UNIX

CSC 352, Fall 2015
The University of Arizona
William H. Mitchell
whm@cs

CSC 352 Fall 2015, Unix Slide 1

What 1s UNIX?

At Bell Labs in 1969 Ken Thompson created a tiny operating system
that came to be known as UNIX.

During the 1970s UNIX gradually grew and evolved, and spread
into the computer science community.

In the 1980s and 1990s UNIX became an immensely popular
platform for software R&D and later, enterprise computing.

Today, various UNIX-like operating systems run on everything from
tiny devices to the most powerful computers made.

UNIX command-line tools are available on just about every
platform used by programmers.

CSC 352 Fall 2015, Unix Slide 2

What 1s UNIX?
Some hallmarks of UNIX:

 Pre-emptive multi-tasking of processes

e Full support for multiple simultaneous users

e Utilities work well in combination with others

e APIs that combine simplicity, elegance, and power
* Devices are treated as files

 The system 1s stable and resilient

 The keyboard i1s alive and well

* Sophisticated users are not encumbered

e (Casual users are frustrated

CSC 352 Fall 2015, Unix Slide 3

UNIX Timeline

1965 Researchers from Bell Labs and other organizations begin work on
Multics, a state-of-the-art interactive, multi-user operating system.

1969 Bell Labs researchers, losing hope for the viability of Multics due to
performance issues, withdraw from the project.

One of the researchers, Ken Thompson, finds a little-used DEC
PDP-7, and in a month implements a simple operating system
comprising a kernel, a command interpreter, an editor, and an
assembler.

Other Bell researchers, most notably Dennis Ritchie, are attracted to
Thompson's system and contribute to it.

1970 Peter Neumann suggests the name "Unics" for Thompson's
operating system, a pun on "Multics". A DEC PDP-11 1s acquired
for further development of UNIX.

CSC 352 Fall 2015, Unix Slide 4

1971

1973

1975

1978

UNIX Timeline, continued
In addition to supporting research, the PDP-11 running UNIX

hosts a word processing project: the preparation of patent
applications.
Work begins on the C programming language.

UNIX 1s rewritten in C.

Ken Thompson takes a sabbatical and teaches at U. C. Berkeley.
He gets some students, including Bill Joy, interested in UNIX.

Seventh Edition UNIX (V7), incorporating a goal of portability, is
released. (Today: Some say that V7 was the classic UNIX.)

Bill Joy assembles the first Berkeley Software Distribution,
featuring a Pascal compiler and Joy's ex line editor.

CSC 352 Fall 2015, Unix Slide 5

UNIX Timeline, continued

1979 Building on Bell Lab's UNIX/32V, UCB produces a version of
UNIX that takes advantage of virtual memory on the DEC
VAX-11/780. It is released as 3BSD.

1981 VAXSs running 4.1BSD are the system of choice for computer
science departments everywhere.

1982 Sun Microsystems is founded; Bill Joy leaves UCB to head Sun's
software development. Sun produced the first good UNIX
workstation, in my opinion.

1983 4.2BSD is released. Most notable: support for TCP/IP networking.

Richard Stallman announces the GNU project and later founds the
Free Software Foundation. (GNU's Not UNIX.)

1984 A federal court decree allows AT&T to get into the computer
business; AT&T releases UNIX System V.

CSC 352 Fall 2015, Unix Slide 6

UNIX Timeline, continued

1984 The X Window System emerges at MIT. It eventually becomes
widely used for portable graphics software.

1988 IEEE Standard 1003.1-1988 is approved. It came to be known as
POSIX.1 (Portable Operating System Interface).

1989 AT&T System V R4 (SVR4) is released, merging the System V and
BSD development lines.

1991 comp.os.minix: "Hello everybody out there using minix — I'm
doing a (free) operating system (just a hobby, won't be big
and professional like gnu) for 386(486) AT clones...."

— Linus Torvalds, a student at the University of Helsinki

1993 AT&T sells UNIX System Laboratories to Novell; Novell conveys
"UNIX" trademark to X/Open, a standards organization.

CSC 352 Fall 2015, Unix Slide 7

UNIX Today
Today

* The UNIX brand can be legally applied to any system that has been
verified to comply with the "Single UNIX Specification" (SUS).

(The SUSv3 (UNIX 03) specification is 3700 pages and covers 1742
interfaces.)

* Only AIX, HP-UX, K-UX, OS X, and Solaris satisfy UNIX 03.
* FreeBSD and NetBSD are the descendants of Berkeley UNIX.

* The IEEE/ISO POSIX standards facilitate writing software that is
portable between a wide range of UNIX and non-UNIX systems.

* Linux keeps getting bigger and better.

CSC 352 Fall 2015, Unix Slide 8

The shell—Part 1

CSC 352 Fall 2015, Unix Slide 9

Users typically interact with UNIX via a "shell".

A reasonable definition for shell:

The shell—Dbasics

A command-line based environment for execution and control of
programs.

In essence, a shell 1s a program that 1s used to run other programes.

There are many different shells but a number of capabilities are common
to all popular shells:

Command execution
Redirection of input and output
Piping

Wildcard expansion

Process control

Command recall and editing

Turing-complete (can be used to write "any" program)

CSC 352 Fall 2015, Unix Slide 10

Lots of shells

There are many Unix shells. Here are some common ones:

* Bourne Shell (sh)

* C Shell (csh)

* tcsh ("Enhanced C Shell", "TENEX C Shell")
* Korn Shell (ksh)

* Bourne-Again Shell (bash)

e Z Shell (zsh)

See also https://en.wikipedia.org/wiki/Unix_shell

We'll be using bash because it is...
* Widely used
* Atypical shell
* Full-featured
* POSIX-compliant

CSC 352 Fall 2015, Unix Slide 11

Running bash on lectura

CSC 352 Fall 2015, Unix Slide 12

Extra credit!

For two points of extra credit on Assignment 1 run the following
command 1n bash on lectura:
/cs/www/classes/cs352/falll5/bin/i-ran-bash

Due date/time: same as Assignment 1.

Details:

(1) Use the following command to confirm that you're running bash.
% echo SSHELL
/bin/bash

(2) You'll see something like this: (your prompt may differ from "%")
% [cs/www/classes/cs352/fall15/bin/i-ran-bash
Give me a moment...
A receipt has been mailed to YOUR-NETID@email.arizona.edu. Keep
it until you see your points on D2L.
%

Mail to 352f15@cs.arizona.edu if you have trouble. Don't panic!

CSC 352 Fall 2015, Unix Slide 13

Running bash on lectura

We'll be using the Linux machine named "lectura" for much of our work.

By virtue of being enrolled in this class you should already have a CS
computing account with the same name as your UA NetID.

On the page http://cs.arizona.edu/computing/services use "Change
my Unix shell (bash/tcsh/ksh)" to be sure that bash (/bin/bash) is your
shell.
(Note: a quick glance on 8/23 showed that all of you already have bash
as your login shell.)

If you've forgotten the password for your CS account, use "Reset my
forgotten Unix password" on the same page to reset it.

Note that there's no connection between your NetID password and your
password on lectura. (And I recommend different passwords for them.)

CSC 352 Fall 2015, Unix Slide 14

Running bash on lectura—Macs

If you're on a Mac, start Terminal and use ssh to login to lectura:

1. bash prompt on Mac | | 2. ssh yourNetID@]lec.cs.arizona.edu

® Z whm — ssh — 80x21
Last login: Thu Aug 13 01:42:30%on ttys003 8
~ 4318 @(ssh whm@lec.cs.arizona. edu)

whm@lec.cs.arizona.edu's (password:)(__— 3 . NO echo/feedback Whlle
--- typing password

New Password/passphrases rules

At least eight characters (but more is highly recommended)

Both upper and lower case letters

At least one number

At least one special character (e.g., !'Q@#$%"&*() +|~-=\"{}[]1:";'<>?,./)

Last login: Thu Aug 13 01:43:13 2015 from on-campus-115-224.vpn.arizona.edu
whm@lectura ~ 4991 %)whoami
W
whm@lectura ~ 4992 % hostname

ectura.cs.arizona.edu

hm@lectura ~ 4993 % |

4. bash prompt on lectura! NOTE: Your bash prompts may differ!

CSC 352 Fall 2015, Unix Slide 15

Running bash on lectura—Windows

"PuTTY" 1s a free Telnet/SSH client that I recommend for connecting to
lectura from a Windows machine.

If you Google for "putty", the first hit should be this:

PuTTY Download Page
« www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Download putty.exe:

For Windows on Intel x86

PuTTY:
PuTTYtel: puttytel.exe
PSCP: pScp.exe

putty.exe is just an executable file; there's no installer. Save putty.exe to a
convenient place, perhaps your Desktop.

CSC 352 Fall 2015, Unix Slide 16

Running bash on lectura—Windows

Click on putty.exe to run it. In the dialog that opens, fill in
lec.cs.arizona.edu for Host Name and click Open.

'—_Q bu'lT'f Configuration

Categary:
=+ Session | B asic options for pour PuT T zezsion ‘
""" L.oggmg Specify the destination you want to connect to
=) Terminal
H addreszs] Fort
P K.eyboard _
,,,,, Bel Iec.cs.anzona.edu) | |22 |
e Features Con =
= Windaw (O Raw (O Telnet O Rlogin & 55H O Serial
. .. Appearance -
PP . Load, zave or delete a stored session
-~ Behaviour _
Translation Saved Sessions
- Selection | |
N Colours D -
5 efault Settings
= Connection ﬂ
- Data Save
-~ Rlogin
EJ S5H
""" Serial Close window on exit:
O always (O MNever (3 Only on clean exit
[Abot] [Help] @ | Cancel |

CSC 352 Fall 2015, Unix Slide 17

Running bash on lectura—Windows

Enter your NetID and password in the window that PuTTY opens:
1. Your NetID

login as: whm

whnfd lec.cs.arizona.edu' s password: 2 NO eChO/feedbaCk Whlle
__ typing password

New Password/passphrases rules

At least eight characters (but more is highly reconmmended)
Both upper and lower case letters
At least one number

At least one special character (e.g., '@#$3°&*()_+|~-=\"{}[]:"2'<>2,./)

Last login: Thu Aug 13 00:51:59 2015 from on-campus-115-2Z24.vpn.arizona.edu

|{whl lectura ~ 4991 %) whoami
whim

whnl lectura ~ 4992 % hostname
lerntura.cs.arizon
whmfd lectura ~ 4993 3% D

a.edu

3. bash prompt on lectura! NOTE: Your bash prompts may differ!

CSC 352 Fall 2015, Unix Slide 18

PuTTY notes

To copy text from a PuTTY window to the Windows clipboard, simply
click and drag over it, like selecting text in any other Windows application.
Note: Copy is implicit with selection; do not hit ~C!

To paste text from the clipboard into PuTTY, do a right-click.

A number of PuTTY features can be accessed via the "system menu" in the
upper left corner of the window.

#* lectura.cs.arizona.edu - PulTY

Move
Size

Minimize:

O Maximize

¥ Close Alt+F4

Special Command r
Ewvent Log

Mew Session,..

Duplicate Session

Saved Sessions »
Change Settings...

Copy &ll ko Clipboard

CSC 352 Fall 2015, Unix Slide 19

Running bash on lectura--odds and ends

You can have any number of login sessions active at once. It's often handy
to run bash in one window and keep an editor open in another.

Use Control-C (*C) to kill a currently running command.
Type exit or close the window to terminate your lectura login session.

If you're running a different shell, like tesh, and don't want to make bash
your default, type bash at your shell's prompt.

We'll later learn about some improvements:
* Password-less login using ssh key pairs
* Adding an /etc/hosts entry for lectura so you can type just lec
instead of lec.cs.arizona.edu.
* Handling a NetID that differs from your Mac username.

CSC 352 Fall 2015, Unix Slide 20

How can I run bash on my machine?

As we've seen, starting Terminal on a Mac opens a window running bash.

If you've got a Windows machine, Cygwin(.com) provides a huge number
of Unix utilities, including bash, that run on Windows. I love Cygwin!

* After Cygwin 1s installed, use Cygwin Terminal to open a window
with bash.

* Watch for a Piazza post with some details about installing Cygwin,
and remind me 1f it doesn't appear soon.

On a Linux machine in a CS lab, Terminal opens a window running bash.

CSC 352 Fall 2015, Unix Slide 21

bash command-line basics

CSC 352 Fall 2015, Unix Slide 22

Executing commands

Typing a command name at the bash prompt and pressing the ENTER key

causes the command to be executed.

The command's output, 1f any, 1s displayed on the screen. Examples:

% hostname
lectura.cs.arizona.edu

% whoami

whm

% true

% date

Sat Aug 15 18:54:39 MST 2015

o

S ps
PID TTY TIME CMD
22758 pts/18 00:00:00 bash

30245 pts/18 00:00:00 ps

CSC 352 Fall 2015, Unix Slide 23

Command-line arguments

Most commands accept one or more arguments:
5 cal 9 2015
September 2015
Su Mo Tu We Th Fr Sa
1 2 3 4 5
c 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

% echo Hello, world!
Hello, world!

% factor 223092870
223092870: 2 3 5 7 11 13 17 19 23

Note: These slides will usually show a blank line between commands to
improve readability, but bash outputs the prompt immediately following
the last character of a command's output.

