
CSc 372, Fall 2001 Emacs Lisp, Slide 1
 © 2001 whm@mse.com

Emacs Lisp—Introduction

GNU Emacs is a full-featured text editor that contains a
complete Lisp system that allows the user to write programs
that control the editor.

Dozens of applications have been written in Emacs
Lisp—they run inside the editor.

Examples:

Gnus News reader

Dired Directory editor

Ediff Visual interface to diff and patch

Calendar Calendar application that provides things like
days between dates and sunrise/sunset
information.

Additionally, GNU Emacs has modes that support editing
source files for a variety of languages.

1 Don't quote me!

CSc 372, Fall 2001 Emacs Lisp, Slide 2
 © 2001 whm@mse.com

A little history1

Lisp:
John McCarthy is the father of Lisp.

The name Lisp comes from LISt Processing Language.

Initial ideas for Lisp were formulated in 1956-1958 and
some were implemented in FLPL (FORTRAN-based
List Processing Language).

The first Lisp implementation, for application to AI
problems, was in 1958-1962 at MIT.

Emacs

The first Emacs was a set of macros written in 1976 by
Richard Stallman on MIT's ITS (Incompatible
Timesharing System) for the TECO editor. (Emacs was
an acronym for Editor MACroS.)

Next, a full editor, also called Emacs, was written by
Stallman in Lisp for DECSystem-10/20.

Next, James Gosling, then at CMU, developed a UNIX
version in C with "Mock Lisp" as the embedded
language.

Stallman wrote GNU Emacs as the first step in the
GNU project.

CSc 372, Fall 2001 Emacs Lisp, Slide 3
 © 2001 whm@mse.com

Running Emacs Lisp

On lectura, Emacs can be started by typing emacs.

This material is based on GNU Emacs 20.6.1. Use ESC-x
emacs-version to check the version number.

A convenient way to use Emacs Lisp interactively is with
ESC-x ielm:

*** Welcome to IELM *** Type (describe-mode)
for help.
ELISP>

CSc 372, Fall 2001 Emacs Lisp, Slide 4
 © 2001 whm@mse.com

Lisp expressions

The syntax of Lisp is among the simplest of all
programming languages. Function calls have this form:

(function expr1 expr2 ... exprN)

Examples:

ELISP> (+ 3 4)
7

ELISP> (- 9 3)
6

ELISP> (length "abcd")
4

ELISP> (concat "just" "testing")
"justtesting"

ELISP> (capitalize "this string")
"This String"

ELISP> (getenv "HOSTNAME")
"lectura.CS.Arizona.EDU"

ELISP> (dot)
210

ELISP> (dot)
227

Just about everything in a Lisp program is a function call.

CSc 372, Fall 2001 Emacs Lisp, Slide 5
 © 2001 whm@mse.com

Lisp expressions, continued

Emacs has extensive built-in documentation. For example,
to see the documentation for a function, use ESC-x
describe-function.

Examples:

getenv

getenv is a built-in function.

Return the value of environment variable VAR, as
a string.

VAR should be a string. Value is nil if VAR is
undefined in the environment.

This function consults the variable
''process-environment'' for its value.

capitalize

capitalize is a built-in function.

Convert argument to capitalized form and return
that. This means that each word's first
character is upper case and the rest is lower
case.

The argument may be a character or string. The
result has the same type.

The argument object is not altered--the value is
a copy.

CSc 372, Fall 2001 Emacs Lisp, Slide 6
 © 2001 whm@mse.com

Lisp expressions, continued

When it makes sense for a function to have an arbitrary
number of operands, Lisp typically permits it:

ELISP> (+ 1 2 3)
6

ELISP> (- 10 1 2 3 4 5 6 7 8 9 10)
-45

ELISP> (concat "a" "bc" "def" "ghij")
"abcdefghij"

Complex expressions are built up by nesting:

ELISP> (* (+ 3 4) (- 5 3))
14

ELISP> (substring (concat "abc" "def") 1 3)
"bc"

CSc 372, Fall 2001 Emacs Lisp, Slide 7
 © 2001 whm@mse.com

Comparisons

Comparison operations yield t if successful and nil if not:

