
C Sc 352, Spring 2005 Emacs Slide 1
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Emacs

Prominent UNIX Editors

Why use Emacs?

Running Emacs

Basics of navigation and editing

Killing and yanking

The mark and the region

Arguments

Searching and replacing

Windows

Buffers

Help and Info

Customization

Modes

Backup files and auto save

Disabled commands

Emacs and "real" windows

C Sc 352, Spring 2005 Emacs Slide 2
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Prominent UNIX Editors

There have been four prominent and widely popular UNIX editors.

ed is the original UNIX editor. It is line-oriented and terse, but
elegant. ed, or a lookalike, is on most UNIX systems.

vi was created by Bill Joy in 1976. It is screen oriented and "modal".
It has a second "personality", called ex, that is essentially an improved
version of ed. Arguably the fastest plain-text editor for touch-typists.

In 1981, James Gosling created "UNIX Emacs", a C implementation
that was similar to Richard Stallman's Emacs for the PDP-10.
Important difference: Gosling's version provided "Mock Lisp", not a
"true" Lisp.

In 1984-1985 Stallman created GNU Emacs—the first tangible result
of the GNU project.

The core of GNU Emacs is written in C but it contains a "true" Lisp
that in turn is used to implement much of the editor's functionality.

GNU Emacs is the Emacs that we'll be using.

Originally, "Emacs" was an acronym for Editor MACroS.

Today, Emacs is billed as "The extensible self-documenting text
editor".

C Sc 352, Spring 2005 Emacs Slide 3
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Why use Emacs?

What's good about Emacs?

• Widely available on UNIX and Windows
• Free
• Multiple files; multiple "windows" per file
• Fully customizable
• Programmable (via Lisp)
• Lots of existing "packages"

What's bad about Emacs?

• Not a state-of-the-art IDE
• Complex
• Control-ALT-Shift-Cokebottle
• Packages are of varying quality
• Undisciplined accretion of commands

C Sc 352, Spring 2005 Emacs Slide 4
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Running Emacs

To start Emacs on lectura, use 'emacs filename'. When Emacs starts,
it fills the window of the ssh client:

The contents of the file are loaded into a buffer, which is displayed in
an Emacs window.

A "mode line" associated with the buffer appears below it. We can see
that the buffer holds Hello.java, we're in Java mode, the cursor is on
line 1, and all of the file is visible.

Below the mode line is the minibuffer. It displays status messages at
various times. It is also used for some interactions with Emacs.

The "menu bar" at the top of the window is awkward to use in non-
windowed mode.

A no-frills tutorial can be started by typing C-h t. (Ctrl+h, then t.)

To terminate Emacs, type C-x C-c (^X^C).

C Sc 352, Spring 2005 Emacs Slide 5
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Basics of interaction with Emacs

As a rule, characters that are typed are inserted into the current buffer
at the cursor position.

Operations such as moving around in a line, deleting text, and scrolling
the text in view are usually invoked using a sequence of keystrokes
beginning with the control or Alt keys, or a function key.

Here are examples of the notation for key sequences:

C-x indicates Ctrl+x (^X)

M-x indicates Alt+x or ESC, then x

C-x b indicates Ctrl+x, then b

M-a C-b c D indicates Alt+a (or ESC, then a), then Ctrl+b, then
c, then Shift+D

A little about M-x:

The "M" in "M-x" stands for "Meta". Some keyboards once used
at MIT and elsewhere had additional shift keys. Meta was one of
them.

The ALT key on PC keyboards can be used as a Meta-like shift
key (in Emacs).

An alternative to using ALT+x is to type ESC and then type
x—two separate keystrokes.

C Sc 352, Spring 2005 Emacs Slide 6
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Sidebar: SSH Secure Shell and Emacs

PuTTY doesn't require any special measures to work well with Emacs
but there are two things to note when using SSH Secure Shell:

(1) Some versions of SSH S.S. require that a setting be adjusted
to cause the Alt key to function as a Meta key.

To have Alt work as Meta key, chose Edit | Settings ...
Keyboard and activate "Use Alt as meta key" (in SSH
Secure Shell, not Emacs).