CSC 352 Fall 2015, Unix Slide 24

Arguments, continued

For many commands the arguments are file names.
% cat Hello. java
public class Hello {

public static void main(String args|[]) {
System.out.println ("Hello, world!");

}
}

% Javac Hello. java

% jJava Hello
Hello, world!

S rm Hello.class

% jJava Hello
Error: Could not find or load main class Hello

Note the evidence of the "silence is golden" philosophy, which is common
in UNIX programs.

CSC 352 Fall 2015, Unix Slide 25

Arguments, continued

The fgrep command searches for text. Its first argument is a string to
search for. The following argument(s) are the files to search for that text.

% fgrep Hello Hello. java
public class Hello {
System.out.println("Hello, world!");

% fgrep Hello Hello.java Test.java
Hello.java:public class Hello {
Hello.java: System.out.println("Hello, world!");

fgrep Waldo Hello.java Test.java

0
°
0
°

Does fgrep exhibit "silence is golden"?

Note: There is a family of greps. We'll use fgrep to start with because it

doesn't interpret the search string as a regular expression.
CSC 352 Fall 2015, Unix Slide 26

Command-line options

Many commands accept options that adjust the behavior of the command.

Options almost always begin with a '=' (minus sign). Options are usually
specified immediately following the command.

Examples:

% date
Thu Jan 13 02:19:20 MST 2005

% date -u
Thu Jan 13 09:19:22 UTC 2005
% wc Hello. java
5 14 127 Hello.java
% we -1 -w Hello.java
5 14 Hello.java

We can say thatwe -1 -w Hello.java has two options and one
operand.

CSC 352 Fall 2015, Unix Slide 27

Options, continued

Some options have an associated argument. (An "option argument".)

Compile Hello. java with verbose output and put the

resulting . class file in the (existing) directory named work:
% Javac -verbose -d work Hello. java
[parsing started RegularFileObject[Hello.javal]l
[parsing completed 13ms]
...lots more....
[wrote RegularFileObject[work/Hello.class]]
[total 286ms]

Find files modified in the last 48 hours that are longer than 1024 bytes.
% find . -type £ -mtime -2 -size +1k
./352.notes
./intro.pptx
./open.notes
./unix.pptx

CSC 352 Fall 2015, Unix Slide 28

Options, continued

It 1s common to allow single character options to be combined into a
single multi-character option. For example, these two are equivalent:

wc -1 -w Hello.java
wc —-1lw Hello.java

Some programs have verbose synonyms for single-character options.
Example:

wCc —--words —--lines Hello.java

CSC 352 Fall 2015, Unix Slide 29

Options, continued

Whitespace is often significant in command lines. For example, the
following commands are all invalid: (Try them!)

o

$ date-u

%5 wc -l1l-w Hello. java

5 wc —-- notes Hello. java
We can think of a command line as a series of "words". The man page for
bash has this definition for "word":

A sequence of characters considered as a single unit by the shell.

Options are sometimes called "flags".
Example: "Run date with the —u flag."

CSC 352 Fall 2015, Unix Slide 30

Oddballs

For most programs the ordering of options 1s not significant but that 1s a
convention, not a rule.

jar, the Java archive tool, requires certain options to come first, and allows

them to not be preceded by '-':
% jar tvf cloudcoderApp.jar | head -3
0O Fri Aug 14 18:18:18 MST 2015 META-INEF/
161 Fri Aug 14 18:18:16 MST 2015 META-INF/MANIFEST.MF

0 Fri Aug 14 15:18:54 MST 2015 org/

There is nothing that prohibits a program from having its own style of
argument handling. The dd command, a very old file manipulation utility,
uses name/value pairs on the command line:

dd 1f=scores.dat 1bs=90 skip=40 count=5 of=x

POSIX guidelines for command-line arguments can be found here:
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
V1 _chapl12.html

CSC 352 Fall 2015, Unix Slide 31

Sidebar: Java argument handling

When a Java program is run, the shell, the operating system kernel, and
the Java run-time system arrange for the command line arguments to
appear as an array of strings that is passed to main.

Here 1s a Java program that prints its arguments:
public class args {
public static void main(String args|[]) {
for (int 1 = 0; 1 < args.length; 1++)
System.out.println("|" + args[i] + "|");

}
Interaction:

o

% jJava args -a —--test x.java
R
| ——test|

| x.Java|

o)

=

(e}

CSC 352 Fall 2015, Unix Slide 32

Sidebar: Try the examples!

I strongly recommend you try at least one example on every slide!

We'll learn about paths, the cp command, sym/links, etc. later but for now
you can run args.java like this on lectura:

% cp@w/classes/csBSZ/falllS java/args.java \

% javac args.java

% java args Hello, world! Don't forget the period!

|Hello, |
|world!|

args.j ' accessible on :
http://cs.arizona.edu/classes/ds352/fall15/}ava/args.java

IMPORTANT: In these slidg&ll kference files like this:

faIIlS\/java/args.java \\

\ N
fall15/... means either of these

CSC 352 Fall 2015, Unix Slide 33

Metacharacters

Many non-alphanumeric characters have special meaning to shells.

o

% java args :)
bash: syntax error near unexpected token ":)'

Characters that have special meaning are often called metacharacters.

Here are the bash metacharacters:

~ b # s e ()N It <>

CSC 352 Fall 2015, Unix Slide 34

Metacharacters, continued

If an argument has metacharacters or whitespace we suppress their special
meaning by enclosing the argument in quotes.

% j va args ':) ' wrrvirw LA | ' X ' "y " z'llz"
[:)
| 1

-—

Note that the enclosing quotes are consumed by the shell. args never
sees them!

We'll see later that some metacharacters are still interpreted even when
surrounded with double quotes. For the time being, always use
apostrophes to avoid any surprises.

CSC 352 Fall 2015, Unix Slide 35

Metacharacters, continued

An alternative to wrapping with quotes 1s to use a backslash to "escape”
each metacharacter.

If a character 1s preceded by a backslash, its special meaning, if any, is
suppressed.

3 java args :\) \ \'\"\\ x\ y \x\y\z
| 2) |

| '"\|

X VI

| xyZ |

Note that it's not an error to escape ordinary characters like x, y and z.

CSC 352 Fall 2015, Unix Slide 36

Command-line basics —Summary

As a rule, command invocations have this form:
command-name optiont ... optionN operand1 .. operandN

Options and operands are often collectively referred to as arguments.

Options typically start with a -" and are often single letters; single letter options
can often be combined.

Options sometimes have arguments themselves. ("option arguments")
The ordering of options is usually not important.
As arule, whitespace in options and operands is significant.

Interpretation of metacharacters can be suppressed by enclosing the argument in
quotes or preceding each metacharacter with a backslash.

All-in-all, there are somewhat firm conventions but no hard rules about options
and operands.

Reminder: Use ~C to immediately terminate a command.

CSC 352 Fall 2015, Unix Slide 37

Command-line editing and shortcuts

bash supports simple command line recall and editing with the "arrow keys" but
many control-key and escape sequences have meaning too. Here are a few:

"A/NE Go to start/end of line.

W Erase the last "word".

~U Erase whole line. (~C works, too.)

"R Do incremental search through previous commands.

ESC-f/b Go forwards/backwards a word. (Two keystrokes: ESC, then f)
ESC-. Insert last word on from last command line. (Very handy!)

Do bind -p to see all the bindings. This facility uses the GNU readline
mechanism and bindings can be overridden in ~/.inputrc. (Do man readline

for lots of details.)

bash also does command and filename completion with TAB:
Hit TAB to complete to longest unique string.
If a "beep", hit TAB a second time to see alternatives.

CSC 352 Fall 2015, Unix Slide 38

The man command

CSC 352 Fall 2015, Unix Slide 39

The man command

The man command displays documentation for commands (and more). Here is
an abridged example—the "man page" for cat:

% man cat
CAT(1) User Commands CAT(1)

NAME
cat - concatenate files and print on the standard output

SYNOPSIS
cat [OPTION]... [FILE]...

DESCRIPTION
Concatenate FILE(s), or standard input, to standard output.

-A, --show-all
equivalent to —vET

With no FILE, or when FILE is -, read standard input.

man uses less to display pages. Type space to go forwards, b to go backwards.
Type /STRING<ENTER> to search for a string, then n to search for the next
occurrence. h (for help) shows lots more less commands. (Try it!)

CSC 352 Fall 2015, Unix Slide 40

Manual sections

The UNIX "manual" 1s divided into these sections: (from man man)

User commands

System calls (functions provided by the kernel)

Library calls (functions within program libraries)

Special files (usually found in /dev)

File formats and conventions eg /etc/passwd

Games

Miscellaneous (including macro packages and conventions), €.g.
man(7), groff(7)

System administration commands (usually only for root)

Kernel routines [Non standard]

~N N O bW

\O OO

Recall that man cat showed CAT (1). That " (1) " tells us that cat is a
user command.

man malloc shows MALLOC (3). That " (3) " tellsusthatmalloc i1sa
library function.

CSC 352 Fall 2015, Unix Slide 41

man -k

A very handy man option is -k, which specifies a keyword to search for in the
"NAME" entries for all man pages.

Example: ("What was that calendar printing command??")

% man -k calendar

cal (1) - displays a calendar and the date of Easter

calendar (1) - reminder service

difftime (3posix) compute the difference between two
calendar time values

ncal (1) - displays a calendar and the date of Easter

zshcalsys (1) zsh calendar system

Some man page names appear in more than one section of the manual. For
example, printf appears in sections 1 and 3. The -s option selects the entry in the
specified section.

man -s 1 printf
man -s 3 printf

Most manual sections have an intro page that provides an overview of the
section. For example, try man -s 2 intro

CSC 352 Fall 2015, Unix Slide 42

Built-in help for commands

Many commands have a =-help option:

% wc —--help
Usage: wc [OPTION]... [FILE]...

or: wc [OPTION]... ——-filesO-from=F
Print newline, word, and byte counts for each FILE,
and a total line if more than one FILE 1s specified.
With no FILE, or when FILE is -, read standard
input. A word 1s a non-zero-length sequence of
characters

Some commands don't support —-help, but...
5 cal --help
cal: invalid option -- '-'
Usage: cal [general options] [-hjy] [[month] year]
cal [general options] [-hj] [-m month] [year]

CSC 352 Fall 2015, Unix Slide 43

What are "commands'"?

Many things can be run as a command:
* Machine-code executables, like a compiled and linked C program
» Shell scripts, functions, builtins, and aliases
* A program source file with a "shebang" line

The type command can be used to see what a command really is.
% type date
date is /bin/date

s type gcc
gcc 1s aliased to ¢c99 -Wall -g'

s type type
type 1s a shell builtin

For a shell builtin, don't use man; use help:
% help type

CSC 352 Fall 2015, Unix Slide 44

I/O Redirection with bash

CSC 352 Fall 2015, Unix Slide 45

I/O Redirection

There are several possible destinations for the output of a command:

The screen

A file

Another command

A hardware device

A command on another machine
and more!

Similarly, input may come from a variety of sources in addition to the keyboard.

UNIX has a notion of standard input and standard output.

It is common for programs to read from standard input and/or write to standard
output.

By default, when the shell starts a program, standard input is associated with the
keyboard, and standard output is associated with the screen.

Standard input and standard output are sometimes called streams or 1/O streams.

CSC 352 Fall 2015, Unix Slide 46

I/O Redirection, continued

Here 1s a Java program that reads lines from standard input and writes the

line count to standard output:

import java.io.*;

public class Ic { // "LC" (in fall15/java/lc.java)

public static void main(String args[]) throws I0Exception {

BufferedReader in = new BufferedReader(

new InputStreamReader(System.in)); // standard input in Java

String line; int count = 0;

// Read lines from standard input

while ((line = in.readLine()) != null)
count++;

// Write count to standard output
System.out.printin(count);

}

Interaction:

% Java lc
one
two

three
“D (control-D)

w

o\©

CSC 352 Fall 2015, Unix Slide 47

I/O Redirection, continued

It 1s possible to redirect standard input, so that instead of reading characters
from the keyboard, the data comes from a file.

Input redirection is indicated by adding < fi1e to a command:

% java lc < lc.java
13

o\©

wec < /etc/passwd
2903 10754 198109

% shalsum < lc.class
ce3f/oazfloedb8e8b688a5938c72885cef93b13 -

% java lc < lcount.java
—-bash: lcount.java: No such file or directory

What's interesting about the last example?
The error is from bash, not the JVM or 1c. java.

CSC 352 Fall 2015, Unix Slide 48

I/O Redirection, continued

Output redirection i1s similar:

% jJava lc > count
Jjust

testing

D

$ cat count
2

If the target file does not exist, it 1s created. If it exists, it is
overwritten.

Speculate: What's the result of the following?

$ java lc > /etc/passwd
-bash: /etc/passwd: Permission denied

CSC 352 Fall 2015, Unix Slide 49

I/O Redirection, continued

Both input and output can be redirected:
% java lc < /etc/passwd > pwlines

% cat pwlines
2903

What are some "what-ifs" we can try?
* Must input redirection appear before output redirection?

* s whitespace needed around < and >?
* What happens if we specify two input or output redirections?
* Whatdoes java 1lc < /etc/passwd > java do?

« Whatdoes java lc > lc.java do?

