
CSc 452 — USLOSS User’s Manual Version 1.0 Fall 2015

USLOSS User’s Manual
1.0 General Description
USLOSS (Unix Software Library for Operating System Simulation) is a library that simulates a
simple computer systems. USLOSS allows students to experiment with low-level systems
programming concepts such as interrupt handling, device drivers, and process scheduling.
USLOSS is written in the C programming language to allow fast execution and easy debugging
of student programs.
USLOSS implements a single-core CPU with user and kernel modes, a high-level context-switch
facility to allow easy switching between processes, interrupts, a memory-management unit
(MMU) that allows for virtual addressing and virtual memory, and the following devices: a
periodic clock interrupt, a count-down timer device, a system call (syscall) facility, four user
terminals, and two disk storage devices.

2. Using USLOSS

2.1 Building from source on your personal Linux or Mac:
Create a directory in your account for USLOSS. In what follows, <yourDirectory> refers to
the directory you just created. cd to <yourDirectory>
Copy the USLOSS tarball to your directory. The tarball can be found on lectura at:

/home/cs452/fall15/usloss/usloss-2.9.tgz

Untar the USLOSS tarball:
tar xvzf usloss-2.9.tgz .

Change directory to usloss/src.
If compiling on Linux, edit Makefile. Find the line:

CFLAGS += -D_XOPEN_SOURCE
Comment this line (put a # at the start).
If compiling on OS X, no changes are needed in Makefile.
Type make install.
This will compile and install the library libusloss<version>.a in ./build/lib, and the
header file usloss.h in ./build/include. The <version> in the library name is the
USLOSS version number, e.g. libusloss2.9.a.
If you have not already done so, create a directory that you will use for working on phase1 of the
project. In this phase1 directory, create a link to USLOSS:

ln -s <yourDirectory>/build usloss
This will create a soft link named usloss in your phase1 directory that points to the build
directory (the directory that contains lib/ and include/).
The next step is to write a C program that uses USLOSS (referred to as the operating system, or
OS). Essentially, this means you start working on phase1 at this point. See the provided starter
files for phase1.
The short version: All source files must include the file usloss.h. USLOSS defines main and

! of !1 14

CSc 452 — USLOSS User’s Manual Version 1.0 Fall 2015
will invoke the routine startup after USLOSS is initialized. The OS must therefore define
startup. Similarly, the OS must provide a finish routine that is invoked by USLOSS when it
shuts down (this is used primarily for debugging and is discussed later).
Once the C program has been written, you should create a Makefile to handle compilation.
When compiling a source file, use a command of the form:

gcc $(CFLAGS) -c -I<usloss>/build/include osfile.c

The -I option will allow the compiler to find usloss.h (<usloss> is the pathname of the
USLOSS source directory). To create the executable file, use a command of the form:

gcc $(CFLAGS) -o os -L<usloss_>/build/lib osfile.o -lusloss2.9

This will create an executable called os, augmented by the routines in osfile.c.
The resulting executable is run just like any other compiled C program If it is compiled with the
-g option, then a standard C debugger such as gdb can be used for debugging (see Section 6).

2.2 Using USLOSS pre-installed on Lectura
This section is under construction...

3. Processor Features
USLOSS simulates a simple single-core CPU, providing kernel/user modes, interrupts, and
simple context-switch support.

3.1 Modes of Operation
The simulator has two modes of operation: kernel and user. Kernel mode is privileged, in which
all USLOSS operations can be invoked. User mode cannot access hardware devices nor invoke
certain USLOSS operations; doing so will cause an illegal instruction exception, which in turn
will cause USLOSS to dump core. For a complete list of which operations are disallowed while
in user mode, see the command summary at the end of this manual. USLOSS starts up in kernel
mode; to switch to user mode the OS must change the mode bit in the processor status register
(see Section 3.4).