(2) By default, SSH S.S. transmits a C-h when the backspace
key is pressed. By default, C-h starts the Emacs help
system, instead of erasing the last character.

If you wish to use backspace to erase characters, choose
Edit|Settings...Keyboard and activate "Backspace sends
Delete". (Alternative: Use the Del key to erase characters.)

The instructor strongly recommends both settings.

C Sc 352, Spring 2005 Emacs Slide 7
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Basics of interaction, continued

Keystroke sequences are bound to commands. Examples:

• C-b is bound is to the command backward-char

• C-x C-b is bound to list-buffers

• C-x b is bound to switch-to-buffer

• ESC C-v is bound to scroll-other-window

• C-h b is bound to describe-bindings

• C-h k is bound to describe-key

• a is bound to self-insert-command

• RET is bound to the command newline

The full set of keystroke sequences forms a tree. The tree is walked as
keys are typed. When a terminal node of the tree is reached, the
command associated with that node is executed.

If the user pauses when typing, Emacs shows the key sequence in
progress.

C-g interrupts a key sequence in progress.

Key bindings can be changed but this material covers the standard set
of bindings.

Some of the standard bindings make more sense than others.

C Sc 352, Spring 2005 Emacs Slide 8
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Basic navigation and editing

The current position in the buffer is known as "the point". The point is
actually between characters but the cursor is shown on the character
following the point.

Typing ordinary characters such as a, 9, and $ inserts them at the
point.

Operations such as character-by-character and "word"-by-word
movement and deletion are indicated with C- and M- keys:

Move
Forward

Move
Backward

Delete
Forward

Delete
Backward

Character C-f C-b C-d DEL

"Word" M-f M-b M-d M-DEL

A data structure known as a "syntax table" specifies what constitutes a
"word".

In some cases, PC keyboard keys behave as in typical Windows
applications. For example, the left arrow and right arrow keys move
back and forth between characters.

Note that the PC keyboard backspace key is considered by Emacs to be
the DEL key.

C Sc 352, Spring 2005 Emacs Slide 9
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Basic navigation and editing, continued

Here are some very common operations and bindings:

• C-n moves down one line, C-p moves up a line.

• C-a positions the point at the start of the current line, C-e at
the end.

• M-< positions the point at the beginning of the buffer, M-> at
the end. Remember: ESC < is equivalent to M-<.

• M-v moves the point up by a screen, C-v moves down by a
screen.

• C-g is the Emacs "interrupt" key. Use it to abandon a key
sequence in progress.

• C-x C-s saves the contents of the current "buffer".

The undo command, bound to C-_ (underscore), undoes changes to
buffer contents. Any number of changes may be undone. Undos may
be undone.

Interrupting a series of undos with C-g (or any operation except undo)
and then proceeding with more undos will cause the undos to be
undone.

C Sc 352, Spring 2005 Emacs Slide 10
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Killing and yanking

C-k is bound to the command kill-line. It "kills" the text between the
point and the newline character at the end of the current line.

When text is killed, it is put in the "kill ring".

The most recent kill can be "yanked" with C-y. The killed text is
inserted at the point. The most recent kill can be yanked any number
of times.

Consecutive kills accumulate in a single kill ring entry.

Example:

The sequence C-a C-k C-k C-k C-k C-y C-y C-y deletes two lines
and then inserts three copies of those two lines.

M-d and M-DEL are also kills (kill-word and backward-kill-word) and
create (or append to) kill ring entries.

The yank-pop command, bound to M-y, replaces a just-yanked portion
of text with the previous kill. (Try this: Do three non-consecutive
kills, then cycle between them with M-y three times.)

C Sc 352, Spring 2005 Emacs Slide 11
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The mark and the region

One type of object in the Emacs Lisp system is a marker. A marker
specifies a position in a buffer but a marker is more than just an
integer. Markers are "sticky"—surrounding text can change but a
marker stays between the characters where it was originally placed.

Each buffer has a distinguished marker called "the mark" that is used
by various user-level commands.

set-mark-command, bound to C-@ (and C-space), sets the mark.

The text between the point and the mark is known as "the region".