ELISP> (< 1 2)
t

ELISP> (< 1 0)
nil

ELISP> (= (+ 3 4) (- 10 2 1))
t

ELISP> (string< "abc" "def")
t

ELISP> (string= "abc" "def")
nil

ELISP> (string> "abc" "def")
*** Eval error *** Symbol's function definition
is void: string>

The not function inverts t and nil:

ELISP> (not t)
nil

ELISP> (not nil)
t

ELISP> (not (string< "x" "y"))
nil

not considers everything except nil to be t:

ELISP> (not 0)
nil

CSc 372, Fall 2001 Emacs Lisp, Slide 8
 © 2001 whm@mse.com

Variables

Lisp variable names can include many special characters but
by convention, variable names are typically limited to
alphanumeric characters, underscore, and hypen.

The setq function is used to assign a value to a variable:

ELISP> (setq x 1)
1

ELISP> (setq y 2)
2

ELISP> x
1

ELISP> y
2

ELISP> (+ x y)
3

ELISP> (setq login-name "whm")
"whm"

Note that setq returns the value assigned.

It is an error to request the value of an unset variable:

ELISP> z
*** Eval error *** Symbol's value as variable
is void: z

CSc 372, Fall 2001 Emacs Lisp, Slide 9
 © 2001 whm@mse.com

Lists

The central element in Lisp programming is the list. Here
are some examples of lists:

(1 2 3 4)

(x y z)

(+ 3 4)

(car ford)

'("just" a ('test) (((herre) for) example))

(cdr '(1 2 3))

Lists can represent program code or data; the meaning is
dependent on context.

ielm assumes that lists are to be evaluated:

ELISP> (setq x (1 2 3 4))
*** Eval error *** Invalid function: 1

Quoting a list suppresses evaluation:

ELISP> (setq x '(1 2 3 4))
(1 2 3 4)

ELISP> (setq complex '(1 2 (a b c (A B) d f) 3))
(1 2
 (a b c

 (A B)
 d f)

 3)

2 The names "car" and "cdr" are said to have originated with the inital Lisp
implementation, on an IBM 7090. "CAR" stands for Contents of Address part of Register
and "CDR" stands for Contents of Decrement part of Register.

CSc 372, Fall 2001 Emacs Lisp, Slide 10
 © 2001 whm@mse.com

Lists, continued

Lists are thought of as having a head and tail.

The car function yields the head of a list:

ELISP> (setq x '(1 2 3 4))
(1 2 3 4)

ELISP> (car x)
1

The cdr2 (say "could-er") function produces the tail of a list:

ELISP> (cdr x)
(2 3 4)

ELISP> (cdr (cdr x))
(3 4)

ELISP> (car (cdr (cdr x)))
3

ELISP> (car (cdr '(x y z)))
y

The cons function creates a list from a head and a tail:

ELISP> (cons 1 '(a b c))
(1 a b c)

ELISP> (cons '(a b c) '(1 2 3))
((a b c) 1 2 3)

CSc 372, Fall 2001 Emacs Lisp, Slide 11
 © 2001 whm@mse.com

Lists, continued

In Lisp, the empty list is called nil and can be named with ()
or nil:

ELISP> ()
nil

ELISP> '(() a ())
(nil a nil)

ELISP> (cons 1 nil)
(1)

ELISP> (cons nil nil)
(nil)

ELISP> (cdr '(1))
nil

CSc 372, Fall 2001 Emacs Lisp, Slide 12
 © 2001 whm@mse.com

Lists, continued

The length function returns the number of top-level
elements in a list:

ELISP> (setq x '(4 3 2 1 0))
(4 3 2 1 0)

ELISP> (length x)
5

ELISP> (length '(a b c (1 2 3) d))
5

The nth function returns the Nth element of a list:

ELISP> x
(4 3 2 1 0)

ELISP> (nth (car x) x)
0

The append function concatenates lists:

ELISP> (append x '(a b) x '(1 2 3 4))
(4 3 2 1 0 a b 4 3 2 1 0 1 2 3 4)

The reverse function reverses lists:

ELISP> (reverse '(1 2 3))
(3 2 1)

Lists can be compared with equal:

ELISP> (equal '(1 2 3) (cons 1 '(2 3)))
t

CSc 372, Fall 2001 Emacs Lisp, Slide 13
 © 2001 whm@mse.com

Functions

The special function defun is used define functions. The
general form is this:

(defun name arguments expr1 expr2 ... exprN)

The result of exprN is the return value of the function.