3.2 Interrupts
The interface to the USLOSS interrupt system consists of an interrupt vector table and two
function calls. When an interrupt occurs, USLOSS switches to kernel mode, disables interrupts,
and calls the appropriate routine as indicated by the interrupt vector. Six different types of
interrupts/devices are simulated (symbolic constants are shown in parentheses):

• clock (USLOSS_CLOCK_INT and USLOSS_CLOCK_DEV)
• countdown time (USLOSS_ALARM_INT and USLOSS_ALARM_INT)
• terminal (USLOSS_TERM_INT and USLOSS_TERM_DEV)
• system call (USLOSS_SYSCALL_INT)
• disk (USLOSS_DISK_INT and USLOSS_DISK_DEV)
• memory-management unit (USLOSS_MMU_INT)

See Section 4 for a detailed description of the device interrupts, Section 3.3 for a description of
system calls, and Section 5 for a description of the MMU.

! of !2 14

CSc 452 — USLOSS User’s Manual Version 1.0 Fall 2015
To handle the various interrupts, the OS must fill in the interrupt vector with the addresses of the
interrupt handlers. This table is declared as a global array USLOSS (USLOSS_IntVec), and is
simply referenced by name. The symbolic constants for the devices are designed to be used as
indices when initializing the table. For example, to install an interrupt handler for the clock
interrupt, the following statement could be used:

USLOSS_IntVec[USLOSS_CLOCK_INT] = clock_handler;

Thereafter, clock_handler will be invoked whenever a clock interrupt occurs. If an interrupt
occurs and the interrupt vector for that type of interrupt has not been initialized, it will generally
cause the simulator to print an error message and dump core. Always initialize the interrupt
vector before enabling interrupts. Interrupts are disabled when startup is invoked, providing
an opportunity to initialize the interrupt vector. The interrupts can subsequently be enabled by
setting the current interrupt enable bit in the processor status register (see Section 3.4).
Interrupt handlers are passed two parameters. The first parameter indicates the type of interrupt,
allowing the same handler to handle more than one type of interrupt, if desired. The second
parameter varies depending on the type of interrupt. Generally, an interrupt handler takes some
action and then returns, allowing execution to resume at the point where it was interrupted. In
some cases, however, the interrupt handler may execute a context switch, in which case the
current machine state is saved and execution is resumed at another point. An interrupt handler
that invokes a context switch must be carefully written, as the state of the OS after the switch
will almost certainly be different than the state before.

3.3 Syscall
The simulator treats system calls as a form of interrupt, routing them through the interrupt vector.
The function pointed to by USLOSS_IntVec[USLOSS_SYSCALL_INT] is invoked each time
USLOSS_Syscall is called. The handler resembles an interrupt handler: USLOSS switches to
kernel mode, disables interrupts, and invokes the system call handler with two parameters. The
first parameter contains the interrupt number (USLOSS_SYSCALL_INT), which will probably be
of little interest. The second parameter is the argument passed to USLOSS_Syscall. This is
typically a pointer to a structure or array containing such information as a syscall number and
any other arguments the syscall requires.
Returning from a USLOSS_Syscall is similar to returning from any other interrupt handler: the
calling process may be resumed via a normal function return, or a context switch may be
performed.

! of !3 14

CSc 452 — USLOSS User’s Manual Version 1.0 Fall 2015

3.4 Processor Status Register (PSR)
The state of the USLOSS processor is stored in the
Processor Status Register (PSR). The bits in the PSR
indicate the kernel mode and the state of the interrupts.
The current mode bit is 1 if the processor is in kernel
mode, 0 otherwise. The current interrupt enable bit is 1
if interrupts are enabled, 0 otherwise. When an interrupt
occurs, the processor saves the current mode and
interrupt enable bits into the “previous” bits. When the
interrupt handler returns, the current bits are restored
from the previous bits. Thus, an interrupt handler can
determine which mode the processor was in prior to the interrupt by looking at the previous
mode bit. Changing either of the “previous” bits in the interrupt handler will change the value of
the “current” bits when the interrupt handler returns. Changing the “current” bits causes the
mode and/or interrupt enable to change immediately. The PSR is accessed via USLOSS_PsrGet
and USLOSS_PsrSet. Macros are defined in usloss.h for the OS to use in accessing the PSR
bits.