A number of commands operate on the region. Examples:

• kill-region (C-w) kills the region (and puts it in the kill-ring).

• write-region (not bound) writes the region to a file.

• upcase-region (C-x C-u) converts characters in the region to
upper case.

• copy-region-as-kill (not bound) copies the region in the
kill-ring, but doesn't kill it.

• tibetan-compose-region (not bound) makes composite chars
from Tibetan character components in the region

C Sc 352, Spring 2005 Emacs Slide 12
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

The mark and the region, continued

C-x C-x swaps the point and the mark. It might be used to
double-check that the region selected is as desired, and/or make
adjustments in the other end.

Unfortunately, when running in terminal mode there is no visible
indication of the extent of the region.

Some commands, such as beginning-of-buffer (M-<) set the mark as a
side-effect. If so, "Mark Set" is displayed in the minibuffer.

narrow-to-region (C-x n n) hides the text outside the region. widen
(C-x n w) removes the restriction. One application of narrowing is to
restrict searches to a single routine.

C Sc 352, Spring 2005 Emacs Slide 13
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

universal-argument

The universal-argument command is bound to C-u. It is used to pass
a numeric argument to a command.

Two examples:

• C-u 2 0 C-n moves the cursor down twenty lines.

• M-< C-u 4 9 C-f positions the cursor on the 50th character in
the buffer.

If no numeric keys follow C-u, an argument of 4 is passed. Successive
C-u keys produces powers of 4. Examples:

• C-u C-p moves the cursor up four lines.

• C-u C-u C-d deletes the next sixteen characters.

• C-u C-u C-u C-u C-u C-u x inserts 4096 "x"s

An argument of N does not necessarily cause N repetitions of a
command.

Example: C-u C-k kills four lines, but C-k C-k C-k C-k kills two!

Speculate: What would C-u C-y do? (Recall that C-y is yank.)

An argument can be negative: C-u - 1 5 C-f moves the point fifteen
characters to the left.

A numeric argument is sometimes called a prefix argument.

C Sc 352, Spring 2005 Emacs Slide 14
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Searching and replacing

Emacs provides incremental searching—as characters are typed the
accumulated string is used as the subject of the search.

An incremental search is initiated with C-s. With each subsequent
keystroke the cursor advances to the first occurrence of
the accumulated string, starting at the point.

While a search is active, i.e. while the "I-search:" prompt is displayed
in the minibuffer, the user has several choices in addition to extending
the current search string with additional characters. Here are some of
the possibilities:

• DEL removes the last-typed character from the current string
and reverts the point to its position before that character was
typed.

• C-s searches for the next occurrence of the current string; C-r
searches for the previous occurrence.

• RET terminates the search and leaves the cursor (the point) at
its present position.

• C-g terminates the search and reverts the point to its position
before the search started.

A keystroke that doesn't have meaning in incremental search mode
terminates the search just as RET does.

The sequence C-s C-s starts an incremental search using the last
search string as the current string.

C Sc 352, Spring 2005 Emacs Slide 15
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Searching and replacing, continued

query-replace (M-%) first prompts for a search string and a
replacement, and then, on each match, prompts for an action.

Non-incremental searching can be done with search-forward and
search-backward but they provide no easy way to repeat the search.

Searches using "regular expressions" are supported with
re-search-forward, re-search-backward, isearch-backward-regexp,
and isearch-forward-regexp.

C Sc 352, Spring 2005 Emacs Slide 16
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

"Windows"

The Emacs screen can be split into two or more tiled "windows".
Each window has a text area and a mode line.

split-window-vertically (C-x 2) divides the current window into two
vertically tiled windows. A window resulting from a split can be split
again, subject to minimum size constraints.

When a window is split, the current buffer is displayed in both
windows. Each window has its own point.

other-window (C-x o) cycles the cursor through each window in turn.

delete-window (C-x 0) (zero) deletes the current window (the window
that contains the cursor).

delete-other-windows (C-x 1) deletes all windows except the current
window.

split-window-horizontally (C-x 3) divides the current window into two
horizontally-tiled windows.

