
UNIX
CSC#352,#Fall#2015#

The#University#of#Arizona#
William#H.#Mitchell#

whm@cs#
#

CSC#352#Fall#2015,#Unix#Slide#1#

At Bell Labs in 1969 Ken Thompson created a tiny operating system
that came to be known as UNIX.

During the 1970s UNIX gradually grew and evolved, and spread
into the computer science community.

In the 1980s and 1990s UNIX became an immensely popular
platform for software R&D and later, enterprise computing.

Today, various UNIX-like operating systems run on everything from
tiny devices to the most powerful computers made.

UNIX command-line tools are available on just about every
platform used by programmers.

CSC#352#Fall#2015,#Unix#Slide#2#

What is UNIX?

Some hallmarks of UNIX:

• Pre-emptive multi-tasking of processes
• Full support for multiple simultaneous users
• Utilities work well in combination with others
• APIs that combine simplicity, elegance, and power
• Devices are treated as files
• The system is stable and resilient
• The keyboard is alive and well
• Sophisticated users are not encumbered
• Casual users are frustrated

CSC#352#Fall#2015,#Unix#Slide#3#

What is UNIX?

1965 Researchers from Bell Labs and other organizations begin work on
Multics, a state-of-the-art interactive, multi-user operating system.

1969 Bell Labs researchers, losing hope for the viability of Multics due to
performance issues, withdraw from the project.

One of the researchers, Ken Thompson, finds a little-used DEC
PDP-7, and in a month implements a simple operating system
comprising a kernel, a command interpreter, an editor, and an
assembler.

Other Bell researchers, most notably Dennis Ritchie, are attracted to
Thompson's system and contribute to it.

1970 Peter Neumann suggests the name "Unics" for Thompson's
operating system, a pun on "Multics". A DEC PDP-11 is acquired
for further development of UNIX.

CSC#352#Fall#2015,#Unix#Slide#4#

UNIX Timeline

1971 In addition to supporting research, the PDP-11 running UNIX
hosts a word processing project: the preparation of patent
applications.

Work begins on the C programming language.

1973 UNIX is rewritten in C.

1975 Ken Thompson takes a sabbatical and teaches at U. C. Berkeley.
He gets some students, including Bill Joy, interested in UNIX.

1978 Seventh Edition UNIX (V7), incorporating a goal of portability, is
released. (Today: Some say that V7 was the classic UNIX.)

Bill Joy assembles the first Berkeley Software Distribution,
featuring a Pascal compiler and Joy's ex line editor.

CSC#352#Fall#2015,#Unix#Slide#5#

UNIX Timeline, continued

1979 Building on Bell Lab's UNIX/32V, UCB produces a version of
UNIX that takes advantage of virtual memory on the DEC
VAX-11/780. It is released as 3BSD.

1981 VAXs running 4.1BSD are the system of choice for computer
science departments everywhere.

1982 Sun Microsystems is founded; Bill Joy leaves UCB to head Sun's
software development. Sun produced the first good UNIX
workstation, in my opinion.

1983 4.2BSD is released. Most notable: support for TCP/IP networking.

Richard Stallman announces the GNU project and later founds the
Free Software Foundation. (GNU's Not UNIX.)

1984 A federal court decree allows AT&T to get into the computer
business; AT&T releases UNIX System V.

CSC#352#Fall#2015,#Unix#Slide#6#

UNIX Timeline, continued

1984 The X Window System emerges at MIT. It eventually becomes
widely used for portable graphics software.

1988 IEEE Standard 1003.1-1988 is approved. It came to be known as
POSIX.1 (Portable Operating System Interface).

1989 AT&T System V R4 (SVR4) is released, merging the System V and
BSD development lines.

1991 comp.os.minix: "Hello everybody out there using minix – I'm
doing a (free) operating system (just a hobby, won't be big
and professional like gnu) for 386(486) AT clones. ..."

—Linus Torvalds, a student at the University of Helsinki

1993 AT&T sells UNIX System Laboratories to Novell; Novell conveys
"UNIX" trademark to X/Open, a standards organization.

CSC#352#Fall#2015,#Unix#Slide#7#

UNIX Timeline, continued

Today

•  The UNIX brand can be legally applied to any system that has been
verified to comply with the "Single UNIX Specification" (SUS).
(The SUSv3 (UNIX 03) specification is 3700 pages and covers 1742
interfaces.)

•  Only AIX, HP-UX, K-UX, OS X, and Solaris satisfy UNIX 03.

•  FreeBSD and NetBSD are the descendants of Berkeley UNIX.

•  The IEEE/ISO POSIX standards facilitate writing software that is
portable between a wide range of UNIX and non-UNIX systems.

•  Linux keeps getting bigger and better.

CSC#352#Fall#2015,#Unix#Slide#8#

UNIX Today

The shell—Part 1

CSC#352#Fall#2015,#Unix#Slide#9#

Users typically interact with UNIX via a "shell".

A reasonable definition for shell:

A command-line based environment for execution and control of
programs.

In essence, a shell is a program that is used to run other programs.

There are many different shells but a number of capabilities are common
to all popular shells:
•  Command execution
•  Redirection of input and output
•  Piping
•  Wildcard expansion
•  Process control
•  Command recall and editing
•  Turing-complete (can be used to write "any" program)

 CSC#352#Fall#2015,#Unix#Slide#10#

The shell—basics

There are many Unix shells. Here are some common ones:

•  Bourne Shell (sh)
•  C Shell (csh)
•  tcsh ("Enhanced C Shell", "TENEX C Shell")
•  Korn Shell (ksh)
•  Bourne-Again Shell (bash)
•  Z Shell (zsh)

See also hKps://en.wikipedia.org/wiki/Unix_shell#

We'll be using bash because it is...
•  Widely used
•  A typical shell
•  Full-featured
•  POSIX-compliant

CSC#352#Fall#2015,#Unix#Slide#11#

Lots of shells

Running bash on lectura

CSC#352#Fall#2015,#Unix#Slide#12#

For two points of extra credit on Assignment 1 run the following
command in bash on lectura:

 /cs/www/classes/cs352/fall15/bin/i-ran-bash

Due date/time: same as Assignment 1.

Details:
(1) Use the following command to confirm that you're running bash.

%#echo%$SHELL%
/bin/bash#

(2) You'll see something like this: (your prompt may differ from "%")

%#/cs/www/classes/cs352/fall15/bin/i8ran8bash%
Give#me#a#moment...#
A#receipt#has#been#mailed#to#YOUR%NETID@email.arizona.edu.##Keep#
it#unWl#you#see#your#points#on#D2L.#
%#

Mail to 352f15@cs.arizona.edu if you have trouble. Don't panic!

CSC#352#Fall#2015,#Unix#Slide#13#

Extra credit!

We'll be using the Linux machine named "lectura" for much of our work.

By virtue of being enrolled in this class you should already have a CS
computing account with the same name as your UA NetID.

On the page http://cs.arizona.edu/computing/services use "Change#
my#Unix#shell#(bash/tcsh/ksh)" to be sure that bash (/bin/bash) is your
shell.

(Note: a quick glance on 8/23 showed that all of you already have bash
as your login shell.)

If you've forgotten the password for your CS account, use "Reset#my#
forgoKen#Unix#password" on the same page to reset it.

Note that there's no connection between your NetID password and your
password on lectura. (And I recommend different passwords for them.)

CSC#352#Fall#2015,#Unix#Slide#14#

Running bash on lectura

If you're on a Mac, start Terminal and use ssh to login to lectura:

CSC#352#Fall#2015,#Unix#Slide#15#

Running bash on lectura—Macs

1. bash prompt on Mac 2. ssh yourNetID@lec.cs.arizona.edu

4. bash prompt on lectura! NOTE: Your bash prompts may differ!

3. No echo/feedback while
typing password

"PuTTY" is a free Telnet/SSH client that I recommend for connecting to
lectura from a Windows machine.

If you Google for "putty", the first hit should be this:

 PuTTY Download Page
•  www.chiark.greenend.org.uk/~sgtatham/putty/download.html�

Download putty.exe:

putty.exe is just an executable file; there's no installer. Save putty.exe to a
convenient place, perhaps your Desktop.

Running bash on lectura—Windows

CSC#352#Fall#2015,#Unix#Slide#16#

Click on putty.exe to run it. In the dialog that opens, fill in
lec.cs.arizona.edu for Host#Name and click Open.

Running bash on lectura—Windows

CSC#352#Fall#2015,#Unix#Slide#17#

Enter your NetID and password in the window that PuTTY opens:

CSC#352#Fall#2015,#Unix#Slide#18#

Running bash on lectura—Windows

1. Your NetID

3. bash prompt on lectura! NOTE: Your bash prompts may differ!

2. No echo/feedback while
typing password

To copy text from a PuTTY window to the Windows clipboard, simply
click and drag over it, like selecting text in any other Windows application.

 Note: Copy is implicit with selection; do not hit ^C!

To paste text from the clipboard into PuTTY, do a right-click.

A number of PuTTY features can be accessed via the "system menu" in the
upper left corner of the window.

CSC#352#Fall#2015,#Unix#Slide#19#

PuTTY notes

You can have any number of login sessions active at once. It's often handy
to run bash in one window and keep an editor open in another.

Use Control-C (^C) to kill a currently running command.

Type exit or close the window to terminate your lectura login session.

If you're running a different shell, like tcsh, and don't want to make bash
your default, type bash at your shell's prompt.

We'll later learn about some improvements:
•  Password-less login using ssh key pairs
•  Adding an /etc/hosts entry for lectura so you can type just lec

instead of lec.cs.arizona.edu.
•  Handling a NetID that differs from your Mac username.

CSC#352#Fall#2015,#Unix#Slide#20#

Running bash on lectura--odds and ends

As we've seen, starting Terminal on a Mac opens a window running bash.

If you've got a Windows machine, Cygwin(.com) provides a huge number
of Unix utilities, including bash, that run on Windows. I love Cygwin!

•  After Cygwin is installed, use Cygwin#Terminal to open a window

with bash.

•  Watch for a Piazza post with some details about installing Cygwin,
and remind me if it doesn't appear soon.

On a Linux machine in a CS lab, Terminal opens a window running bash.

CSC#352#Fall#2015,#Unix#Slide#21#

How can I run bash on my machine?

bash command-line basics

CSC#352#Fall#2015,#Unix#Slide#22#

Typing a command name at the bash prompt and pressing the ENTER key
causes the command to be executed.

The command's output, if any, is displayed on the screen. Examples:

% hostname
lectura.cs.arizona.edu
% whoami
whm
% true
% date
Sat Aug 15 18:54:39 MST 2015
% ps
 PID TTY TIME CMD
22758 pts/18 00:00:00 bash
30245 pts/18 00:00:00 ps

CSC#352#Fall#2015,#Unix#Slide#23#

Executing commands

GO LIVE!

Most commands accept one or more arguments:
% cal 9 2015
 September 2015
Su Mo Tu We Th Fr Sa
 1 2 3 4 5
 6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

% echo Hello, world!
Hello, world!

% factor 223092870
223092870: 2 3 5 7 11 13 17 19 23

Note: These slides will usually show a blank line between commands to
improve readability, but bash outputs the prompt immediately following
the last character of a command's output.

CSC#352#Fall#2015,#Unix#Slide#24#

Command-line arguments

For many commands the arguments are file names.

% cat Hello.java
public class Hello {
 public static void main(String args[]) {
 System.out.println("Hello, world!");
 }
 }

% javac Hello.java

% java Hello
Hello, world!

% rm Hello.class

% java Hello
Error: Could not find or load main class Hello

Note the evidence of the "silence is golden" philosophy, which is common
in UNIX programs.

CSC#352#Fall#2015,#Unix#Slide#25#

Arguments, continued

The fgrep command searches for text. Its first argument is a string to
search for. The following argument(s) are the files to search for that text.

% fgrep Hello Hello.java
public class Hello {
 System.out.println("Hello, world!");

% fgrep Hello Hello.java Test.java
Hello.java:public class Hello {
Hello.java: System.out.println("Hello, world!");

% fgrep Waldo Hello.java Test.java
%

Does fgrep exhibit "silence is golden"?

