a column in that row.

Let's break down the type:
 char a[2][3]

a[2][3] is char

 a[2] is array[3] of char

 a is array[2] of array[3] of char

CSC#352#Fall#2015,#C#Slide#522#

Basics, continued

At hand––an array with two rows of three columns:
char a[2][3];

Because a[r] is an array, a[r] is roughly equivalent to &a[r][0], the address of the
first byte of a[r], the r'th row of a.

Therefore, a[r] can be used as a char *:

char *p = a[0];
strcpy(p, "a");
strcpy(a[1], "bc");

After the strcpy calls, gdb shows this:

(gdb) p a
$1 = {"a\000", "bc"}

 (gdb) p/c a
$2 = {{97 'a', 0 '\0', 0 '\0'}, {98 'b', 99 'c', 0 '\0'}}

What's a way in which a[r] is not equivalent to &a[r][0]?

 sizeof(a[r]) != sizeof(&a[r][0])
CSC#352#Fall#2015,#C#Slide#523#

Basics, continued

The "outermost" dimension of an array can be established by the number of
initializers present. Example: (md4.c)

char words[][15] = { "The", "C", "Programming", "Language", ""};
psize(words);
psize(words[0]);
puts("");

for (int w = 0; w < sizeof(words) /sizeof(words[0]); w++) {
 for (int pos = 0; pos < sizeof(words[0]); pos++) {
 char c = words[w][pos];
 putchar(c ? c : '.');
 }
 puts("");
 }

CSC#352#Fall#2015,#C#Slide#524#

Basics, continued

Output:
sizeof(words) is 75
sizeof(words[0]) is 15

The............
C..............
Programming....
Language.......
...............

A rule:
 The outermost dimension of an array can be omitted in a function parameter.

Here's the printing loop of the previous example in the form of a function:

void print(char w[][15]) // md4a.c
{
 for (int r = 0; w[r][0] != '\0'; r++) {
 for (int c = 0; c < sizeof(w[0]); c++) {
 char ch = w[r][c];
 putchar(ch ? ch : '.');
 }
 puts("");
 }
}

Usage:

char words[][15] = { "The", "C", "Programming", "Language", ""};
print(words);
puts("");
print(&words[3]);

CSC#352#Fall#2015,#C#Slide#525#

Multiply-dimensioned parameters

Output:
The............
C..............
Programming....
Language.......

Language.......

The C11 standard allows an array parameter to be sized based on one or more
preceding parameters. Here's a version of print that makes use of that.

void print(int rows, int cols, char words[rows][cols])
{
 for (int r = 0; r < rows; r++) {
 for (int c = 0; c < cols; c++) {
 char ch = words[r][c];
 putchar(ch ? ch : '.');
 }
 puts("");
 }
}

Usage: (note that the terminator, an empty string initializer, is no longer needed)
char w1[][15] = { "The", "C", "Programming", "Language"};

print(sizeof(w1)/sizeof(w1[0]), sizeof(w1[0]), w1);
puts("");

char w2[][5] = { "ab", "cde"};
print(sizeof(w2)/sizeof(w2[0]), sizeof(w2[0]), w2);

 CSC#352#Fall#2015,#C#Slide#526#

Multiply-dimensioned parameters

Output:
The............
C..............
Programming....
Language.......

ab...
cde..

Here is a three dimensional array that represents a telephone keypad:
char phone_pad[4][3][7] = {
 {"1", "2 ABC", "3 DEF" },
 {"4 GHI", "5 JKL", "6 MNO" },
 {"7 PQRS", "8 TUV", "9 WXYZ" },
 {"* TONE", "0 OPER", "#"}};

Note the types and sizes:

phone_pad is char[4][3][7], size is 84

phone_pad[0] is char[3][7], size is 21

phone_pad[0][0] is char[7], size is 7

phone_pad[0][0][0] is char, size is 1

CSC#352#Fall#2015,#C#Slide#527#

Higher dimensions

For reference:
char phone_pad[4][3][7] = {
 {"1", "2 ABC", "3 DEF" },
 {"4 GHI", "5 JKL", "6 MNO" },
 {"7 PQRS", "8 TUV", "9 WXYZ" },
 {"* TONE", "0 OPER", "#"}};

Some nested loops to print the contents:

for (int r = 0; r < sizeof(phone_pad)/sizeof(phone_pad[0]); r++) {
 for (int c = 0; c < sizeof(phone_pad[0])/sizeof(phone_pad[0][0]); c++) {
 printf("%-8s", phone_pad[r][c]);
 }
 puts("");
 }

Output:
1 2 ABC 3 DEF
4 GHI 5 JKL 6 MNO
7 PQRS 8 TUV 9 WXYZ
* TONE 0 OPER #

 CSC#352#Fall#2015,#C#Slide#528#

Higher dimensions, continued

Here is an alternative formulation:
char *phone_pad[4][3] = {
 {"1", "2 ABC", "3 DEF" },
 {"4 GHI", "5 JKL", "6 MNO" },
 {"7 PQRS", "8 TUV", "9 WXYZ" },
 {"* TONE", "0 OPER", "#"}};

Let's interpret the type of phone_pad:

*phone_pad[4][3] is char
phone_pad[4][3] is pointer to char
phone_pad[4] is array [3] of pointer to char
phone_pad is array [4] of array [3] of pointer to char

What is sizeof(phone_pad)?
96
And, that's not including space for the characters themselves!

What is sizeof(phone_pad) with the previous array? (char phone_pad[4][3][7])
 84

CSC#352#Fall#2015,#C#Slide#529#

Higher dimensions, continued

Consider this program:
int main(int argc, char **argv)
{
 for (int i = 0; i < argc; i++)
 printf("%c\n", argv[i][i]);
}

Execution:

% a.out ab cde
a
b
e

How does it work?

x[y] is equivalent to *(x + y)
argv[i] is equivalent to *(argv + i)
argv[i][i] is equivalent to *(*(argv + i) + i)

CSC#352#Fall#2015,#C#Slide#530#

Sidebar: A notational alternative

When is it appropriate to use a multi-dimensional array?
When the data is "rectangular":

•  Grids in games
•  N-dimensional matrices
•  And more...

As you'd expect, a multi-dimensional array can comprise values of any type.
Imagine a volume (three-dimensional) that comprises Voxel elements:

typedef struct {
 double density, temperature;
 time_t last_sample;
 Probe *probe;
 } Voxel;

Voxel volume[width][height][depth];

Multi-dimensional arrays are common in many domains but are relatively rare in
systems programming.

CSC#352#Fall#2015,#C#Slide#531#

Design considerations

More with complex declarations

CSC#352#Fall#2015,#C#Slide#532#

We've learned this process for understanding declarations:
•  Put the declaration expression on the left, the base type on the right, and

"is" between them. (Remember: "declaration mimics use")

•  Find the lowest precedence operator, remove it and prefix the right hand
side with "array[n] of" or "pointer to" depending on whether the
operator is [], *.

