
CSc 372, Fall 2006 Prolog, Slide 1
W. H. Mitchell (whm@msweng.com)

Prolog basics

A little background on Prolog

Facts and queries

"Can you prove it?"

Atoms and numbers

Predicates, terms, and structures

Fact/query mismatches

More queries

Operators are structures

Alternative representations

Unification

Query execution

CSc 372, Fall 2006 Prolog, Slide 2
W. H. Mitchell (whm@msweng.com)

A little background on Prolog

The name comes from "programming in logic".

Developed at the University of Marseilles (France) in 1972.

First implementation was in FORTRAN and written by Alain Colmeraurer.

Originally intended as a tool for working with natural languages.

Achieved great popularity in Europe in the late 1970s.

Was picked by Japan in 1981 as a core technology for their "fifth generation" project.

Prolog is a commercially successful language. Many companies have made a business of
supplying Prolog implementations, Prolog consulting, and/or applications in Prolog.

There are many free implementations of Prolog available. We'll be using SWI-Prolog.

CSc 372, Fall 2006 Prolog, Slide 3
W. H. Mitchell (whm@msweng.com)

Facts and queries

A Prolog program is a collection of facts, rules, and queries. We'll talk about facts first.

Here is a small collection of Prolog facts:

% cat foods.pl
food('apple').
food('broccoli').
food('carrot').
food('lettuce').
food('rice').

These facts enumerate some things that are food. We might read them in English like this:
"An apple is food", "Broccoli is food", etc.

A fact represents a piece of knowledge that the Prolog programmer deems to be useful. The
name food was chosen by the programmer. One alternative is edible('apple').

'apple' is an example of an atom. Note the use of single quotes, not double quotes. We'll

learn more about atoms later.

CSc 372, Fall 2006 Prolog, Slide 4
W. H. Mitchell (whm@msweng.com)

Facts and queries, continued

On lectura, we can load a file of facts into Prolog like this:

% pl (That's "PL")
Welcome to SWI-Prolog (Multi-threaded, Version 5.6.20)
...

?- [foods]. (Note that ".pl" is assumed; DON'T specify it!)
% foods compiled 0.00 sec, 1,488 bytes

(To save space the slides usually won't show this blank line.)
Yes

Once the facts are loaded we can perform queries:

?- food('carrot'). % Don't forget the trailing period!!
Yes

?- food('peach').
No

Prolog responds based on the facts it has been given. People know that peaches are food but
Prolog doesn't know that because there's no fact that says that.

A query can consist of one or more goals. The queries above consist of one goal.

CSc 372, Fall 2006 Prolog, Slide 5
W. H. Mitchell (whm@msweng.com)

Facts and queries, continued

Here's a fact:

food('apple').

Here's a query:

food('apple').

Facts and queries have the same syntax. They are distinguished by the context in which they
appear.

If a line is typed at the interactive ?- prompt, it is interpreted as a query.

When a file is loaded with [filename], its contents are interpreted as a collection of facts.

Loading a file of facts is also known as consulting the file.

We'll see later that files can contain "rules", too. Facts and rules are two types of clauses.

For the time being use all-lowercase filenames with the suffix .pl for Prolog source files.

CSc 372, Fall 2006 Prolog, Slide 6
W. H. Mitchell (whm@msweng.com)

Sidebar: food in ML

An ML programmer might represent the food information like this:

fun food "apple" = true
 | food "broccoli" = true
 | food "carrot" = true
 | food "lettuce" = true
 | food "rice" = true
 | food _ = false;

- food "apple";
val it = true : bool

- food "peach";
val it = false : bool

What's another way to implement food in ML?

How might we implement food in Ruby?

CSc 372, Fall 2006 Prolog, Slide 7
W. H. Mitchell (whm@msweng.com)

Facts and queries, continued

An alternative to specifying an atom, like 'apple', in a query is to specify a variable. In

Prolog an identifier is a variable iff it starts with a capital letter.

?- food(Edible).
Edible = apple <cursor is here>

A query like food('apple') asks if it is known that apple is a food.

The above query asks, "Tell me something that you know is a food."

Prolog uses the first food fact and responds with Edible = apple, using the variable

name specified in the query.

If the user is satisfied with the answer apple, pressing <ENTER> terminates the query.

Prolog responds with "Yes" because the query was satisfied.

?- food(Edible).
Edible = apple <ENTER>
Yes

?-

CSc 372, Fall 2006 Prolog, Slide 8
W. H. Mitchell (whm@msweng.com)

Facts and queries, continued

If for some reason the user is not satisfied with the response apple, an alternative can be

requested by typing a semicolon, without <ENTER>.

?- food(Edible).
Edible = apple ;
Edible = broccoli ;
Edible = carrot ;
Edible = lettuce ;
Edible = rice ;

No

In the above case the user exhausts all the facts by repeatedly responding with a semicolon.
Prolog then responds with "No".

It is very important to recognize that a simple set of facts lets us perform two distinct
computations: (1) We can ask if something is a food. (2) We can ask what all the foods are.

How could we construct an analog for the above behavior in Java, ML, or Ruby?

CSc 372, Fall 2006 Prolog, Slide 9
W. H. Mitchell (whm@msweng.com)

"Can you prove it?"

One way to think about a query is that we're asking Prolog if something can be "proven"
using the facts (and rules) it has been given.

The query

?- food('apple').

can be thought of as asking, "Can you prove that apple is a food?" It is trivially proven
because we've supplied a fact that says that apple is a food.