A function to calculate the area of a rectangle:

(defun area (width height)
 (* width height))

Usage:

ELISP> (setq a (area (+ 3 7) 5))
50

defun is called a special function because it doesn't evaluate
all its arguments.

A function can be defined interactively in ielm but the more
common thing to do is to create a file. By convention,
Emacs Lisp source files have the suffix .el. (E-L)

A source file can be loaded with ESC-x load-file, or the
current buffer can be evaluated with
eval-current-buffer.

CSc 372, Fall 2001 Emacs Lisp, Slide 14
 © 2001 whm@mse.com

Functions, continued

Consider a function linelen that computes the distance
between two points represented as two-element lists:

ELISP> (linelen '(0 0) '(1 1))
1.4142135623730951

ELISP> (linelen '(0 0) '(3 4))
5.0

Definition:

(defun linelen (p1 p2)
 (setq x1 (car p1))
 (setq y1 (car (cdr p1)))
 (setq x2 (nth 0 p2)) ; for variety...
 (setq y2 (nth 1 p2))

 (setq xdiff (- x2 x1))
 (setq ydiff (- y2 y1))
 (setq len (sqrt (+
 (* xdiff xdiff)
 (* ydiff ydiff))))
 len
)

Problem: The setqs have modifed variables at the top level:

ELISP> x1
0

ELISP> y2
4

ELISP> xdiff
3

CSc 372, Fall 2001 Emacs Lisp, Slide 15
 © 2001 whm@mse.com

The let function

The special function let allows specification of variables
that exist for a limited time.

The general form is this:

(let (varExpr1 varExpr2 ...) expr1 expr2 ...)

Each varExpr is either a variable or a list containing a
variable and an initializing expression. The value of the let
is the value of exprN.

Example:

(defun f (x y)
 (let ((xsq (* x x)) (y2 (+ y y)) sum)
 (setq sum (+ xsq y2))
 (format "xsq = %d, y2 = %d, sum = %d"
 xsq y2 sum)
)
)

Execution:

ELISP> (setq sum "old sum")
"old sum"

ELISP> (f 1 2)
"xsq = 1, y2 = 4, sum = 5"

ELISP> sum
"old sum"

ELISP> xsq
*** Eval error *** Symbol's value as variable
is void: xsq

CSc 372, Fall 2001 Emacs Lisp, Slide 16
 © 2001 whm@mse.com

The let function, continued

linelen rewritten with let:

(defun linelen (p1 p2)
 (let ((x1 (car p1))
 (y1 (car (cdr p1)))
 (x2 (nth 0 p2))
 (y2 (nth 1 p2))
 xdiff ydiff)

 (setq xdiff (- x2 x1))
 (setq ydiff (- y2 y1))
 (sqrt (+
 (* xdiff xdiff)
 (* ydiff ydiff)))
)
)

Original version:

(defun linelen (p1 p2)
 (setq x1 (car p1))
 (setq y1 (car (cdr p1)))
 (setq x2 (nth 0 p2)) ; for variety...
 (setq y2 (nth 1 p2))

 (setq xdiff (- x2 x1))
 (setq ydiff (- y2 y1))
 (setq len (sqrt (+
 (* xdiff xdiff)
 (* ydiff ydiff))))
 len
)

CSc 372, Fall 2001 Emacs Lisp, Slide 17
 © 2001 whm@mse.com

The while function (revised)

The special function while provides a means to iterate.

The general form is this:

(while test-expr expr1 ... exprN)

test-expr is evaluated and if it yields a non-nil value,
expr1 through exprN are evaluated. It continues until
test-expr yields nil.

A loop to sum the numbers in a list:

(defun sumnums (L)
 (let ((sum 0))
 (while (not (equal L ()))
 (setq sum (+ sum (car L)))
 (setq L (cdr L)))
 sum)
)

Usage:

ELISP> (sumnums '(1 2 3))
6

ELISP> (setq L '(10 20 30))
(10 20 30)

ELISP> (sumnums L)
60

ELISP> L
(10 20 30)

CSc 372, Fall 2001 Emacs Lisp, Slide 18
 © 2001 whm@mse.com

The list function

The list function is used to create a list from one or more
values.