3.5 Process Support
USLOSS provides a context switch mechanism for switching between processes. The context of
each process is stored in a structure of type USLOSS_Context (include usloss.h for the
definition). The internals of a USLOSS_Context structure should not be directly modified by the
OS; only USLOSS_ContextInit and USLOSS_ContextSwitch may do so. Also, each process
must have its own stack and own context. The OS can share code between processes, but not
stacks or contexts.
Prior to creating a new process, the OS must first allocate an unused USLOSS_Context. The OS
can allocate the structure statically (as part of a global variable or array) or dynamically (using
malloc). Typically, the OS will embed the USLOSS_Context as a field in a process control block
(PCB).

3.5.1 Initializing a Context
USLOSS_ContextInit(USLOSS_Context *context, unsigned int psr,
 void *stack, in stackSize, void(*func))

The context parameter is the context structure to be initialized. The psr is the initial PSR for
the process (see Section 3.4). The func is the address of the initial function the process is to
execute. The stack and stackSize define the stack for the process; the stack can be allocated
either statically (global variable) or dynamically (malloc). The stack size depends upon the
complexity of the process (i.e., the depth of the procedure call nesting and size of local variable
declarations), but the stack must be at least of size USLOSS_MIN_STACK, as defined in usloss.h.
Note that USLOSS_ContextInit will only initialize the context for the new process; to actually
begin executing the process the OS must call USLOSS_ContextSwitch.
The function specified by func must never return; otherwise, the stack will underflow. USLOSS

! of !4 14

017 6 5 4 3 2

Current mode
Current interrupt mode

Previous mode
Previous interrupt mode

Processor Status Register

CSc 452 — USLOSS User’s Manual Version 1.0 Fall 2015
will catch this and dump core, but the OS should use a standard wrapper function as the initial
function for each process. The wrapper invokes the real initial function for the process and does
something more civilized than dump core if the function returns (perhaps it could print a warning
message and call halt). Note that USLOSS is being polite; a real CPU will likely crash if a
stack underflows.
There is an important caveat concerning the creation of new contexts via
USLOSS_ContextInit. When the OS calls USLOSS_ContextSwitch for the first time with a
new context, USLOSS will jump directly from inside USLOSS_ContextSwitch to the starting
function of the new process. Any code that follows the call to USLOSS_ContextSwitch will
not be executed in the context of the new process.

3.5.2 Switching Contexts
USLOSS_ContextSwitch(USLOSS_Context *old_context,
 USLOSS_Context *new_context)

This function performs a context switch, where old_context is a pointer to a context structure
in which the state of the currently running process is to be stored, and new_context is a pointer
to a context structure containing the state of the new process to be run. The
USLOSS_Context_switch routine will save the currently running process in the old context,
including the PSR, and switch to the process stored in the new context. If the OS does not want
to save the current context (e.g., it is starting the first process), then pass NULL as the value of
old_context.

4.0 Devices
USLOSS supports several device types: clock, alarm, terminal, and disk. Devices are read using
USLOSS_DeviceInput and written using USLOSS_DeviceOutput.

4.1 Clock Device
The clock device invokes the function in USLOSS_IntVec[USLOSS_CLOCK_INT] at regular
intervals the length of which is determined by the resolution of the virtual timer provided by the
platform on which USLOSS runs. On lectura, this interval is approximately 20 milliseconds, or
one fiftieth of a second, and is defined by USLOSS_CLOCK_MS (defined in usloss.h). It should be
noted that this clock interrupt is both far more infrequent and irregular than the one that would be
provided by a real CPU; nevertheless, it is sufficient to implement multiprogramming and time
slicing, as the code should be written to be independent of the frequency of clock interrupts.
Note that the USLOSS function USLOSS_Clock returns the current time measured in
microseconds, not milliseconds. Thus, a clock interrupt will occur approximately every 20,000
time units as reported by USLOSS_Clock.