Note: There is a family of greps. We'll use fgrep to start with because it
doesn't interpret the search string as a regular expression.
 CSC#352#Fall#2015,#Unix#Slide#26#

Arguments, continued

Many commands accept options that adjust the behavior of the command.

Options almost always begin with a '-' (minus sign). Options are usually
specified immediately following the command.

Examples:
% date
Thu Jan 13 02:19:20 MST 2005

% date -u
Thu Jan 13 09:19:22 UTC 2005

% wc Hello.java
 5 14 127 Hello.java

% wc -l -w Hello.java
 5 14 Hello.java

We can say that wc -l -w Hello.java has two options and one
operand.

CSC#352#Fall#2015,#Unix#Slide#27#

Command-line options

Some options have an associated argument. (An "option argument".)

Compile Hello.java with verbose output and put the
resulting .class file in the (existing) directory named work:

% javac -verbose -d work Hello.java
[parsing started RegularFileObject[Hello.java]]
[parsing completed 13ms]
...lots more....
[wrote RegularFileObject[work/Hello.class]]
[total 286ms]

Find files modified in the last 48 hours that are longer than 1024 bytes:
% find . -type f -mtime -2 -size +1k
./352.notes
./intro.pptx
./open.notes
./unix.pptx

CSC#352#Fall#2015,#Unix#Slide#28#

Options, continued

It is common to allow single character options to be combined into a
single multi-character option. For example, these two are equivalent:

wc -l -w Hello.java

wc -lw Hello.java

Some programs have verbose synonyms for single-character options.
Example:

 wc --words --lines Hello.java

CSC#352#Fall#2015,#Unix#Slide#29#

Options, continued

Whitespace is often significant in command lines. For example, the
following commands are all invalid: (Try them!)

% date-u

% wc -l-w Hello.java

% wc -- notes Hello.java

We can think of a command line as a series of "words". The man page for
bash has this definition for "word":

A sequence of characters considered as a single unit by the shell.

Options are sometimes called "flags".
 Example: "Run date with the -u flag."

CSC#352#Fall#2015,#Unix#Slide#30#

Options, continued

For most programs the ordering of options is not significant but that is a
convention, not a rule.

jar, the Java archive tool, requires certain options to come first, and allows
them to not be preceded by '-':
% jar tvf cloudcoderApp.jar | head -3
 0 Fri Aug 14 18:18:18 MST 2015 META-INF/
 161 Fri Aug 14 18:18:16 MST 2015 META-INF/MANIFEST.MF
 0 Fri Aug 14 15:18:54 MST 2015 org/
...

There is nothing that prohibits a program from having its own style of
argument handling. The dd command, a very old file manipulation utility,
uses name/value pairs on the command line:

 dd if=scores.dat ibs=90 skip=40 count=5 of=x

POSIX guidelines for command-line arguments can be found here:

hKp://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
V1_chap12.html#

CSC#352#Fall#2015,#Unix#Slide#31#

Oddballs

When a Java program is run, the shell, the operating system kernel, and
the Java run-time system arrange for the command line arguments to
appear as an array of strings that is passed to main.

Here is a Java program that prints its arguments:
public class args {
 public static void main(String args[]) {
 for (int i = 0; i < args.length; i++)
 System.out.println("|" + args[i] + "|");
 }
 }

Interaction:
% java args -a --test x.java
|-a|
|--test|
|x.java|
%

CSC#352#Fall#2015,#Unix#Slide#32#

Sidebar: Java argument handling

I strongly recommend you try at least one example on every slide!

We'll learn about paths, the cp command, symlinks, etc. later but for now
you can run args.java like this on lectura:

%#cp##/cs/www/classes/cs352/fall15/java/args.java##.
#
%#javac#args.java#
#
%#java#args#Hello,#world!#
|Hello,|#
|world!|#

args.java is also accessible on the web:

#hKp://cs.arizona.edu/classes/cs352/fall15/java/args.java#
#
IMPORTANT: In these slides I'll reference files like this:

 fall15/java/args.java#

CSC#352#Fall#2015,#Unix#Slide#33#

Sidebar: Try the examples!

Don't forget the period!

fall15/...#means either of these

Many non-alphanumeric characters have special meaning to shells.

% java args :)
bash: syntax error near unexpected token `:)'

Characters that have special meaning are often called metacharacters.

Here are the bash metacharacters:

 ~ ` ! # $ & * () \ | { } [] ; ' " < > ?

CSC#352#Fall#2015,#Unix#Slide#34#

Metacharacters

If an argument has metacharacters or whitespace we suppress their special
meaning by enclosing the argument in quotes.

% java args ':)' "'''" '"' ' x ' "y " z"'z"
|:)|
|'''|
|"|
| x |
|y |
|z'z|

Note that the enclosing quotes are consumed by the shell. args never
sees them!

We'll see later that some metacharacters are still interpreted even when
surrounded with double quotes. For the time being, always use
apostrophes to avoid any surprises.

 CSC#352#Fall#2015,#Unix#Slide#35#

Metacharacters, continued

An alternative to wrapping with quotes is to use a backslash to "escape"
each metacharacter.

If a character is preceded by a backslash, its special meaning, if any, is
suppressed.

% java args :\) \ \'\"\\ x\ y \x\y\z
|:)|
| '"\|
|x y|
|xyz|

Note that it's not an error to escape ordinary characters like x, y and z.

CSC#352#Fall#2015,#Unix#Slide#36#

Metacharacters, continued

As a rule, command invocations have this form:
command-name option1 ... optionN operand1 .. operandN

Options and operands are often collectively referred to as arguments.

Options typically start with a '-' and are often single letters; single letter options
can often be combined.

Options sometimes have arguments themselves. ("option arguments")

The ordering of options is usually not important.

As a rule, whitespace in options and operands is significant.

Interpretation of metacharacters can be suppressed by enclosing the argument in
quotes or preceding each metacharacter with a backslash.

All-in-all, there are somewhat firm conventions but no hard rules about options
and operands.

Reminder: Use ^C to immediately terminate a command.

CSC#352#Fall#2015,#Unix#Slide#37#

Command-line basics—Summary

bash supports simple command line recall and editing with the "arrow keys" but
many control-key and escape sequences have meaning too. Here are a few:

 ^A/^E Go to start/end of line.
 ^W Erase the last "word".
 ^U Erase whole line. (^C works, too.)
 ^R Do incremental search through previous commands.
 ESC-f/b Go forwards/backwards a word. (Two keystrokes: ESC, then f)
 ESC-. Insert last word on from last command line. (Very handy!)

Do bind -p to see all the bindings. This facility uses the GNU readline
mechanism and bindings can be overridden in ~/.inputrc. (Do man readline
for lots of details.)

bash also does command and filename completion with TAB:

 Hit TAB to complete to longest unique string.
 If a "beep", hit TAB a second time to see alternatives.

 CSC#352#Fall#2015,#Unix#Slide#38#

Command-line editing and shortcuts

The man command

CSC#352#Fall#2015,#Unix#Slide#39#

The man command displays documentation for commands (and more). Here is
an abridged example—the "man page" for cat:#
#

%#man%cat%
CAT(1)#################################User#Commands#####################################CAT(1)#
#
NAME#
#######cat#d#concatenate#files#and#print#on#the#standard#output#
#
SYNOPSIS#
#######cat#[OPTION]...#[FILE]...#
#
DESCRIPTION#
#######Concatenate#FILE(s),#or#standard#input,#to#standard#output.#
#
#######dA,#ddshowdall#
##############equivalent#to#–vET#

#...#
#
#######With#no#FILE,#or#when#FILE#is#d,#read#standard#input.#

man uses less to display pages. Type space to go forwards, b to go backwards.
Type /STRING<ENTER> to search for a string, then n to search for the next
occurrence. h (for help) shows lots more less commands. (Try it!)

CSC#352#Fall#2015,#Unix#Slide#40#

The man command

The UNIX "manual" is divided into these sections: (from man man)
 1 User commands
 2 System calls (functions provided by the kernel)
 3 Library calls (functions within program libraries)
 4 Special files (usually found in /dev)
 5 File formats and conventions eg /etc/passwd
 6 Games
 7 Miscellaneous (including macro packages and conventions), e.g.
 man(7), groff(7)
 8 System administration commands (usually only for root)
 9 Kernel routines [Non standard]

Recall that man cat showed CAT(1). That "(1)" tells us that cat is a
user command.

man malloc shows MALLOC(3). That "(3)" tells us that malloc is a
library function.

CSC#352#Fall#2015,#Unix#Slide#41#

Manual sections

A very handy man option is -k, which specifies a keyword to search for in the
"NAME" entries for all man pages.

Example: ("What was that calendar printing command??")

% man -k calendar
cal (1) - displays a calendar and the date of Easter
calendar (1) - reminder service
difftime (3posix) - compute the difference between two
 calendar time values
ncal (1) - displays a calendar and the date of Easter
zshcalsys (1) - zsh calendar system

Some man page names appear in more than one section of the manual. For
example, printf appears in sections 1 and 3. The -s option selects the entry in the
specified section.

man -s 1 printf
man -s 3 printf

Most manual sections have an intro page that provides an overview of the
section. For example, try man -s 2 intro

CSC#352#Fall#2015,#Unix#Slide#42#

man -k

Many commands have a --help option:

% wc --help
Usage: wc [OPTION]... [FILE]...
 or: wc [OPTION]... --files0-from=F
Print newline, word, and byte counts for each FILE,
and a total line if more than one FILE is specified.
With no FILE, or when FILE is -, read standard
input. A word is a non-zero-length sequence of
characters
...

Some commands don't support --help, but...

% cal --help
cal: invalid option -- '-'
Usage: cal [general options] [-hjy] [[month] year]
 cal [general options] [-hj] [-m month] [year]
...

CSC#352#Fall#2015,#Unix#Slide#43#

Built-in help for commands

Many things can be run as a command:
•  Machine-code executables, like a compiled and linked C program
•  Shell scripts, functions, builtins, and aliases
•  A program source file with a "shebang" line

The type command can be used to see what a command really is.

% type date
date is /bin/date

% type gcc
gcc is aliased to `c99 -Wall -g'

% type type
type is a shell builtin

For a shell builtin, don't use man; use help:
 % help type

CSC#352#Fall#2015,#Unix#Slide#44#

What are "commands"?

I/O Redirection with bash

CSC#352#Fall#2015,#Unix#Slide#45#

There are several possible destinations for the output of a command:
•  The screen
•  A file
•  Another command
•  A hardware device
•  A command on another machine
•  and more!

Similarly, input may come from a variety of sources in addition to the keyboard.

UNIX has a notion of standard input and standard output.

It is common for programs to read from standard input and/or write to standard
output.

By default, when the shell starts a program, standard input is associated with the
keyboard, and standard output is associated with the screen.

Standard input and standard output are sometimes called streams or I/O streams.
CSC#352#Fall#2015,#Unix#Slide#46#

I/O Redirection

Here is a Java program that reads lines from standard input and writes the
line count to standard output:

import#java.io.*;#
public#class#lc#{#//#"LC"##(in#fall15/java/lc.java)#
####public#staWc#void#main(String#args[])#throws#IOExcepWon#{#
########BufferedReader#in#=#new#BufferedReader(#
############new#InputStreamReader(System.in));##//#standard#input#in#Java#
#
########String#line;##int#count#=#0;#

#//#Read#lines#from#standard#input#
########while#((line#=#in.readLine())#!=#null)#
############count++;#
#

#//#Write#count#to#standard#output#
########System.out.println(count);#
########}#
####}#

CSC#352#Fall#2015,#Unix#Slide#47#

I/O Redirection, continued

Interaction:
% java lc
one
two
three
^D (control-D)
3
%

It is possible to redirect standard input, so that instead of reading characters
from the keyboard, the data comes from a file.