•  Repeat until only the identifier remains.

 char *a[3];

 *a[n] is char

 a[n] is pointer to char

 a is array of pointer to char

CSC#352#Fall#2015,#C#Slide#533#

Review

Let's add another rewriting rule: "function returning".

Example:

 char *(*fp)(const char *, int c);

Parameter types are a separate question so we'll set
the parameters aside.
 char *(*fp)(...);

 *(*fp)(...) is char

 (*fp)(...) is pointer to char

 (*fp) is function returning pointer to char
 (drop parentheses)
 *fp is function returning pointer to char

 fp is pointer to function returning pointer to char

CSC#352#Fall#2015,#C#Slide#534#

"function returning"

Precedence:
array subscripting (high)
function call
indirection (low)

The order happens to be
alphabetical!

A more interesting case:
char *(*sfuncs[5])(const char *, int);

Interpretation:
*(*sfuncs[5])(...) is char

(*sfuncs[5])(...) is pointer to char

*sfuncs[5] is function(...) returning pointer to char

sfuncs[5] is pointer to function(...) returning pointer to char

sfuncs is array [5] of pointer to function(const char *, int)

 returning pointer to char

CSC#352#Fall#2015,#C#Slide#535#

Example

Precedence:
array subscripting (high)
function call
indirection (low)

At hand:
char *(*sfuncs[5])(const char *, int);

Full interpretation:
sfuncs is array [5] of pointer to function(const char *, int)
 returning pointer to char

Example of use:
char *(*sfuncs[])(const char *, int) = { strchr, strrchr};
int main()
{
 char *s = "banana";

 char *p1 = sfuncs[0](s, 'a');
 char *p2 = sfuncs[1](s, 'a');

 printf("%td %td\n", p1 - s, p2 - s);
}

CSC#352#Fall#2015,#C#Slide#536#

Example, continued

Another:
char (*a[10])[5];

Interpretation:
(*a[10])[5] is char

(*a[10]) is array[5] of char

*a[10] is array[5] of char

a[10] is pointer to array[5] of char

a is array[10] of ptr to array[5] of char

Note the sizes:
sizeof((*a[i])[j]) 1
sizeof(*a[i]) 5
sizeof(a[i]) 8
sizeof(a) 80

 CSC#352#Fall#2015,#C#Slide#537#

Another example

Precedence:
array subscripting (high)
function call
indirection (low)

The process can be reversed to go from English to C.
•  Put the object name on the left and the stylized English description on the right.

•  Remove the leftmost element of the English description and add the appropriate
operator to the left hand side. Repeat until only the base type remains.

•  If the operator being added is greater in precedence than the lowest precedence
operator currently in the left hand side, first wrap the left hand side in
parentheses.

Problem: Define p to be a pointer to an array of three characters.
p is pointer to array[3] of char
*p is array[3] of char
(*p)[3] is char

Declaration: char (*p)[3];

Note the third step: *p is wrapped in parentheses because the operator being added, [3],
is greater in precedence than the lowest precedence operator present (the indirection).

Given p as declared above, then if p = 0, what does p++ do?
 CSC#352#Fall#2015,#C#Slide#538#

English to C

Problem:
Declare an array a of five pointers to functions that take a char and returning
an int.

Solution:
a is array[5] of pointer to function returning int

a[5] is pointer to function returning int

*a[5] is function returning int

(*a[5])(...) is int

 (Note addition of parentheses.)

Declaration:
 int (*a[5])(char);

CSC#352#Fall#2015,#C#Slide#539#

Example

As mentioned on slide 326, some systems have cdecl(1), but cdecl is web-
enabled at cdecl.org.

CSC#352#Fall#2015,#C#Slide#540#

cdecl.org

Bit manipulation

CSC#352#Fall#2015,#C#Slide#541#

In some cases representing information with a single bit can produce a great
savings in space.

What have seen this semester where using only a single bit to represent something
could have produced a substantial savings in space?

Recall how we represented csets:

 int cset[CSET_SIZE]; // 512 bytes!

How much space is actually required to represent a cset?

 One bit per character!
 int cset[CSET_SIZE/32]; // four ints; sixteen bytes

What would be a tradeoff with a bit-per-character representation?

Operations would take longer––it takes more instructions to determine the
value of a single bit than it takes to determine the value of an int.

CSC#352#Fall#2015,#C#Slide#542#

Just a bit?

C has several operators that perform bit-level operations on integer values:
 ~ complement (unary)
 & bitwise AND
 | bitwise OR
 ^ bitwise XOR (exclusive OR)
 >> right shift
 << left shift

The complement (~) operator performs a bit by bit complement of its operand's
value, changing 0 to 1 and 1 to 0:

short a = 0x0F61; 0000 1111 0110 0001
short b = ~a; 1111 0000 1001 1110

The portable way to get a value with all bits "set" is to complement 0:

 short c = ~0; 1111 1111 1111 1111

Note that short values are used in these examples but the bit-level operators work
on all integer types.

CSC#352#Fall#2015,#C#Slide#543#

Bit-level operators

The binary & operator is bitwise "and". It produces a result bit of 1 if both input
bits are 1. It produces a result bit of 0 otherwise.

 short a = 0xF0A1; 1111 0000 1010 0001
 short b = 0x00F3; 0000 0000 1111 0011

 short c = a & b; 0000 0000 1010 0001

The binary | operator is bitwise "or". It produces a result bit of 1 either input bit is
1. It produces a result bit of 0 otherwise.

 short a = 0xF0A1; 1111 0000 1010 0001
 short b = 0x00F3; 0000 0000 1111 0011

 short c = a | b; 1111 0000 1111 0011

CSC#352#Fall#2015,#C#Slide#544#

Bit-level operators, continued

The binary ^ operator is bitwise "exclusive or". It produces a result bit of 1 if the
two input bits differ. It produces a result bit of 0 otherwise.

 short a = 0xF0A1; 1111 0000 1010 0001
 short b = 0x00F3; 0000 0000 1111 0011

 short c = a ^ b; 1111 0000 0101 0010

What's the result of c ^ c?

 1111 0000 0101 0010

 ^ 1111 0000 0101 0010

 0000 0000 0000 0000

On some machines the fastest way to make a zero at the instruction level is to
XOR a register with itself: xor r1,r1
###hQps://randomascii.wordpress.com/2012/12/29/theNsurprisingNsubtleWesNofNzeroingNaNregister/#

CSC#352#Fall#2015,#C#Slide#545#

Bit-level operators, continued

The binary operators << and >> are left shift and right shift, respectively.