ELISP> (setq x "x")
"x"

ELISP> (setq y 5)
5

ELISP> (setq L (list x y x))
("x" 5 "x")

Contrast with quoting:

ELISP> (setq L2 '(x y x))
(x y x)

In combination:

ELISP> (setq L3 (list (car L) (cdr L2) 7))
("x"
 (y x)
 7)

ELISP> (list L L2 L3)
(("x" 5 "x")
 (x y x)
 ("x"
 (y x)
 7))

CSc 372, Fall 2001 Emacs Lisp, Slide 19
 © 2001 whm@mse.com

The cond function

The special function cond provides for conditional
execution of expressions. The general form is this:

(cond clause1 clause2 ... clauseN)

Each clause is of the form:

(test-expr expr1 expr2 ... exprN)

Each clause is processed in turn, first evaluating test-
expr. If it yields a non-nil value then expr1 through
exprN are executed. The value of the last expression is the
value of the cond.

If the test-expr for a clause produces nil, then the next
clause is evaluated in the same way.

Example:

(defun cond-ex1 (N)
 (cond
 ((= N 0) "N is zero")
 ((> N 100) "N > 100")
 ((= (mod N 2) 0) "N is even")
 (t "None of the above"))
)

ELISP> (cond-ex1 10)
"N is even"
ELISP> (cond-ex1 1000)
"N > 100"
ELISP> (cond-ex1 7)
"None of the above"

CSc 372, Fall 2001 Emacs Lisp, Slide 20
 © 2001 whm@mse.com

The cond function, continued

Imagine a function (divide L N) that produces a two-
element list of the number of integers in L that are smaller
and larger than N, respectively.

ELISP> (divide '(1 2 3 4 5 6) 4)
(3 2)

ELISP> (divide nil 0)
(0 0)

Implementation:

(defun divide(L N)
 (let ((smaller 0) (bigger 0))
 (while L
 (setq elem (car L))
 (setq L (cdr L))
 (cond
 ((< elem N)
 (setq smaller (1+ smaller)))
 ((> elem N)
 (setq bigger (1+ bigger)))
)
)
 (list smaller bigger)
)
)

Problem: Modify divide to produce two lists of numbers.

CSc 372, Fall 2001 Emacs Lisp, Slide 21
 © 2001 whm@mse.com

Simple editor functions

Emacs Lisp has hundreds of functions that interact with
Emacs' editing facilities in some way.

There are several editor-specific Lisp objects: buffer,
window, process, keymap, marker, and more.

A buffer is Lisp object that holds text. Here are examples of
some of the many functions that interact with buffers:

(buffer-name) returns the name of the current buffer:

ELISP> (buffer-name)
"*ielm*"

(buffer-size) returns the number of characters in the
current buffer:

ELISP> (buffer-size)
2882
ELISP> (buffer-size)
2908

(insert expr1 ... exprN) inserts the values of
expr1 through exprN into the current buffer:

ELISP> (insert "just" (+ 17 15) "inserted")
nil
ELISP> just inserted

CSc 372, Fall 2001 Emacs Lisp, Slide 22
 © 2001 whm@mse.com

Simple editor functions, continued

Here is a function that returns the name and size of the
current buffer:

(defun bufinfo ()
 (concat "The buffer is "

(buffer-name) " and has "
(buffer-size) " bytes"))

Usage:

ELISP> (bufinfo)
"The buffer is *ielm* and has 3305 bytes"

bufinfo is satisfactory when called in ielm mode but here
is a version that's suitable as a general purpose Emacs
command:

(defun bufinfo ()
 (interactive)
 (message "The buffer is %s and has %d bytes"
 (buffer-name)
 (buffer-size)))

The call (interactive) flags the function as one that can
be invoked with ESC-x.

The message function creates a string, interpolating
additional arguments, and shows the string in the minibuffer.

