
Cs352 — Homework #7

Suffix trees

March 30, 2004

Due Time: 4/13 (9:00PM). Name your file tt suffixtree.c. Submission in pairs is
allowed and encouraged.

The input to the exercise is the files data.inp containing a sequence of charac-
ters, each is one of the four characters a, b, c, d (for example abaaacadaaabcdaaaaac).
Their number is unbounded. The second file, called queries.inp, where each line
containing a string, over the alphabet {a,b,c,d}. Your program should first read
data.inp, treat it as the compressed string R from the slides suffix.ppt. After the
trie is constructed, your program should read each line from queries.inp, and print
for each line
The string STING does not appear in data.inp

or

The string STING appears in index 17 in data.inp

For example, if data.inp contains “abababacdca” and

ab

ac

acdc

acc

The expected output should be
The string ab appears in index 4 in data.inp

The string ac appears in index 6 in data.inp

The string acdc appears in index 6 in data.inp

The string acc does not appear in data.inp

Finally, your program should print the compressed suffix tree T , in the following
format. Your program prints the nodes of the tree in a preorder order. (That is,
first the root of the tree is printed, and then your program prints all subtrees of the

1



root, from left to right, in a preorder order (recursively)). The exact format would
be published later.

You can assume that the length of each query line is no more than 40 chars. The
length of data.inp is not bounded.

Basic algorithms/instructions:

1. Read data.inp once, to find its size.

2. Read the file again, and store it in the array R. Create space for this array
using malloc command.

3. Create an empty uncompressed trie, and insert into it all suffixes of R. Modify
the fields b inx during this process.

4. Call the function compressed trie on the trie. This function compressed the
trie. It uses the function check path which accepts a node of the trie, and
returns the length of the longest path starting at the node. Recall that the
definition of a path is a sequence of nodes, each excluding the last has a single

child, namely the next node of the path. The last node of the path has either
zero, or at least 2 children. Use also the function IsSingleChild that accepts
a node and returns true iff it has a single child. Remove from each path all but
the first node of the path, and update the fields c inx, lng accordingly

5. Reads the queries from queries.inp, and answer each appropriately.

6. Call the function PrintTrie that prints the tree.

Other comments

1. It is recommended that you check your program fist with the uncompressed trie.
The code for the answering a query should work properly with compressed and
uncompressed trie. (basically, in the uncompressed version, the ‘lng’ fields are
all 0.

2. Your program should be consisting of the files st built.c, creating the uncom-
pressed trie, the file st compress.c (containing the functions for compressing
the trie, and the file file st query.c (containing the part of answering queries
and printing the trie). You should submit these files, and the Makefile.

3. After answering all queries, your program should free all allocated cells. Simi-
larly the program should free the cells freed in the compression stage.