The expression
 a << 1

indicates to shift the bits of a to the left by one bit position and insert a 0 as the
rightmost bit. The leftmost bit is discarded. The right-hand operand can be any
integer value. The shifted value is the result.

Example with left shift (results are cumulative):

 short a = 1; 0000 0000 0000 0001
 a = a << 1; 0000 0000 0000 0010
 a = a << 2; 0000 0000 0000 1000
 a = 0xFF << a; 1111 1111 0000 0000

CSC#352#Fall#2015,#C#Slide#546#

Shifts

The right shift operator is >>. There are rules about the sign bit for right shifts:
•  If the value is unsigned, 0s are shifted in from the left.
•  If the value is signed, 0s may be shifted in or the sign bit may be

propagated; the behavior is compiler-dependent.

Here's a signed short:
 short a = -32768; 1000 0000 0000 0000
 a = a >> 1; 1100 0000 0000 0000
 a = a >> 4; 1111 1100 0000 0000

Contrast with an unsigned short:
 unsigned short a = 0x8000; 1000 0000 0000 0000
 a = a >> 1; 0100 0000 0000 0000
 a = a >> 4; 0000 0100 0000 0000

Java has unsigned right shift operator (>>>). Why?

CSC#352#Fall#2015,#C#Slide#547#

Shifts, continued

A very fast way to divide or multiply by powers of 2 is to shift.

 char i = 3; 0000 0011
 i = i << 1; 0000 0110 // 3 * 2 = 6
 i = i << 2; 0001 1000 // 6 * 4 = 24

 char i = 12; 0000 1100
 i = i >> 1; 0000 0110 // 12 / 2 == 6
 i = i >> 2; 0000 0001 // 6 / 4 == 1

Some compilers will generate a shift instruction when an integer is being divided
or multiplied by a constant that's a power of 2, such as i = j / 2.

Where do bits go when they're shifted off the left- or right-end of a value?

 The bit bucket!
 !

CSC#352#Fall#2015,#C#Slide#548#

Multiplication and division with shifting

Problem: How could we figure out how many bits are in int?
unsigned int i = ~0;
int nbits = 0;

while (i) {

 nbits++;
 i >>= 1;
 }

printf("%d bits\n", nbits);

CSC#352#Fall#2015,#C#Slide#549#

How many bits are in an int?

Here's a routine to find the position of the leftmost “set” bit in an int:
int first_bit_set(int w)
{
 int intbits = sizeof(int) * CHAR_BIT;
 unsigned int checker = 1 << (intbits - 1);

 // checker = 10000000...00000000
 for (int pos = intbits; pos; pos--)
 if (w & checker)
 return pos;
 else
 checker >>= 1;

 return 0;
}

CHAR_BIT, the number of bits in a char is in <limits.h>.

How does it work?

CSC#352#Fall#2015,#C#Slide#550#

Example: first_bit_set

Results:
 0 (00): 0
 1 (01): 1
 2 (02): 2
 3 (03): 2
 4 (04): 3
 5 (05): 3
 6 (06): 3
 7 (07): 3
 8 (08): 4
 9 (09): 4
...
13 (0D): 4
14 (0E): 4
15 (0F): 4
16 (10): 5
17 (11): 5

A function to convert an int to a character string of zeros and ones:
void val_to_bits(int val, int size, char *buf)
{

 int nbits = size * CHAR_BIT;
 for (i = nbits - 1; i >= 0; i--) {
 char bit = (val & 1<<i) ? '1' : '0';
 *buf++ = bit;
 if (i % 4 == 0 && i != 0)
 *buf++ = ' ';
 }
 *buf = 0;

}

CSC#352#Fall#2015,#C#Slide#551#

Another example

Usage:
char buf[sizeof(i)*CHAR_BIT + 1];
val_to_bits(0xCafeBabe, sizeof(int), buf);
printf("%X is %s\n", i, buf);

Output:
 CAFEBABE is 1100 1010 1111 1110 1011 1010 1011 1110

A bit field is an integer member of a structure or union whose width is specified in
terms of bits. A member name followed by a colon and an integer indicates a bit field.

Bit fields are often used to describe, at the level of the bits, a value directly obtained
from hardware, such as status register contents.

Imagine a tape drive error status register with the low eleven bits for a block number, a
single bit read/write flag, a three bit error code, and the high bit unused:

typedef union {
 unsigned short word;
 struct {
 unsigned block_num: 11;
 unsigned read_write: 1;
 unsigned error_code: 3;
 unsigned : 1; // unnamed bit field
 } parts;
 } tape_error_word;

The fields are packed into the minimum amount of space, 16 bits in this case.

CSC#352#Fall#2015,#C#Slide#552#

Bit fields—sized bit strings

Here's a routine to dissect an error code. Note how
the union is used.
void show_tape_error(unsigned short eword)
{
 tape_error_word ew;
 ew.word = eword;

 printf("Tape error: block %u, %s mode, ",
 ew.parts.block_num,
 ew.parts.read_write ? "write":"read");

 printf("code %x\n", ew.parts.error_code);
}

For the call show_tape_error(0x77FF) this output is produced:

Tape error: block 2047, read mode, code 7

Note: Bit fields can be used to save space, but there's extra computation involved to
isolate the values.

When should we choose bit fields vs. a series of bit-wise operations?
CSC#352#Fall#2015,#C#Slide#553#

Bit fields, continued
For reference:
typedef union {
 unsigned short word;
 struct {
 unsigned block_num: 11;
 unsigned read_write: 1;
 unsigned error_code: 3;
 unsigned : 1; // unnamed
 } parts;
 } tape_error_word;

More about the preprocessor

CSC#352#Fall#2015,#C#Slide#554#

Parameters can be specified for a #define. Example:
#define MIN(x,y) ((x) < (y) ? (x) : (y))

Usage:

int m1 = MIN(3, -1);

double m2 = MIN(12.34, 10.1);

After preprocessing:

int m1 = ((3) < (-1) ? (3) : (-1));

double m2 = ((12.34) < (10.1) ? (12.34) : (10.1));

Key point: MIN() places no constraints on its operands. It works for any x and y
such that x < y is valid.

What's a tradeoff with a macro like MIN?
There's no function call overhead but there is "code bloat"––each use of MIN
generates code for the computation.

CSC#352#Fall#2015,#C#Slide#555#

Parameterized macros

Here are two parameterized macros we've used:
char *type;
if (S_ISREG(statbuf.st_mode))
 type = "regular file";
else if (S_ISDIR(statbuf.st_mode))
 type = "directory";

Here's what the code above expands to:

char *type;
if (((((statbuf.st_mode)) & 0170000) == (0100000)))
 type = "regular file";
else if (((((statbuf.st_mode)) & 0170000) == (0040000)))
 type = "directory";

Speculate: Why do macros use so many parentheses?