CSC 352 Fall 2015, Unix Slide 50

I/O Redirection, continued

Consider this claim:
"The shell completely consumes any text used to specify redirections.
For example, given wc < lc.java, the wc program does not see
the <or lc.java."

How could we test that claim using only what we've seen thus far?

My "proof™:

o

% jJava args a b ¢ < 1lc.java > out

$ cat out

Only a, b, and ¢ ended up in the string array passed to main. There's no
traceof < 1c.java or > out.

CSC 352 Fall 2015, Unix Slide 51

I/O Redirection, continued

Many programs will accept input from either standard input or files named
on the command line.

o

% wc Hello. java
6 14 128 Hello.java

% wc < Hello. java
o 14 128

What's a difference in output between the two?

Why is there a difference?
If you have an idea about why there's a difference, post it on Piazza!

CSC 352 Fall 2015, Unix Slide 52

I/O Redirection, continued

Consider this:

o

% wc Hello.java < args.java
5 14 127 Hello.java

Why 1sn't args. java processed, too?
Challenge: Try writing x . Java that behaves as follows:

$ java x a b c # Prints a, b, c

o\©

java x <y # Prints the contents of the file y

o\©

java x a b ¢ < y# Prints a, b, ¢, and then contents of file y

$ java x # Prints lines read on standard input

CSC 352 Fall 2015, Unix Slide 53

I/O Redirection, continued
There 1s a third standard 1/O stream: standard error.

By convention, programs send "normal" output to standard output, and
"exceptional" output to standard error.

$ cal 2016 1 > out
cal: 2016 1is neither a month number (1..12) nor

a name

$ cat out

Standard output and error output can be combined with the "> &' redirection

operator:
5 cal 2016 1 >& out

% cat out
cal: 2016 1is neither a month number (1..12) nor

a nhame

Java's System.err is associated with standard error. (Try it!)
CSC 352 Fall 2015, Unix Slide 54

I/O Redirection, continued

A great benefit of I/O redirection is that a program doesn't need to include any file-
handling code. A program can be written in terms of reading/writing standard
input/output; opening files (and handling potential failures) is done by the shell.

Consider the additional code that would be required for an alternative interface for
the line counter:

java lc -input x.txt -output count
Problem: Write it! Don't forget to handle errors, too!

Contrast: Once upon a time, users of DEC's VMS operating system did output
redirection like this,

assign/user sys$output out
run program

0
°
0
©°

which has a lot of "ceremony" compared to the UNIX equivalent:

o)

5 program > out

CSC 352 Fall 2015, Unix Slide 55

Sidebar: standard input and output in other languages

Here's a Ruby line counter, fall15/misc/Ic.rb:

count = 0
while line = gets Execution:

count\+= 1 % ruby lc.rb < /usr/share/dict/words
end 99171

puts count

Oops! 1ine is not needed!

fall15/misc/Ic.py is a Python 3 version:
import sys

count = 0
while True:
line = sys.stdin.readline ()
if len(line) ==
break Execution:
count += 1 % py3 lc.py < lc.rb
print (count) 5

CSC 352 Fall 2015, Unix Slide 56

Pipes

CSC 352 Fall 2015, Unix Slide 57

Pipes

A pipe is an IPC (interprocess communication) mechanism supported by the
UNIX kernel.

A pipe connects two processes such that data written into the pipe by the sending
process can be read by the receiving process.

Let's "pipe" the output of who into wc -1, to see how many login sessions are
active on lectura. The "or" bar is used to designate a pipe.

% who
dmr pts/3 2015-08-23 01:08 (ox2.cs.arizona.edu)

ken pts/4 2015-08-24 09:54 (imy.cs.arizona.edu)
...lots more...

% @-@\
A series of commands connected

with pipes 1s a "pipeline".

CSC 352 Fall 2015, Unix Slide 58

Pipes, continued

At hand, a "pipeline":
% who | we -1
98

The command who | wc -1 pipes the standard output of who into the standard
input of we. who and we run simultaneously.

Data always flows from left to right in a pipeline.

How could I find out how many login sessions I've got active?
%5 who | fgrep whm

whm pts/18 2015-08-17 19:00 (...)

whm pts/28 2015-08-17 12:17 (...)

%5 who | fgrep whm | cat -n
1 whm pts/18 2015-08-17 19:00 (...)
2 whm pts/28 2015-08-17 12:17 (...)

CSC 352 Fall 2015, Unix Slide 59

Pipes, continued

Q: How many JavaScript files are in the Java archive cloudcoderApp.jar?

jar(1) output looks like this:
% jar tf cloudcoderApp.jar | head -15
log4j.properties
org/cloudcoder/webserver/CloudCoderDaemonS$1.class
org/cloudcoder/webserver/CloudCoderDaemon.class

war/cloudcoder/ace/snippets/abap.js
war/cloudcoder/ace/snippets/actionscript.js

Nearly-correct solution:
% jJar tf cloudcoderApp.jar | fgrep .js | wc -1
932

Fully correct, using grep and a regular expression:
$ jar tf cloudcoderApp.jar | grep \\.js$ | wc -1
932

CSC 352 Fall 2015, Unix Slide 60

Pipes, continued

Next, we want to see the names of those JavaScript files. One approach is to
let jar tf cloudcoderApp.jar | fgrep .js run to completion and scroll back,

looking for the start of the output.

[900+ lines scrolled off]
war/cloudcoder/ace/worker-php.js
war/cloudcoder/ace/worker-xquery.js
war/cloudcoder/cloudcoder.devmode.js
war/cloudcoder/cloudcoder.nocache.js
%

Alternative: jar tf cloudcoderApp.jar | fgrep .js | less

war/WEB-INF/classes/edu/ycp/cs/dh/acegwt/public/ace/ace-compat-noconflict.js
war/WEB-INF/classes/edu/ycp/cs/dh/acegwt/public/ace/ace-compat-uncompressed.js
war/WEB-INF/classes/edu/ycp/cs/dh/acegwt/public/ace/ace-compat.js
war/WEB-INF/classes/edu/ycp/cs/dh/acegwt/public/ace/ace-uncompressed.js

The colon is the less(1) prompt. Recall that man uses less. Type space to go
forwards, b to go backwards. h (for help) shows lots more less commands.

CSC 352 Fall 2015, Unix Slide 61

Sidebar: more or less
No kidding...

% man more

NAME
more — file perusal filter for crt viewing

DESCRIPTION :
more is a filter for paging through text one screenful B
at a time.

% man less
NAME
less - opposite of more
DESCRIPTION
Less is a program similar to more (1), but which allows backward
movement in the file as well as forward movement. [And lots more!]

"more" got wired into my fingers so when less came along I simply did alias
more='less' to switch to less. You'll see me type ... | more but that actually

runs less. If I say "more", you should hear "less".
CSC 352 Fall 2015, Unix Slide 62

UNEX Developers use more (or less) a lot

Browsing my bash history shows some examples of piping into more (less):
* svn diff -r44:45 | more
e certtool d USERTrust_RSA_Certification_Authority-bad.cer | more
* javap -v ./target/classes/edu/arizona/cs/practice/QuickStart.class | more
e find | xfield -d/ -1 | sort | uniqg -c | more
* git show master | more

* grep pancakes Ss/*/table.out | xfield 1 3 | xfield -d/ 10 -1 | xfield 1 -1 |
sort -rn -k2 | cat -n | more

» egrep ": xfield| FAIL" g/out | more
e t switched.rb | cat -A | more

* man -k postscript | more

CSC 352 Fall 2015, Unix Slide 63

Sidebar: Where should pagination be done?

Here 1s a proposal for a POSIX.2 standards addition:
"All programs that produce more than one screen of output should have
a --page option that indicates output should be paginated with
functionality equivalent to less(1). This will be both more convenient
for users and avoid the overhead of starting less as a separate process."

Let's vote!

CSC 352 Fall 2015, Unix Slide 64

Sidebar, continued

Points to consider:

Are there 1ssues with the size of executables and memory usage?

In how many different languages would the paging functionality need
to be implemented?

How many lines are on a "screen"?

Is there much overhead in running a second process?

What if a better pager was devised? Would we call it --pagev2 and
keep --page for those who like the old version?

Should there be a --wc¢ standard option, too?

Bottom line: Terrible idea!

The UNIX way: Programs have well-focused responsibilities and can be
combined in various ways.

If evenless comes along one day, I can easily start using it.

CSC 352 Fall 2015, Unix Slide 65

Computing with pipes

A key element of the UNIX philosophy is to use pipelines to combine
programs to solve a problem, rather than writing a new program.

Problem: How many unique users are on lectura?

vl: Get login names
% who| cut-f1-d""
ken

dmr

ken

francis

rob

walt24

dmr

rob

whnj

dmr

ken

v2: Sort login names
% who |cut -f1 -d" "|sort
dmr

dmr

dmr

francis

ken

ken

ken

rob

rob

walt24

wnj

v3: Get unique login names

% who|cut -f1 -d" "|sort|uniq
dmr

francis

ken

rob

walt24

whnj

v4: Get the count

% who | cut -f1-d"" | sort |
uniq | wce -l

6

CSC 352 Fall 2015, Unix Slide 66

Pipes, continued

Write pipelines to answer these questions:

* What user has the greatest number of login sessions on lectura? Don't
worry about ties. (Helpers: unig -c, head, sort -rn)

 What words in /usr/share/dict/words contain all the vowels?

* Which lowercase letter occurs most often in 1c. java? Don't worry
about ties. (Helpers: fold, tr —-dc)

Problem: Confirm that all processes 1n a pipeline are running at the same
time.

Problem: How could we implement ba sh-like piping on an operating
system that doesn't allow for the output of process to be connected to the
input of another process? (MS-DOS did this.)

CSC 352 Fall 2015, Unix Slide 67

Trivial shell scripts

CSC 352 Fall 2015, Unix Slide 68

Shell script basics

A shell script 1s simply a file that contains a series of shell commands.

Here is a two-line script that prints the number of current login sessions:
% cat ucount
echo -n "Current logins: "

who | wc —1

Lets make the script executable with chmod. (We'll talk about permissions soon!)

o

$ chmod +x ucount

Depending on your search path settings for bash you might be able to type just
ucount to run it:

% ucount
Current logins: 44

If instead you see ucount: command not found, prefix the script name
with dot-slash:

$./ucount

Current logins: 44

We'll learn about the search path soon!

CSC 352 Fall 2015, Unix Slide 69

Scripts and I/0O streams

Redirecting a script's standard output produces a concatenation of standard
output of all the commands in the script.

For reference:
$ cat ucount
echo -n "Current logins: "

who | wc -1
The output of ucount can be redirected:
ucount > out

cat out
Current logins: 44

0
°
0

°

The file out ends up with the output of each command in turn.

CSC 352 Fall 2015, Unix Slide 70

Scripts and I/O streams, continued

Programs that are run inside a script "inherit" the standard input stream of the script.

o)

% cat countbytes
WwC —C

% date | countbytes
9

N

Above, the standard input of countbytes becomes the standard input of wc.

Here is a trivial script that avoids the nuisance of having to type "java" when
running the 1c. java utility:

5 cat 1lc
Note: assumes lc.class is in this directory
jJava 1c

CSC 352 Fall 2015, Unix Slide 71

Script parameters

Command line arguments can be passed to scripts. An argument can be
referenced using SN, where N is the 1-based position of the argument. Example:

% cat printargs

echo The first argument is $1
echo Arg 2: \'S2\'

echo "Third arg: >$3<"

% printargs Dots " ... " and more dots

The first argument 1s Dots
Arg 2: ' ... "
Third arg: >and<

If there is no Nth argument, $N expands to nothing.
% printargs Jjust testing
The first argument 1s just
Arg 2: 'testing'
Third arg: ><

Experiment: Change the quotes to apostrophes in the third echo.

CSC 352 Fall 2015, Unix Slide 72

Imagine a verbose wc:
$./vwe lc.java
Lines: 13
Words: 39
Chars: 361

Problem: write it!

Solution:

s cat vwe

echo -n "Lines: "
wce -1 < S$S1

echo -n "Words:
we —-w < S1
echo —-n "Chars: "
wc —-c < $S1

LA

Script parameters, continued

CSC 352 Fall 2015, Unix Slide 73

Editing Files

CSC 352 Fall 2015, Unix Slide 74

Prominent UNIX Editors

There have been five prominent and widely popular UNIX editors:

* ed is the original UNIX editor. It is line-oriented and terse, but elegant. ed,
or a lookalike, 1s on most UNIX systems.

* vi ("vee-eye") was created by Bill Joy in 1976. It is screen oriented and
"modal". It was an extension of Joy's ex, that was essentially an improved
version of ed. vi is arguably the fastest plain-text editor for touch-typists.

* In 1981, James Gosling created "UNIX Emacs", a C implementation that was
similar to Richard Stallman's Emacs for the PDP-10. Important difference:
Gosling's version provided "Mock Lisp", not a true Lisp.

* In 1984-1985 Stallman created GNU Emacs—the first tangible result of the
GNU project.

* In 1991Bram Moolenaar released Vim (vi IMproved). He started with source
from Stevie, a vi clone. Both were originally for the Amiga.

CSC 352 Fall 2015, Unix Slide 75

The editing landscape

wikipedia.org/wiki/Comparison_of text_editors lists 78 text editors that run on
Windows, OS X, and/or some version of UNIX. Nine are installed on lectura.