CSc 372, Fall 2001 Emacs Lisp, Slide 23
 © 2001 whm@mse.com

Simple editor functions, continued

The buffer-string function produces the current buffer
contents as a string:

*** Welcome to IELM *** Type (describe-mode)
for help.
ELISP> (buffer-string)
"*** Welcome to IELM *** Type (describe-mode)
for help.\nELISP> (buffer-string)\n"
ELISP>

The split-string function splits a string. The simple
mode of operation splits on whitespace:

ELISP> (split-string " just a test ")
("just" "a" "test")

A function to calculate the number of words in the current
buffer:

(defun bufwords()
 (interactive)
 (let
 ((words (split-string (buffer-string))))
 (message "%d words in buffer"
 (length words))))

A function can be bound to a key with global-set-key:

(global-set-key "\eBW" 'bufwords)

Typing ESC B W runs the bufwords function.

CSc 372, Fall 2001 Emacs Lisp, Slide 24
 © 2001 whm@mse.com

Buffer positions

The term point refers to the current position in a buffer. The
function point returns the current value of point—a
position in the buffer.

(point) ranges in value from 1 to (buffer-size)+1.

Point is thought of as being between characters but Emacs
shows the cursor on the character following point. Example:

abcdef

If the cursor is on the "c", (point) returns 3.

The function point-max returns the maximum value of
point in a buffer:

ELISP> (equal (point-max) (1+ (buffer-size)))
t

The function goto-char provides one way to change the
point:

(goto-char 1)

(goto-char (point-max))

(goto-char 50)

It is not an error to call goto-char with an out of bounds
value.

CSc 372, Fall 2001 Emacs Lisp, Slide 25
 © 2001 whm@mse.com

Buffer positions, continued

The functions char-after and char-before return the
ASCII code for the character immediately before, or after a
position.

Here is a function that steps through each character in a
buffer in turn and displays, in the minibuffer, the character's
position, printable representation, and ASCII code:

(defun step()
 (interactive)
 (goto-char 1)
 (while (not (= (point) (point-max)))
 (setq char (char-after (point)))
 (message "Char %d: '%c' (%d)"
 (point) char char)
 (sit-for 0 300) ; sleep for 0s, 300ms
 (goto-char (1+ (point)))))

If run on a buffer containing its own source, here are the
lines that are successively displayed in the minibuffer:

Char 1: '(' (40)
Char 2: 'd' (100)
Char 3: 'e' (101)
...

Two other character-oriented motion commands:

(forward-char count)
(backward-char count)

They move the point forwards or backwards by the count
specified, which can be negative.

CSc 372, Fall 2001 Emacs Lisp, Slide 26
 © 2001 whm@mse.com

Line-based motion

(forward-line N) moves point to the beginning of the
Nth line from the current line. If N is zero, point is moved
to the beginning of the current line. N may be negative; -1 is
the beginning of the previous line.

If N lines do not lie ahead, point is set to (point-max).

(end-of-line) moves point to the end of the current line.

The following function creates a list of the lines in the
current buffer, minus newlines:

(defun buflines ()
 (goto-char 1)
 (let (first line (lines nil))
 (while (not (eobp))
 (setq first (point))
 (forward-line 1)
 (setq line
 (buffer-substring
 first (1- (point))))
 (setq lines
 (append lines (list line)))
)
 lines
)
)

Note that (eobp) returns t if point is at the end of the
buffer.

Problem: There's a minor bug. Find and fix it.

CSc 372, Fall 2001 Emacs Lisp, Slide 27
 © 2001 whm@mse.com

Regions

A marker is a Lisp object that specifies a position in a buffer.
If the text in a buffer is changed, all markers in the buffer are
updated so that they stick with the text they originally
marked.

Each buffer has a distinguished marker called "the mark"
that is used by various user-level commands.

set-mark-command, bound to ^@ (control-shift-@) sets
the mark.

The text between the point and the mark is known as "the
region".

When invoked by the user, commands such as kill-
region and indent-region operate on the text between
the point and the mark.

A function to display the number of characters in the region:

(defun rsize ()
 (message "%d characters in region"
 (abs (- (mark) (point)))))

Problem: Write a function to return a list of the lines in the
current region.

CSc 372, Fall 2001 Emacs Lisp, Slide 28
 © 2001 whm@mse.com

Changing buffer contents

Text can be inserted into a buffer at the point with the
insert function:

(insert expr1 expr2 ... exprN)

Each expression is a string or ASCII character code.