CSC#352#Fall#2015,#C#Slide#556#

Parameterized macros, continued

Let's try dropping the parentheses in MIN:
#define MIN_V1(x,y) ((x) < (y) ? (x) : (y))
#define MIN_V2(x,y) x < y ? x : y

int x = 1, y = 2;
int m1 = 10 + MIN_V1(x + 1, y + 2);
int m2 = 10 + MIN_V2(x + 1, y + 2);

printf("m1 = %d, m2 = %d\n", m1, m2);

Output:

m1 = 12, m2 = 4

The issue is operator precedence. Here's the preprocessor output:

int m1 = 10 + ((x + 1) < (y + 2) ? (x + 1) : (y + 2));
int m2 = 10 + x + 1 < y + 2 ? x + 1 : y + 2;

A rule when writing macros:

Wrap each parameter and the full expansion in parentheses.

CSC#352#Fall#2015,#C#Slide#557#

Parameterized macros, continued

Consider this code:
#define MIN(x,y) ((x) < (y) ? (x) : (y))

int x = 1, y = 2;
int m = MIN(x++, y++);
printf("m = %d, x = %d, y = %d\n", m, x, y);

Output:

 m = 2, x = 3, y = 3

Note the expansion of MIN(x++, y++):

 int m = ((x++) < (y++) ? (x++) : (y++));

A rule when using macros:

 Watch out for expressions with side-effects.

Common practice:

 Always capitalize macro names, to alert the user that they are using a macro.

CSC#352#Fall#2015,#C#Slide#558#

Another pitfall with parameterized macros

The preprocessor has several directives to cause conditional inclusion of code.
One is #ifdef:

while ((c = getchar()) != EOF) {
#ifdef DEBUG
 printf("c = '%d' (%c)\n", c, c);
#endif
 f(c);
 }

If #define DEBUG has been previously seen, the code bracketed by
#ifdef...#endif is processed. If not, that code turns into whitespace.

% gcc -E cpp16.c
...
 while ((c = getchar()) != (-1)) {

 f(c);
 }

CSC#352#Fall#2015,#C#Slide#559#

Conditional inclusion (a.k.a conditional compilation)

For reference:
while ((c = getchar()) != EOF) {
#ifdef DEBUG
 printf("c = '%d' (%c)\n", c, c);
#endif
 f(c);
 }

To activate the debugging code we could add #define DEBUG earlier in the file but
let's use -D instead:

% gcc -E -DDEBUG cpp16.c
 while ((c = getchar()) != (-1)) {

 printf("c = '%d' (%c)\n", c, c);

 f(c);
 }

What's an advantage of #ifdef ... over if (debug) { ... }?
The debugging code is truly "gone". It doesn't contribute to code size. It has no
run-time overhead.

CSC#352#Fall#2015,#C#Slide#560#

Conditional inclusion, continued

The #if directive allows evaluation of constant integral expressions:
#if (AIX_VER > 12) || (SUNOS_VER > 4) || defined(ZFONTS)

 UseEnhancedFonts();
#else

 UseStandardFonts();
#endif

An easy way to "comment out" code is to use #if 0:
#if 0

 for(... loop over nodes ...) {
 trans_closure(p, nset); /* args?? */
 Hmm...
 }

#endif

Note that using #if 0 avoids problems with nested /* ... */ comments.

CSC#352#Fall#2015,#C#Slide#561#

Conditional inclusion, continued

Conditional compilation is commonly used to accommodate platform-specific
situations with a single body of source code. Here are some examples from the
GNU find source, version 4.4.2:

#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
...
#ifdef HAVE_SYS_MNTIO_H
#include <sys/mntio.h>
#endif
...
#ifdef STDC_HEADERS
#include <stdlib.h>
#else
extern int errno;
#endif

CSC#352#Fall#2015,#C#Slide#562#

Examples of conditional inclusion

 if (!options.open_nofollow_available)
 {
#ifdef STAT_MOUNTPOINTS
 init_mounted_dev_list(0);
#endif
 }
 ...

 starting_desc = open (".", O_RDONLY
#if defined O_LARGEFILE
 |O_LARGEFILE
#endif
);
...

 if (TraversingDown == direction)
 {
#ifdef STAT_MOUNTPOINTS
 isfatal = dirchange_is_fatal(specific_what,isfatal,silent,newinfo);
#else
 isfatal = RETRY_IF_SANITY_CHECK_FAILS;
#endif
 }

CSC#352#Fall#2015,#C#Slide#563#

Examples, continued

#ifdef AFS
#include <netinet/in.h>
#include <afs/venus.h>
#if __STDC__
/* On SunOS 4, afs/vice.h defines this to rely on a pre-ANSI cpp. */
#undef _VICEIOCTL
#define _VICEIOCTL(id) ((unsigned int) _IOW('V', id, struct ViceIoctl))
#endif
#ifndef _IOW
/* AFS on Solaris 2.3 doesn't get this definition. */
#include <sys/ioccom.h>
#endif

The preprocessor provides great flexibility but creates the potential of creating code
that is very hard to reason about.

The designers of Java––expert C programmers––made a very conscious decision to
not include a preprocessor in Java.

CSC#352#Fall#2015,#C#Slide#564#

Examples, continued

Sometimes a file will include two files that in turn include the same file. In the
code below, both Circle.h and Line.h include Point.h:

A second definition of a structure, even if identical, is an error:

% gcc cpp18.c
In file included from Circle.h:1:0,
 from cpp18.c:2:
Point.h:3:7: error: conflicting types for ‘Point’
Point.h:3:7: note: previous declaration of ‘Point’ was here

CSC#352#Fall#2015,#C#Slide#565#

"Include guards"

% cat cpp18.c
#include "Line.h"
#include "Circle.h"
int main() { ... }

% cat Circle.h
#include "Point.h"
typedef struct {
 Point center;
 double radius;
 } Circle;

% cat Line.h
#include "Point.h"
typedef struct {
 Point p1, p2;
 } Line;

% cat Point.h
typedef struct {
 double x, y;
 } Point;

The solution is a preprocessor technique known as an include guard.

Here's a numbered listing Point.h with an include guard:
 1 #ifndef Point_h_
 2
 3 #define Point_h_
 4
 5 typedef struct {
 6 double x, y;
 7 } Point;
 8
 9 #endif

The first time that Point.h is included, no #define has been seen for a macro named
Point_h_. By virtue of that absence, the #ifndef Point_h_ succeeds and lines 2-8 are
processed. Line 3 defines Point_h_ and lines 5-7 declare a Point type.

Things are different the if Point.h is included a second time. Because of the previous
inclusion of Point.h the macro Point_h_ is defined. The #ifndef Point_h_ will fail
and lines 2-8 will turn into whitespace.