Which one(s) should you learn?

Here are some of the things I value most in an editor:
* All common editing tasks can be done from the keyboard
* Multiple files open at once, and multiple views of a file
* Keys can be rebound to suit my preferences
* Programmable with a full-featured language I know

 Runs on OS X, Windows, and Linux
What you value may differ!

[use:
* Aquamacs for day-to-day editing
* vim for quick editing and browsing
* Eclipse or IntelliJ for Java EE projects
* PowerPoint for these slides
* WordPerfect for assignments, exams, and papers.

CSC 352 Fall 2015, Unix Slide 76

The editing landscape, continued

Other popular editors on Windows and/or OS X:
* Sublime
* Notepad++
 BBEdit (related: Text Wrangler)
* TextMate
* nano (apico clone)
* And there are lots of IDE-based editors

It's silly for programmers to use editors like nano and (plain old) Notepad!
* They just doesn't do much!
* They're editors for someone who doesn't want to be proficient.
* Programmers need to be proficient when editing.
* Don't let me catch you using nano or Notepad!

CSC 352 Fall 2015, Unix Slide 77

The end goal: your code needs to run on lectura

All programming assignments will be graded on lectura. Therefore, here 1s good
advice: Test your code on lectura!

Here are some ways to get source files onto lectura:
* Use an editor on lectura like emacs or vim (but not nano!)

 Edit on your laptop and have changes automatically propagated to lectura:
- On Windows, WinSCP's "Keep Remote Directory up to Date" works
great!
- For OS X, Drop Sync 3 from mudflatsoftware.com looks promising but
I['ve had trouble making it work. Yummy FTP Watcher also looks
promising but I haven't tried it.

* Use remote editing on your laptop to edit files that reside on lectura:
- Sublime has remote editing packages (more on Piazza).
- Emacs has well integrated remote editing.
- Flow from fivedetails.com allows remote editing with your OS X editor
of choice ($4.99). Cyberduck is similar; it's donate-ware.

A g00d way to irritate your instructor during office hours is to use a file transfer
app that you must interact with after each save in order to get your file to lectura.

CSC 352 Fall 2015, Unix Slide 78

Our approach for editing

If you know or want to learn a good UNIX editor like Vim or Emacs, I
encourage you to do that.

If not, I encourage you to edit on your own machines and use an SFTP
client like WinSCP or Cyberduck to get your code onto lectura.

If you don't have a laptop and are working on the machines in the CS or
OSCR labs and don't know where to get started, come for help during
office hours.

CSC 352 Fall 2015, Unix Slide 79

Emacs, Vim, and your suggestions

I'll say a few things about Emacs and Vim 1n discussion sections but 1f you
want to learn about them on your own, here are some resources:

My Emacs slides straight from 2005 are here: fall15/emacs.pdf

Emacs on lectura 1s emacs. The initial screen shows that ctrl-h, then
t starts a tutorial. Exit Emacs with ctrl-x then ctrl-c.

Vim on lectura i1s vim. The vimtutor shell command starts a
tutorial. Exit the tutorial with ZZ or :q! .

I learned v i from http://docs.freebsd.org/44doc/usd/12.vi/paper.pdf

There are lots of tutorials for Emacs, Vim, and other editors on the net. If
you find one you like, recommend it on Piazza.

If there's an editor you really like, tell us about 1t on Piazza, but please no
long debates about editors on Piazza—find some other place for that.

CSC 352 Fall 2015, Unix Slide 80

Potential for trouble
Using WinSCP and other clients create some possibility for trouble.
Example:
1. You create x.java on your home desktop and WinSCP syncs it to
lectura.
2. On campus you edit x.java on lectura.
3. Back home in the evening you start up WinSCP and it overwrites your
changes to x.java on lectura with an old copy from your desktop.

Hs+mpeortantte
I recommend being very consistent about where the "master" copies of
files are. For example, 1f your masters are on your laptop, avoid the

temptation to make "quick changes" in the copies on lectura.

Also, synchronizing tools sometimes stop working. If you make a change
on your machine that seems to have no effect, use cat or1s -1t to
check the file on lectura.

CSC 352 Fall 2015, Unix Slide 81

Low-tech backups for code

Along with understanding your tools I recommend frequent
backups. Here's a one-line, low-tech backup that you can run on
lectura:

% pr *.java | mail -s 352 your-netid@email.arizona.edu
* The pr command writes the content of each of your .java files in
turn to standard output, and that output 1s piped into mail, a
command line mailer. (Try man mail.)

* You'll get a message with the subject "352".

* pr generates some page headers that you'll have to hack out 1f
you need to recover a file, but your source code will all be there.

* Experiment with 1t before you start counting on it.

CSC 352 Fall 2015, Unix Slide 82

Automatic file sync with WinSCP
(for Windows users)

WinSCP 1nstallation

Hit https://winscp.net/download/winscp575setup.exe and watch out for
all the spammy Download Now! buttons.

Run winscp575setup.exe to start an installer.

These instructions assume selecting "Typical installation" and
"Commander" for the user interface style.

Start up WinSCP when the installation 1s complete.

CSC 352 Fall 2015, Unix Slide 84

Login to lectura

Use lec.cs.arizona.edu for the Host name. Leave Port number and File
Protocol at their defaults. Click Login.

u « Login - WinSCP

lj' Mew Sike

Tools V] [Manage

v

Session
File protocal:
|SFTP v

Host name: Pork number:

22 &

Ilec.cs.arizona.edu l [

User name: Password:

lstdntwm ‘ looooooooooooo ‘

Save] [Advanced...]

I

Login]

Close] [Help

Note that you can Save connection settings. (Try it next time.)

For this demo, I'm logging into my student test account, stdntwm.

CSC 352 Fall 2015, Unix Slide 85

Navigate to your 352 directories on both machines

Navigate to your 352 directory (folder) in both the left panel, which shows files
on your machine, and in the right panel, which shows your files on lectura. Use

WinSCP to make those directories (with right-clicks) if you haven't already made
them.

ax 352 - stdntwm@lec.cs.arizona.edu - WinSCP B@@

Local Mark Files Commands Session Options Remote Help

@ L Edquewe ~ [P B B3 synchronize 2 [Transfer Settings Default - i@~
[stdntwm@lec,cs.arizona.edu ‘g Plew Sessic-n]
E2my documents ~ (= = - M & Fa (352 = <= - M & [@Fndriles T |
»
B [a B [m
C:iDocuments and SettingsiTheBoss' My Documentsi352 Ip2jt sfstdntwm/352
N —— ™ S — ™
Mame = Size "he Changec | Mame = Size Changed Rights Owner
.. Parent directory 8f21/201) | [&) .. 8/19/2015 2:03... rwx------ stdntwm

<

OBof0Bin0of0

[

OBof 0BinDof 0

@ SFTIP3 00817

CSC 352 Fall 2015, Unix Slide 86

Synchronize and start watching
Click Commands > Keep Remote Directory up to Date... producing this:

Keep remote directory up to date

i3
Direcktaries

Watch For changes in the local directory:
% Z:\Documents and Settings\TheBos@‘ly Dacuments'l,SSB "
O ——

... and Wreﬂect them on the remote directory:
Ip2f ,I'stdntwm,l'352)

S ——

[Browse. .,

Synchronize options

[] Delete Files [] Existing files anly
Update subdirectories Selected files only
[] Continue on error [2] Synchronize on start

|:] Ilze same opkions next time

Transfer settings

Transfer bype: Automatic O, *¥html; *. kg *. bk * . php; *.php3; *.cai; *.c; *.cpp; *.h;
* pas; *.bas; *.kex; *.pl; .htaccess; * . xtml; *.css; *.cfg; *.ini; *.sh; *.xml)

| Transfer settings. .. "J

Skart | I Close J | Help I

BE SURE that the local and remote directories are correct. The Synchronize
options shown are good for beginners. Click Start.

CSC 352 Fall 2015, Unix Slide 87

Edit, observing synchronization

Create the file Hello.java in the 352 directory on your windows machine

using your favorite editor (which should not be Notepad!) When you do,
you'll see activity in the "Keeping..." dialog that Start brought up.

B Hello.java - Notepad
File Edit Format View Help

Keeping remote directory up to date ...

public class Hello {))
public static void main(string args[]1) {
System.out. printin(Hello, world!");

¥
.
i

Suggestion: Keep a bit of the
activity pane in view in a corner
of your screen, to watch for
expected activity on saves.

Directories

5

Synchronize options

AM O Scanning
A4
A
A4
4 Change in Chbocuments and Settingst | TEDnsa Ty Locumentst oo detected,

Change in 'C:\Documents and Settingsi TheBoss\My Documentsi 352" detected,
File "C:\Documents and Settings) TheBoss\My Documentsi 352 Hello. java' uploaded,

CSC 352 Fall 2015, Unix Slide 88

Compile and run on lectura

Use PuTTY to connect to lectura and use the command cd 352 to change to
your 352 directory. Confirm that Hello.java looks good, then compile and run it.

#* lectura.cs.arizona.edu - PuTTY
stdntwm@lectura:~/352% cat Hello.java
public class Hello {
public static void main(String args[]) {
System.out.println("Hello, world!"™):;

}

}

stdntwm@lectura: ~/352$% javac Hello.java
stdntwm@lectura:~/352% java Hello
Hello, world!

stdntwm@lectura:~/3525 |

Repeat the cycle a few times, editing and saving changes on your machine,
observing activity in the Keeping... window, and confirming those changes are
reflected on lectura.

CSC 352 Fall 2015, Unix Slide 89

Remote editing with Cyberduck
(for Mac users)

Install and run Cyberduck

It appears that Cyberduck is $23.99 in the App Store but if you download it from
https://cyberduck.io/, you get a version that's donate-ware. This demo uses the

latter.

Start Cyberduck and click Open
Connection to get the connection
dialog shown at right.

Select SFTP. For Server use
lec.cs.arizona.edu.

For this demo, I'm logging into my
student test account, stdntwm.

Click Connect.

Unregistered

(. Cyberduck

'

m i _ ‘,
' SFTP (SSH File Transfer Protocol) u
l/ Book
ﬂ‘ | Server |ec.cs.arizona.edu b4 Port: 22 [—
o ‘ URL sftp://stdntwm@lec.cs.arizona.edu:22/
3 Username stdntwm

Password eeesessssccscs |

Anonymous Login
Add to Keychain

— ?) | Cancel ' el

. Vv More Options
Path
Connect Default

Encoding Default

Use Public Key Authentication

No private key selected
|
+ | —

3 Bookmarks

CSC 352 Fall 2015, Unix Slide 91

Create an empty Hello.java 1in 352 directory
Using a right-click, create a 352 directory (folder) if needed.

[NN ¢ stdntwm@lec.cs.arizona.edu — SFTP Unregistered
’S ‘
VAN

8, 8 =09 =

Open Connection Quick Connect Action Refresh Edit Disconnect
m, <« » /p2/hs/stdntwm B s Q
Filename ~ Size Modified
> 337 -- 8/19/15, 2:03 AM
> 352 -- Today, 2:47 AM
> 372 -- 5/2/15, 5:50 PM
> Desktop -- 2/2/15, 11:38 AM
> work -- 4/29/15, 3:22 PM
5 Files

Navigate to 352 and use a right-click or cmd-F to make Hello.java, an empty file.

[NON ¢ stdntwme@lec.cs.arizona.edu — SFTP Unregistered)
\ PAN
8 CREY BOX a
Open Connection Quick Connect Action Refresh Edit Disconnect
m, <« » /p2/hs/stdntwm/352 B s Q
Filename ~ Size Modified
@ Hello.java 0 B Today, 3:31 AM
0 Files

CSC 352 Fall 2015, Unix Slide 92

Open Hello.java with an editor on your Mac

With a right-click I'll indicate that I want to remotely edit the just-created
and empty Hello.java on lectura using Sublime on my Mac.

[NON ¢ stdntwm@lec.cs.arizona.edu — SFTP Unregistered
) 3 ¥ B =
Open Connection Quick Connect Action Refresh Edit Disconnect
(A < > /p2/hs/stdntwm/352 A Q
Filename ~ Size Modified
Refresh #R
Info 3B
- © Quick Look Space
Edit With > ¥§ Aquamacs
Rename... W Xcode
DURICE D Sublime Text2 38K
Download 4.
1 Files

L Download As... {1l &
T oownioad To.. ————
Note: I needed to use Preferences and add Sublime as a default to make it
appear alongside Aquamacs and Xcode.