4.2 Alarm Device
The alarm device is a count-down timer intended primarily for debugging purposes. It may be set
by the user to send an interrupt a given number of clock ticks in the future. The alarm is set by
calling USLOSS_DeviceOutput(USLOSS_ALARM_DEV, 0, n), where n is a number
between 1 and 255. The alarm interrupt arrives in between interrupts from the regular clock, so

! of !5 14

CSc 452 — USLOSS User’s Manual Version 1.0 Fall 2015
synchronization between the two is unnecessary. Several outstanding alarm interrupts may be
scheduled at a time. When an alarm interrupt occurs, the function pointed to by
USLOSS_IntVec[USLOSS_ALARM_INT] is called.

4.3 Terminal Devices
The simulator supports four terminal devices that share a single interrupt (USLOSS_TERM_INT).
Each terminal has a 16-bit status register and a 16-bit control register accessed via
USLOSS_DeviceInput and USLOSS_DeviceOutput, respectively. An interrupt is generated
each time there is a change in the contents of any of the 4 status registers, provided it is not
masked by the interrupt mask in the corresponding control register, as described below. When an
interrupt is generated, the routine pointed to by USLOSS_IntVec[USLOSS_TERM_INT] is
called. The second parameter passed to the interrupt handler is the unit number of the terminal
whose status changed. The terminals are numbered 0-3.
At this point, the terminal’s status register should be read immediately by calling

USLOSS_DeviceInput(TERM_DEV, unit, &status)
where unit indicates which terminal’s status register to read, and status is the location in
which to return the status. The contents of the status register are shown in the diagram below.
Macros are provided in usloss.h to extract the fields of the status register. The xmit status field
indicates the status of the terminal’s transmit capability, while the recv status field indicates its
receive capability. The values for these status fields can be one of USLOSS_DEV_READY,
USLOSS_DEV_BUSY , o r
USLOSS_DEV_ERROR, as defined in
usloss.h. If the receive status is
USLOSS_DEV_BUSY, then a character has
been received on the terminal and is stored
in the character field of the status register.
A status of USLOSS_DEV_READY means
that no character has been received, while a
status of USLOSS_DEV_ERROR indicates a
problem. Each terminal has space to store
only a single character, so a failure to read
the status register immediately upon receipt
of a terminal interrupt may result in the loss
of the character when another character is
received. The interval between character
arrival is at least as long as the interval
between clock ticks, so there should be
plenty of time to respond to a terminal interrupt.
Sending is somewhat more difficult than receiving. To send a character, the OS must first ensure
that the terminal is ready to send a character, as indicated by the xmit status in its status register.
A status of USLOSS_DEV_READY means it is okay to send a character, whereas a status of
USLOSS_DEV_BUSY means it is not. If you try to send a character while the terminal is busy, the
character will be lost. Characters are sent by writing them to the terminal’s control register via

! of !6 14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Terminal Status Register

Terminal Control Register

Recv Status
Xmit StatusCharacter

Send char
Recv int enable
Xmit int enableCharacter

CSc 452 — USLOSS User’s Manual Version 1.0 Fall 2015
USLOSS_DeviceOutput(USLOSS_TERM_DEV, unit, control), where unit is the unit
number of the terminal to be written, and control is the value to write to the control register.
The format of a control register is shown in the diagram. To send a character, put the character
value in the character field of the control register, and set the send char bit of the register. If the
send char bit is not set, the character will not be sent. Characters can be sent at a maximum rate
of one per clock tick.
The remaining two bits of the register consist of an interrupt mask for the terminal. If the xmit int
enable bit is set, the terminal will generate an interrupt when its transmit status changes;
otherwise it will not. Similarly, if recv int enable is set, the terminal will generate an interrupt
when its receive status changes. Note that it is possible for both interrupts to occur at the same
time. If the OS does not want either of these interrupts, then do not set their bits in the control
registers.
The OS should set the recv int enable bit for all the terminals and leave them on; a receive
interrupt will only be generated when a character is received. The OS should only set the xmit int
enable bit when it has characters to transmit on that terminal; otherwise, it will get a lot of
spurious transmit interrupts that are not useful.
There are macros in usloss.h to help the OS access the fields in the status and control registers.
Note that it is possible for a single interrupt to signify both the reception and transmission of a
character on a terminal.