A few commands, such as scroll-other-window (M-C-v) and
scroll-other-window-down (M-C-V) (ouch!) operate on the "next"
window.

C Sc 352, Spring 2005 Emacs Slide 17
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Opening files with find-file

To open files in an already-running Emacs, use find-file (C-x C-f).

Typing C-x C-f produces a "Find file:" prompt (in the minibuffer).
Responding with a question mark shows alternatives; TAB can be used
to complete file names.

If the file exists, it is loaded and displayed. If it does not exist, it will
be created upon the first save.

Opening a file is sometimes called "visiting" a file.

It is common to start Emacs without naming a file and then use find-
file as needed to open files of interest.

If you mistype a file name you can use find-alternate-file to open
another file and as a side effect, close the previously opened file.

IMPORTANT note on find-file: if a directory is named then the
"directory editor" dired, is started. A q safely terminates dired.

C Sc 352, Spring 2005 Emacs Slide 18
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Buffers

Buffers hold text that is being edited.

When a file is opened with find-file, Emacs creates a buffer, loads the
contents of the file into the buffer, and then creates a window that
displays the buffer contents.

Zero or more windows are associated with each buffer. A window
never exists without a buffer. A buffer typically has a file associated
with it, but is that not required.

If Emacs is started with no files, the buffer *scratch* is displayed. No
file is associated with *scratch*.

list-buffers (C-x C-b) creates a buffer named *Buffer List* that displays
a variety of information about existing buffers.

switch-to-buffer (C-x b) prompts for buffer name to switch to. As
with find-file, ? displays alternatives and TAB completes names. If the
buffer specified does not exist, it is created.

kill-buffer (C-x k) queries for a buffer and destroys it.

revert-buffer reloads the buffer with the current on-disk contents
of the file.

C Sc 352, Spring 2005 Emacs Slide 19
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Help (!)

Emacs has extensive built-in documentation.

Typing C-h C-h creates a buffer named *Help* that displays a number
of help options. Here are some of them:

b Runs describe-bindings. It displays the current set of key
bindings.

k Runs describe-key. It prompts for a key sequence and shows
which command, if any, the key sequence is bound to.

f Runs describe-function. It prompts for a command (or
function) name and displays a description of the function.

a Runs command-apropos. It prompts for a string and displays
a list of commands that contain the string.

Example: To see all buffer-related commands, enter "buffer"
at the "Apropos command (regexp):" prompt.

w Runs where-is. It prompts for the name of a command and
tells what key sequence the command is bound to, if any.

i Starts the "Info" documentation reader.

C Sc 352, Spring 2005 Emacs Slide 20
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Help, continued

In most cases the result of a help command is a buffer named *Help*,
which can be treated like any other buffer. (C-x o to switch to the
window, C-x 0 (zero) to close it, M-C-v to scroll it down, M-C-V to
scroll it up.)

A help option can be accessed directly by following C-h with the
appropriate letter. For example, C-h k runs describe-key.

In the *Help* buffer, further help can be often be obtained by
positioning the cursor on an element such as a command name and
pressing RET.

C Sc 352, Spring 2005 Emacs Slide 21
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Info

Emacs contains a text-based documentation reader/browser called
"Info".

Info has documentation on Emacs itself, Emacs packages, and various
GNU utilities.

Additionally, any user can create documentation that is browsable by
Info.

Info is started with C-h i. Keystrokes are used to navigate through the
material, which is tree-structured.

Simple navigation can be performed using the arrow keys.

Example:
On the initial Info screen, moving down to the line "* Emacs:
(emacs)" and then RET goes to the Emacs "node" of the Info
tree.

Alternatively, a node by reached by typing m, which produces a
prompt for the name of a menu item. Item names can be queried and
completed.

Movement in the tree can also be accomplished via u (up), n (next), p
(previous) and more. A question mark displays the commands.

Info can be exited with q.

C Sc 352, Spring 2005 Emacs Slide 22
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Execution of commands by name

Any command can be executed using execute-extended-command
(M-x). It is commonly used to execute commands that are not bound
to a key sequence.