CSC 352 Fall 2015, Unix Slide 93

Code up Hello with Sublime
Sublime now opens up with a empty window for Hello.java.
® @O " Hello.java UNREGISTERED

OPEN FILES
[]

Hello.java

|

Line 1, Column 1 Tab Size: 4

I'll write some code. Whenever I hit Save, the contents of the buffer will be

written to /home/stdntwm/352/Hello.java on lectura. Here's the final result:
“ Hello.java UNREGISTERED

Hello.java

Hello {
void main(Stringl[] args) {
System.out.println("Hello, world!");

Saved /private/var/folders/vl/106w59sn607__4qwf_tf7Ifh0000gs/T/2e194d91-1362-4b2f-b8aa-9cc97dc05bf0/p2/hs/stdntwm/352/Hello.java (UTF

Note the long path (/private/...) where Sublime saved Hello.java. Whenever

Cyberduck sees a change in that file, it's copied to 352/Hello.java on lectura.
CSC 352 Fall 2015, Unix Slide 94

Compile and run Hello.java on lectura

After saving on the Mac, I can switch to a Terminal window where
I've used ssh to login on lectura, cd to my 352 directory, and
compile and run Hello.java:

© @) lectura (53,11)

stdntwm@lectura:~$ cd 352
stdntwn@lectura:~/352% cat Hello.java
public class Hello {
public static void main(String args[]) {
System.out.println("Hello, world!");

}

¥
stdntwm@lectura:~/352% javac Hello.java

stdntwm@lectura:~/352% java Hello
Hello, world!
stdntwm@lectura:~/352$ |}

The big picture: I can use Cyberduck to open a file that resides on lectura
and edit it using my favorite Mac editor.

CSC 352 Fall 2015, Unix Slide 95

Remote editing with Flow
(for Mac users)

CSC 352 Fall 2015, Unix Slide 96

Remote editing with Flow

I include this section in case you don't like Cyberduck. Flow costs $4.99.

When you start Flow you'll get a connect dialog:

00 Flow

©) r 4 $ Q Bookmarks
Connect View Refresh Quick Look Open URL Edit Move Search

SHARED
Connect
BOOKMARKS

2 (1ol SFTP

Server

Username:

Password: «

it ot [
ror:. EZSN

€ Transters
+- H- W

Leave the Protocol as SFTP and the port as 22. If you don't specify an
Initial Path you'll start in your home directory. For this demo, I'm logging
into my student test account, stdntwm.

CSC 352 Fall 2015, Unix Slide 97

Remote editing with Flow, continued
Once logged in, I see this:

0@ lec.cs.arizona.edu - stdntwm
o = E ¢ o o P, ~ Q Files/Folders
Disconnect View Refresh Quick Look Open URL Edit Move Search

» [files B 337 >
= flow-connect.png B 352 4
had352 1372 3
"= intro.pptx .| Desktop >
» B java ! work >

= mac-ssh-lectura.png
meeting.20150824.notes
meeting.20150824.notes
open.notes

outline.notes

piazza.notes

> Bl pics
= putty-download.png

& putty-lectura.png NOthlng Selected

= nuth.euetam.mani nno

@Transfers
352 v |/ | p2 | hs | stdntwm

My Mac folders are on the left but I don't care about them. I simply want to
create a file named Hello.java in my 352 directory on lectura, which is the second
of the five directories shown on the right. I double-click 352.

Note: The breadcrumbs at the bottom show that my lectura home directory is

/p2/hs/stdntwm, but another name for it is /home/stdntwm.
CSC 352 Fall 2015, Unix Slide 98

Remote editing with Flow, continued
A right-click in the empty pane on the left brings up a dialog that I'll use to create
a new file, Hello.java, that will reside on lectura.

| NN lec.cs.arizona.edu - 352
) = E ¢ O [5) P > Q Files/Folders
Disconnect View Refresh Quick Look Open URL Edit Move Search

» [files

B loNsCconectpd New Folder... 28N

had352

=1 intro.pptx

» ' java

= mac-ssh-lectura.png
meeting.20150824.notes
meeting.20150824.notes Toggle Info &l
meeting.20150824.notes nam
meeting.20150824.notes

open.notes

outline.notes

piazza.notes Dl ge Selected

Transfers

B 352 v il lll|=m/) p2)m hs)W stdntwm) 352

=

Note that the breadcrumbs show I'm now in my 352 directory on lectura.

CSC 352 Fall 2015, Unix Slide 99

Remote editing with Flow, continued
With a right-click on Hello.java I'll indicate that I want to edit it with Aquamacs

on my Mac.
o0@ lec.cs.arizona.edu - 352]
(] = E @] © o V4 > Q Files/Folders
Disconnect View Refresh Quick Look Open URL Edit Move Search
> I files

Y B Hello. New Folder... O %N

N\ Bowlonoedinnng New File... &N

s fow-newie g % Flow
had352

"= intro.pptx Copy Web URL X 3#C & Aquamacs

> B java Open Web URL In Browser W Xcode

= mac-ssh-lectura.png Toggle Info 38| Other...
meeting.20150824.notes Rename... b
meeting.20150824.notes Move...
meeting.20150824.notes Duplicate
meeting.20150824.notes Download
meeting.20150824.notes A i Delete... : ¥eiModified: August 19, 2015 at 2:...
open.notes Kind: Java Source File Permissions: rw-r--r--
nutline nntas = Size: 0 bytes

@ Transfers
B 352 v @B Il|m/)M p2) hs)@w stdntwm) 352

CSC 352 Fall 2015, Unix Slide 100

Remote editing with Flow, continued
Aquamacs now opens up with a buffer for Hello.java.

“ Hello.java

o0 e
U HO o= p (@ N 0O« VN 7

New Open Recent Save Print Undo Redo Cut Copy Paste Search Preferences Help

-:--- Hello.java All (1,0) (Fundamental)

I'll write some code. Whenever I hit Save, the contents of the buffer will be
written to /home/stdntwm/352/Hello.java on lectura. Here's the final result:

@] O “| Hello.java

(1) [l - — \
BIEECE=R O es OW VAN 7/
New Open Recent Save Print Undo Redo Cut Copy Paste Search Preferences Help
public class Hello {

public static void main(String args[]) {
System.out.println("Hello, world!");

}

' U:--- Hellojava All(6,0) (Fundamental)

CSC 352 Fall 2015, Unix Slide 101

Remote editing with Flow, continued

After saving on the Mac, I can switch to a Terminal window where
I've used ssh to login on lectura, cd to my 352 directory, and
compile and run Hello.java:

© @) lectura (53,11)

stdntwm@lectura:~$ cd 352
stdntwn@lectura:~/352% cat Hello.java
public class Hello {
public static void main(String args[]) {
System.out.println("Hello, world!");

}

¥
stdntwm@lectura:~/352% javac Hello.java

stdntwm@lectura:~/352% java Hello
Hello, world!
stdntwm@lectura:~/352$ |}

The big picture: I can use Flow to open a file that resides on lectura and
edit it using my favorite Mac editor.

CSC 352 Fall 2015, Unix Slide 102

Files, directories and paths

CSC 352 Fall 2015, Unix Slide 103

File systems

A UNIX machine stores data and provides access to it using one or more file
systems.

There are many different types of UNIX file systems.

Some file systems maintain a data structure stored on a permanent
medium such as a rotating disk or an SSD (solid-state drive).

Other file systems are essentially protocols for accessing files over a
network.

The files associated with your CS account are stored on a server that uses
the ZFS filesystem. (See https://en.wikipedia.org/wiki/ZFS)

A ZFS filesystem can hold about 281 quadrillion files, with a total
capacity of about 3x10% bytes.

Lectura accesses the files on ZFS servers using NFS (Network File
System).

CSC 352 Fall 2015, Unix Slide 104

Directories

No matter what type of file system 1s being used, UNIX users see a tree of
directories. Here's a tiny portion of the tree we see on lectura:

"root"

/Nme

bin etc
bash ||date || hosts | passwd

whm

352

Directories are said to have entries. How many entries do each of the directories

above have?

Directory entries reference "files" but a "file" can be one of many things: a

regular file, directory, special file, named pipe, socket, or symbolic link. Regular
files are shown boxed above; the other entries are directories.

The term "directory"” is synonymous with "folder", but we'll prefer "directory".

CSC 352 Fall 2015, Unix Slide 105

Directory entries

Let's assume we're 1n an empty directory, like 352 on the previous slide.
Let's make two zero-length files using touch.
% touch one two

The 1s ("LS") command lists the entries that are in a directory.
5 1ls
one two

Let's now use mkdir to make an empty directory, d1.
% mkdir dl

The —F option of 1s causes directory names to be shown with a /:
5 1ls -F
dl/ one two

CSC 352 Fall 2015, Unix Slide 106

Directory entries, continued

We can also use the =1 ("L") option of 1s to distinguish directories:

$ 1ls -1
total 3

drwxrwxr—-x 2 whm whm 2 Aug 25 19:07 dl
—rw-rw-r—-— 1 whm whm 0 Aug 25 19:05 one
—rw-rw-r—-— 1 whm whm 0 Aug 25 19:05 two

"total 3" shows that three blocks of disk space are used by these entries. '/
sometimes not show this line, to save space.

n_n

The "d" in the first column indicates that d1 is a directory; the shows that

one and two are regular files.

1s -1 shows other metadata (data about data) for the three entries, too:
* The rw. .. string shows permissions (soon...)
* The second column 1s the /ink count (later...)
e The next two columns (whm whm) show user and group ownership (later...)
* Following the ownerships is the file size, for the regular files.

* The date and time of the last modification are shown.
CSC 352 Fall 2015, Unix Slide 107

Sidebar: Entry names

There is a single set of rules for valid entry names for all types of entries.
Here are two simple rules for entry names:
» All ASCII characters except NUL (all bits zero) and / (slash) can be used.

* The maximum length is platform-dependent; it's 255 on lectura.

Here are some valid entry names, three per line:

Hello.java a.out core
.bashrc a.b.c.d. LR#SSNE* () —+=
:) \ A\

Here are two more entry names, one per line.
A collection of assorted(!) notes about UNIX
(three blanks and two tabs!)

CSC 352 Fall 2015, Unix Slide 108

Entry names, continued

In classic UNIX, and on lectura, entry names are case-sensitive. For example,
hello.java and Hello. java name two different files.

Some file systems are case-insensitive; some are case-configurable.

If a filename contains shell metacharacters or whitespace characters, the
characters must be often be escaped when the file 1s specified on the command
line:
$ we -c '[123]' Version\ 2 'This|That'

359 [123]

688 Version 2

417 This|That

1404 total

Due to the word-oriented nature of command-line parsing, entry names with
whitespace cause a lot of headaches, especially in shell scripts. Programmers
often avoid putting blanks and other problematic characters in entry names.

CSC 352 Fall 2015, Unix Slide 109

Current working directory

Every UNIX process (a running program) has a current working directory.

A very strong convention 1s that when a program operand specifies the name of a
file, the file 1s assumed to be in the current working directory.

When we ran "touch one two" earlier, we were saying "Touch files one and
two in the current working directory."

When we ran "mkdir d1", we were saying, "Make a directory d1 in the current
working directory."

How i1s the current working directory used by following command?

o)

% Java lc < words.txt > count

1) bash opens words . txt and count in the current working directory and
passes those streams to java as standard input and standard output.
2) javareads 1c.class in the current working directory and runs it.

Note: "current working directory" is often shortened to either "current directory"

or "working directory".
CSC 352 Fall 2015, Unix Slide 110

Current working directory, continued

Like all other processes, bash has a current working directory, too.

When bash starts a program, like touch, mkdir, or java, the process
inherits bash's current working directory.

cd 1s a builtin command of bash:

o)

s type cd
cd 1s a shell builtin

cd changes the working directory of bash. Let's try it:
5 1ls -F

dl/ one two Here's what happened: | |
* cd changed the working directory of bash to d1.
> od dl * bashran 1s, and 1s mnherited d1 as its c.w.d.
* Since d1 1s empy, 1 s shows no entries.
5 1s Key question: Why must cd be abuiltin?
If cd were a program, changing its c.w.d. would
have no effect on the c.w.d. of bash!

o©

CSC 352 Fall 2015, Unix Slide 111

Current working directory, continued

Let's do some things in my 352 directory.

$ ls -F
dl/ one two

o\©

cd dl

o\©°

1ls

o\©°

cal > cal.out

o\©°

mkdir notes

$ 1ls -F
cal.out notes/

352

dl)one two

cal.out | notes

CSC 352 Fall 2015, Unix Slide 112

. . ("dot dot")

1s -1 doesn't tell the whole truth. Let's add —a, which shows "hidden"
entries, too. Recall that our working directory is d1.

$ 1ls -la
total 8

drwxrwxr—-x
drwxrwxr—-x
—rw—rw—-r-—-
drwxrwxr—-x

whm whm 4 Aug 26 23:22

whm whm 5 Aug 25 19:14 ..

whm whm 188 Aug 26 23:21 cal.out
whm whm 2 Aug 26 23:22 notes

N P W W

By definition, "hidden" entries are entries that start with a dot.

The entry . . ("dot dot") is the parent directory of d1. We can use it to go
up a level.
5 cd

$ 1ls -F
dl/ one two

CSC 352 Fall 2015, Unix Slide 113

Examining entries with 1s

We can specify one or more directory entries as operands for 1s.

o)

$ l1ls -1 one two

-rw-rw-r--— 1 whm whm 0 Aug 25 19:05 one

—rw—rw—r—— 1 whm

$ 1ls -la dl
total 8

drwxrwxr—-x 3 whm
drwxrwxr—-x 3 whm
-rw—-rw—-r—--— 1 whm
drwxrwxr—-x 2 whm
% cd dl

s 1s -1

total 3

drwxrwxr—-x 3 whm
-rw-rw—-r—-- 1 whm
—-rw-rw—-r—--— 1 whm

whm

whm
whm
whm
whm

whm
whm
whm

0 Aug 25 19:05 two

4 Aug 26 23:28
5 Aug 25 19:14 ..

188 Aug 26 23:21 cal.out
2 Aug 26 23:28 notes

4 Aug 26 23:28 dl
0 Aug 25 19:05 one
0 Aug 25 19:05 two

CSC 352 Fall 2015, Unix Slide 114

Paths

Instead of giving 1s an entry, we can give it a path to an entry. Example:

$ 1ls
dl one two

$ 1s -1 dl/cal.out
-rw-rw-r—-- 1 whm whm 188 Aug 26 23:21 dl/cal.out

A series of directory entries separated by slashes is called a path.