Here is a simple function that inserts the integers from 1
through N into the current buffer, each on a separate line:

(defun insert-n (N)
 (let ((i 1))
 (while (<= i N)
 (insert (int-to-string i) "\n")
 (setq i (1+ i)))))

CSc 372, Fall 2001 Emacs Lisp, Slide 29
 © 2001 whm@mse.com

Changing buffer contents, continued

An ASCII code can be specified by an integer, such as 97
for a, but the notation ?C can be used to specify the code for
character C.

A function that inserts the letters from a to z:

(defun insert-az()
 (let ((char ?a))

 (while (<= char ?z)
 (insert char)

(setq char (1+ char)))))

The ?C notation is known as the read syntax for characters.
Among the possibilities:

?\n ?\t ?\^d ?\\

CSc 372, Fall 2001 Emacs Lisp, Slide 30
 © 2001 whm@mse.com

Changing buffer contents, continued

Imagine a function that "spells out" text in a region:

Before:
just testing this

 M P (Mark and Point)

After:
just T-E-S-T-I-N-G this

Implementation:

(defun spell-out ()
 (cond ((< (mark) (point))
 (exchange-point-and-mark)))

 (upcase-region (point) (mark))

 (while (< (point) (mark))
 (forward-char 1)
 (insert "-"))

 (delete-char -1)
)

Note that upcase-region capitalizes all characters in a
region specified by two positions.

CSc 372, Fall 2001 Emacs Lisp, Slide 31
 © 2001 whm@mse.com

Changing buffer contents, continued

A function to comment out the block of lines in the region:

(defun comment ()
 (cond ((< (mark) (point))
 (exchange-point-and-mark)))
 (let
 ;
 ; Extract the extension of the file
 ; associated with this buffer
 ;
 ((file-ext (car (reverse
 (split-string (buffer-file-name)
 (regexp-quote ".")))))
 cmt-string)
 ;
 ; Set cmt-string based on source file type
 ;
 (setq cmt-string (cond
 ((string= file-ext "el") ";")
 ((string= file-ext "pl") "%")
 ((string= file-ext "icn") "#")
 ((string= file-ext "java") "//")))

 ;
 ; Iterate over lines in region, inserting
 ; cmt-string and a blank at the start
 ; of each line.
 ;
 (forward-line 0)
 (while (< (point) (mark))
 (insert cmt-string " ")
 (forward-line 1))
)
)

Note:
split-string's second argument is a regular
expression. The call (regexp-quote ".")
produces a regular expression that matches a single
period.

CSc 372, Fall 2001 Emacs Lisp, Slide 32
 © 2001 whm@mse.com

Example: plot

Recall our Prolog point plotter:

9
8
7 *
6
5
4
3 * *
2
1
0
 0123456789

Invocation:

ELISP> (plot '((2 3) (5 7) (8 3)))

How can this problem be approached?

CSc 372, Fall 2001 Emacs Lisp, Slide 33
 © 2001 whm@mse.com

plot, continued

Step 1: Create a labeled 10x10 grid filled with blanks:

(load "helpers.el")

(defun plot (pts)
 (interactive)

 (get-empty-buffer "*plot*")

 (switch-to-buffer "*plot*")

 (let ((row ?9))

 (while (>= row ?0)
 (insert row)
 (insert-char ? 10)
 (insert "\n")
 (setq row (1- row)))
)

 (insert " 0123456789")

; ... plot points ...

)

get-empty-buffer comes from helpers.el.

(insert-char char count) inserts count copies of
char. The call above inserts ten blanks.

CSc 372, Fall 2001 Emacs Lisp, Slide 34
 © 2001 whm@mse.com

plot, continued

Step 2: Plot the points:

(defun plot (pts)

 ; ... draw grid ...

 (while pts

 (let ((x (nth 0 (car pts)))
 (y (nth 1 (car pts))))

 (goto-line (- 10 y))

 (forward-char (1+ x))

 (delete-char 1)

 (insert ?*))

 (setq pts (cdr pts)))
)

(goto-line N) sets point to the beginning of the N-th
line of the buffer (1-based).

(delete-char N) deletes N characters following point.
If negative, deletes N characters before point.