CSC#352#Fall#2015,#C#Slide#566#

"Include guards", continued

Here's what cpp -E cpp18.c shows:
1 "Line.h" 1

1 "Point.h" 1

typedef struct {
 double x, y;
 } Point;
4 "Line.h" 2
typedef struct {
 Point p1, p2;
 } Line;
2 "cpp18.c" 2
1 "Circle.h" 1

(Without the include guard, the code from
Point.h would appear here, too.)

typedef struct {
 Point center;
 double radius;
 } Circle;
3 "cpp18.c" 2
int main() { ... }

CSC#352#Fall#2015,#C#Slide#567#

Include guards, continued

% cat cpp18.c
#include
"Line.h"
#include
"Circle.h"
int main() { ... }

% cat Circle.h
#ifndef Circle_h
#define Circle_h
#include "Point.h"
typedef struct {
 Point center;
 double radius;
 } Circle;
#endif

% cat Line.h
#ifndef Line_h
#define Line_h
#include
"Point.h"
typedef struct {
 Point p1, p2;
 } Line;
#endif

% cat Point.h
#ifndef Point_h
#define Point_h
typedef struct {
 double x, y;
 } Point;
#endif

The preprocessor has a ## operator. It concatenates two tokens.

Given:
#define JOIN(a,b) a##b

then JOIN(Fish,Knuckles) expands to FishKnuckles.

Let's use ## to write a macro that generate typed "min" functions:
#define TYPED_MIN(type) \
 type type##_min(type a, type b) { return a < b ? a : b; }

With the above, the lines
TYPED_MIN(int)
TYPED_MIN(double)

expand to:
int int_min(int a, int b) { return a < b ? a : b; }
double double_min(double a, double b) { return a < b ? a : b; }

CSC#352#Fall#2015,#C#Slide#568#

The ## operator

The preprocessor makes available a number of predefined macros. Here are four
handy ones: (See C11 6.10.8 for the full list.)

__DATE__ Current date (char *)
__TIME__ Current time (char *)
__FILE__ Source file name (char *)
__LINE__ Line number (int)

Example:
 printf("Compiled at %s on %s\n", __TIME__, __DATE__);

After preprocessing:
 printf("Compiled at %s on %s\n", "22:37:59", "Nov 29 2015");

The assert macro uses __LINE__ and __FILE__. assert(0 == 1) produces
output like this:

a.out: cpp1.c:13: main: Assertion `0 == 1' failed.

Challenge:

Use __LINE__ and __FILE__ to generate alloc_block(...) and
free_block(...) calls that include file and line information.

CSC#352#Fall#2015,#C#Slide#569#

Predefined macros

Multiple source files

CSC#352#Fall#2015,#C#Slide#570#

Large C programs are typically broken into many source files. Here's a trivial
program that's broken into two files:

Compilation and execution:

% gcc hello.c do_hello.c
% a.out
Segmentation fault (core dumped)

Note that the program compiles without warning. What's wrong?
main passes do_hello an argument but do_hello takes no arguments.
do_hello expects the global version to be a string but in main it's a double.

We need a way to ensure that there are no mismatches between multiple files.

CSC#352#Fall#2015,#C#Slide#571#

Multiple source files

% cat hello.c
double version = 1.0;
void do_hello(const char *);
int main(int argc, char **argv)
{
 do_hello(argv[1]);
}

% cat do_hello.c
#include <stdio.h>
char *version;
void do_hello(void)
{
 printf("Hello, world! (Version %s)\n",version);
}

Let's introduce a header file that specifies common elements.
% cat hello2.h
char *version;
void do_hello(void);

New versions, hello2.c and do_hello2.c:

Compilation, with good errors!

% gcc hello2.c do_hello2.c
hello2.c:2:8: error: conflicting types for ‘version’
hello2.h:1:14: note: previous declaration of ‘version’ was here
hello2.c: In function ‘main’:
hello2.c:5:5: error: too many arguments to function ‘do_hello’
hello2.h:2:6: note: declared here

CSC#352#Fall#2015,#C#Slide#572#

Headers prevent mismatches

% cat hello2.c
#include "hello2.h"
double version = 2.0;
int main(int argc, char **argv)
{
 do_hello(argv[1]);
}

% cat do_hello2.c
#include <stdio.h>
#include "hello2.h"
void do_hello(void)
{
 printf("Hello, world! (Version %s)\n", version);
}

Final version, with all issues resolved:
% cat hello3.h
char *version;
void do_hello(void);

Compilation and execution:

% gcc hello3.c do_hello3.c
% a.out
Hello, world! (Version 3.0a)

The moral of the story:
 Putting declarations in header files prevent mismatches.

CSC#352#Fall#2015,#C#Slide#573#

Headers prevent mismatches, continued

% cat hello3.c
#include "hello3.h"
char *version = "3.0a";
int main()
{
 do_hello();
}

% cat do_hello3.c
#include <stdio.h>
#include "hello3.h"
void do_hello(void)
{
 printf("Hello, world! (Version %s)\n", version);
}

Recall the steps in producing an executable from a file such as hello.c:
Preprocess hello.c
Compile the preprocessed C code (a translation unit) into assembly code, hello.s.
Using as, assemble hello.s into an object file, hello.o.
Using ld, "link" hello.o with library functions to produce an executable.

Let's use nm to look at the object files produced from hello3.c and do_hello3.c:

% gcc -c hello3.c do_hello3.c
% nm hello3.o
 U do_hello
0000000000000000 T main
0000000000000000 D version

% nm do_hello3.o
0000000000000000 T do_hello
 U printf
0000000000000008 C version

CSC#352#Fall#2015,#C#Slide#574#

Linking

The "linker", ld, needs to make a connection
between hello3.o's reference to do_hello
and do_hello3.o's definition of do_hello.
It links the reference to the definition.

Similarly, do_hello3.o's reference to printf
needs to be linked to the definition of printf
in the C library.

Also, do_hello3.o's reference to version
needs to be linked to the definition in
hello3.o.

Let's run gcc on the object files. gcc will run ld to produce an executable.
% gcc -o hello3 hello3.o do_hello3.o

Let's run nm on the executable. Here are some key lines from nm's output:
% nm hello3
 000000000400410 T _start
0000000000400504 T do_hello
00000000004004f4 T main
 U printf@@GLIBC_2.2.5
0000000000601020 D version

Let's run gdb and look for those symbols.

% gdb hello3
(gdb) p main
$1 = {int ()} 0x4004f4 <main>
(gdb) p do_hello
$2 = {void (void)} 0x400504 <do_hello>
(gdb) p version
$3 = 0x40061c "3.0a"
(gdb) p &version
$4 = (char **) 0x601020

CSC#352#Fall#2015,#C#Slide#575#

Linking, continued

The linkage of an identifier determines how widely visible it is to other parts of
the program.