Almost all programs accept paths for file or directory operands.
$ mkdir dl/notes/langs dl/notes/platforms

% cat dl/cal.out $ ed dl/notes
August 2015

% touch langs/java

CSC 352 Fall 2015, Unix Slide 115

Paths, continued

We can find out where we are with pwd (print working directory).

% pwd
/home/whm/352

The path printed by pwd shows that we're in the 352 directory in the whm
directory in the home directory of the "root" directory.

A directory 1n a directory 1s often called a subdirectory. 352 is a subdirectory of
whm. whm is a subdirectory of home.

Let's ascend to the root. To save space we'll use a semicolon to put two
commands on the same command line.
s cd ..; pwd

/home/whm

5 cd ..; pwd
/home

s ecd ..; pwd
/

CSC 352 Fall 2015, Unix Slide 116

Paths, continued

Let's see what's in the root of the file system.

% pwd

/

% 1ls -F

bin/ extensions/ local/ scratch/
boot/ gems/ lost+found/ selinux/
build/ home / media/ specifications/
build info/ homeauto/ mnt/ srv/

cache/ initrd.img@ opt/ sys/

cdrom/ initrd.img.o0ld@ pl/ tmp/

cs/ lhome/ P2/ usr/

dev/ lib/ proc/ var/

doc/ 1ib32/ root/ vmlinuz@
etc/ lib64/ run/ vmlinuz.old@
etc-lec/ libnss3.sod@ sbin/

We see mostly directories and a few symbolic links (the @'s).

CSC 352 Fall 2015, Unix Slide 117

Paths, continued

With "root" as our current directory, let's use £ ind to show paths to all the
files and directories in my 352 directory.

% f£ind home/whm/352

home/whm/352

home/whm/352/two

home/whm/352/d1
home/whm/352/d1l/notes
home/whm/352/d1l/notes/platforms
home/whm/352/d1l/notes/langs
home/whm/352/d1/notes/langs/java
home/whm/352/d1/cal.out
home/whm/352/one

CSC 352 Fall 2015, Unix Slide 118

Here's the current tree.

"root"

home

|

whm

352

]

Paths, continued

dl one

Two

% find home/whm/352

home/whm/352

home/whm/352/two

home/whm/352/d1
home/whm/352/dl/notes
home/whm/352/dl/notes/platforms
home/whm/352/dl/notes/langs
home/whm/352/d1l/notes/langs/java
home/whm/352/d1/cal.out
home/whm/352/one

_—

cal.out | notes

/\

platforms langs

Jjava

Exercise: Using the £1ind output, draw the
tree from scratch.

If you've had data structures...Is find performing
a pre-order, in-order, or post-order traversal?

CSC 352 Fall 2015, Unix Slide 119

A bigger picture

Let's add some other files and directories referenced in these slides.

"root"

etc

/ l //\\\\ hosts | passwd

WWW whm |bash | date
classes 352
cs352 dl one two
/ /\
fallls cal.out | notes
I /\
Jjava platforms langs

i |

lc.java | args.java java

CSC 352 Fall 2015, Unix Slide 120

Let's try some problems with this tree:

If we're in work, howcanI cd to ...
3527

Navigation with paths
352

@ one TwO @
—

cd

cal.out | notes

dl?
cd ../d1l platforms) langs
langs? l

cd ../dl/notes/langs

java

Ifinplatforms,howcanl cat...
cal.out?
cat ../../cal.out
javar
cat ../langs/java
two?

cat ../../../two

If in d1, which of these work?
cd ../dl
cat dl/cal.out
cat ../../two
cd notes/langs/java
cd notes/platforms/..
cd langs/notes

CSC 352 Fall 2015, Unix Slide 121

Practice!

Exercise:
 Draw a small tree with nine directories and five files.

Using mkdir and touch, create the tree.
Instead of touch, you might use echo to provide a little file content:

o)

5 echo This is x.java > x.java

* Write and solve seven navigation problems like on the previous slide.

 Try find (no arguments) and 1s -1aR at various points in the tree.

* Experiment with TAB completion to build a path piece by piece. Work
through your navigation problems one directory at a time, using TAB

completion to look around.

Handy: "cd -" goes back to the last directory you were in.

CSC 352 Fall 2015, Unix Slide 122

The cp command

The cp command copies files and directories. A simple case 1s a file to
file copy:
% cp List.java List.java.bak

If List.java.bak already exists, it 1s silently overwritten.

Paths can be used with cp:
$ cp ../cal.out langs/x

cp can copy whole trees:
$ cp -r notes/langs langs.bak

CSC 352 Fall 2015, Unix Slide 123

The cp command, continued

This SYNOPSIS from the cp man page shows another way to use cp:
cp [OPTION]... FILEl FILEZ ... FILEN DIRECTORY
[OPTION] ... indicates that cp accepts some options.

The all-caps strings like FILE1 and DIRECTORY are placeholders that
describe what's expected.

Speculate: What does this synopsis tell us about a possible way to use cp?
cp can copy any number of files specified on the command line into a
specified directory.

Let's copy three files to . . /work. They'll retain their names.
cp cal.out ../one ../two ../work
ls ../work

cal.out one two

o® o\

CSC 352 Fall 2015, Unix Slide 124

Practical problem

Problem: I want to copy . ./t-e9c3dc762.xml into my current
directory, 352 /d1.

Bad solution--just hammer 1t out (error prone and not DRY!):
cp ../t-e9c3dc762.xml t-e9c3dc762.xml

Here's a creative answer:
cp ../t-e9c3dc762.xml ../dl

We could use filename completion with TABs:
cp ../t-TAB ../t-TAB
producing
cp ../t-e9c3dc762.xml ../t-e9c3dc762.xml
Then use command-line editing to remove . . / from the second path:
cp ../t-e9c3dc762.xml t-e9c3dc762.xml

But there's a better way!

CSC 352 Fall 2015, Unix Slide 125

Practical problem, continued

Recall that along with "dot dot", 1s —1a shows "dot":

% 1s -la

drwxrwxr-x 3 whm whm 5 Aug 28 09:20

drwxrwxr-x 4 whm whm 7 Aug 28 09:30

—-rw—rw—-r—-— 1 whm whm 188 Aug 26 23:21 cal.out
..more. ..

The hidden entry . ("dot") is the current directory. We can do this:

cp ../t-e9c3dc762.xml

We've seen dot earlier, too:

find . -type £ -mtime -2 -size +1lk
cp /cs/www/classes/cs352/falll5/java/args.java
./ucount

What do these commands do?

cd .
cd ././.
cd ./.././../---

CSC 352 Fall 2015, Unix Slide 126

Relative vs. absolute paths

Here are some examples of a relative path:
X.java
352 /ucount
./out
VAR AN
etc/passwd
./etc/passwd

Here are some examples of an absolute path:
/home/whm/x.java
/Users/whm/352/ucount

/out
/etc/../bin
/etc/passwd
/home

/cs/www/classes/cs352/falll5/syllabus.pdf
/ .

What do the absolute paths have in common?
They start with a slash.

CSC 352 Fall 2015, Unix Slide 127

Relative vs. absolute paths, continued
Two simple rules:

Any path that starts with a slash 1s an absolute path.
If a path doesn't start with a slash, it is a relative path.

Relative or absolute?
X.Jjava
./ /X
/home/whm/x.java
352 /ucount
./etc/passwd
/etc/passwd

CSC 352 Fall 2015, Unix Slide 128

Relative vs. absolute paths

When the UNIX kernel opens a file specified by an absolute path, it starts
at the root of the file system and then works through the path one entry at
a time.

If I execute this Java expression,

new FileReader ("/home/whm/352/x")
the system...

@ Looks in the root (/) for home, then...

@ Looks in home for whm, then...

@ Looks in whm for 352, then...

@ Looksin 352 for x

How would the steps differ for the following?
new FileReader ("home/whm/352/x")

The system...
@ Looks in the current working directory for home, then...
Steps 2-4 are the same!

CSC 352 Fall 2015, Unix Slide 129

Relative vs. absolute paths

What's a key benefit of absolute paths?
Absolute paths work no matter what your current directory is.

What's a key element that relative paths depend on?
The concept of a current directory.
(Without a current directory, there's nothing to be relative to!)

What are key benefits of relative paths?
Brevity:
If I'm in /home/whm/352 I can say cat java/lc.java.
Location independence for programs using them.
Imagine many identically structured trees holding test results.

An analyzer might cd into each tree in Cestl97 test3zl

turn and analyze a/x, b/y, and c/ z. SN SN

LLI]

| |

a
Most of the path stuff, including . and . . has .
worked on all Microsoft operating systems. X

vilz| | x||y]|l|z

CSC 352 Fall 2015, Unix Slide 130

Your home directory

The sixth field of your /etc/passwd entry specifies the path to your
home directory. Here's my entry:

% fgrep whm: /etc/passwd
whm:x:3086:8086:William H. Mitchell:/home/whm:/bin/bash

Whenever you login to lectura, your current directory is set to your home
directory.

If cd 1s run with no arguments, it takes you to your home directory.
s pwd
/home/whm/352/a2

o\©

cd

s pwd
/home/whm

Doman -s 5 passwd for a description of the /etc/passwd fields.

CSC 352 Fall 2015, Unix Slide 131

Tilde expansion

bash expands ~/ in a command line to the absolute path of your home directory.

% echo ~/352/d1l
/home/whm/352/d1

% ed ~/info

o)

% pwd
/home/whm/info

% cat ~/3bin/lec-mpage

Tilde expansion saves some typing but what's another benefit?

Scripts can use ~ to keep paths system-independent.
On my Mac, ~ is /Users/whm but a script using ~/1ib/x works on
both my Mac and lectura.

Is ~/11ib/x an absolute path or a relative path?

CSC 352 Fall 2015, Unix Slide 132

Tilde expansion, continued

It's important to understand that tilde expansion is done by bash (evidenced by
echo), not the operating system.

Library routines typically do not do tilde expansion. Let's try Ruby:
% 1irb
>> open (" /home/whm/x")
=> #<File:/home/whm/x>
>> open ("~/x")
Errno: :ENOENT: No such file or directory - ~/x

Some programs recognize ~/ as being a shorthand for your home directory.
In Vim things like :vi ~/xand :r ~/352/notes work.

Emacs handles paths like ~/x. In Emacs Lisp, (find-file "~/x") works.

Some (all?) file selection dialogs on OS X recognize ~/. (Do File>Open in some
app and type ~ or /, and you'll get a "Go to the folder:" slide-down.)

Try this: (use ~whm as shown, not your login name)
$ java args ~ ~whm /x/~y /x/~ ~mysql

CSC 352 Fall 2015, Unix Slide 133

Symbolic links

Motivation:
Test files for a2 arein /cs/www/classes/cs352/falllb/a2, but
that's a long path to type!

The a2 write-up says to do this,
$ ed ~/352/a2
$ 1ln -s /cs/www/classes/cs352/falll5/a2

then take a look at what 1 s shows: (output 1s split across lines)
5 1ls -1 a2
lrwxrwxrwx 1 whm whm 31 Aug 29 21:42 a2 ->
/cs/www/classes/cs352/falll5/az

That lowercase "L" at the start of the line indicates that a2 is a symbolic link,
often shortened to "symlink".

The a2 -> /cs/.../falll5/a2 indicates that a2 references (or "points
to") that entry.

The symlink, an entry in the current directory, was named a2 because the
destination, the second operand of 1n -s, was dot, the current directory.

CSC 352 Fall 2015, Unix Slide 134

Symbolic links, continued

Let's temporarily set the bash prompt to show the current working directory and
then see what's in a2.
$ PS1="\n\w & "

~/352/a2 % l1ls a2
amj-hints days.2 1sleap-hints timeline.txt
args.out delivs lengths.1 tomorrow-hints

The a2 symlink creates the 1llusion that 352 /a2 has an a2 subdirectory but in
fact we're looking at /cs/www/classes/cs352/falll5/a2!

~/352/a2 % 1ls /cs/www/classes/cs352/falll5/a2
amj—-hints days.Z2 1sleap-hints timeliline.txt
args.out delivs lengths.1 tomorrow-hints

It is very important to understand this:
~/352/a?2 1S /home/whm/352/a?2
~/352/a2/a2 1s/cs/www/classes/cs352/falllb/a2

CSC 352 Fall 2015, Unix Slide 135

Symbolic links, continued

At hand:
~/352/a2 % 1ls -1 a2
lrwxrwxrwx 1 whm whm 31 Aug 29 21:42 az ->
/cs/www/classes/cs352/falllb/a2

Filesin/cs/www/classes/cs352/falll5/a2 can now be
referenced concisely:

~/352/a2 % cat a2/rev.1

one

Ttwo

three

~/352/a2 % java rev < a2/rev.1l
eno

owt

eerht

The tester will assume the presence of an a2 symlink!