4.3.1 Terminal Files
The four terminal devices read their input from the four files term[0-3].in. These files must
reside in the directory in which USLOSS is being executed. If a terminal input file is not present,
no input will be received from the corresponding terminal. The terminal input files should be
created manually using a text editor. Terminal output is written to the files term[0-3].out.
A utility called pterm is provided to allow users to operate real terminals with the simulator. To
connect a real terminal with the simulator, users must log in to that terminal and change to the
directory in which the simulation is being run. Users should then enter a pterm x command,
where x is the terminal number to connect to. If an input file for that terminal exists, the user is
given the choice of removing the file or aborting. The terminal is switched into cbreak input
mode, and every character typed on the terminal is sent to the simulator and simultaneously
written into the corresponding terminal input file (this will provide a record of what input was
typed after the simulation terminates). Characters written to the terminal by the simulator are
displayed on the screen. To exit, the user may strike either the interrupt or stop (ctrl-Z) keys,
which will cause pterm to reset the terminal to normal mode and exit.
Normally, characters are read from terminal input files or physical terminals at the maximum rate
possible, which is one character from each terminal for every four clock ticks. In some cases, it
may be desirable to delay input from one or more terminals for a given interval. This may be
accomplished by inserting ‘@’ characters in the input files; each ‘@’ character is read by the
simulator but does not cause an interrupt and is thus invisible to the OS. Each ‘@’ effectively
delays the next input character from that terminal by four clock ticks.ß

! of !7 14

CSc 452 — USLOSS User’s Manual Version 1.0 Fall 2015

4.4 Disk Devices
The disk devices supports the following operations: seeking to a given track, and reading and
writing a 512-byte sector within the current track. A disk operation is initiated by a call of the
form: USLOSS_Device_output(USLOSS_DISK_DEV, unit, request), where unit is the
unit number of the disk to be accessed, and request is a pointer to a
USLOSS_DeviceRequest structure (defined in usloss.h). This structure has three fields: opr,
reg1, and reg2.
The opr field must be one of the predefined constants: USLOSS_DISK_READ,
USLOSS_DISK_WRITE, USLOSS_DISK_SEEK, or USLOSS_DISK_TRACKS. If opr is
USLOSS_DISK_READ or USLOSS_DISK_WRITE, then reg1 should contain the index of the
sector to be read or written within the current track, and reg2 should contain a pointer to a 512-
byte buffer into which data from the disk will be read or from which data will be written. Note
that each track on the disk has 16 sectors. If opr is USLOSS_DISK_SEEK, then reg1 should
contain the track number to which the disk’s read/write head should be moved. If opr is
USLOSS_DISK_TRACKS then reg1 should contain a pointer to an integer into which the number
of tracks will be stored.
After a request has been sent to the disk, further requests are ignored until the requested
operation has been completed, at which point the function pointed to by
USLOSS_IntVec[USLOSS_DISK_INT] is called. The status of a disk device may be obtained
by a call to USLOSS_DeviceInput(USLOSS_DISK_DEV, unit, &status), which will set
status to USLOSS_DEV_READY if the device is inactive, USLOSS_DEV_BUSY if a request is
being processed, or USLOSS_DEV_ERROR if the last request could not be completed.

4.4.1 Disk Files
The disk device stores the contents of each simulated disk in a file called diskN, where N is the
unit number for the disk. USLOSS supports two disks, unit 0 and unit 1. A disk file is updated
immediately upon every change to the disk, so no information will be lost when a simulation
program terminates abnormally. USLOSS requires that a disk file contain an even number of
complete tracks; otherwise, an error occurs upon startup. A utility called makedisk is provided to
create pseudo-disk files. Note that this utility is needed only to create a new disk; as long as the
disk file is not corrupted, the information is preserved between shutdowns and startups of
USLOSS.