Input redirection is indicated by adding < file to a command:

% java lc < lc.java
13

% wc < /etc/passwd
 2903 10754 198109

% sha1sum < lc.class
6e3f76a2f16edb8e8b688a5938c72885cef93b13 -

% java lc < lcount.java
-bash: lcount.java: No such file or directory

What's interesting about the last example?
 The error is from bash, not the JVM or lc.java.

CSC#352#Fall#2015,#Unix#Slide#48#

I/O Redirection, continued

Output redirection is similar:

% java lc > count
just
testing
^D

% cat count
2

If the target file does not exist, it is created. If it exists, it is
overwritten.

Speculate: What's the result of the following?
% java lc > /etc/passwd
-bash: /etc/passwd: Permission denied

CSC#352#Fall#2015,#Unix#Slide#49#

I/O Redirection, continued

Both input and output can be redirected:
% java lc < /etc/passwd > pwlines

% cat pwlines
2903

What are some "what-ifs" we can try?
•  Must input redirection appear before output redirection?

•  Is whitespace needed around < and >?

•  What happens if we specify two input or output redirections?

•  What does java lc < /etc/passwd > java do?

•  What does java lc > lc.java do?

CSC#352#Fall#2015,#Unix#Slide#50#

I/O Redirection, continued

Consider this claim:
"The shell completely consumes any text used to specify redirections.
For example, given wc < lc.java, the wc program does not see
the < or lc.java."

How could we test that claim using only what we've seen thus far?

 My "proof":
% java args a b c < lc.java > out

% cat out
|a|
|b|
|c|

Only a, b, and c ended up in the string array passed to main. There's no
trace of < lc.java or > out.

CSC#352#Fall#2015,#Unix#Slide#51#

I/O Redirection, continued

Many programs will accept input from either standard input or files named
on the command line.

% wc Hello.java
 6 14 128 Hello.java

% wc < Hello.java
 6 14 128

What's a difference in output between the two?

Why is there a difference?

 If you have an idea about why there's a difference, post it on Piazza!

CSC#352#Fall#2015,#Unix#Slide#52#

I/O Redirection, continued

Consider this:
% wc Hello.java < args.java
 5 14 127 Hello.java

Why isn't args.java processed, too?

Challenge: Try writing x.java that behaves as follows:

% java x a b c # Prints a, b, c

% java x < y # Prints the contents of the file y

% java x a b c < y # Prints a, b, c, and then contents of file y

% java x # Prints lines read on standard input

CSC#352#Fall#2015,#Unix#Slide#53#

I/O Redirection, continued

There is a third standard I/O stream: standard error.

By convention, programs send "normal" output to standard output, and
"exceptional" output to standard error.

% cal 2016 1 > out
cal: 2016 is neither a month number (1..12) nor
a name

% cat out

Standard output and error output can be combined with the '>&' redirection
operator:

% cal 2016 1 >& out

% cat out
cal: 2016 is neither a month number (1..12) nor
a name

Java's System.err is associated with standard error. (Try it!)
 CSC#352#Fall#2015,#Unix#Slide#54#

I/O Redirection, continued

A great benefit of I/O redirection is that a program doesn't need to include any file-
handling code. A program can be written in terms of reading/writing standard
input/output; opening files (and handling potential failures) is done by the shell.

Consider the additional code that would be required for an alternative interface for
the line counter:

 java lc -input x.txt -output count

Problem: Write it! Don't forget to handle errors, too!

Contrast: Once upon a time, users of DEC's VMS operating system did output
redirection like this,

% assign/user sys$output out
% run program

which has a lot of "ceremony" compared to the UNIX equivalent:

 % program > out

CSC#352#Fall#2015,#Unix#Slide#55#

I/O Redirection, continued

Here's a Ruby line counter, fall15/misc/lc.rb:
count = 0
while line = gets
 count += 1
end
puts count

fall15/misc/lc.py is a Python 3 version:

import sys
count = 0
while True:
 line = sys.stdin.readline()
 if len(line) == 0:
 break
 count += 1
print(count)

CSC#352#Fall#2015,#Unix#Slide#56#

Sidebar: standard input and output in other languages

Execution:
%#ruby#lc.rb#<#/usr/share/dict/words#
99171#

Execution:
%#py3#lc.py#<#lc.rb#
5#

Oops! line is not needed!

Pipes

CSC#352#Fall#2015,#Unix#Slide#57#

A pipe is an IPC (interprocess communication) mechanism supported by the
UNIX kernel.

A pipe connects two processes such that data written into the pipe by the sending
process can be read by the receiving process.

Let's "pipe" the output of who into wc –l, to see how many login sessions are
active on lectura. The "or" bar is used to designate a pipe.

% who
dmr pts/3 2015-08-23 01:08 (ox2.cs.arizona.edu)
ken pts/4 2015-08-24 09:54 (imy.cs.arizona.edu)
...lots more...

% who | wc -l
 98

CSC#352#Fall#2015,#Unix#Slide#58#

Pipes

A series of commands connected
with pipes is a "pipeline".

At hand, a "pipeline":
% who | wc -l
 98

The command who | wc -l pipes the standard output of who into the standard
input of wc. who and wc run simultaneously.

Data always flows from left to right in a pipeline.

How could I find out how many login sessions I've got active?
% who | fgrep whm
whm pts/18 2015-08-17 19:00 (...)
whm pts/28 2015-08-17 12:17 (...)

% who | fgrep whm | cat -n
 1 whm pts/18 2015-08-17 19:00 (...)
 2 whm pts/28 2015-08-17 12:17 (...)

CSC#352#Fall#2015,#Unix#Slide#59#

Pipes, continued

Q: How many JavaScript files are in the Java archive cloudcoderApp.jar?

jar(1) output looks like this:

%#jar#y#cloudcoderApp.jar#|#head#d15#
log4j.properWes#
org/cloudcoder/webserver/CloudCoderDaemon$1.class#
org/cloudcoder/webserver/CloudCoderDaemon.class#
...#
war/cloudcoder/ace/snippets/abap.js#
war/cloudcoder/ace/snippets/acWonscript.js#
...#
#

Nearly-correct solution:
% jar tf cloudcoderApp.jar | fgrep .js | wc -l
932

Fully correct, using grep and a regular expression:

% jar tf cloudcoderApp.jar | grep \\.js$ | wc -l
932

CSC#352#Fall#2015,#Unix#Slide#60#

Pipes, continued

Next, we want to see the names of those JavaScript files. One approach is to
let jar tf cloudcoderApp.jar | fgrep .js run to completion and scroll back,
looking for the start of the output.

Alternative: jar#y#cloudcoderApp.jar#|#fgrep#.js#|#less#
#
#
#
#
#
#
The colon is the less(1) prompt. Recall that man uses less. Type space to go
forwards, b to go backwards. h (for help) shows lots more less commands.
#

CSC#352#Fall#2015,#Unix#Slide#61#

Pipes, continued

[900+#lines#scrolled#off]#
war/cloudcoder/ace/workerdphp.js#
war/cloudcoder/ace/workerdxquery.js#
war/cloudcoder/cloudcoder.devmode.js#
war/cloudcoder/cloudcoder.nocache.js#
%##

war/WEBdINF/classes/edu/ycp/cs/dh/acegwt/public/ace/acedcompatdnoconflict.js#
war/WEBdINF/classes/edu/ycp/cs/dh/acegwt/public/ace/acedcompatduncompressed.js#
war/WEBdINF/classes/edu/ycp/cs/dh/acegwt/public/ace/acedcompat.js#
war/WEBdINF/classes/edu/ycp/cs/dh/acegwt/public/ace/aceduncompressed.js#
:#

No kidding...
#
%#man%more%
NAME#
#####more#—#file#perusal#filter#for#crt#viewing#
DESCRIPTION#
#####more#is#a#filter#for#paging#through#text#one#screenful#
#####at#a#Wme.#
#
%#man%less%
NAME#
#######less#d#opposite#of#more#
DESCRIPTION#

Less##is##a#program#similar#to#more#(1),#but#which#allows#backward#
movement#in#the#file#as#well#as#forward#movement.##[And#lots#more!]#

#
"more" got wired into my fingers so when less came along I simply did alias
more='less' to switch to less. You'll see me type ... | more but that actually
runs less. If I say "more", you should hear "less".

CSC#352#Fall#2015,#Unix#Slide#62#

Sidebar: more or less

Browsing my bash history shows some examples of piping into more (less):

•  svn#diff#dr44:45#|#more#

•  cerKool#d#USERTrust_RSA_CerWficaWon_Authoritydbad.cer#|#more#

•  javap#dv#./target/classes/edu/arizona/cs/pracWce/QuickStart.class#|#more#

•  find#|#xfield#dd/#d1#|#sort#|#uniq#dc#|#more#

•  git#show#master#|#more#

•  grep#pancakes#$s/*/table.out#|#xfield#1#3#|#xfield#dd/#10#d1#|#xfield#1#d1#|##########
sort#drn#dk2#|#cat#dn#|#more#

•  egrep#":#xfield|FAIL"#g/out#|#more#

•  t#switched.rb#|#cat#dA#|#more#

• man#dk#postscript#|#more#

CSC#352#Fall#2015,#Unix#Slide#63#

UNIX Developers use more (or less) a lot

Here is a proposal for a POSIX.2 standards addition:
"All programs that produce more than one screen of output should have
a --page option that indicates output should be paginated with
functionality equivalent to less(1). This will be both more convenient
for users and avoid the overhead of starting less as a separate process."

Let's vote!

CSC#352#Fall#2015,#Unix#Slide#64#

Sidebar: Where should pagination be done?

Points to consider:
•  Are there issues with the size of executables and memory usage?
•  In how many different languages would the paging functionality need

to be implemented?
•  How many lines are on a "screen"?
•  Is there much overhead in running a second process?
•  What if a better pager was devised? Would we call it --pagev2 and

keep --page for those who like the old version?
•  Should there be a --wc standard option, too?

Bottom line: Terrible idea!

The UNIX way: Programs have well-focused responsibilities and can be
combined in various ways.

If evenless comes along one day, I can easily start using it.

CSC#352#Fall#2015,#Unix#Slide#65#

Sidebar, continued

A key element of the UNIX philosophy is to use pipelines to combine
programs to solve a problem, rather than writing a new program.

Problem: How many unique users are on lectura?

CSC#352#Fall#2015,#Unix#Slide#66#

Computing with pipes

v1: Get login names
%#who|#cut#df1#dd#"#"#
ken#
dmr#
ken#
francis#
rob#
walt24#
dmr#
rob#
wnj#
dmr#
ken

v2: Sort login names
%#who|cut#df1#dd"#"|sort#
dmr#
dmr#
dmr#
francis#
ken#
ken#
ken#
rob#
rob#
walt24#
wnj

v3: Get unique login names
%#who|cut#df1#dd"#"|sort|uniq#
dmr#
francis#
ken#
rob#
walt24#
wnj

v4: Get the count
%#who#|#cut#df1#dd"#"#|#sort#|
uniq#|#wc#dl#
6

Write pipelines to answer these questions:

•  What user has the greatest number of login sessions on lectura? Don't

worry about ties. (Helpers: uniq –c, head, sort -rn)

•  What words in /usr/share/dict/words contain all the vowels?

•  Which lowercase letter occurs most often in lc.java? Don't worry
about ties. (Helpers: fold, tr -dc)

Problem: Confirm that all processes in a pipeline are running at the same
time.

Problem: How could we implement bash-like piping on an operating
system that doesn't allow for the output of process to be connected to the
input of another process? (MS-DOS did this.)

CSC#352#Fall#2015,#Unix#Slide#67#

Pipes, continued

Trivial shell scripts

CSC#352#Fall#2015,#Unix#Slide#68#

A shell script is simply a file that contains a series of shell commands.

Here is a two-line script that prints the number of current login sessions:
% cat ucount
echo -n "Current logins: "
who | wc –l

Lets make the script executable with chmod. (We'll talk about permissions soon!)
 % chmod +x ucount

Depending on your search path settings for bash you might be able to type just
ucount to run it:

% ucount
Current logins: 44

If instead you see ucount: command not found, prefix the script name
with dot-slash:

% ./ucount
Current logins: 44

We'll learn about the search path soon!