If an identifier has external linkage, it is visible outside the file it is defined in.

By default, function names have external linkage.

do_hello() in do_hello3.c can be called from main() in hello3.c because
it (do_hello) has external linkage.

By default, the names of global variables have external linkage.

 Thus, version in hello3.c can be used in do_hello3.c.

Just like public fields and methods in a Java class can accessed from outside the
class, C variable and objects with external linkage can be accessed from outside
their containing translation unit.

What's a case where we don't want a function name or global variable name to
have external linkage?

CSC#352#Fall#2015,#C#Slide#576#

Linkage

Let's look at the identifiers with external linkage in a12/alloc.o.
% nm a12/alloc.o
0000000000000086 T add_pool
000000000000020f T alloc_block
000000000000006c T alloc_error
00000000000007e3 T block_addr
0000000000000000 T block_status
000000000000036e T check_block
00000000000003fa T check_blocks
0000000000000523 T free_block
0000000000000000 B pool_root
000000000000082e T show_pool
000000000000099b T show_pools
0000000000000808 T user_block_addr

A user of alloc.o can access all of those things, even though the specified interface for
the allocator is only add_pool, alloc_block, free_block, show_pools, and
check_blocks. Is that good or bad?

Bad! If an important user starts using any of those helper functions, we might be
saddled with supporting the current behavior of those functions.

CSC#352#Fall#2015,#C#Slide#577#

Linkage, continued

The opposite of external linkage is internal linkage. If an identifier has internal
linkage, it can only be accessed in that file; it is simply not visible elsewhere.

The static keyword is (over)used to specify internal linkage. Let's apply it to a
couple of things in alloc.c that we don't want to expose:

static struct pool_info pool_root = {};

static char *block_addr(struct pool_info *pool, int n)
{
 return pool->memory + n * pool->config.real_block_size;
}

Attempts to use pool_root or block_addr from files other than alloc.c will
produce an "undefined reference" error at link-time––they aren't visible
outside of alloc.c.

What's a rough analogy between internal linkage and an element of Java?

CSC#352#Fall#2015,#C#Slide#578#

Internal linkage

If we add static to everything in alloc.c that shouldn't be externally visible,
here's what nm shows:

% nm a12/alloc.o
0000000000000086 T add_pool
000000000000020f T alloc_block
000000000000006c t alloc_error
00000000000007e3 t block_addr
0000000000000000 t block_status
000000000000036e t check_block
00000000000003fa T check_blocks
0000000000000523 T free_block
0000000000000020 b pool_root
000000000000082e t show_pool
000000000000099b T show_pools
0000000000000808 t user_block_addr

What's the difference from the earlier nm output?

 Lowercase letters are used to indicate internal linkage.

CSC#352#Fall#2015,#C#Slide#579#

Internal linkage, continued

Some identifiers have no linkage. Examples:
•  Local variables
•  Function parameters
•  typedefs
•  struct, union, and enum tags

A key point in understanding linkage is that linkage is an attribute of an identifier.

CSC#352#Fall#2015,#C#Slide#580#

No linkage

Here's an under-enforced rule:
 There can be only one definition for a variable.

Here's a violation:

We can see it clearly with gcc -E:

% gcc -E hello3.c
1 "hello3.h" 1
char *version;
void do_hello(void);
2 "hello3.c" 2
char *version = "3.0a";
...

gcc -c hello3.c produces no complaints.

CSC#352#Fall#2015,#C#Slide#581#

The extern specifier

% cat hello3.h
char *version;
void do_hello(void);

% cat hello3.c
#include "hello3.h"
char *version = "3.0a";
int main() { do_hello(); }

At hand, hello3.h:
% cat hello3.h
char *version;
void do_hello(void);

By the letter of the standard, we should use extern in hello3.h:

% cat hello3.h
extern char *version;
void do_hello(void);

The extern says, "Somewhere else there's a char * named version defined. I
want to use it."

You'll often see extern on function prototypes, too:

extern char *version;
extern void do_hello(void);

Try gcc -E ... | grep extern to see a lot of externs.

The standard specifies a number of rules about extern, but with gcc, extern is
seldom needed.

CSC#352#Fall#2015,#C#Slide#582#

extern, continued

make

CSC#352#Fall#2015,#C#Slide#583#

When the code for a program is distributed among several source files, a simple
but workable approach to build the program is a script that does one big
compilation:

% cat buildit
gcc -o find find.c fstype.c parser.c pred.c tree.c util.c version.c

After making a change, the developer runs buildit. Everything is recompiled,
and the developer tests the new executable.

A "build all" script is simple and nearly foolproof but it becomes increasingly
inefficient as the amount of source code grows.

CSC#352#Fall#2015,#C#Slide#584#

The problem

To avoid unnecessary recompilation the developer might create a script that
simply links the object files:

 % cat linkit
 gcc -o find find.o fstype.o parser.o pred.o tree.o util.o version.o

After a change, the developer recompiles modified files by hand and then uses
linkit to create an executable:

% vim util.c
% gcc -c util.c
% linkit

However, there's the possibility of a forgotten change:
% vi parser.c
[...Phone call, meeting, lunch...]
% vi pred.c fstype.c
% gcc -c pred.c fstype.c
% linkit

 [...Tests and wonders why parser changes aren't working...]

CSC#352#Fall#2015,#C#Slide#585#

The problem, continued

Another common error is changing a header file but not recompiling all files that
include that header file:

% vi pred.h
% gcc -c pred.c util.c (Forgot that parser.c, too, includes pred.h.)
% linkit
[...Tests and wonders why there's a core dump in parser...]

CSC#352#Fall#2015,#C#Slide#586#

The problem, continued

With C, there's a chain of dependencies:
•  Executables are built from object files (.o files)
•  Object files are built from .c files
•  .c files depend on .h files
•  With a parser generator, .c and .h files might be created from a grammar.

With make, we specify:
•  Dependencies between files
•  How to create files based on existing files

Based on those specifications, make will take appropriate steps to build whatever
we request.

make has built-in rules for many languages, including C, but rules can be added
to enable make to build many types of things, like documents.

CSC#352#Fall#2015,#C#Slide#587#

A solution: make

The operation of make is controlled by a "makefile".

Here's a simple makefile, named Makefile:

% cat Makefile
CC=gcc
hello: hello.o do_hello.o
 gcc -o hello hello.o do_hello.o # NOTE: TAB at start of line!

The first line sets the value of the make variable CC. CC specifies the command
to use for compiling C files. It defaults to cc but we want to use gcc.

The second line describes a target named hello. The target's name appears to the
left of the colon. The names following the colon are the files that the target
"depends" on. In essence it specifies this:

"Before creating hello, be sure that hello.o and do_hello.o are up to date."