Example:

command-apropos is bound to C-h a but it searches only
commands. The more general command is apropos, which
searches commands, functions, variables, and more.

To run apropos, use M-x. Type "apropos", then RET. apropos then
prompts for a string to search for.

C Sc 352, Spring 2005 Emacs Slide 23
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Execution of commands by name, continued

The key sequence C-x ESC ESC is bound to repeat-complex-
command. It starts by displaying in the minibuffer the last "complex"
command. The command is shown in the form of a Lisp expression.

The syntax of Lisp is among the simplest of all languages.

Rule 1: Just about everything in a body of Lisp code is a function
call.

Rule 2: Function calls have this form:

(function expr1 expr2 ... exprN)

For example, following C-h f find-file RET, the key sequence
C-x ESC ESC displays this:

Redo: (describe-function (quote find-file))

RET causes the describe-function call to be repeated.

M-p and M-n cycle through the commands.

C Sc 352, Spring 2005 Emacs Slide 24
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Keyboard macros

It is sometimes useful to perform a series of editing operations several
times.

An arbitrary series of keystrokes can be captured in a keyboard macro
and repeatedly executed.

C-x (executes start-kbd-macro, which starts recording keystrokes.

C-x) is bound to stop-kbd-macro, which stops keystroke recording.

The recorded sequence can be played with C-x e
(call-last-kbd-macro).

Example: Consider the steps to change lines from this:

/home/whm/x.java
/x/y.z
/a/bb/ccc/dddd/eeee

to this:

x.java /home/whm
y.z /x
eeee /a/bb/ccc/dddd

The current keyboard macro can be assigned a name with
name-last-kbd-macro. The macro can then be invoked with M-x
using the assigned name.

C-u C-x (appends to a keyboard macro.

C Sc 352, Spring 2005 Emacs Slide 25
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Sidebar: Start Emacs many times, or just once?

One way to use Emacs is to start up Emacs on a file, edit the file, save
your changes, and exit Emacs. (Repeat as needed.)

A more common way to use Emacs is to start it in the morning, edit
files all day, save buffers when necessary, and close it in the evening.

A simple way to do that is to have two ssh sessions. bash is run in
one session; Emacs is run in the other. Alt+TAB or the mouse is used
to switch between windows.

C Sc 352, Spring 2005 Emacs Slide 26
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Sidebar, continued

bash's job control facility provides another way to shift between
Emacs and the shell.

The key C-z is bound to suspend-emacs, which causes Emacs to
immediately suspend execution and return control to the shell.

When you type C-z, the text displayed by Emacs will scroll up, a
"Stopped" message will be printed, and the shell prompt appear:

[1]+ Stopped emacs Hello.java
$

The message "Stopped" is misleading: Emacs did not terminate; it is
simply paused until the user resumes it.

The user might then perform some number of shell commands. When
the user is ready to continue editing, the fg (foreground) command is
used:

$ fg 1 (Alternatives: %1, %emacs, and others)
[Emacs regains control of the terminal window]

The argument, 1, is the job number, which was displayed in the
"Stopped" message.

The jobs command shows what processes are suspended, if any:

$ jobs
[1]+ Stopped emacs Hello.java

C Sc 352, Spring 2005 Emacs Slide 27
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Sidebar, continued

A common error among novices is to accumulate several suspended
Emacs jobs, each editing the same file:

$ jobs
[1] Stopped emacs fold.java
[2]- Stopped emacs fold.java
[3]+ Stopped emacs fold.java
$

The common cause is that the user suspends Emacs and then, instead
of resuming the suspended job, the user starts another Emacs job.

The hazard of this situation is that if an older job is resumed, a save
might overwrite a newer copy of the file with older buffer contents.
(Later creating a feeling that you're fixing a bug for the second time!)

This situation often leads to messages such as these:

fold.java has changed since visited or saved. Save anyway?

fold.java locked by whm@lectura (pid 15883): (s, q, p, ?)?

If you see messages like these (and others), STOP! Use the jobs
command to see what you've got running. Resume each suspended
Emacs in turn and exit it. If you encounter one that has a modified
(i.e., not saved) buffer, you can use write-file to save the buffer to an
alternate file, for later examination to determine which version to keep.