CSC#352#Fall#2015,#Unix#Slide#69#

Shell script basics

Redirecting a script's standard output produces a concatenation of standard
output of all the commands in the script.

For reference:
% cat ucount
echo -n "Current logins: "
who | wc –l

The output of ucount can be redirected:

% ucount > out
% cat out
Current logins: 44

The file out ends up with the output of each command in turn.

CSC#352#Fall#2015,#Unix#Slide#70#

Scripts and I/O streams

Programs that are run inside a script "inherit" the standard input stream of the script.

% cat countbytes
wc –c

% date | countbytes
29

Above, the standard input of countbytes becomes the standard input of wc.

Here is a trivial script that avoids the nuisance of having to type "java" when
running the lc.java utility:

% cat lc
Note: assumes lc.class is in this directory
java lc

% cal | lc
8

CSC#352#Fall#2015,#Unix#Slide#71#

Scripts and I/O streams, continued

Command line arguments can be passed to scripts. An argument can be
referenced using $N, where N is the 1-based position of the argument. Example:

% cat printargs
echo The first argument is $1
echo Arg 2: \'$2\'
echo "Third arg: >$3<"

% printargs Dots " ... " and more dots
The first argument is Dots
Arg 2: ' ... '
Third arg: >and<

If there is no Nth argument, $N expands to nothing.

% printargs just testing
The first argument is just
Arg 2: 'testing'
Third arg: ><

Experiment: Change the quotes to apostrophes in the third echo.

CSC#352#Fall#2015,#Unix#Slide#72#

Script parameters

Imagine a verbose wc:
% ./vwc lc.java
Lines: 13
Words: 39
Chars: 361

Problem: write it!

Solution:

% cat vwc
echo -n "Lines: "
wc -l < $1
echo -n "Words: "
wc -w < $1
echo -n "Chars: "
wc -c < $1

CSC#352#Fall#2015,#Unix#Slide#73#

Script parameters, continued

Editing Files

CSC#352#Fall#2015,#Unix#Slide#74#

There have been five prominent and widely popular UNIX editors:

•  ed is the original UNIX editor. It is line-oriented and terse, but elegant. ed,
or a lookalike, is on most UNIX systems.

•  vi ("vee-eye") was created by Bill Joy in 1976. It is screen oriented and
"modal". It was an extension of Joy's ex, that was essentially an improved
version of ed. vi is arguably the fastest plain-text editor for touch-typists.

•  In 1981, James Gosling created "UNIX Emacs", a C implementation that was
similar to Richard Stallman's Emacs for the PDP-10. Important difference:
Gosling's version provided "Mock Lisp", not a true Lisp.

•  In 1984-1985 Stallman created GNU Emacs—the first tangible result of the
GNU project.

•  In 1991Bram Moolenaar released Vim (vi IMproved). He started with source
from Stevie, a vi clone. Both were originally for the Amiga.

CSC#352#Fall#2015,#Unix#Slide#75#

Prominent UNIX Editors

wikipedia.org/wiki/Comparison_of_text_editors lists 78 text editors that run on
Windows, OS X, and/or some version of UNIX. Nine are installed on lectura.

Which one(s) should you learn?

Here are some of the things I value most in an editor:
•  All common editing tasks can be done from the keyboard
•  Multiple files open at once, and multiple views of a file
•  Keys can be rebound to suit my preferences
•  Programmable with a full-featured language I know
•  Runs on OS X, Windows, and Linux
What you value may differ!

I use:
•  Aquamacs for day-to-day editing
•  vim for quick editing and browsing
•  Eclipse or IntelliJ for Java EE projects
•  PowerPoint for these slides
•  WordPerfect for assignments, exams, and papers.

CSC#352#Fall#2015,#Unix#Slide#76#

The editing landscape

Other popular editors on Windows and/or OS X:
•  Sublime
•  Notepad++
•  BBEdit (related: Text Wrangler)
•  TextMate
•  nano (a pico clone)
•  And there are lots of IDE-based editors

It's silly for programmers to use editors like nano and (plain old) Notepad!
•  They just doesn't do much!
•  They're editors for someone who doesn't want to be proficient.
•  Programmers need to be proficient when editing.
•  Don't let me catch you using nano or Notepad!

CSC#352#Fall#2015,#Unix#Slide#77#

The editing landscape, continued

All programming assignments will be graded on lectura. Therefore, here is good
advice: Test your code on lectura!

Here are some ways to get source files onto lectura:
•  Use an editor on lectura like emacs or vim (but not nano!)

•  Edit on your laptop and have changes automatically propagated to lectura:

o  On Windows, WinSCP's "Keep#Remote#Directory#up#to#Date" works
great!

o  For OS X, Drop Sync 3 from mudflatso~ware.com looks promising but
I've had trouble making it work. Yummy FTP Watcher also looks
promising but I haven't tried it.

•  Use remote editing on your laptop to edit files that reside on lectura:
o  Sublime has remote editing packages (more on Piazza).
o  Emacs has well integrated remote editing.
o  Flow from fivedetails.com allows remote editing with your OS X editor

of choice ($4.99). Cyberduck is similar; it's donate-ware.

A good way to irritate your instructor during office hours is to use a file transfer
app that you must interact with after each save in order to get your file to lectura.

 CSC#352#Fall#2015,#Unix#Slide#78#

The end goal: your code needs to run on lectura

If you know or want to learn a good UNIX editor like Vim or Emacs, I
encourage you to do that.

If not, I encourage you to edit on your own machines and use an SFTP
client like WinSCP or Cyberduck to get your code onto lectura.

If you don't have a laptop and are working on the machines in the CS or
OSCR labs and don't know where to get started, come for help during
office hours.

CSC#352#Fall#2015,#Unix#Slide#79#

Our approach for editing

I'll say a few things about Emacs and Vim in discussion sections but if you
want to learn about them on your own, here are some resources:

•  My Emacs slides straight from 2005 are here: fall15/emacs.pdf#

•  Emacs on lectura is emacs. The initial screen shows that ctrl-h, then
t starts a tutorial. Exit Emacs with ctrl-x then ctrl-c.

•  Vim on lectura is vim. The vimtutor shell command starts a
tutorial. Exit the tutorial with ZZ or :q! .

•  I learned vi from hKp://docs.freebsd.org/44doc/usd/12.vi/paper.pdf#

There are lots of tutorials for Emacs, Vim, and other editors on the net. If
you find one you like, recommend it on Piazza.

If there's an editor you really like, tell us about it on Piazza, but please no
long debates about editors on Piazza—find some other place for that.

CSC#352#Fall#2015,#Unix#Slide#80#

Emacs, Vim, and your suggestions

Using WinSCP and other clients create some possibility for trouble.
Example:
1.  You create x.java on your home desktop and WinSCP syncs it to

lectura.
2.  On campus you edit x.java on lectura.
3.  Back home in the evening you start up WinSCP and it overwrites your

changes to x.java on lectura with an old copy from your desktop.

It's important to
I recommend being very consistent about where the "master" copies of
files are. For example, if your masters are on your laptop, avoid the
temptation to make "quick changes" in the copies on lectura.

Also, synchronizing tools sometimes stop working. If you make a change
on your machine that seems to have no effect, use cat or ls -lt to
check the file on lectura.

CSC#352#Fall#2015,#Unix#Slide#81#

Potential for trouble

Along with understanding your tools I recommend frequent
backups. Here's a one-line, low-tech backup that you can run on
lectura:

#%#pr#*.java#|#mail#ds#352#your%ne1d@email.arizona.edu#

•  The pr command writes the content of each of your .java files in

turn to standard output, and that output is piped into mail, a
command line mailer. (Try man mail.)

•  You'll get a message with the subject "352".

•  pr generates some page headers that you'll have to hack out if
you need to recover a file, but your source code will all be there.

•  Experiment with it before you start counting on it.

CSC#352#Fall#2015,#Unix#Slide#82#

Low-tech backups for code

Automatic file sync with WinSCP
(for Windows users)

CSC#352#Fall#2015,#Unix#Slide#83#

Hit hKps://winscp.net/download/winscp575setup.exe and watch out for
all the spammy Download#Now! buttons.

Run winscp575setup.exe to start an installer.

These instructions assume selecting "Typical installation" and
"Commander" for the user interface style.

Start up WinSCP when the installation is complete.

CSC#352#Fall#2015,#Unix#Slide#84#

WinSCP installation

Use lec.cs.arizona.edu for the Host#name. Leave Port#number and File#
Protocol at their defaults. Click Login.

Note that you can Save connection settings. (Try it next time.)

For this demo, I'm logging into my student test account, stdntwm.

CSC#352#Fall#2015,#Unix#Slide#85#

Login to lectura

CSC#352#Fall#2015,#Unix#Slide#86#

Navigate to your 352 directories on both machines
Navigate to your 352 directory (folder) in both the left panel, which shows files
on your machine, and in the right panel, which shows your files on lectura. Use
WinSCP to make those directories (with right-clicks) if you haven't already made
them.

CSC#352#Fall#2015,#Unix#Slide#87#

Synchronize and start watching
Click Commands#>#Keep#Remote#Directory#up#to#Date...#producing this:

CSC#352#Fall#2015,#Unix#Slide#87#

BE SURE that the local and remote directories are correct. The Synchronize#
opWons shown are good for beginners. Click Start.

Create the file Hello.java in the 352 directory on your windows machine
using your favorite editor (which should not be Notepad!) When you do,
you'll see activity in the "Keeping..." dialog that Start brought up.

CSC#352#Fall#2015,#Unix#Slide#88#

Edit, observing synchronization

Suggestion: Keep a bit of the
activity pane in view in a corner
of your screen, to watch for
expected activity on saves.

Use PuTTY to connect to lectura and use the command cd 352 to change to
your 352 directory. Confirm that Hello.java looks good, then compile and run it.

Repeat the cycle a few times, editing and saving changes on your machine,
observing activity in the Keeping...#window, and confirming those changes are
reflected on lectura.

CSC#352#Fall#2015,#Unix#Slide#89#

Compile and run on lectura

Remote editing with Cyberduck
(for Mac users)

CSC#352#Fall#2015,#Unix#Slide#90#

It appears that Cyberduck is $23.99 in the App Store but if you download it from
hKps://cyberduck.io/, you get a version that's donate-ware. This demo uses the
latter.

CSC#352#Fall#2015,#Unix#Slide#91#

Install and run Cyberduck

Start Cyberduck and click Open#
ConnecWon to get the connection
dialog shown at right.

Select SFTP. For Server use
lec.cs.arizona.edu.#
#
For this demo, I'm logging into my
student test account, stdntwm.

Click Connect.
#

Using a right-click, create a 352 directory (folder) if needed.

Navigate to 352 and use a right-click or cmd-F to make Hello.java, an empty file.

CSC#352#Fall#2015,#Unix#Slide#92#

Create an empty Hello.java in 352 directory

With a right-click I'll indicate that I want to remotely edit the just-created
and empty Hello.java on lectura using Sublime on my Mac.

Note: I needed to use Preferences and add Sublime as a default to make it
appear alongside Aquamacs and Xcode.

CSC#352#Fall#2015,#Unix#Slide#93#

Open Hello.java with an editor on your Mac

CSC#352#Fall#2015,#Unix#Slide#94#

Sublime now opens up with a empty window for Hello.java.

I'll write some code. Whenever I hit Save, the contents of the buffer will be
written to /home/stdntwm/352/Hello.java on lectura. Here's the final result:

Note the long path (/private/...) where Sublime saved Hello.java. Whenever
Cyberduck sees a change in that file, it's copied to 352/Hello.java on lectura.

CSC#352#Fall#2015,#Unix#Slide#94#

Code up Hello with Sublime

CSC#352#Fall#2015,#Unix#Slide#95#

Compile and run Hello.java on lectura
After saving on the Mac, I can switch to a Terminal window where
I've used ssh to login on lectura, cd to my 352 directory, and
compile and run Hello.java:

The big picture: I can use Cyberduck#to open a file that resides on lectura
and edit it using my favorite Mac editor.