CSc 372, Fall 2001 Emacs Lisp, Slide 35
 © 2001 whm@mse.com

More on interactive

In addition to flagging a function as suitable for invocation
as a command the interactive function can used to
query the user for arguments.

Here is a modified version of insert-n that prompts the
user for the number of lines to insert:

(defun insert-n (N)
 (interactive "nHow many? ")
 (let ((i 1))
 (while (<= i N)
 (insert (int-to-string i) "\n")
 (setq i (1+ i)))))

The first argument character, "n", indicates that the user
should be prompted for a number read from the minibuffer.

The rest of the argument, "How many? ", is displayed in
the minibuffer.

ESC-x insert-n
How many? 20

The value typed by the user becomes the value of the
argument N.

The above interaction is equivalent to this:

(insert-n 20)

CSc 372, Fall 2001 Emacs Lisp, Slide 36
 © 2001 whm@mse.com

More on interactive, continued

Any number of arguments may be specified with
interactive. This version of insert-n prompts for
both a count and a string to insert:

(defun insert-n (N str)
 (interactive "nHow many? \nsString? ")
 (let ((i 1))
 (while (<= i N)
 (insert str "\n")
 (setq i (1+ i)))))

The newline (\n) separates the specifiers for the two
arguments.

insert-n may still be called as a regular Lisp function:

(insert-n 3 "abc")

CSc 372, Fall 2001 Emacs Lisp, Slide 37
 © 2001 whm@mse.com

More on interactive, continued

The specifier "r" (region) indicates to supply the values of
point and mark, smallest first, as two numeric arguments:

(defun rsize (begin end)
 (interactive "r")
 (message "%d characters in region"
 (- end begin)))

Note that with "r" there is no prompt.

There are many other type specifiers for interactive.

CSc 372, Fall 2001 Emacs Lisp, Slide 38
 © 2001 whm@mse.com

Common errors

One of the two most common syntax errors in Lisp is too
few parentheses:

(defun bufwords()
 (let
 ((words (split-string (buffer-string)))
 (message "%d words in buffer"
 (length words))))

Error message when loading:

End of file during parsing

The other of the two most common syntax errors in Lisp is
too many parentheses:

(defun bufwords()
 (let
 ((words (split-string (buffer-string))))
 (message "%d words in buffer"
 (length words)))))

Error message when loading:

Invalid read syntax: ")"

Track the errors down by using Emacs' parentheses
matching.

CSc 372, Fall 2001 Emacs Lisp, Slide 39
 © 2001 whm@mse.com

Common errors, continued

Parentheses may be matched overall, but misplaced:

(defun f (x y z)
 (let ((a 10) (b 20)
 (setq x (+ y z a)))))

Run-time error message:

'let' bindings can have only one value form:
setq, x, (+ y z a)

Another example:

(defun bufwords()
 (interactive)
 (let
 ((words (split-string (buffer-string))))
 (message "%d words in buffer")
 (length words)))

Run-time error message:

Not enough arguments for format string

Another:

(defun sumlist (L)
 (let ((sum 0))
 (while L
 (setq sum (+ sum (car L))
 (setq L (cdr L))))
 sum))

Error:
 Wrong type argument: symbolp, (setq L (cdr L))

CSc 372, Fall 2001 Emacs Lisp, Slide 40
 © 2001 whm@mse.com

Common errors, continued

If a run-time error is encountered and the variable
stack-trace-on-error is set to t, a stack trace is
displayed in the buffer *Backtrace*.

The trace for the previous error:

 message("%d words in buffer")
 (let ((words ...))
 (message "%d words in buffer")
 (length words))
 bufwords()
 eval((bufwords))
 eval-expression((bufwords) nil)
 call-interactively(eval-expression)

Two handy defuns:

(defun tn ()
 (interactive)

(setq stack-trace-on-error t))

(defun tf ()
 (interactive)

(setq stack-trace-on-error nil))

Type ESC-x tn to turn tracing on; ESC-x tf to turn it off.