Executive Summary: Don't run multiple Emacs jobs until you know
what you're doing. Keep in mind that "Stopped" means "suspended".

C Sc 352, Spring 2005 Emacs Slide 28
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Customization

When Emacs starts up, it looks for ~/.emacs. If found, it is assumed
to contain Emacs Lisp code, which is then executed.

The behavior of Emacs can be changed and/or extended via code in
~/.emacs and additional Lisp files that .emacs causes to be loaded.

Emacs can be customized in a variety of ways. A simple
customization is addition or alteration of key bindings.

The function global-set-key is used to bind a key sequence to a
command.

Here is a call that binds C-t to the command other-window (normally
on C-x o).

(global-set-key "\C-t" 'other-window) ; 'other-window is an
; "atom"

eval-expression (M-:) is one way to immediately execute a Lisp
expression. Type M-: and then (global-set-key "\C-t" 'other-window)

at the "Eval:" prompt.

Executing the above expression binds C-t to other-window. The
default binding of C-t (transpose-chars) is lost, but C-x o is still
bound to other-window.

C Sc 352, Spring 2005 Emacs Slide 29
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Customization, continued

Let's make the above binding, and three more, "permanent" by adding
calls to ~/.emacs:

$ cat ~/.emacs
(global-set-key "\C-t" 'other-window)
(global-set-key "\M-a" 'beginning-of-buffer)
(global-set-key "\M-z" 'end-of-buffer)
(global-set-key [f2] 'find-file) ; binds F2 function key...

The next time Emacs is started, the bindings will be in effect.

Alternatively, load-file immediately executes an Emacs Lisp file.

The -q option of Emacs suppresses loading of ~/.emacs.

An obvious issue when changing bindings is that of losing the bindings
that are displaced.

Important: Don't forget the backslash before a "C" or "M" in a binding.

C Sc 352, Spring 2005 Emacs Slide 30
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Variables

The behavior of Emacs in many cases is controlled by the value of
variables. The value of a variable can be changed with setq.

Examples:

(setq default-tab-width 4)
(setq stack-trace-on-error t)
(setq scroll-step 1)
(setq require-final-newline t)

Some variables, such as stack-trace-on-error, are essentially booleans.
The value nil is considered to indicate "false". All other values are
considered to indicate "true", but as a matter of style, t is used to
indicate "true".

apropos-variable can be used to search variable names for a string,
such as "tab".

describe-variable displays the documentation of a variable and also
displays the current value of the variable.

Note: The function setq is not a command; it can't be executed via
M-x. Use the set-variable command instead. (Or M-: (setq ...))

C Sc 352, Spring 2005 Emacs Slide 31
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Functions

An Emacs Lisp function can be defined using defun.

Here is a function named 352-files that simply opens several files:

(defun 352-files ()
 (interactive)
 (find-file "~/352/problems.notes")
 (find-file "~/352/outline.notes")
 (find-file "~/352/emacs.notes")
 (find-file "~/352/notes")
)

The call to interactive flags the function as a command, making it
executable via M-x.

C Sc 352, Spring 2005 Emacs Slide 32
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Functions, continued

Problem:

The save-buffer command (C-x C-s) saves only the current
buffer. It might be nice to have a way to save all modified
buffers in a single operation.

Solution:

(defun save-all-buffers ()
 (interactive)
 (save-some-buffers t))

(global-set-key "\C-x\C-s" 'save-all-buffers)

save-all-buffers simply calls save-some-buffers with an argument
indicating that all modified buffers are to be saved. It is then bound to
C-x C-s, replacing save-buffer.

C Sc 352, Spring 2005 Emacs Slide 33
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Functions, continued

Problem:

In some cases you might want to move the cursor to the start of a
line but in others you might want the cursor positioned on the first
non-blank character in the line.

One solution is to have two bindings. Here is another solution:

(defun first-non-whitespace ()
 (interactive)
 (beginning-of-line)
 (if (not (string= last-command 'first-non-whitespace))
 (skip-chars-forward " \t"))) ; blank and tab

(global-set-key "\C-a" 'first-non-whitespace)

The function is bound to C-a. If a single C-a is typed, the cursor is
moved to the first non-whitespace character on the line. A successive
C-a moves the cursor to the beginning of the line.