Remote editing with Flow
(for Mac users)

CSC#352#Fall#2015,#Unix#Slide#96#

I include this section in case you don't like Cyberduck. Flow costs $4.99.

When you start Flow you'll get a connect dialog:

Leave the Protocol#as SFTP and the port as 22. If you don't specify an
IniWal#Path you'll start in your home directory. For this demo, I'm logging
into my student test account, stdntwm.

CSC#352#Fall#2015,#Unix#Slide#97#

Remote editing with Flow#

Once logged in, I see this:

My Mac folders are on the left but I don't care about them. I simply want to
create a file named Hello.java in my 352 directory on lectura, which is the second
of the five directories shown on the right. I double-click 352.

Note: The breadcrumbs at the bottom show that my lectura home directory is
/p2/hs/stdntwm, but another name for it is /home/stdntwm.

CSC#352#Fall#2015,#Unix#Slide#98#

Remote editing with Flow, continued

A right-click in the empty pane on the left brings up a dialog that I'll use to create
a new file, Hello.java, that will reside on lectura.

Note that the breadcrumbs show I'm now in my 352 directory on lectura.

CSC#352#Fall#2015,#Unix#Slide#99#

Remote editing with Flow, continued

With a right-click on Hello.java I'll indicate that I want to edit it with Aquamacs
on my Mac.

CSC#352#Fall#2015,#Unix#Slide#100#

Remote editing with Flow, continued

Aquamacs now opens up with a buffer for Hello.java.

I'll write some code. Whenever I hit Save, the contents of the buffer will be
written to /home/stdntwm/352/Hello.java on lectura. Here's the final result:

CSC#352#Fall#2015,#Unix#Slide#101#

Remote editing with Flow, continued

CSC#352#Fall#2015,#Unix#Slide#102#

Remote editing with Flow, continued
After saving on the Mac, I can switch to a Terminal window where
I've used ssh to login on lectura, cd to my 352 directory, and
compile and run Hello.java:

The big picture: I can use Flow to open a file that resides on lectura and
edit it using my favorite Mac editor.

Files, directories and paths

CSC#352#Fall#2015,#Unix#Slide#103#

A UNIX machine stores data and provides access to it using one or more file
systems.

•  There are many different types of UNIX file systems.

•  Some file systems maintain a data structure stored on a permanent
medium such as a rotating disk or an SSD (solid-state drive).

•  Other file systems are essentially protocols for accessing files over a
network.

•  The files associated with your CS account are stored on a server that uses
the ZFS filesystem. (See https://en.wikipedia.org/wiki/ZFS)

•  A ZFS filesystem can hold about 281 quadrillion files, with a total
capacity of about 3x1023 bytes.

•  Lectura accesses the files on ZFS servers using NFS (Network File
System).

CSC#352#Fall#2015,#Unix#Slide#104#

File systems

No matter what type of file system is being used, UNIX users see a tree of
directories. Here's a tiny portion of the tree we see on lectura:

Directories are said to have entries. How many entries do each of the directories
above have?

Directory entries reference "files" but a "file" can be one of many things: a
regular file, directory, special file, named pipe, socket, or symbolic link. Regular
files are shown boxed above; the other entries are directories.

The term "directory" is synonymous with "folder", but we'll prefer "directory".

CSC#352#Fall#2015,#Unix#Slide#105#

Directories

"root"

home

whm

352

bin

bash date

etc

hosts passwd

Let's assume we're in an empty directory, like 352 on the previous slide.
Let's make two zero-length files using touch.

% touch one two

The ls ("LS") command lists the entries that are in a directory.
% ls
one two

Let's now use mkdir to make an empty directory, d1.

% mkdir d1

% ls
d1 one two

The -F option of ls causes directory names to be shown with a /:

% ls -F
d1/ one two

CSC#352#Fall#2015,#Unix#Slide#106#

Directory entries

We can also use the -l ("L") option of ls to distinguish directories:

% ls -l
total 3
drwxrwxr-x 2 whm whm 2 Aug 25 19:07 d1
-rw-rw-r-- 1 whm whm 0 Aug 25 19:05 one
-rw-rw-r-- 1 whm whm 0 Aug 25 19:05 two

"total 3" shows that three blocks of disk space are used by these entries. I'll
sometimes not show this line, to save space.

The "d" in the first column indicates that d1 is a directory; the "-" shows that
one and two are regular files.

ls -l shows other metadata (data about data) for the three entries, too:
•  The rw... string shows permissions (soon...)
•  The second column is the link count (later...)
•  The next two columns (whm whm) show user and group ownership (later...)
•  Following the ownerships is the file size, for the regular files.
•  The date and time of the last modification are shown.

CSC#352#Fall#2015,#Unix#Slide#107#

Directory entries, continued

There is a single set of rules for valid entry names for all types of entries.

Here are two simple rules for entry names:
•  All ASCII characters except NUL (all bits zero) and / (slash) can be used.
•  The maximum length is platform-dependent; it's 255 on lectura.

Here are some valid entry names, three per line:
Hello.java a.out core
.bashrc a.b.c.d. !@#$%^&*()_-+=
:) _\ ...

Here are two more entry names, one per line.

A collection of assorted(!) notes about UNIX
 (three blanks and two tabs!)

CSC#352#Fall#2015,#Unix#Slide#108#

 Sidebar: Entry names

In classic UNIX, and on lectura, entry names are case-sensitive. For example,
hello.java and Hello.java name two different files.

Some file systems are case-insensitive; some are case-configurable.

If a filename contains shell metacharacters or whitespace characters, the
characters must be often be escaped when the file is specified on the command
line:

% wc -c '[123]' Version\ 2 'This|That'
 359 [123]
 688 Version 2
 417 This|That
 1464 total

Due to the word-oriented nature of command-line parsing, entry names with
whitespace cause a lot of headaches, especially in shell scripts. Programmers
often avoid putting blanks and other problematic characters in entry names.

CSC#352#Fall#2015,#Unix#Slide#109#

Entry names, continued

Every UNIX process (a running program) has a current working directory.

A very strong convention is that when a program operand specifies the name of a
file, the file is assumed to be in the current working directory.

When we ran "touch one two" earlier, we were saying "Touch files one and
two in the current working directory."

When we ran "mkdir d1", we were saying, "Make a directory d1 in the current
working directory."

How is the current working directory used by following command?
 % java lc < words.txt > count

1)  bash opens words.txt and count in the current working directory and

passes those streams to java as standard input and standard output.
2)  java reads lc.class in the current working directory and runs it.

Note: "current working directory" is often shortened to either "current directory"
or "working directory".

CSC#352#Fall#2015,#Unix#Slide#110#

Current working directory

Like all other processes, bash has a current working directory, too.

When bash starts a program, like touch, mkdir, or java, the process
inherits bash's current working directory.

cd is a builtin command of bash:

% type cd
cd is a shell builtin

cd changes the working directory of bash. Let's try it:

% ls -F
d1/ one two

% cd d1

% ls

%

 CSC#352#Fall#2015,#Unix#Slide#111#

Current working directory, continued

Here's what happened:
• cd changed the working directory of bash to d1.
• bash ran ls, and ls inherited d1 as its c.w.d.
•  Since d1 is empy, ls shows no entries.

Key question: Why must cd be a builtin?
If cd were a program, changing its c.w.d. would
have no effect on the c.w.d. of bash!

Let's do some things in my 352 directory.

% ls -F
d1/ one two

% cd d1

% ls

% cal > cal.out

% mkdir notes

% ls -F
cal.out notes/

CSC#352#Fall#2015,#Unix#Slide#112#

Current working directory, continued

352

two one d1

notes cal.out

ls -l doesn't tell the whole truth. Let's add -a, which shows "hidden"
entries, too. Recall that our working directory is d1.

% ls -la
total 8
drwxrwxr-x 3 whm whm 4 Aug 26 23:22 .
drwxrwxr-x 3 whm whm 5 Aug 25 19:14 ..
-rw-rw-r-- 1 whm whm 188 Aug 26 23:21 cal.out
drwxrwxr-x 2 whm whm 2 Aug 26 23:22 notes

By definition, "hidden" entries are entries that start with a dot.

The entry .. ("dot dot") is the parent directory of d1. We can use it to go
up a level.

% cd ..

% ls -F
d1/ one two

CSC#352#Fall#2015,#Unix#Slide#113#

.. ("dot dot")

We can specify one or more directory entries as operands for ls.

% ls -l one two
-rw-rw-r-- 1 whm whm 0 Aug 25 19:05 one
-rw-rw-r-- 1 whm whm 0 Aug 25 19:05 two

% ls -la d1
total 8
drwxrwxr-x 3 whm whm 4 Aug 26 23:28 .
drwxrwxr-x 3 whm whm 5 Aug 25 19:14 ..
-rw-rw-r-- 1 whm whm 188 Aug 26 23:21 cal.out
drwxrwxr-x 2 whm whm 2 Aug 26 23:28 notes

% cd d1

% ls -l ..
total 3
drwxrwxr-x 3 whm whm 4 Aug 26 23:28 d1
-rw-rw-r-- 1 whm whm 0 Aug 25 19:05 one
-rw-rw-r-- 1 whm whm 0 Aug 25 19:05 two

CSC#352#Fall#2015,#Unix#Slide#114#

Examining entries with ls

Instead of giving ls an entry, we can give it a path to an entry. Example:

% ls
d1 one two

% ls -l d1/cal.out
-rw-rw-r-- 1 whm whm 188 Aug 26 23:21 d1/cal.out

A series of directory entries separated by slashes is called a path.

Almost all programs accept paths for file or directory operands.

% mkdir d1/notes/langs d1/notes/platforms

% cat d1/cal.out
 August 2015
...

CSC#352#Fall#2015,#Unix#Slide#115#

Paths

% cd d1/notes

% touch langs/java

We can find out where we are with pwd (print working directory).

% pwd
/home/whm/352

The path printed by pwd shows that we're in the 352 directory in the whm
directory in the home directory of the "root" directory.

A directory in a directory is often called a subdirectory. 352 is a subdirectory of
whm. whm is a subdirectory of home.

Let's ascend to the root. To save space we'll use a semicolon to put two
commands on the same command line.

% cd ..; pwd
/home/whm

% cd ..; pwd
/home

% cd ..; pwd
/

 CSC#352#Fall#2015,#Unix#Slide#116#

Paths, continued

Let's see what's in the root of the file system.
% pwd
/

% ls -F
bin/ extensions/ local/ scratch/
boot/ gems/ lost+found/ selinux/
build/ home/ media/ specifications/
build_info/ homeauto/ mnt/ srv/
cache/ initrd.img@ opt/ sys/
cdrom/ initrd.img.old@ p1/ tmp/
cs/ lhome/ p2/ usr/
dev/ lib/ proc/ var/
doc/ lib32/ root/ vmlinuz@
etc/ lib64/ run/ vmlinuz.old@
etc-lec/ libnss3.so@ sbin/

We see mostly directories and a few symbolic links (the @'s).

CSC#352#Fall#2015,#Unix#Slide#117#

Paths, continued

With "root" as our current directory, let's use find to show paths to all the
files and directories in my 352 directory.

% pwd
/

% find home/whm/352
home/whm/352
home/whm/352/two
home/whm/352/d1
home/whm/352/d1/notes
home/whm/352/d1/notes/platforms
home/whm/352/d1/notes/langs
home/whm/352/d1/notes/langs/java
home/whm/352/d1/cal.out
home/whm/352/one

CSC#352#Fall#2015,#Unix#Slide#118#

Paths, continued

Here's the current tree.

CSC#352#Fall#2015,#Unix#Slide#119#

Paths, continued

"root"

home

whm

352

two one d1

notes

platforms langs

java

% find home/whm/352
home/whm/352
home/whm/352/two
home/whm/352/d1
home/whm/352/d1/notes
home/whm/352/d1/notes/platforms
home/whm/352/d1/notes/langs
home/whm/352/d1/notes/langs/java
home/whm/352/d1/cal.out
home/whm/352/one

cal.out Exercise: Using the find output, draw the
tree from scratch.

If you've had data structures...Is find performing
a pre-order, in-order, or post-order traversal?