The third line specifies how to create hello, assuming hello.o and do_hello.o
are up to date.

CSC#352#Fall#2015,#C#Slide#588#

make basics

The makefile at hand:
CC=gcc
hello: hello.o do_hello.o
 gcc -o hello hello.o do_hello.o

Again, the second line says that before creating hello, hello.o and do_hello.o
must be up to date.

make has a built-in rule that says that .o files depend on .c files: If hello.o is
needed, make looks for hello.c

A .o file is considered to be up to date if the .o file is newer than the
corresponding .c file. If the .o file is older or does not exist, the .o file must be
(re)created.

To create a .o file from a .c file, make uses a built-in rule: Compile the .c file
with the program specified by CC.

CSC#352#Fall#2015,#C#Slide#589#

make basics, continued

The makefile at hand:
CC=gcc
hello: hello.o do_hello.o
 gcc -o hello hello.o do_hello.o

If we want make to build a target described in a makefile, we invoke make with the
target name. Here is make in action:

% ls
Makefile do_hello.c hello.c hello.h

% make hello
gcc -c -o hello.o hello.c
gcc -c -o do_hello.o do_hello.c
gcc -o hello hello.o do_hello.o

% ls -lt
total 22
-rwxrwxr-x 1 whm whm 8487 Dec 2 00:54 hello
-rw-rw-r-- 1 whm whm 1592 Dec 2 00:54 do_hello.o
-rw-rw-r-- 1 whm whm 1584 Dec 2 00:54 hello.o
-rw-rw-r-- 1 whm whm 116 Dec 2 00:31 do_hello.c
-rw-rw-r-- 1 whm whm 74 Dec 2 00:31 hello.c
-rw-rw-r-- 1 whm whm 36 Dec 2 00:30 hello.h
-rw-rw-r-- 1 whm whm 94 Dec 2 00:30 Makefile

CSC#352#Fall#2015,#C#Slide#590#

make basics, continued

Note the result of a second make command:
% make hello
make: 'hello' is up to date.

hello is declared to be up to date because it is newer than hello.o and
do_hello.o, the two files on which it depends, and in turn, hello.o and
do_hello.o are newer than hello.c and do_hello.c, respectively.

Note the result of a make after "changing" hello.c by touching it.

% touch hello.c
% make hello
gcc -c -o hello.o hello.c
gcc -o hello hello.o do_hello.o

Due to the touch, hello.o was older than hello.c and therefore hello.o was
rebuilt. After that, hello was older than hello.o and therefore hello was rebuilt.

It is important to understand that make bases its actions solely on modification
times, not file contents.

CSC#352#Fall#2015,#C#Slide#591#

make basics, continued
CC=gcc
hello: hello.o do_hello.o
 gcc -o hello hello.o do_hello.o

Note that "hello.o do_hello.o" appears twice:
CC=gcc
hello: hello.o do_hello.o
 gcc -o hello hello.o do_hello.o

Let's introduce a variable for the .o files:

OBJS=hello.o do_hello.o
hello: $(OBJS)

 gcc -o hello $(OBJS)

CSC#352#Fall#2015,#C#Slide#592#

DRY!

A common convention is a clean target, to delete everything that can be recreated
with a make.

CC=gcc
OBJS=hello.o do_hello.o
hello: $(OBJS)

 gcc -o hello $(OBJS)

.PHONY: clean
clean:

 rm hello $(OBJS)

Usage:

% make clean
rm -f hello hello.o do_hello.o

Speculate: What's the purpose of .PHONY?
If we accidentally created a file named clean, then make clean would just
say "make: 'clean' is up to date."

CSC#352#Fall#2015,#C#Slide#593#

A clean target

Here's a target to make a backup with mar and mail it to oneself:
backup:

 @echo Making archive...
 @mkdir -p .backups
 @mar c .backups/backup-$$(date "+%Y%m%d.%H%M").mar \
 Makefile *.c
 @echo Mailing...
 @mail -s "backup of hello" $(USER) < $$(ls -t .backups/* | head -1)
 @echo Done!
 @echo Most recent backups:
 @ls -ltr .backups | tail -3

Notes:

make won't echo commands that start with @.
$$ is used to get a single $ through to the shell.
$(USER) uses the USER environment variable from the shell.
backup should be added to .PHONY list.
A backslash is used to break the mar command across two lines.

Rather than putting all those commands in the makefile should we make a script
with those lines and have the backup target run it?

CSC#352#Fall#2015,#C#Slide#594#

A backup target

For reference:
backup:

 @echo Making archive...
 @mkdir -p .backups
 @mar c .backups/backup-$$(date "+%Y%m%d.%H%M").mar \
 Makefile *.c
 @echo Mailing...
 @mail -s "backup of hello" $(USER) < $$(ls -t .backups/* | head -1)
 @echo Done!
 @echo Most recent backups:
 @ls -ltr .backups | tail -3

Execution:

% make backup
Making archive...
Added Makefile
...more mar output...
Mailing...
Done!
Most recent backups:
-rw-rw-r-- 1 whm whm 787 Dec 3 18:17 backup-20151203.1817.mar
... CSC#352#Fall#2015,#C#Slide#595#

A backup target, continued

Let's add a simple testing target.
test: hello

 @echo Testing...
 ./hello

Note that test depends on hello. Also, test is another phony target––we never
make a file named test, so we should add test to .PHONY

Let's get a clean slate, then build and test:

% make clean hello test
rm -f hello *.o
gcc -c -o hello.o hello.c
gcc -c -o do_hello.o do_hello.c
gcc -o hello hello.o do_hello.o
Testing...
./hello
Hello, world! (Version 3.0a)

CSC#352#Fall#2015,#C#Slide#596#

Execution of multiple targets

Here is hello.c:
#include "hello.h"
char *version = "3.0a";
int main()
{
 do_hello();
}

Let's move version into a new header file:
% cat version.h
char *version = "3.0a";

% cat hello.c
#include "hello.h"
#include "version.h"
int main()
...

CSC#352#Fall#2015,#C#Slide#597#

Header dependencies

Let's do a build...
% make hello
gcc -c -o hello.o hello.c
gcc -c -o do_hello.o do_hello.c
gcc -o hello hello.o do_hello.o

Let's use echo to simulate an edit of the version number...

% echo 'char *version = "4.0";' > version.h

Let's test the latest...

% make test
Testing...
./hello
Hello, world! (Version 3.0a)

Why did we get the old version number? The target test does depend on hello
being up-to-date:

test: hello
 @echo Testing...
 ./hello

CSC#352#Fall#2015,#C#Slide#598#

Header dependencies, continued

The situation: We updated version.h but make test ran an old version. Here's
the involved code from the makefile:

OBJS=hello.o do_hello.o
hello: $(OBJS)

 gcc -o hello $(OBJS)

test: hello

 @echo Testing...
 ./hello

What's wrong?