Or, set with ESC-x set-variable or setq:

(setq stack-trace-on-error t)

CSc 372, Fall 2001 Emacs Lisp, Slide 41
 © 2001 whm@mse.com

Debugging

A simple debugging technique is to insert calls to message
followed by calls to read-char:

(defun f (L n s)
 (message "(f %S %d %s)" L n s) (read-char)
 (let (head)
 (setq head (car L))
 (message "head: %S" head) (read-char)
 (setq L (cdr L))
 (message "new L: %S" L) (read-char)
)
)

This causes execution to pause with the message output
displayed. Pressing any key will cause (read-char) to
return and execution to continue.

Potentially voluminous output can be directed to a buffer
with print:

(defun debug-out (s)
 (print s (get-buffer "out")))

(defun f (L n s)
 (debug-out (format "(f %S %d %s)" L n s))
 (let (head)
 (setq head (car L))
 (debug-out (format "head: %S" head))
 (setq L (cdr L))
 (debug-out (format "new L: %S" L))
)
)

CSc 372, Fall 2001 Emacs Lisp, Slide 42
 © 2001 whm@mse.com

Emacs debuggers

Emacs has two built-in debuggers: debug and Edebug. The
simpler of the two is debug.

Some basics about debug:

Setting debug-on-error to true causes the debugger
to be entered when an error is encountered.

A breakpoint can be set on a function the command
debug-on-entry. The breakpoint can be removed
with cancel-debug-on-entry.

A call to (debug) causes the debugger to be entered.

Commands in debug mode:
d Step into function call
c Step over function call
j Run current function to completion
e Evaluate expression
h Show commands

Both debug and Edebug are described in the GNU Emacs
Lisp Reference Manual in the section Debugging Lisp
Programs.

CSc 372, Fall 2001 Emacs Lisp, Slide 43
 © 2001 whm@mse.com

Code as data

Recall an early defun example:

(defun f (x y)
 (let ((xsq (* x x)) (y2 (+ y y)) sum)
 (setq sum (+ xsq y2))
 (format "xsq = %d, y2 = %d, sum = %d"
 xsq y2 sum)
)
)

Once f has been loaded, symbol-function can be used to
get the definition of f:

ELISP> (setq fdef (symbol-function 'f))
(lambda
 (x y)
 (let
 ((xsq
 (* x x))
 (y2
 (+ y y))
 sum)
 (setq sum
 (+ xsq y2))
 (format "xsq = %d, y2 = %d, sum = %d" xsq y2
sum)))

CSc 372, Fall 2001 Emacs Lisp, Slide 44
 © 2001 whm@mse.com

Code as data, continued

Another function:

(defun add (x y)
 (+ x y))

Definition:

ELISP> (symbol-function 'add)
(lambda
 (x y)
 (+ x y))

Once fetched, a function definition can be manipulated like
any other list.

The function rplaca can be used to replace the car of a list:

ELISP> (setq L '(1 2 3))
(1 2 3)

ELISP> (rplaca L 'x)
x

ELISP> L
(x 2 3)

CSc 372, Fall 2001 Emacs Lisp, Slide 45
 © 2001 whm@mse.com

Code as data, continued

We can change the operation of add:

ELISP> (setq add_def (symbol-function 'add))
(lambda
 (x y)
 (+ x y))

ELISP> (setq L (nth 2 add_def))
(+ x y)

ELISP> (rplaca L '-)
-

ELISP> (symbol-function 'add)
(lambda
 (x y)
 (- x y))

ELISP> (add 3 4)
-1

CSc 372, Fall 2001 Emacs Lisp, Slide 46
 © 2001 whm@mse.com

Lambda expressions

By definition, a function in Lisp is simply a list whose first
element is lambda.

ELISP> (defun one () 1)
one

ELISP> (symbol-function 'one)
(lambda nil 1)

We can create a nameless function to do the same thing and
then run it:

ELISP> ((lambda () 1))
1

A function to double a number:

ELISP> ((lambda (x) (* x 2)) 7)
14

The Lisp function mapcar is similar to map in ML:

ELISP> (mapcar 'length '("abc" "d" "ef"))
(3 1 2)

One way to sort:

ELISP> (sort '(5 9 5 2 4 2) '<)
(2 2 4 5 5 9)

Another:

ELISP> (sort '(5 9 5 2 4 2)
 '(lambda (x y) (< x y)))
(2 2 4 5 5 9)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46