Let's add some other files and directories referenced in these slides.

CSC#352#Fall#2015,#Unix#Slide#120#

A bigger picture

"root"

home

whm

352

two one d1

notes

platforms langs

java

cal.out

www

cs

classes

cs352

fall15

java

lc.java args.java

bin

bash date

etc

hosts passwd

Let's try some problems with this tree:

CSC#352#Fall#2015,#Unix#Slide#121#

Navigation with paths

two one d1

notes

platforms langs

java

cal.out

352

work If we're in work, how can I cd to ...
 352?
 cd ..
 d1?
 cd ../d1
 langs?
 cd ../d1/notes/langs

If in platforms, how can I cat...

 cal.out?
 cat ../../cal.out
 java?
 cat ../langs/java
 two?
 cat ../../../two

If in d1, which of these work?
 cd ../d1
 cat d1/cal.out
 cat ../../two
 cd notes/langs/java
 cd notes/platforms/..
 cd langs/notes

Exercise:
•  Draw a small tree with nine directories and five files.

•  Using mkdir and touch, create the tree.
 Instead of touch, you might use echo to provide a little file content:

% echo This is x.java > x.java

•  Write and solve seven navigation problems like on the previous slide.

•  Try find (no arguments) and ls -laR at various points in the tree.

•  Experiment with TAB completion to build a path piece by piece. Work
through your navigation problems one directory at a time, using TAB
completion to look around.

Handy: "cd -" goes back to the last directory you were in.

CSC#352#Fall#2015,#Unix#Slide#122#

Practice!

The cp command copies files and directories. A simple case is a file to
file copy:
 % cp List.java List.java.bak

If List.java.bak already exists, it is silently overwritten.

Paths can be used with cp:

% cp ../cal.out langs/x

cp can copy whole trees:

 % cp -r notes/langs langs.bak

CSC#352#Fall#2015,#Unix#Slide#123#

The cp command

This SYNOPSIS from the cp man page shows another way to use cp:

 cp [OPTION]... FILE1 FILE2 ... FILEN DIRECTORY

[OPTION]... indicates that cp accepts some options.

The all-caps strings like FILE1 and DIRECTORY are placeholders that
describe what's expected.

Speculate: What does this synopsis tell us about a possible way to use cp?

cp can copy any number of files specified on the command line into a
specified directory.

Let's copy three files to ../work. They'll retain their names.
% cp cal.out ../one ../two ../work
% ls ../work
cal.out one two

 CSC#352#Fall#2015,#Unix#Slide#124#

The cp command, continued

Problem: I want to copy ../t-e9c3dc762.xml into my current
directory, 352/d1.

Bad solution--just hammer it out (error prone and not DRY!):
 cp ../t-e9c3dc762.xml t-e9c3dc762.xml

Here's a creative answer:
 cp ../t-e9c3dc762.xml ../d1

We could use filename completion with TABs:

 cp ../t-TAB ../t-TAB#
producing

 cp ../t-e9c3dc762.xml ../t-e9c3dc762.xml
Then use command-line editing to remove ../ from the second path:

 cp ../t-e9c3dc762.xml t-e9c3dc762.xml

But there's a better way!

 CSC#352#Fall#2015,#Unix#Slide#125#

Practical problem

Recall that along with "dot dot", ls -la shows "dot":
% ls -la
drwxrwxr-x 3 whm whm 5 Aug 28 09:20 .
drwxrwxr-x 4 whm whm 7 Aug 28 09:30 ..
-rw-rw-r-- 1 whm whm 188 Aug 26 23:21 cal.out
...more...

The hidden entry . ("dot") is the current directory. We can do this:
 cp ../t-e9c3dc762.xml .

We've seen dot earlier, too:
find . -type f -mtime -2 -size +1k
cp /cs/www/classes/cs352/fall15/java/args.java .
./ucount

What do these commands do?
 cd .
 cd ././.
 cd ./.././../---

 CSC#352#Fall#2015,#Unix#Slide#126#

Practical problem, continued

Here are some examples of a relative path:
x.java
352/ucount
./out
../../..
etc/passwd
./etc/passwd

Here are some examples of an absolute path:

/home/whm/x.java
/Users/whm/352/ucount
/out
/etc/../bin
/etc/passwd
/home
/cs/www/classes/cs352/fall15/syllabus.pdf
/.

What do the absolute paths have in common?

They start with a slash.

CSC#352#Fall#2015,#Unix#Slide#127#

Relative vs. absolute paths

Two simple rules:
Any path that starts with a slash is an absolute path.
If a path doesn't start with a slash, it is a relative path.

Relative or absolute?

x.java
../../x
/home/whm/x.java
352/ucount
./etc/passwd
/etc/passwd

CSC#352#Fall#2015,#Unix#Slide#128#

Relative vs. absolute paths, continued

When the UNIX kernel opens a file specified by an absolute path, it starts
at the root of the file system and then works through the path one entry at
a time.

If I execute this Java expression,

new FileReader("/home/whm/352/x")
the system...
�  Looks in the root (/) for home, then...
�  Looks in home for whm, then...
�  Looks in whm for 352, then...
�  Looks in 352 for x

How would the steps differ for the following?
 new FileReader("home/whm/352/x")

The system...
�  Looks in the current working directory for home, then...
Steps 2-4 are the same!

 CSC#352#Fall#2015,#Unix#Slide#129#

Relative vs. absolute paths

What's a key benefit of absolute paths?
Absolute paths work no matter what your current directory is.

What's a key element that relative paths depend on?

The concept of a current directory.
(Without a current directory, there's nothing to be relative to!)

What are key benefits of relative paths?

Brevity:
If I'm in /home/whm/352 I can say cat java/lc.java.

Location independence for programs using them.
Imagine many identically structured trees holding test results:

CSC#352#Fall#2015,#Unix#Slide#130#

Relative vs. absolute paths

test197

a b c

x y z

test321

a b c

x y z

An analyzer might cd into each tree in
turn and analyze a/x, b/y, and c/z.

Most of the path stuff, including . and .. has
worked on all Microsoft operating systems.

The sixth field of your /etc/passwd entry specifies the path to your
home directory. Here's my entry:

% fgrep whm: /etc/passwd
whm:x:3086:8086:William H. Mitchell:/home/whm:/bin/bash

Whenever you login to lectura, your current directory is set to your home
directory.

If cd is run with no arguments, it takes you to your home directory.

% pwd
/home/whm/352/a2

% cd

% pwd
/home/whm

Do man -s 5 passwd for a description of the /etc/passwd fields.

CSC#352#Fall#2015,#Unix#Slide#131#

Your home directory

bash expands ~/ in a command line to the absolute path of your home directory.

% echo ~/352/d1
/home/whm/352/d1

% cd ~/info

% pwd
/home/whm/info

% cat ~/3bin/lec-mpage
...

Tilde expansion saves some typing but what's another benefit?

Scripts can use ~ to keep paths system-independent.
On my Mac, ~ is /Users/whm but a script using ~/lib/x works on
both my Mac and lectura.

Is ~/lib/x an absolute path or a relative path?

CSC#352#Fall#2015,#Unix#Slide#132#

Tilde expansion

It's important to understand that tilde expansion is done by bash (evidenced by
echo), not the operating system.

Library routines typically do not do tilde expansion. Let's try Ruby:

% irb
>> open("/home/whm/x")
=> #<File:/home/whm/x>
>> open("~/x")
Errno::ENOENT: No such file or directory - ~/x

Some programs recognize ~/ as being a shorthand for your home directory.

 In Vim things like :vi ~/x and :r ~/352/notes work.

Emacs handles paths like ~/x. In Emacs Lisp, (find-file "~/x") works.

Some (all?) file selection dialogs on OS X recognize ~/. (Do File>Open in some
app and type ~ or /, and you'll get a "Go#to#the#folder:" slide-down.)

Try this: (use ~whm as shown, not your login name)

% java args ~ ~whm /x/~y /x/~ ~mysql

CSC#352#Fall#2015,#Unix#Slide#133#

Tilde expansion, continued

Motivation:
Test files for a2 are in /cs/www/classes/cs352/fall15/a2, but
that's a long path to type!

The a2 write-up says to do this,

% cd ~/352/a2
% ln -s /cs/www/classes/cs352/fall15/a2 .

then take a look at what ls shows: (output is split across lines)

% ls -l a2
lrwxrwxrwx 1 whm whm 31 Aug 29 21:42 a2 ->
 /cs/www/classes/cs352/fall15/a2

That lowercase "L" at the start of the line indicates that a2 is a symbolic link,
often shortened to "symlink".

The a2 -> /cs/.../fall15/a2 indicates that a2 references (or "points
to") that entry.

The symlink, an entry in the current directory, was named a2 because the
destination, the second operand of ln -s, was dot, the current directory.

CSC#352#Fall#2015,#Unix#Slide#134#

Symbolic links

Let's temporarily set the bash prompt to show the current working directory and
then see what's in a2.

% PS1="\n\w % "

~/352/a2 % ls a2
amj-hints days.2 isleap-hints timeline.txt
args.out delivs lengths.1 tomorrow-hints
...

The a2 symlink creates the illusion that 352/a2 has an a2 subdirectory but in
fact we're looking at /cs/www/classes/cs352/fall15/a2!

~/352/a2 % ls /cs/www/classes/cs352/fall15/a2
amj-hints days.2 isleap-hints timeline.txt
args.out delivs lengths.1 tomorrow-hints
...

It is very important to understand this:
~/352/a2 is /home/whm/352/a2
~/352/a2/a2 is /cs/www/classes/cs352/fall15/a2

CSC#352#Fall#2015,#Unix#Slide#135#

Symbolic links, continued

At hand:
~/352/a2 % ls -l a2
lrwxrwxrwx 1 whm whm 31 Aug 29 21:42 a2 ->
 /cs/www/classes/cs352/fall15/a2

Files in/cs/www/classes/cs352/fall15/a2 can now be
referenced concisely:

~/352/a2 % cat a2/rev.1
one
two
three

~/352/a2 % java rev < a2/rev.1
eno
owt
eerht

The tester will assume the presence of an a2 symlink!

CSC#352#Fall#2015,#Unix#Slide#136#

Symbolic links, continued

A symbolic link can reference any type of "file", including a regular file.
~/352/a2 % ln -s a2/lengths.1 x

~/352/a2 % ls -l x
lrwxrwxrwx 1 whm whm 12 Sep 1 17:34 x -> a2/lengths.1

~/352/a2 % cat x
just
a
test

here

~/352/a2 % java lengths < x
4
1
4
0
4

CSC#352#Fall#2015,#Unix#Slide#137#

Symbolic links, continued

Key point:
Symbolic links are handled by the operating system.

Benefit:
A program doesn't have to do anything special to follow a symlink to
its destination.

In 352/a2, new FileReader("a2/days.1") works. The
FileReader constructor has no clue that a2 is a symlink!

CSC#352#Fall#2015,#Unix#Slide#138#

Symbolic links, continued

I often describe a symlink as a "Windows shortcut done right."

C:>type longFileName.txt
Tue, Sep 01, 2015 5:50:25 PM

C:>type lf.txt.lnk
L▒F▒ ▒[▒▒ɏ$_▒▒▒▒[▒▒]P▒O▒ ▒:i▒+00▒/C:\:1▒Bcygwin
$▒▒<A"G▒cygwin41▒<L home ▒▒<▒"G▒home<1! ...

If a Windows program wants to handle shortcuts, it's got to have special
code to do it!

CSC#352#Fall#2015,#Unix#Slide#139#

Sidebar: Windows shortcuts

I've made a Windows shortcut named lf.txt
that references longFileName.txt.

I can open either with Explorer but watch what
type, the Windows analog of cat(1), does:

File-related utility programs often have special handling for symbolic
links.

One example is ls, whose -L option says to "follow" the link.

~/352/a2 % ls -l x
lrwxrwxrwx 1 whm whm 12 Sep 1 17:34 x -> a2/
lengths.1

~/352/a2 % ls -lL x
-rw-r--r-- 1 whm whm 18 Aug 29 21:21 x

~/352/a2 % ls -l a2/lengths.1
-rw-r--r-- 1 whm whm 18 Aug 29 21:21 a2/lengths.1

Try ls -l /usr/share/dict/words. Try it again with -lL.