 Here's hello.c:
#include "hello.h"
#include "version.h"
int main()
...

hello.c uses hello.h and version.h but the makefile has no reflection of that
dependency. It's a makefile bug!

CSC#352#Fall#2015,#C#Slide#599#

Header dependencies, continued

make's built-in dependency of .o files on .c files is insufficient. We need to add
explicit dependencies for both do_hello.o and hello.o:

do_hello.o: do_hello.c hello.h # Added
hello.o: hello.c hello.h version.h # " "

hello: $(OBJS)

 gcc -o hello $(OBJS)

test: hello

 @echo Testing...
 ./hello

Let's try test again:

% make test
gcc -c -o hello.o hello.c
gcc -o hello hello.o do_hello.o
Testing...
./hello
Hello, world! (Version 4.0)

CSC#352#Fall#2015,#C#Slide#600#

Header dependencies, continued

It's tedious and error prone to manually maintain header file dependencies in a
makefile. One option is to use gcc -MM to compute the dependencies for us:

% gcc -MM *.c
do_hello.o: do_hello.c hello.h
hello.o: hello.c hello.h version.h

However, we still need to update the makefile with that output.

A simpler approach for header file dependencies that works well for small projects
is to specify that all object files depend on all header files:

hello: $(OBJS)
 gcc -o hello $(OBJS)

*.o: *.h # Added, and above .o dependencies removed

Usage:

% touch version.h
% make hello
gcc -c -o hello.o hello.c
gcc -c -o do_hello.o do_hello.c
gcc -o hello hello.o do_hello.o

CSC#352#Fall#2015,#C#Slide#601#

Header dependencies, continued

When a target is being built we can access "automatic" variables that hold
information about the target. One is $@, which is the name of the current target.

Here's a trivial example:

abc:
 @echo The target is $@

xyz:

 @echo The target is $@

Execution:

% make abc
The target is abc

% make xyz
The target is xyz

CSC#352#Fall#2015,#C#Slide#602#

The $@ variable

Repetitious specification of targets can often be avoided by using $@.

Here's a makefile that builds vector[123] if vector.c is changed:
CC=gcc
PROGS=vector1 vector2 vector3

all: $(PROGS)

$(PROGS): vector.c
 gcc -o $@ $@.c vector.c

Usage:

% make all
gcc -o vector1 vector1.c vector.c
gcc -o vector2 vector2.c vector.c
gcc -o vector3 vector3.c vector.c

Note that $(PROGS): vector.c states that all the elements of PROGS depend on
vector.c.

CSC#352#Fall#2015,#C#Slide#603#

The $@ variable, continued

.SECONDEXPANSION:
CC=gcc
CFLAGS=-Werror -Wall -g -std=gnu1x -I/cs/www/classes/cs352/fall15/h

PROGS=lastmod kd vm
EXECS=$(PROGS) $(VECTORN)
ALL=$(EXECS) vector.o
VECTORN=vector1 vector2 vector3 vector_ph vector_ps vector_yw vector_zn

all: $(EXECS)

$(VECTORN): a12/$$@.c a12/vector.h vector.c

 $(CC) $(CFLAGS) -o $@ a12/$@.c vector.c

.PHONY: vector
vector: $(VECTORN)

Notes:

.SECONDEXPANSION enables a12/$$@.c in $(VECTORN)
CFLAGS specifies options for gcc.
Target all causes all executables for all problems to be built.
vector is a phony target that causes the vector executables to be built.

CSC#352#Fall#2015,#C#Slide#604#

A portion of a12/Makefile

...
PROGS=lastmod kd vm
EXECS=$(PROGS) $(VECTORN)
ALL=$(EXECS) vector.o

...
all: $(EXECS)
...
$(PROGS): $$@.c

 $(CC) $(CFLAGS) -o $@ $@.c

install: $(ALL)

 chmod 711 $(EXECS)
 cp -i $(EXECS) vector.o a12

clean:
 rm -f *.o $(ALL) *.build core

CSC#352#Fall#2015,#C#Slide#605#

The rest of a12/Makefile

If make is run with no arguments, it builds the first target in Makefile. Recall
that all is the first target in a12/Makefile:

PROGS=lastmod kd vm
EXECS=$(PROGS) $(VECTORN)
VECTORN=vector1 vector2 vector3 ... vector_zn
all: $(EXECS)
...

It follows a common convention: make with no arguments builds "the works".

CSC#352#Fall#2015,#C#Slide#606#

make "the works"

By default, make looks for GNUmakefile, makefile, and Makefile, in that
order, and uses the first one it finds.

The -f option can be used to name a specific makefile:

make -f Makefile.old

The -n option indicates to show the commands that need to be performed, but not
actually run them.

By default, make stops on the first compilation error. make -k tells it to keep
going. Emacs' compile command uses make -k by default.

The -p option causes make to dump out its rules and more. Here's a way to run it
with a clean slate, by using -f to name /dev/null as the makefile:

% make -p -f /dev/null > p.out
make: *** No targets. Stop.

Try it, edit p.out, and look for occurrences of COMPILE.c.

CSC#352#Fall#2015,#C#Slide#607#

Handy make options

Here is the general form of a target specification:
target1 ... targetN: dependency1 .. dependencyN
<TAB>command1
<TAB>...
<TAB>commandN

The most common makefile error is to not precede commands with a TAB!
Example:

% cat Makefile
test:
 @echo testing...
% make
makefile:2: *** missing separator. Stop.

The problem is that on the second line, spaces, not a TAB precede the @:

% cat -A Makefile
test:$
 @echo testing...$

cat -A should show this for that second line:
 ^I@echo testing...$

CSC#352#Fall#2015,#C#Slide#608#

The #1 makefile error

This material provides an introduction to make but is far from comprehensive.

An excellent source of documentation for make is the manual for GNU make:
https://www.gnu.org/software/make/manual/

make was developed in the late 1970s by Stu Feldman at Bell Labs. There are a
number of variants and "replacements" for make but none have been as
successful on UNIX as make itself. This material is largely based on "classic"
make but does introduce elements of GNU make.

Data point: The makefile for bash 4.2 is 1,529 lines.

Ant, Maven, and Gradle are popular build tools for Java applications.

The task of creating and maintaining a build system can be a full-time job. Large
projects, especially those targeting multiple platforms, sometimes have "build
engineers".

See also: https://en.wikipedia.org/wiki/List_of_build_automation_software

CSC#352#Fall#2015,#C#Slide#609#

Lots more with make

Field Trip!

CSC#352#Fall#2015,#C#Slide#610#