5. MMU
The USLOSS MMU maps virtual pages to physical page frames, allowing different processes to
have different virtual address spaces. Due to the limitations of running USLOSS in a UNIX
process, it is not possible for USLOSS processes to have totally separate address spaces; instead
the MMU only operates on a single region of the larger shared address space (called the VM
region). Accesses outside of the VM region are unaffected by the MMU; accesses inside the VM

! of !8 14

CSc 452 — USLOSS User’s Manual Version 1.0 Fall 2015
region are mapped by the MMU to allow processes to see different memory contents. The

following diagram illustrates the workings of the MMU.
The MMU contains a set of mappings, each containing: tag, page number, frame number, and
two protection bits (read and write). The MMU uses these mappings to convert addresses in the
VM region into physical memory addresses. The MMU performs the following three steps when
a process accesses the VM region.
First, the MMU determines which page within the VM region is being accessed.
Second, the MMU finds all mappings whose tag matches the current tag register.
Third, the MMU searches the resulting mappings to find one whose page number matches the
page that is being accessed.
If a mapping is not found after steps 2 and 3, the MMU will generate an MMU interrupt. This
causes the interrupt handler associated with the USLOSS_MMU_INT interrupt to be invoked,
allowing the OS to handle the problem.If a mapping is found, the MMU compares the type of
access with the protection bits in the mapping.
If the access is allowed, the frame number from the mapping and the page offset from the virtual
address are combined to form a physical address. If the access violates the page’s protection a
USLOSS_MMU_INT interrupts occurs.
The size of the VM region, the physical memory, and the number of mappings in the MMU are
all specified when the MMU is configured. Varying the relative sizes of the VM region and the
physical memory allow the effectiveness of the OS page replacement algorithm to be measured
under different workloads and system configurations. Varying the number of mappings in the
MMU allows the MMU to function as a single-level page table, or as a translation buffer (TB).

! of !9 14

CSc 452 — USLOSS User’s Manual Version 1.0 Fall 2015
The former is achieved by configuring the MMU so that the number of mappings is equal to the
number of pages in the VM region. This allows the MMU to hold mappings for all of a process’s
pages that are currently in memory, so that the lack of a mapping for an accessed page indicates a
page fault. If, on the other hand, the MMU is configured so that there are fewer mappings than
pages in the VM region, the lack of a mapping for a page does not necessarily imply a page fault.
The desired page may be in memory, but not mapped by the MMU because there are not enough
mappings to go around. In this case the OS removes an existing mapping and adds one for the
page that is being accessed.
The tag functionality of the MMU makes it possible for the MMU to store mappings for several
processes. The MMU supports USLOSS_MMU_NUM_TAGS different tags, allowing up to that many
different processes to simultaneously have mappings in the MMU. The MMU will not store more
than one mapping with a given tag and page, so that the maximum number of mappings that can
have the same tag is equal to the number of pages in the VM region. Thus the maximum number
of mappings that the MMU can hold is USLOSS_MMU_NUM_TAGS multiplied by the number of
pages in the VM region. It can, however, be configured to hold fewer as described in the previous
paragraph. The advantage of using tags is that a context switch between two processes whose
mappings are already loaded in the MMU can be achieved simply by changing the value in the
current tag register.
Finally, the MMU supports access bits for each physical page frame. A reference bit is set when
the frame is either read or written, and a dirty bit is set when the frame is written. These bits can
be also be cleared and set in software, allowing the OS to implement a variety of page
replacement algorithms.