C Sc 352, Spring 2005 Emacs Slide 34
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Bindings to lambda functions

Recall this example:

(defun save-all-buffers ()
 (interactive)
 (save-some-buffers t))

(global-set-key "\C-x\C-s" 'save-all-buffers)

Note that it is not sufficient to simply bind save-some-buffers to
C-x C-s — an argument (t) must be passed. save-all-buffers simply
"wraps" the call to (save-some-buffers t).

If a function is used in only one place, a lambda function is a more
concise alternative. Example:

(global-set-key "\C-x\C-s"
'(lambda () (interactive) (save-some-buffers t)))

Another example:

(global-set-key "\C-t"
 '(lambda () (interactive) (beginning-of-line) (kill-line) (kill-line)))

Lambda functions are sometimes called anonymous functions because
they have no name.

C Sc 352, Spring 2005 Emacs Slide 35
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Modes

Emacs has editing modes—collections of customizations designed to
facilitate editing various types of textual content.

There are major modes and minor modes.

A minor mode typically produces a slight variation in behavior.

Two examples of minor modes:

Overwrite mode causes characters to replace existing characters.
The command overwrite-mode (INS) toggles overwrite mode.

Abbreviation mode (abbrev-mode) allows the user to define
abbreviations that are expanded on-the-fly.

Major modes typically produce large variations in behavior. Emacs
chooses among major modes based on the extension of the file being
edited. Examples:

Extension(s) Mode
java java-mode
el emacs-lisp-mode
c, h, y c-mode
xml, dtd sgml-mode

The current major mode (and minor mode(s), if any) are shown in the
mode line.

describe-mode prints a description of the mode and shows
mode-specific bindings.

C Sc 352, Spring 2005 Emacs Slide 36
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Modes, continued

The variable auto-mode-alist, an association list, specifies the major
mode associated with each extension. It is best viewed via M-x ielm.

Here is some abridged output:

*** Welcome to IELM *** Type (describe-mode) for help.
ELISP> auto-mode-alist
(("\\.c\\'" . c-mode)
 ("\\.el\\'" . emacs-lisp-mode)
 ("\\.ad[abs]\\'" . ada-mode)
 ("\\.[12345678]\\'" . nroff-mode)
 ("\\.ms\\'" . nroff-mode)
("\\(/\\|\\`\\)\\.\\(bash_profile\\|z?login\\|bash_login\\|z?logout\\)\\'"
. sh-mode)
...

C Sc 352, Spring 2005 Emacs Slide 37
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Modes, continued

Major modes for languages typically provide assistance with
indentation, matching of paired tokens, comments, and navigation
based on syntactic elements.

Some examples from C mode:

• As lines are typed, indentation is applied based on the current
style and surrounding text. The TAB key does not simply
insert a tab character. Instead it sets the indentation of the line.

• Parentheses and braces are matched as typed.

• M-a and M-e move the beginning or end of a statement,
respectively.

• ESC C-h (c-mark-region) sets the region so that it surrounds
the current function.

• indent-region sets the indentation on every line in the region.

• comment-region () comments out each line in the region using
/* and */.

• C-c C-a toggles automatic insertion of newlines after certain
syntactic elements.

C Sc 352, Spring 2005 Emacs Slide 38
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Modes, continued

Modes typically involve ad-hoc syntactic analysis, which is
notoriously prone to bugs.

Some modes are better than others. Example:

Java mode is essentially a hacked-up C mode. c-mark-region,
which marks a function in C, marks a Java class definition, not a
method.

If a mode turns out to be a headache, one option is to switch to
Fundamental mode with the fundamental-mode command.
Fundamental mode is minimally "helpful".

All major modes can be disabled with this: (setq auto-mode-alist nil)

C Sc 352, Spring 2005 Emacs Slide 39
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Running programs within Emacs

Emacs has excellent support for running programs and processing the
output.