CSC#352#Fall#2015,#Unix#Slide#140#

Symbolic links, continued

I've got a lot of symbolic links. Here are some on my Mac:
% ls -l /w
lrwxr-xr-x 1 root wheel 9 Jun 7 2013 /w -> Users/whm

% ls -l /e
lrwxr-xr-x 1 whm admin 11 Dec 9 2009 /e -> /Volumes/e/

% ls -l ~/352/files/unix.pptx
lrwxr-xr-x 1 whm staff 18 Aug 23 17:45 /Users/whm/352/files/
unix.pptx -> ../unix-clean.pptx

% ls -l ~/3bin
lrwxr-xr-x 1 whm staff 10 Sep 16 2013 /Users/whm/3bin ->

 src/337bin

Cygwin:
% ls -l /c
lrwxrwxrwx 1 TheBoss None 11 Jun 3 2010 /c -> /cygdrive/c

lectura:

% ls -l ~/www
lrwxrwxrwx 1 whm dept 18 Aug 20 2009 /home/whm/www ->

 /cs/www/people/whm
 CSC#352#Fall#2015,#Unix#Slide#141#

Symbolic links

The mv ("move") command can be used to rename files or move files from
one directory to another.

Let's rename users to usercount:

% mv users usercount

If mv's destination file already exists, it is silently overwritten unless -i is
specified.

Directories can be renamed, too:

% mv 352 csc352

If mv's last argument is a directory, the preceding entries (arguments) are
moved into that directory.

% mv x y p1/notes.txt java/test.java ~
% mv ~/test.java ~/notes.txt .

 (Note that . is used for destination--"move them here".)

To rename (not move!) many files at once, see rename(1).

CSC#352#Fall#2015,#Unix#Slide#142#

The mv command

Here are some handy options for ls:
-t Sort by modification time instead of alphabetically.
-h Show sizes with human-readable units like K, M, and G.
-r Reverse the order of the sort.
-S Sort by file size
-d By default, when an argument is a directory, ls operates on the

entries contained in that directory. -d says to operate on the
directory itself. Try "ls -l . " and "ls -ld ."

--full-time
 Show times with full resolution.

Two handy options for cp:
-r Recursively copy an entire directory tree
-p Preserve file permissions, ownerships, and timestamps
 cp -rp ~/352 ~/352.bak.20150901
-L "Follow" symbolic links.

 CSC#352#Fall#2015,#Unix#Slide#143#

Odds and ends

The rm (remove) command is used to permanently delete one or more files:
% rm tmp.out Hello.java.old a b c

To remove a directory, use rmdir.

% rmdir x

A directory must be empty before it can be removed with rmdir, but rm's -r
(recursive) option can be used to remove a directory and all its contents.

% mkdir -p y/z
% rmdir y
rmdir: y: File exists
% rm -rf y
%

The -i option of rm causes a prompt before a file is removed.

The -f option forces removal of read-only files. It also suppresses warnings
about non-existent files.

CSC#352#Fall#2015,#Unix#Slide#144#

Deleting files and directories

See http://cs.arizona.edu/computing/accounts/snapshots.html for a
description of a facility that allows recovery of files. (ZFS facility.)

bash Customizations and
Conveniences

CSC#352#Fall#2015,#Unix#Slide#145#

REPLACEMENTS!

Discard the 144-154 set from Sep 4.

The executable code and literal data for a program is held in a file.
% ls -l /bin/bash /bin/date /bin/ls
-rwxr-xr-x 1 root wheel 959120 Oct 7 2014 /bin/bash
-rwxr-xr-x 1 root wheel 59984 Jan 13 2015 /bin/date
-rwxr-xr-x 1 root wheel 105840 Jan 13 2015 /bin/ls

When we run a program with bash, the program code and literal data are loaded
into memory, and execution of the code begins.

A running copy of a program is a called a process.

We can say a process is an instance of a program.

A program can be likened to a Java class: both contain code and constant data.

Starting a process is somewhat like calling the constructor of a Java class. In both
cases we end up with an in-memory entity that contains code and data.

An object is an instance of a class.
A process is an instance of a program.

CSC#352#Fall#2015,#Unix#Slide#146#

Sidebar: Programs and processes

Good news:
The behavior of bash can be customized by putting commands in the
initialization files that bash reads.

Bad news:
Several files and rules are involved.

The initialization files present and their conents vary from user to user
based on when the CS account was created.

We'll first talk about the mechanics of bash's initialization files and then
look at types of things we might add to initialization files.

Anything that's valid at the bash prompt can appear in an initialization file
and vice-versa. In other words, initialization files simply contain a
sequence of bash commands.

CSC#352#Fall#2015,#Unix#Slide#147#

Good news and bad news

If bash is specified as your shell in /etc/passwd and you login, the instance of
bash that's started is said to be a login shell.

When bash is started as a login shell it first reads /etc/profile. It then looks
for three files in turn: ~/.bash_profile, ~/.bash_login, and
~/.profile. Upon finding one, it executes the commands in that file and
doesn't look any further.

Sometimes you'll want to start another instance of bash from the bash prompt:
% bash
%

Such an instance of bash is an "interactive non-login shell". It reads /etc/
bash.bashrc and ~/.bashrc.

My practice:
(1) ~/.profile has a single line, which loads ~/.bashrc.
(2) All my customizations are in ~/.bashrc.

CSC#352#Fall#2015,#Unix#Slide#148#

The rules (simplified), and my practice

Note: This procedure is for students who have done no customization of their bash
startup files on lectura.

Use cd with no arguments to go to your home directory.

Confirm that you've got .profile but not .bash_profile or .bash_login

Make a directory bashoriginals and move (mv) .profile and .bashrc into it.

Create .profile and put one line in it:

source ~/.bashrc

Create .bashrc and put these lines in it: (Details on all will follow.)

PS1="\w % "
PATH=$PATH:~/bin
alias ll="ls -l"
alias restart="source ~/.bashrc"

We'll learn about the commands in the following slides.

CSC#352#Fall#2015,#Unix#Slide#149#

Creating a "starter" bash configuration

When making major changes to my
bash initialization files, I usually log
out and back in, to check for errors.

bash supports variables that hold values of various types, including integers and
arrays but we'll focus on string-valued variables, which are the default.

bash variables have four common uses:
•  Specification of various bash behaviors
•  Access to information maintained by bash
•  Command line convenience variables
•  Use as a conventional variable for programming (later, maybe)

The variable PS1 falls in the first category. Its value specifies the primary bash
prompt. We set it in our simple .bashrc:

PS1="\w % "

If we assign a value to PS1, the next prompt reflects it:
~ % PS1="What now, master? "
What now, master? PS1="C:>"
C:>

Search for PROMPTING on the bash man page to see the various escape codes
that are recognized, like \w. There's PS2, PS3, and PS4, too!

CSC#352#Fall#2015,#Unix#Slide#150#

Shell variables

Here's a sampling of other variables that control bash's behavior:

FIGNORE=.class:.o
When doing TAB completion of file names, ignore file names with
the suffixes .class and .o

HISTSIZE=5000
HISTTIMEFORMAT='%Y%m%d-%H:%M:%S: '

The number of commands shown by history, and how their
times are formatted. (See man strftime for the recognized
time formatting specifiers.)

PROMPT_COMMAND
The name of a command to execute before the PS1 prompt is
printed.

CSC#352#Fall#2015,#Unix#Slide#151#

Variables that control bash behavior

bash makes a variety of current shell-centric information available as
variables. Two simple ones are PWD and OLDPWD.

Variables are accessed by prefixing their name with a dollar sign:

% echo $PWD
/home/whm/352

Practical example with OLDPWD:

% pwd
~/src/ruby/examples

% cd ~/work

% cp $OLDPWD/fbscores.rb .

Another is RANDOM:
% echo $RANDOM $RANDOM $RANDOM
7947 27666 7603

CSC#352#Fall#2015,#Unix#Slide#152#

Variables that make information available

Let's add three more lines to our simple .bashrc: (no spaces around '='!)
f352=/cs/www/classes/cs352/fall15
a2=$f352/a2 # concatenation!
mya2=~/352/a2

We'll reload our .bashrc with our restart alias and then check variables.

~ % restart
~ % echo $f352
/cs/www/classes/cs352/fall15
~ % echo $a2
/cs/www/classes/cs352/fall15/a2
~ % echo $mya2
/home/stdntwm/352/a2

Let's run the a2 Tester:

~ % cd $mya2
~/352/a2 % $a2/tester eval
...

The scope of a (non-exported) variable is the bash instance in which it's created.
CSC#352#Fall#2015,#Unix#Slide#153#

Command line convenience variables

Your PATH variable specifies the directories that are to be searched when
you run a command.

% echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/
bin:/sbin:/bin:/usr/games:/usr/local/rvm/bin:/
home/stdntwm/bin

% echo $PATH | tr : " " | wc -w
9

If I type "xyz" at the prompt, bash will search each of those nine
directories in turn for an executable file named xyz. If it finds an xyz, it
will run it, and look no further.

What's a key benefit of being able to specify a search path for commands?

I can specify additional sets of commands to run!

What does the last path entry specify?
 CSC#352#Fall#2015,#Unix#Slide#154#

The search path for commands (PATH)

At hand: (the command search path for my student account)
% echo $PATH
...various system "bins"...:/home/stdntwm/bin

A common convention is to put your own commands in ~/bin.

Some programmers have more than one "bin".

3bin ccbin ebin mbin qqbin winbin
bin cwbin jbin qbin sbin

 (732 commands in those)

Speculate: Does running "a2/tester" involve the search path?

No. If there's a / in the command, it simply runs that file.
Another example: ./x

CSC#352#Fall#2015,#Unix#Slide#155#

PATH, continued

Here's a line from the "starter" ~/.bashrc. What's it doing?
PATH=$PATH:~/bin

 Append ":~/bin" to whatever PATH already is.

Java analog:

PATH = PATH + ":~/bin";

When bash starts up, PATH gets set to a system-specific value.

The net effect of PATH=$PATH:~/bin is "If you don't find a command in the
standard directories on this system, look in my bin."

The truth: With our starter .bashrc you'll see this:

% echo $PATH
/usr/local/rvm/gems/ruby-1.9.3-p484/bin:/usr/local/
rvm/gems/ruby-1.9.3-p484@global/bin:/usr/local/rvm/
rubies/ruby-1.9.3-p484/bin:/usr/local/sbin:/usr/
local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/
usr/local/rvm/bin:/home/stdntwm/bin

 CSC#352#Fall#2015,#Unix#Slide#156#

Setting the path in ~/.bashrc.

Some programmers have "dot" in their search path (PATH=...:.) so that a script x
in the current directory can be run with "x" instead of "./x".

"Dot in the path" can be convenient but imagine...
•  Instead of typing ls you accidentally typed sl.
•  You happened to be in a "world-writable" directory like /tmp.
•  A malicious student has put this in /tmp/sl:

chmod o+rwx ~
...or maybe this:

rm -rf ~/ & # "&" runs a command "in the background"

In the first case, they've gained access to your home directory!

In the second case, deletion of all your CS account files is in progress!

But the above is a combination of a bad guy, a bad neighborhood and a boo-boo!

Is it stupid to have dot in your path?

CSC#352#Fall#2015,#Unix#Slide#157#

Dot danger!

Like with any risk, you need to weigh risk vs. convenience.

If you're developing a lot of scripts, not having to type ./x is convenient.

But if you're developing in one place, like ~/352/a2, you could just put ~/
352/a2 in your path temporarily.

I have a number of directory-specific scripts, like "rst", short for "rsync this
directory" but I alias rst="./rst".

Having dot in your path on your personal machine might seem perfectly safe but
imagine you're simply navigating a tree of data files from a trusted colleague
who's not security-saavy.

My recommendation:

Don't put dot in your path on lectura! Be cautious even on your own machine.