! of !10 14

CSc 452 — USLOSS User’s Manual Version 1.0 Fall 2015

5.1 MMU Error Codes
Many of MMU interface routines return the following error codes, defined in mmu.h:

5.2 MMU Routines
int USLOSS_MmuInit(int numMaps, int numPages, int numFrames)

Creates a physical memory containing numFrames frames, a VM region containing
numPages pages, and initializes the MMU to contain numMaps mappings. All
parameters must be greater than zero, and numMaps must be less than or equal to
MMU_NUM_TAG * numPages. Initially the MMU has no valid mappings, and the current
tag register is 0. Returns a standard MMU error code.

int USLOSS_MmuDone(void)

Releases all the resources associated with the MMU. Subsequent accesses to the VM
region will result in a segmentation violation. Returns a standard MMU error code.

int USLOSS_MmuPageSize(void)

Returns the size of a page, in bytes.
void *USLOSS_MmuRegion(int *numPagesPtr)

Returns the address of the VM region, and stores the number of pages it contains in
*numPagesPtr. If the MMU has not been initialized, this routine will return NULL.

int USLOSS_MmuMap(int tag, int page, int frame, int protection)

Stores a mapping in the MMU. USLOSS_MMU_ERR_REMAP is returned if a mapping with
the same tag and page already exists. Valid protection values are

Error Code Meaning

 USLOSS_MMU_OK No error.

 USLOSS_MMU_ERR_OFF MMU has not been initialized.

 USLOSS_MMU_ERR_ON MMU has already been initialized.

 USLOSS_MMU_ERR_PAGE Invalid page number.

 USLOSS_MMU_ERR_FRAME Invalid frame number.

 USLOSS_MMU_ERR_PROT Invalid protection.

 USLOSS_MMU_ERR_TAG Invalid tag.

 USLOSS_MMU_ERR_REMAP Mapping with same tag & page already exists.

 USLOSS_MMU_ERR_NOMAP Mapping not found.

 USLOSS_MMU_ERR_ACC Invalid access bits.

 USLOSS_MMU_ERR_MAPS Too many mappings.

! of !11 14

CSc 452 — USLOSS User’s Manual Version 1.0 Fall 2015
USLOSS_MMU_PROT_NONE (no access), USLOSS_MMU_PROT_READ, (page is read-only),
and USLOSS_MMU_PROT_RW (page can be both read and written). Returns a standard
MMU error code.

int USLOSS_MmuUnmap(int tag, int page)

Removes the mapping with the matching tag and page. Subsequent accesses to the page
when the current tag is set to tag will result in an MMU interrupt. Returns a standard
MMU error code.

int USLOSS_MmuGetMap(int tag, int page, int *framePtr, int *protPtr)

Provides mapping information. If no mapping matches the given tag and page
USLOSS_MMU_ERR_NOMAP is returned, otherwise the mapping’s frame is stored in
*framePtr, and the protection in *protPtr. Returns a standard MMU error code.

int USLOSS_MmuGetCause(void)

Returns the cause of the most recent MMU interrupt. USLOSS_MMU_FAULT means that
no mapping matched the current tag and page being accessed. USLOSS_MMU_ACCESS
means that a mapping was found, but that the protections on the page prohibit the
attempted access. USLOSS_MMU_NONE means that an MMU interrupt has not yet
occurred.

int USLOSS_MmuGetAccess(int frame, int *accessPtr)

Stores the access bits for a frame in *accessPtr. If USLOSS_MMU_REF is set the page
has been referenced. If USLOSS_MMU_DIRTY is set the page has been written. Returns a
standard MMU error code.

int USLOSS_MmuSetAccess(int frame, int access)

Sets the access bits of frame to access. Returns a standard MMU error code.
int USLOSS_MmuSetTag(int tag)

Sets the current tag register to tag. Returns a standard MMU error code.
int USLOSS_MmuGetTag(int *tagPtr)

Stores the current tag register in *tagPtr. Returns a standard MMU error code.

5.3 MMU Interrupts
The function pointed to by USLOSS_IntVec[USLOSS_MMU_INT] will be invoked when an
MMU interrupt occurs. The MMU interrupt handler has the following definition:
void Handler(int type, int offset)

type is the type of interrupt (USLOSS_MMU_INT). offset is an integer (cast as a void
*) containing the byte offset from the start of the VM region of the address that caused
the interrupt.

USLOSS will take care of restarting the offending instruction when the MMU interrupt handler
returns. This means that the address that caused the problem will be given to the MMU again for
mapping. If there is still a problem, another MMU interrupt will be generated. The assumption is
that the OS will either configure the MMU so that the address will no longer cause an interrupt,
or kill the process.