M-! (shell-command) prompts for a shell command line. The
command is executed and the output is placed in the buffer *Shell
Command Output*. (If the output is a single line it is displayed in the
minibuffer, too.)

If argument is specified (C-u M-!), the output is placed in the current
buffer.

M-| (shell-command-on-region) runs a (prompted for) command and
supplies the contents of the region as standard input.

If an argument is specified for shell-command-on-region, the output
of the command replaces the region.

Try this: Mark a region and then C-u M-| cat -n

The shell command runs an interactive shell in a buffer named *shell*.

Several bindings are established in shell-mode. For example, M-p
steps through previous commands.

C Sc 352, Spring 2005 Emacs Slide 40
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Backup files and auto save

Emacs creates a backup of an existing file the first time the file is
saved in an Emacs session.

By default, the name of the backup file is formed by appending a tilde
to the file name.

Example:

The backup file for x.java would be x.java~, in the same directory
as x.java.

The name of the backup file is generated by the function
find-backup-file-name. A different naming scheme can be produced
by replacing the function.

Here is a replacement that generates the name .ZBK.x.java.ZBK for
x.java:

(defun find-backup-file-name (s)
 "Return a list containing the name of the backup name for s"
 (list (concat (file-name-directory s)

 ".ZBK."
 (file-name-nondirectory s)
 ".ZBK")))

C Sc 352, Spring 2005 Emacs Slide 41
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Backup files and auto save, continued

A second form of protection is provided by auto-save. Auto saves are
performed automatically based on keyboard activity (or inactivity).
Additionally, an auto save is performed if Emacs is killed.

An auto save does not save into the original file. Instead, for a file
named x, the auto save file is #x#.

An auto-save file is deleted whenever the file is saved.

Details of backup and auto-save operations are controlled by a variety
of variables. (Use M-x apropos...)

C Sc 352, Spring 2005 Emacs Slide 42
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Disabled commands

Some Emacs commands are initially disabled for a user.

One example is narrow-to-region (C-x n n)—a novice user might
accidentally invoke it and seemingly lose much of a buffer.

If a disabled command is invoked, several choices are presented,
including enabling it permanently. If that option is chosen then
Emacs appends a line like this,

(put 'narrow-to-region 'disabled nil)

to ~/.emacs.

C Sc 352, Spring 2005 Emacs Slide 43
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Emacs and "real" windows

Emacs can be used very effectively in the terminal emulation
environment of ssh clients but it also has excellent support for the X
window system and Microsoft Windows.

If Emacs detects it is being run in a windowed environment it will
open a window instead of running in the same window as the shell.
(The -nw option suppresses this behavior.)

Emacs presents a "frame" with a menu and other GUI elements, but
the frame contains an Emacs text window that operates the same
as when in terminal mode.

Additional frames can be opened with Files | Make New Frame, or
C-x 5 2, or with make-frame-command.

Various mouse and/or mouse and keyboard actions are bound to
commands. Two examples:

Sweeping over text with a mouse drag is the action
drag-mouse-1 and is bound to mouse-set-region.

C-down-mouse-1, a primary button click with the control pressed
is bound to mouse-buffer-menu, which displays a menu of
buffers.

C Sc 352, Spring 2005 Emacs Slide 44
Copyright 2004-2005 by W. H. Mitchell (whm@mse.com)

Appendix: A simple ~/.emacs

(global-set-key "\C-t" 'other-window)
(global-set-key [f2] 'find-file) ; binds F2 function key...

(defun save-all-buffers ()
 (interactive)
 (save-some-buffers t))
(global-set-key "\C-x\C-s" 'save-all-buffers)

(defun first-non-whitespace ()
 (interactive)
 (beginning-of-line)
 (if (not (string= last-command 'first-non-whitespace))
 (skip-chars-forward " \t")))
(global-set-key "\C-a" 'first-non-whitespace)

(defun find-backup-file-name (s)
 "Return a list containing the name of the backup name for s"
 (interactive)
 (list (concat (file-name-directory s)

 ".ZBK."
 (file-name-nondirectory s)
 ".ZBK")))

(setq stack-trace-on-error t)
(setq require-final-newline t)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44