BIG PITFALL: An empty entry is considered to be "dot"! How many are below?

PATH=:/usr/local/bin::/usr/bin:~/bin:

CSC#352#Fall#2015,#Unix#Slide#158#

Dot danger, continued

Here's the first alias in our simple.bashrc:

alias ll="ls -l"

Aliases are another type of command that bash supports. With it in place I can
type ll instead of ls -l.

Because ls has good option handling, ll -t works, too. (If ls required all
options to be specified in one argument, ll -t wouldn't work.)

Instead of an alias, how about a script ~/bin/ll with "ls -l" in it?

We'd need to add a little code for argument handling. (ls -l "$@")

Here's a sampling of my 283 aliases: (No spaces around the '='s!)
alias jc="javac"
alias gcc="gcc -g -std=c99"
alias tfl="tail -f -n 50 /flashlog.txt"
alias +x="chmod +x"
alias jarwars="open /w/372/jarwars/jarwars.swf"

With no arguments, alias displays your aliases. Use \gcc x.c to ignore the
gcc alias, for example.

CSC#352#Fall#2015,#Unix#Slide#159#

Aliases

Here's the second alias shown in our simple .bashrc:
alias restart="source ~/.bashrc"

With it, we need to type only "restart" to make additions take effect
after changing .bashrc.

The source command, a builtin, executes commands in the current
instance of bash, as if they'd been typed in.

Contast: bash .bashrc starts a new instance of bash, executes the
commands in .bashrc, and then exits. The aliases and variables created
in .bashrc would exist only for a brief moment!

We can match the functionality of the ll alias with an ll script but we
can't match restart with a script!

CSC#352#Fall#2015,#Unix#Slide#160#

Aliases, continued

Wildcards allow the user to specify files and directories using text patterns in bash
commands.

args.java is great for exploring wildcards! Let's use an alias:
alias args="java -classpath $f352/java args"

The simplest wildcard metacharacter is ?, a question mark. A question mark
matches any one character.

Observe:
% ls
a out x xy z

% args ?
|a|
|x|
|z|

% args ??? ??
|out|
|xy|

CSC#352#Fall#2015,#Unix#Slide#161#

Wildcards

The command line "args ?" causes bash to expand
the question mark into the names of all matching files.

"args ?" is expanded into "args a x z".

What does "args ??? ??" mean?

Replace ??? with all three-letter names.
Replace ?? with all two letter names.
Run the resulting command, whatever it is.

echo is also good for exploring wildcards, and uses less vertical space on slides:
% ls
a out x xy z

% echo ?
a x z

% echo ??? ??
out xy

Predict the output:
% echo ? ? ?
a x z a x z a x z

% echo x? ?y
xy xy

% echo ? ?? x ??? ????
a x z xy x out ????

CSC#352#Fall#2015,#Unix#Slide#162#

Wildcards, continued

If there's no match, like with ????, the
argument is passed through as-is.

A general rule:
If a command line argument contains one or
more wildcards, the shell replaces that
argument with the file names in the current
directory that match the specified pattern.

Important:
Wildcards are not regular expressions.

The two facilities share a bit of common
behavior but they are far more different than
they are alike!

Situation:
% ls
out p1.c test x.java x2.c y.java

Problem:

Write commands to delete the Java files and move the C files to csrc in
your home directory.

Solution:

% rm ?.java

% mv ??.c ~/csrc

Problem: Describe the file names that would be matched by each of the following.

???
Three character names.

a??b
Four character names that start with an a and end with a b.

200?-1?-3?.log (assuming all files are YYYY-MM-DD.log)
The last day or two of October, November and December in 2000-2009.

CSC#352#Fall#2015,#Unix#Slide#163#

Wildcards, continued

A more powerful wildcard is * (asterisk). It matches any sequence of characters,
including an empty sequence.

* Matches every name

*.java Matches every name that ends with .java

x Matches every name that contains an x
Examples: x, ax, axe, xxe, xoxox

What would be matched by the following?
*x*y

Names that contain an x and end with y.
.

Names that contain at least one dot.
..*

Names that contain at least two dots.
a*e*i*o*u

Names that start with an a, end with a u, and have e, i, o, in sequence in
the middle.

CSC#352#Fall#2015,#Unix#Slide#164#

The * wildcard

/usr/bin has a lot of files. Try some wildcards there!
/usr/bin % ls *x*y
dbiproxy expiry iproxy smproxy syslinux-legacy ...

/usr/bin % ls *.*.* | wc
 39 39 526

/usr/bin % ls a*e*i*o*u*
akonadi_mixedmaildir_resource

/usr/bin % ls *-*-*-*-*-*
rarian-sk-get-extended-content-list

/usr/bin % ls *1*2*3
ls: cannot access *1*2*3: No such file or directory

Make some files with touch and try some matches.
% touch a.b ab axe b oxo

% echo a*b
a.b ab

% echo *b
a.b ab b

CSC#352#Fall#2015,#Unix#Slide#165#

Experiment!

Wildcards can be combined. Examples:

 ??* Matches names that are two or more characters long

 *.? Matches names whose next to last character is a dot

What would be matched by the following?

?x?*
Names that are at least three characters long and have an x as
their second character.

-?-
Names that contain two dashes separated by a single character.

CSC#352#Fall#2015,#Unix#Slide#166#

Combining wildcards

The character set wildcard specifies that a single character must match one of a set.
% ls
a b e n out x xy z

% echo [m-z] # one-character names in the range n-z
n x z

Another:
% ls
Makefile fmt.c utils.c utils.h

% echo *.[chy]
fmt.c utils.c utils.h

More:
[A-Z]*.[0-9]

Matches names that start with a capital letter and end with a dot and a digit.

*.[!0-9] (Leading ! complements the set.)
Matches names that end with a dot and a non-digit character.
Equivalent: *.[^0-9]

[Tt]ext
Matches Text and text.

CSC#352#Fall#2015,#Unix#Slide#167#

The character set wildcard

Slashes can be included in a pattern to match files anywhere.

What do these commands do?

wc ~/*.java
Runs wc on every Java source file in my home directory.

ls -l */Readme.txt
Runs ls -l on every Readme.txt in a subdirectory of this directory.

more a2/[s-z]*/questions.txt
I'd used more a2/*/questions.txt to browse solutions but I got
interrupted. I used the above to start roughly where I'd left off, with
NetIDs that start with "s".

ls -ld /usr/lib/*/.
List directories in /usr/lib.

Programmer to programmer communication:
"It's pretty much a mess as I've included everything, but generally the files
phase[123].[ch] are the students' solutions."

CSC#352#Fall#2015,#Unix#Slide#168#

Wildcards and paths

The bash man page uses the term "pathname expansion" for what I've called
wildcard expansion.

Another term that's used is "globbing". Try searching for "glob" on the bash man
page.

Wildcards don't match hidden files unless the pattern starts with a dot, like .*rc.

There are other wildcard specifiers but ?, *, and [...] are the most commonly
used.

As of version 4 of bash you can do "shopt -s globstar" in ~/.bashrc to
enable recursive matching with wildcards. Example, using the tree shown on
slide 119:

~/352 % echo **/*
d1 d1/cal.out d1/java d1/notes d1/notes/langs d1/
notes/langs/java d1/notes/platforms one two work
work/cal.out work/one work/two

Prior to version 4 you'd do something like "echo * */* */*/* ..." or use
find with command substitution.

CSC#352#Fall#2015,#Unix#Slide#169#

Lots more with wildcards

One way to view echo is that it turns arguments into output.
% echo just testing
just testing

Command substitution provides a way to turn output into arguments.

% cat srcfiles
lc.java
mkall.icn
getpid.c

% echo aaa $(cat srcfiles) bbb
aaa lc.java mkall.icn getpid.c bbb

On a command line, the form $(command-line) indicates to run the
enclosed command-line, and substitute the whitespace-separated words it
produces for the $(...) construct. The resulting command line is then
executed.

Command substitution was originally done with `...`, and that still works.

CSC#352#Fall#2015,#Unix#Slide#170#

Command substitution

In the a2 write-up I show you the sizes of my
solutions like this:

% wc $(cat a2/delivs)
 12 31 332 lengths.java
 13 38 372 rev.java
 17 47 415 sum.java
...

Problem: Not counting mgrep.java, how many lines of Java are there?
 wc -l $(fgrep java a2/delivs | fgrep -v mgrep)

How would we have done that without command substitution?

% cp delivs x
% vim x
% wc -l $(cat x)

But we didn't have to!

CSC#352#Fall#2015,#Unix#Slide#171#

Command substitution, continued
% cat a2/delivs
lengths.java
rev.java
...
mgrep.java
amj
revnum
...

Here's a script that prints a YYYYMMDD.HHMM timestamp:
% cat tstamp
date +%Y%m%d.%H%M

% tstamp
20150907.0046

Assuming the directory with tstamp is in our search path, let's use it to make a
timestamped backup of a file:

% cp lc.java bak/lc.java.$(tstamp)
% ls bak
lc.java.20150907.0046

The cp above is repetitious! How can we type less?
% cat cpstamp
cp $1 bak/$1.$(tstamp)

% cpstamp lc.java

% ls bak
lc.java.20150907.0046 lc.java.20150907.0048

 CSC#352#Fall#2015,#Unix#Slide#172#

Command substitution, continued

The diagram at left comes from
section 7.3 in Learning the Bash
Shell, 3e (on pzr).

It shows the sequence of the steps
taken when processing a
command.

CSC#352#Fall#2015,#Unix#Slide#173#

Sidebar: 12 steps to execution

bash has a number of control structures including if, while, and case.

bash's for loop is a control structure that's particularly handy for interactive use.

Here is the general form of the for loop:

for variable in words
do
 cmd1
 ...
 cmdN

done

Example: (bash prompts with > (PS2) while the for is incomplete)
% for i in a simple test
> do
> echo $i has $(echo -n $i | wc -c) characters
> done
a has 1 characters
simple has 6 characters
test has 4 characters

CSC#352#Fall#2015,#Unix#Slide#174#

The for loop

Handy: If we hit up-arrow, bash shows us the for as a one-liner:
 % for i in a simple test; do echo $i has $(echo -n $i
| wc -c) characters; done

Note that bash has inserted semicolons where needed to make it a valid one-liner.

Problem: How many files are in each of the directories in my PATH?

% for dir in $(echo $PATH | tr : " ")
> do
> echo $dir: $(ls $dir | wc -l)
> done
/usr/local/sbin: 21
/usr/local/bin: 79
/usr/sbin: 353
/usr/bin: 3275
/sbin: 183
/bin: 168
/usr/games: 10
/home/stdntwm/bin: 1

CSC#352#Fall#2015,#Unix#Slide#175#

for, continued

Problem: What's the total number of files?

Solution:

Hit up-arrow and append...
 | cut -d " " -f2 | java sum

Here is "args" as a bash script:
% cat args
for a in "$@"
do
 echo "|$a|"
done

Usage:

% args one ' 2 ' III a\ b\ c
|one|
| 2 |
|III|
|a b c|

Notes:
•  "$@" expands into the arguments of the script, with quoting

preserved. $* is often wrongly used instead of "$@". (Try it!)
•  The echo uses double quotes ("soft quotes") so that is $a is

expanded. Try it with apostrophes instead.

CSC#352#Fall#2015,#Unix#Slide#176#

for, continued

This round with UNIX ends here.

Some UNIX topics will be blended into the C material. We might have time for
more UNIX-centric material later, like non-trivial scripts, but we might not.

Here are some command-line topics covered in my 2005 slides, on Piazza, that
you might find particularly handy for day-to-day use in this class or others.

•  The history mechanism: 121-125
•  The directory stack: 126
•  Brace expansion: 72-74
•  Process substitution: 119-120

The "Assorted Utilities" section starting on slide 127 talks about diff, find,
tar, sed, and regular expressions.

"Files and File Management—Part 2", starting on 167 talks about file permissions
and more.

Unless it is also covered in this class, you won't be expected to know any of the
material in those 2005 slides.

CSC#352#Fall#2015,#Unix#Slide#177#

Handy stuff in my 2005 slides