CSC 352 Fall 2015, Unix Slide 136

Symbolic links, continued
A symbolic link can reference any type of "file", including a regular file.

~/352/a2 % 1ln -s a2/lengths.l x

~/352/a2 $ 1s -1 x
lrwxrwxrwx 1 whm whm 12 Sep 1 17:34 x -> a2/lengths.l1

~/352/a2 % cat x
just

a

test

here

~/352/a2 % java lengths < x

=~ O B BB

CSC 352 Fall 2015, Unix Slide 137

Symbolic links, continued
Key point:
Symbolic links are handled by the operating system.

Benefit:

A program doesn't have to do anything special to follow a symlink to
its destination.

In 352/a2,new FileReader ("a2/days.1") works. The
F'ileReader constructor has no clue that a2 1s a symlink!

CSC 352 Fall 2015, Unix Slide 138

Sidebar: Windows shortcuts

I often describe a symlink as a "Windows shortcut done right."

I've made a Windows shortcut named 1 £ . txt
that references 1longFileName. txt. = o

I can open either with Explorer but watch what | (0 © - ¥ Oseann
type, the Windows analog of cat (1), does: |0 cievauntramettretessizse v [6o

i

C:>type longFileName. txt
Tue, Sep 01, 2015 5:50:25 PM

S

cyg;inlll

If a Windows program wants to handle shortcuts, it's got to have special
code to do it!

CSC 352 Fall 2015, Unix Slide 139

Symbolic links, continued

File-related utility programs often have special handling for symbolic
links.

One example 1s 1s, whose —L option says to "follow" the link.
~/352/a2 $ 1s -1 x
lrwxrwxrwx 1 whm whm 12 Sep 1 17:34 x -> a2/

lengths.1

~/352/a2 % 1ls -1lL x
—rw—-r—-—-r—-—- 1 whm whm 18 Aug 29 21:21 x

~/352/a2 % 1ls -1 a2/lengths.1
-rw-r—--r-- 1 whm whm 18 Aug 29 21:21 a2/lengths.1

Try 1s -1 /usr/share/dict/words. Tryitagain with -1L.

CSC 352 Fall 2015, Unix Slide 140

Symbolic links

I've got a lot of symbolic links. Here are some on my Mac:

% 1s -1 /w
lrwxr-xr-x 1 root wheel 9 Jun 7 2013 /w -> Users/whm

%ls-1/e
Irwxr-xr-x 1 whm admin 11 Dec 9 2009 /e -> /Volumes/e/

% 1s -1 ~/352/files/unix.pptx
lrwxr-xr-x 1 whm staff 18 Aug 23 17:45 /Users/whm/352/files/

unix.pptx -> ../unix-clean.pptx

% 1s -1 ~/3bin
lrwxr-xr-x 1 whm staff 10 Sep 16 2013 /Users/whm/3bin ->
src/337bin

Cygwin:
%ls-1/c
lrwxrwxrwx 1 TheBoss None 11 Jun 3 2010 /¢ -> /cygdrive/c

lectura:
% 1s -1 ~/www
lrwxrwxrwx 1 whm dept 18 Aug 20 2009 /home/whm/www ->

/cs/www/people/whm o
CSC 352 Fall 2015, Unix Slide 141

The mv command

The mv ("move") command can be used to rename files or move files from
one directory to another.

Let's rename users to usercount:
$ mv users usercount

If mv's destination file already exists, it 1s silently overwritten unless -1 1s
specified.

Directories can be renamed, too:
s mv 352 csc352

If mv's last argument is a directory, the preceding entries (arguments) are
moved into that directory.
$ mv x y pl/notes.txt java/test.java ~
$ mv ~/test.java ~/notes. txt
(Note that . is used for destination--"move them here".)

©)

To rename (not move!) many files at once, see rename (1).

CSC 352 Fall 2015, Unix Slide 142

Odds and ends

Here are some handy options for 1s:

-t Sort by modification time instead of alphabetically.

-h Show sizes with human-readable units like K, M, and G.

-r Reverse the order of the sort.

-S Sort by file size

-d By default, when an argument 1s a directory, 1 s operates on the
entries contained in that directory. —d says to operate on the
directory itself. Try"1ls -1 . "and"1ls -1d ."

-—full-time
Show times with full resolution.

Two handy options for cp:
-r Recursively copy an entire directory tree
-p Preserve file permissions, ownerships, and timestamps
cp -rp ~/352 ~/352.bak.20150901

-L "Follow" symbolic links.

CSC 352 Fall 2015, Unix Slide 143

Deleting files and directories

The rm (remove) command 1s used to permanently delete one or more files:
% rm tmp.out Hello.java.old a b c

To remove a directory, use rmdir.

o)

$ rmdir x

A directory must be empty before it can be removed with rmdir, but rm's —-r
(recursive) option can be used to remove a directory and all its contents.

$ mkdir -p y/z

% rmdir y

rmdir: y: File exists

The -1 option of rm causes a prompt before a file is removed.

The - £ option forces removal of read-only files. It also suppresses warnings
about non-existent files.

See http://cs.arizona.edu/computing/accounts/snapshots.html for a
description of a facility that allows recovery of files. (ZFS facility.)

CSC 352 Fall 2015, Unix Slide 144

bash Customizations and
Conveniences

CSC 352 Fall 2015, Unix Slide 145

Sidebar: Programs and processes

The executable code and literal data for a program is held in a file.
% 1ls -1 /bin/bash /bin/date /bin/1ls
-rwxr—-xr—-x 1 root wheel 959120 Oct 7 2014 /bin/bash
-rwxr—-xr-x 1 root wheel 59984 Jan 13 2015 /bin/date
-rwxr—-xr-x 1 root wheel 105840 Jan 13 2015 /bin/1ls

When we run a program with bash, the program code and literal data are loaded
into memory, and execution of the code begins.

A running copy of a program is a called a process.

We can say a process is an instance of a program.

A program can be likened to a Java class: both contain code and constant data.
Starting a process 1s somewhat like calling the constructor of a Java class. In both
cases we end up with an in-memory entity that contains code and data.

An object is an instance of a class.
A process 1s an instance of a program.

CSC 352 Fall 2015, Unix Slide 146

Good news and bad news

Good news:

The behavior of bash can be customized by putting commands in the
initialization files that bash reads.

Bad news:
Several files and rules are involved.

The initialization files present and their conents vary from user to user
based on when the CS account was created.

We'll first talk about the mechanics of bash's initialization files and then
look at types of things we might add to initialization files.

Anything that's valid at the bash prompt can appear in an initialization file
and vice-versa. In other words, initialization files simply contain a
sequence of bash commands.

CSC 352 Fall 2015, Unix Slide 147

The rules (simplified), and my practice

If bash is specified as your shell in /etc/passwd and you login, the instance of
bash that's started is said to be a login shell.

When bash is started as a login shell it first reads /etc/profile. It then looks
for three files in turn: ~/ .bash profile,~/.bash login,and

~/ .profile. Upon finding one, it executes the commands in that file and
doesn't look any further.

Sometimes you'll want to start another instance of bash from the bash prompt:
bash

o\° o©

Such an instance of bash is an "interactive non-login shell". It reads /etc/
bash.bashrcand ~/.bashrc.

My practice:
(1) ~/ .profile has a single line, which loads ~/ .bashrc.
(2) All my customizations are in ~/ .bashrc.

CSC 352 Fall 2015, Unix Slide 148

Creating a "starter" bash configuration

Note: This procedure 1s for students who have done no customization of their bash
startup files on lectura.

Use cd with no arguments to go to your home directory.
Confirm that you've got .profile but not .bash_profile or .bash_login
Make a directory bashoriginals and move (mv) .profile and .bashrc into it.

Create .profile and put one line in it:
source ~/.bashrc

Create .bashrc and put these lines in it: (Details on all will follow.)
PS1="\w % "

PATH=$PATH:~/bin When making major changes to my
alias 11="1s -1" bash 1nitialization files, I usually log
alias restart="source ~/.bashrc" out and back in, to check for errors.

We'll learn about the commands in the following slides.

CSC 352 Fall 2015, Unix Slide 149

Shell variables

bash supports variables that hold values of various types, including integers and
arrays but we'll focus on string-valued variables, which are the default.

bash variables have four common uses:
* Specification of various bash behaviors
* Access to information maintained by bash
* Command line convenience variables
* Use as a conventional variable for programming (later, maybe)

The variable PS1 falls in the first category. Its value specifies the primary bash
prompt. We set it in our simple .bashrc:
PS1="\w % "

If we assign a value to PS1, the next prompt reflects it:
~ % PS1="What now, master? "
What now, master? PS1="C:>"

C:>

Search for PROMPTING on the bash man page to see the various escape codes
that are recognized, like \w. There's PS2, PS3, and PS4, too!

CSC 352 Fall 2015, Unix Slide 150

Variables that control bash behavior

Here's a sampling of other variables that control bash's behavior:

FIGNORE=.class: .o
When doing TAB completion of file names, ignore file names with
the suffixes .classand .o

HISTSIZE=5000
HISTTIMEFORMAT="%Ysm%sd-%H:3M:%S: '
The number of commands shown by history, and how their
times are formatted. (See man strftime for the recognized
time formatting specifiers.)

PROMPT COMMAND

The name of a command to execute before the PS1 prompt is
printed.

CSC 352 Fall 2015, Unix Slide 151

Variables that make information available
bash makes a variety of current shell-centric information available as
variables. Two simple ones are PWD and OLDPWD.

Variables are accessed by prefixing their name with a dollar sign:
% echo $PWD
/home/whm/352

Practical example with OLDPWD:
s pwd
~/src/ruby/examples
$ ed ~/work
$ cp SOLDPWD/fbscores.rb
Another 1s RANDOM:

% echo SRANDOM S$RANDOM SRANDOM
719477 2776606 7603

CSC 352 Fall 2015, Unix Slide 152

Command line convenience variables
Let's add three more lines to our simple .bashrc: (no spaces around '='"!)
f352=/cs/www/classes/cs352/falllb
a2=$£f352/a?2 # concatenation!
mya2=~/352/a2

We'll reload our .bashrc with our restart alias and then check variables.
restart

echo $£352

/www/classes/cs352/falllb

echo $a2

/www/classes/cs352/falll5/az2

echo S$mya2

/home/stdntwm/352/a2

4

~ 0 N

Q

Q
o N o° U o oo

~

Let's run the a2 Tester:

o)

~ % cd $mya2
~/352/a2 % $a2/tester eval

The scope of a (non-exported) variable is the bash instance in which it's created.
CSC 352 Fall 2015, Unix Slide 153

The search path for commands (PATH)

Your PATH variable specifies the directories that are to be searched when
you run a command.
% echo S$PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/
bin:/sbin:/bin:/usr/games:/usr/local/rvm/bin:/
home/stdntwm/bin

% echo SPATH | tr : " " | wec -w

O

If I type "xyz" at the prompt, bash will search each of those nine
directories in turn for an executable file named xyz. If it finds an xyz, it
will run it, and look no further.

What's a key benefit of being able to specify a search path for commands?
[can specify additional sets of commands to run!

What does the last path entry specify?

CSC 352 Fall 2015, Unix Slide 154

PATH, continued

At hand: (the command search path for my student account)
% echo $PATH
...various system "bins"...: /home/stdntwm/bin

A common convention is to put your own commands in ~/bin.

Some programmers have more than one "bin".
3bin c¢cbin ebin mbin ggbin winbin
bin cwbin Jbin gbin sbin
(732 commands 1n those)

Speculate: Does running "a2 /tester" involve the search path?
No. Ifthere's a / in the command, it simply runs that file.
Another example: . /x

CSC 352 Fall 2015, Unix Slide 155

Setting the path in ~/ .bashrc.

Here's a line from the "starter" ~/ .bashrc. What's it doing?
PATH=$PATH:~/bin
Append " : ~/bin'" to whatever PATH already is.

Java analog:
PATH = PATH + ":~/bin";

When bash starts up, PATH gets set to a system-specific value.

The net effect of PATH=$PATH: ~/bin is "If you don't find a command 1in the
standard directories on this system, look in my bin."

The truth: With our starter .bashrc you'll see this:
% echo S$PATH
/usr/local/rvm/gems/ruby-1.9.3-p484/bin:/usr/local/
rvm/gems/ruby-1.9.3-p484@global/bin:/usr/local/rvm/
rubies/ruby-1.9.3-p484/bin:/usr/local/sbin:/usr/
local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/
usr/local/rvm/bin:/home/stdntwm/bin

CSC 352 Fall 2015, Unix Slide 156

Dot danger!
Some programmers have "dot" in their search path (PATH=...:.) so that a script x

in the current directory can be run with "x" instead of ". /x".

"Dot in the path" can be convenient but imagine...
» Instead of typing 1s you accidentally typed s1.
* You happened to be in a "world-writable" directory like / tmp.
* A malicious student has put this in /tmp/s1:
chmod o+rwx ~
...or maybe this:
rm -rf ~/ & "&" runs a command "in the background"

In the first case, they've gained access to your home directory!
In the second case, deletion of all your CS account files is in progress!
But the above 1s a combination of a bad guy, a bad neighborhood and a boo-boo!

Is it stupid to have dot in your path?

CSC 352 Fall 2015, Unix Slide 157

Dot danger, continued

Like with any risk, you need to weigh risk vs. convenience.
If you're developing a lot of scripts, not having to type . /x is convenient.