! of !12 14

CSc 452 — USLOSS User’s Manual Version 1.0 Fall 2015

6.0 Debugging Support
USLOSS provides two printing functions to help with debugging. The USLOSS_Console
operation takes printf-style parameters and prints to stdout, and the USLOSS_Trace operation
prints to stderr. You should avoid using printf and fprintf as they may cause problems if
interrupted.
USLOSS provides a halt operation, USLOSS_Halt. When invoked, it will cause execution of the
finish routine (defined by the OS), and then terminates execution. A core file is produced if the
parameter to USLOSS_Halt is non-zero. The OS developer might find it useful to have print
statements or error checking code in finish to help in debugging. Lastly, the alarm device may
also be used for debugging purposes. It can be set to interrupt at a time that is of interest so that
the program status can be examined.
USLOSS can also be debugged using a standard debugger such as gdb. However, be aware that
the use of gdb is complicated by USLOSS interrupts which are implemented using the SIGUSR1
signal. By default, gdb catches the SIGUSR1 signal and forces the debugged program to stop. To
get around this problem, add the following in your .gdbinit file (either in the current directory or
in your home directory):

handle SIGUSER1 nostop noprint

Similarly, when the OS uses the MMU, you should add the following to your .gdbinit:
handle SIGSEGV nostop noprint
handle SIGBUS nostop noprint

The MMU uses SIGSEGV and SIGBUS to implement memory mapping. Note that telling gdb to
ignore SIGSEGV and SIGBUS will cause it to ignore segmentation violations and bus errors
caused by real bugs in the OS, so do not ignore these signals unless the OS uses the MMU.

7.0 USLOSS Quick Reference
The following routines are provided by the simulator. Those marked as kernel mode are only
accessible when in kernel mode (cannot be accessed when in user mode).
void USLOSS_Console(char *format, ...);

Printf-style write to the console device (stdout).
void USLOSS_ContextInit(USLOSS_Context *new, unsigned int psr,
 void *stack, int stackSize,
 void (*func)(void)); // kernel mode

Initializes the context new using psr as the context’s initial PSR, the memory pointed to
by stack as the stack memory of size stackSize (in bytes), and the routine func as
the starting address.

void USLOSS_ContextSwitch(context *old, context *new); // kernel mode
Saves the current CPU state (including the PSR) in old, and loads state new into the
CPU. The old parameter may be NULL.

int USLOSS_DeviceInput(int dev, int unit, int *status); // kernel mode

! of !13 14

CSc 452 — USLOSS User’s Manual Version 1.0 Fall 2015
Sets status to the contents of the device status register indicated by dev and unit. If
dev and unit are both valid, USLOSS_DEV_OK is returned; otherwise,
USLOSS_DEV_INVALID is returned.

int USLOSS_DeviceOutput(int dev, int unit, void *arg); // kernel mode
Sends arg to the device indicated by dev and unit. Depending on the device, arg may
be either an integer or a pointer to a structure of type USLOSS_DeviceRequest
containing the device request. If either dev or unit is invalid, USLOSS_DEV_INVALID
will be returned; otherwise, USLOSS_DEV_OK is returned.

void USLOSS_Halt(int dumpcore); // kernel mode
Causes execution of the finish routine and then terminates USLOSS. A core file is
produced if dumpcore is non-zero.

unsigned int USLOSS_PSRGet(void);
Returns the current value of the PSR.

void USLOSS_PSRSet(unsigned int psr); // kernel mode
Sets the PSR to the value in psr.

void USLOSS_Syscall(void *arg);
Causes an interrupt of type USLOSS_SYSCALL_INT and passes arg as the second
parameter to the interrupt handler.

int USLOSS_Clock(void);
Return the time (in microseconds) since USLOSS started running.

void USLOSS_trace(char *format, ...);
Printf-style write to stderr.

void USLOSS_WaitInt(void); // kernel mode
Suspends execution until an interrupt occurs.

! of !14 14