But if you're developing in one place, like ~/352 /a2, you could just put ~/
352 /a2 in your path temporarily.

I have a number of directory-specific scripts, like "rst", short for "rsync this
directory" butl alias rst="./rst".

Having dot in your path on your personal machine might seem perfectly safe but
imagine you're simply navigating a tree of data files from a trusted colleague
who's not security-saavy.

My recommendation:
Don't put dot in your path on lectura! Be cautious even on your own machine.

BIG PITFALL: An empty entry is considered to be "dot"! How many are below?
PATH:@usr/local /bin@/usr/bin : ~/bir®

CSC 352 Fall 2015, Unix Slide 158

Aliases
Here's the first alias in our simple . bashrc:

alias 11="1s -1"

Aliases are another type of command that bash supports. With it in place I can
type 11 instead of 1s -1.

Because 1s has good option handling, 11 -t works, too. (If 1s required all
options to be specified in one argument, 11 -t wouldn't work.)

Instead of an alias, how about a script ~/bin/11 with"1s -1"1n it?
We'd need to add a little code for argument handling. (1s -1 "S@")

Here's a sampling of my 283 aliases: (No spaces around the '="s!)
alias jc="javac"
alias gcc="gcc -g -std=c99"
alias tfl="tail -f -n 50 /flashlog.txt"
alias +x="chmod +x"
alias jarwars="open /w/372/jarwars/jarwars.swf"

With no arguments, alias displays your aliases. Use \gcc x.c to ignore the
gcc alias, for example.
CSC 352 Fall 2015, Unix Slide 159

Aliases, continued

Here's the second alias shown in our simple .bashrc:
alias restart="source ~/.bashrc"

With 1t, we need to type only "restart" to make additions take effect
after changing .bashrc.

The source command, a builtin, executes commands in the current
instance of bash, as if they'd been typed in.

Contast: bash .bashrc starts a new instance of bash, executes the
commands in .bashrc, and then exits. The aliases and variables created
in .bashrc would exist only for a brief moment!

We can match the functionality of the 11 alias with an 11 script but we
can't match restart with a script!

CSC 352 Fall 2015, Unix Slide 160

Wildcards

Wildcards allow the user to specify files and directories using text patterns in bash
commands.

args.javais great for exploring wildcards! Let's use an alias:
alias args="java -classpath $f352/java args"

The simplest wildcard metacharacter is ?, a question mark. A question mark
matches any one character.

Olzserve: The command line "args 2" causes bash to expand
% 1s . : :
the question mark into the names of all matching files.
a out x Xy Z
% args ? "args ?"1sexpanded into "args a x z".
|al
| X | What does "args ??? ?7?" mean?
|z | Replace ??? with all three-letter names.
Replace 2 ? with all two letter names.
s args ??°? ?? Run the resulting command, whatever it is.
| out |
| XY |

CSC 352 Fall 2015, Unix Slide 161

Wildcards, continued

echo is also good for exploring wildcards, and uses less vertical space on slides:

5 1ls
a out x Xy z A general rule:
If a command line argument contains one or
% echo ? more wildcards, the shell replaces that
a X z argument with the file names in the current

directory that match the specified pattern.

o)

$ echo 2?2?27 2?9
out xy Important:
Wildcards are not regular expressions.

Predict the output:

o)

% echo ? ? ? The two facilities share a bit of common
a X zazxzazxaz behavior but they are far more different than
they are alike!

o)

% echo x? ?y

XYy XY
% echo ? ??2 x 2?2?27 27?2?27 If there's no match, like with 2?2?72, the
a x z Xy x out 2?2?27 argument 1s passed through as-is.

CSC 352 Fall 2015, Unix Slide 162

Wildcards, continued
Situation:

s 1s
out pl.c test x.java x2.c y.java

Problem:
Write commands to delete the Java files and move the C files to csrc in

your home directory.

Solution:
$ rm ?.java

o\©

mv ??2.c ~/csrc

Problem: Describe the file names that would be matched by each of the following.
PRPRP)
Three character names.
a??b
Four character names that start with an a and end with a b.
200?-17?-3?.1og (assuming all files are YYYY-MM-DD. 10q)
The last day or two of October, November and December in 2000-2009.

CSC 352 Fall 2015, Unix Slide 163

The * wildcard

A more powerful wildcard is * (asterisk). It matches any sequence of characters,
including an empty sequence.

* Matches every name
*.Jjava Matches every name that ends with . java

* X * Matches every name that contains an x
Examples: x, ax, axe, xxe, XOX0X

What would be matched by the following?

* X * y
Names that contain an x and end with v.

* . *
Names that contain at least one dot.

* . * . *
Names that contain at least two dots.

a*e*i*o*u
Names that start with an a, end with a u, and have e, i, o, in sequence in
the middle.

CSC 352 Fall 2015, Unix Slide 164

Experiment!
/usr/bin has alot of files. Try some wildcards there!

o

/usr/bin % ls *x*y
dbiproxy explry 1proxy smproxy syslinux-legacy

/usr/bin % 1ls *.* . * | wc
39 39 526

o

/usr/bin % ls a*e*i*o*u*
akonadl mixedmaildir resource

/usr/bin & ls *—*—*_*x_*x_x%
rarian-sk—-get-extended-content-1list

/usr/bin % ls *1*2*3
ls: cannot access *1*2*3: No such file or directory

Make some files with touch and try some matches.
% touch a.b ab axe b oxo

o\©

echo a*b
.b ab

@

o\°

echo *b
.b ab b

D

CSC 352 Fall 2015, Unix Slide 165

Combining wildcards

Wildcards can be combined. Examples:
??* Matches names that are two or more characters long
*.? Matches names whose next to last character is a dot

What would be matched by the following?

PX?*
Names that are at least three characters long and have an x as
their second character.

K —D =%

Names that contain two dashes separated by a single character.

CSC 352 Fall 2015, Unix Slide 166

The character set wildcard

The character set wildcard specifies that a single character must match one of a set.
s 1ls
b e n out x xy zZ

Q

% echo [m-z] # one-character names in the range n—z
X zZ

)

Another:
$ 1s
Makefile fmt.c utils.c utils.h

% echo *.[chy]
fmt.c utils.c utils.h

More:
[A-Z]*.[0-9]
Matches names that start with a capital letter and end with a dot and a digit.

*. [10-9] (Leading ! complements the set.)
Matches names that end with a dot and a non-digit character.
Equivalent: *. [*0-9]

[Tt]ext
Matches Text and text.

CSC 352 Fall 2015, Unix Slide 167

Wildcards and paths

Slashes can be included in a pattern to match files anywhere.

What do these commands do?
wc ~/*.java
Runs wc on every Java source file in my home directory.

ls -1 */Readme.txt
Runs 1s -1 on every Readme. txt in a subdirectory of this directory.

more a2/ [s-z]*/questions.txt
I'd used more a2/*/questions. txt to browse solutions but I got

interrupted. I used the above to start roughly where 1'd left off, with
NetIDs that start with "s".

1ls -1d /usr/lib/*/.
List directories in /usr/11b.

Programmer to programmer communication:

"It's pretty much a mess as I've included everything, but generally the files
phase[123].[ch] are the students' solutions."

CSC 352 Fall 2015, Unix Slide 168

Lots more with wildcards

The bash man page uses the term "pathname expansion" for what I've called
wildcard expansion.

Another term that's used 1s "globbing". Try searching for "glob" on the bash man
page.

Wildcards don't match hidden files unless the pattern starts with a dot, like . *rc.

There are other wildcard specifiers but 2, *, and [...] are the most commonly
used.

As of version 4 of bash you can do "shopt -s globstar"in~/.bashrcto

enable recursive matching with wildcards. Example, using the tree shown on
slide 119:

~/352 % echo **/*

dl dl/cal.out dl/java dl/notes dl/notes/langs dl/
notes/langs/java dl/notes/platforms one two work
work/cal.out work/one work/two

Prior to version 4 you'd do something like "echo * */x */*x /% __ _"oruse
find with command substitution.

CSC 352 Fall 2015, Unix Slide 169

Command substitution

One way to view echo is that it turns arguments into output.
% echo just testing
Just testing

Command substitution provides a way to turn output into arguments.
% cat srcfiles
lc.java
mkall.icn
getpid.c

% echo aaa $(cat srcfiles) bbb
aaa lc.java mkall.icn getpid.c bbb

On a command line, the form $ (command-1ine) indicates to run the
enclosed command-11ine, and substitute the whitespace-separated words it
produces for the $ (.. .) construct. The resulting command line is then
executed.

Command substitution was originally done with ~ . .. *, and that still works.

CSC 352 Fall 2015, Unix Slide 170

Command substitution, continued

In the a2 write-up I show you the sizes of my > cat a2/delivs
solutions like this: lengths.java
$ we $(cat a2/delivs) rev.java
12 31 332 lengths.java o
13 38 372 rev.java mgrep,java
17 47 415 sum.java am;
revinum

Problem: Not counting mgrep. java, how many lines of Java are there?
wc -1 S(fgrep java az2/delivs | fgrep -v mgrep)

How would we have done that without command substitution?
5 cp delivs x
vim x

we -1 $(cat x)

o\©

o\©

But we didn't have to!

CSC 352 Fall 2015, Unix Slide 171

Command substitution, continued

Here's a script that prints a YYYYMMDD . HHMM timestamp:
% cat tstamp
date +%Y%m%sd.SHIM

% tstamp
20150907.00406

Assuming the directory with t stamp is in our search path, let's use it to make a
timestamped backup of a file:

$ cp lc.java bak/lc.java.$ (tstamp)

% ls bak

lc.java.20150907.0046

The cp above 1s repetitious! How can we type less?
% cat cpstamp
cp S1 bak/$1.S$(tstamp)

% cpstamp lc.java

$ 1ls bak
lc.j3ava.20150907.0046 1lc.java.20150907.0048

CSC 352 Fall 2015, Unix Slide 172

make arguements into next cammand

splitinto tokens

reod next

expanded afias

check 1t token

check 1st token

not alias

other keyword 2

not keyword _J»_-.»-"’_—’

Sidebar: 12 steps to execution

The diagram at left comes from

section 7.3 in Learning the Bash
Shell, 3e (on pzr).

syntax eror

It shows the sequence of the steps
taken when processing a
command.

single quares

J" — T‘ h— h— '
double guotes

double guotes

o I brace expansion
v
o I tilde expansion
v
o I parameter expansion
v
o I command substitution
v
o I arithmetic substitution
v
° I word splitting l
v
0 I pathname expansion
4
Q command lookup: function, built-in command,
exequtable file
12
~ eval =
command

CSC 352 Fall 2015, Unix Slide 173

The for loop

bash has a number of control structures including i f, while, and case.

bash's for loop is a control structure that's particularly handy for interactive use.

Here is the general form of the for loop:
for variable in words

do

cmdl

cmdN

done

Example: (bash prompts with > (PS2) while the for is incomplete)

V V V o°

a

for 1 in a simple test

do

echo $i has $(echo -n $i | wec -c) characters
done

has 1 characters

simple has 6 characters
test has 4 characters

CSC 352 Fall 2015, Unix Slide 174

for, continued

Handy: If we hit up-arrow, bash shows us the for as a one-liner:

o)

% for 1 in a simple test; do echo $i has $(echo -n $i
| wc —-c) characters; done

Note that bash has inserted semicolons where needed to make it a valid one-liner.

Problem: How many files are in each of the directories in my PATH?

% for dir in $(echo S$SPATH | tr : " ")
> do

> echo $dir: $(ls $dir | wec -1)

> done

/usr/local/sbin: 21

/usr/local/bin: 79
/usr/sbin: 353
/usr/bin: 3275

Problem: What's the total number of files?

pin: 183 Solution:
f kS> . lf.l . s Hit up-arrow and append...
in: | cut -d " " -£2 | java sum

/usr/games: 10

/home/stdntwm/bin: 1

CSC 352 Fall 2015, Unix Slide 175

for, continued

Here 1s "args" as a bash script:
% cat args
for a in "s$@"
do
echo "[Sa|"
done

Usage:
$ args one ' 2 ' III a\ b\ c
| one |
| 2
| TIT |
la b ¢

Notes:
 "S@" expands into the arguments of the script, with quoting
preserved. $* 1s often wrongly used instead of "$@". (Try 1t!)
* The echo uses double quotes ("soft quotes") so that 1s $a 1s
expanded. Try it with apostrophes instead.

CSC 352 Fall 2015, Unix Slide 176

Handy stuff in my 20035 slides
This round with UNIX ends here.

Some UNIX topics will be blended into the C material. We might have time for
more UNIX-centric material later, like non-trivial scripts, but we might not.

Here are some command-line topics covered in my 2005 slides, on Piazza, that
you might find particularly handy for day-to-day use in this class or others.

* The history mechanism: 121-125
* The directory stack: 126

* Brace expansion: 72-74

* Process substitution: 119-120

The "Assorted Utilities" section starting on slide 127 talks about diff, f£ind,
tar, sed, and regular expressions.

"Files and File Management—Part 2", starting on 167 talks about file permissions
and more.

Unless it 1s also covered in this class, vou won't be expected to know any of the
material in those 2005 slides.

CSC 352 Fall 2015, Unix Slide 177