The query

?- food('pickle').

produces "No" because based on the facts we've supplied, Prolog can't prove that pickle is a
food.

CSc 372, Fall 2006 Prolog, Slide 10
W. H. Mitchell (whm@msweng.com)

"Can you prove it?", continued

Consider again a query with a variable:

?- food(F). % Remember that an initial capital denotes a variable.
F = apple ;
F = broccoli ;
F = carrot ;
F = lettuce ;
F = rice ;
No

The query asks, "For what values of F can you prove that F is a food? By repeatedly entering

a semicolon we see the full set of values for which that can be proven.

The collection of knowledge at hand, a set of facts about what is food, is trivial but Prolog is
capable of finding proofs for an arbitrarily complicated body of knowledge.

CSc 372, Fall 2006 Prolog, Slide 11
W. H. Mitchell (whm@msweng.com)

Atoms

It was said that 'apple' is an atom.

One way to specify an atom is to enclose a sequence of characters in single quotes. Here are
some examples:

' just testing '
'!@#$%^&()'
'don\'t' % don't

An atom can also be specified by a sequence of letters, digits, and underscores that begins
with a lowercase letter. Examples:

apple % Look, no quotes!
twenty2
getValue
term_to_atom

Is it common practice to avoid quotes and use atoms that start with a lowercase letter:

food(apple).
food(broccoli).
...

CSc 372, Fall 2006 Prolog, Slide 12
W. H. Mitchell (whm@msweng.com)

Atoms, continued

We can use atom to query whether something is an atom:

?- atom('apple').
Yes

?- atom(apple).
Yes

?- atom(Apple). % Uppercase "A". It's a variable, not an atom!
No

?- atom("apple").
No

CSc 372, Fall 2006 Prolog, Slide 13
W. H. Mitchell (whm@msweng.com)

Numbers

Integer and floating point literals are numbers.

?- number(10).
Yes

?- number(123.456).
Yes

?- number('100').
No

Some things involving numbers don't work as you might expect:

?- 3 + 4.
ERROR: Undefined procedure: (+)/2

?- a = 5.
No

?- Y = 4 + 5.
Y = 4+5
Yes

We'll learn why later.

CSc 372, Fall 2006 Prolog, Slide 14
W. H. Mitchell (whm@msweng.com)

Predicates, terms, and structures

Here are some more examples of facts:

color(sky, blue).

color(grass, green).

odd(1). odd(3). odd(5).

number(one, 1, 'English').

number(uno, 1, 'Spanish').

number(dos, 2, 'Spanish').

We can say that the facts above define three predicates: color/2, odd/1, and number/3.

The number following the slash is the number of terms in the predicate.

CSc 372, Fall 2006 Prolog, Slide 15
W. H. Mitchell (whm@msweng.com)

Predicates, terms, and structures, continued

A term is one of the following: atom, number, structure, variable.

Structures consist of a functor (always an atom) followed by one or more terms enclosed in
parentheses.

Here are examples of structures:

color(grass, green)

odd(1)

number(uno, 1, 'Spanish')

equal(V, V)

lunch(sandwich(ham), fries, drink(coke))

The structure functors are color, odd, number, equal, and lunch, respectively.

Two of the terms of the last structure are structures themselves.

Note that a structure can be interpreted as a fact or a goal, depending on the context.

CSc 372, Fall 2006 Prolog, Slide 16
W. H. Mitchell (whm@msweng.com)

Fact/query mismatches

Here is a predicate x/1:

x(just(testing,date(7,4,1776))).
x(10).

Here are some queries:

?- x(abc).
No

?- x([1,2,3]). % A list!
No
?- x(a(b)).
No

The predicate consists of two facts, one with a term that's a structure and another that's an
integer. That inconsistency is not considered to be an error. The goals in the queries have
terms that are an atom, a list, and a structure. There's no indication that those queries are
fundamentally mismatched with respect to the terms in the facts.

Prolog says "No" in each case because nothing it knows about aligns with anything it's being
queried about.

CSc 372, Fall 2006 Prolog, Slide 17
W. H. Mitchell (whm@msweng.com)

Fact/query mismatches, continued

At hand:

x(just(testing,date(7,4,1776))).
x(10).

It is an error if there's no predicate with as many terms as specified in a goal:

?- x(1,2).
ERROR: Undefined procedure: x/2
ERROR: However, there are definitions for:
ERROR: x/1

Note that a correction is suggested.

CSc 372, Fall 2006 Prolog, Slide 18
W. H. Mitchell (whm@msweng.com)

More queries

A query that requests green things:

?- color(Thing, green).
Thing = grass ;
Thing = broccoli ;
Thing = lettuce ;
No

A query that requests each thing and its color:

?- color(Thing, Color).
Thing = sky
Color = blue ;

Thing = dirt
Color = brown ;

Thing = grass
Color = green ;
...

We're essentially asking this: For what pairs of Thing and Color can you prove color?

color(sky, blue).
color(dirt, brown).
color(grass, green).
color(broccoli, green).
color(lettuce, green).
color(apple, red).
color(carrot, orange).
color(rice, white).

CSc 372, Fall 2006 Prolog, Slide 19
W. H. Mitchell (whm@msweng.com)

More queries, continued

A query can contain more than one goal. This a query that
directs Prolog to find a food F that is green:

?- food(F), color(F, green).
F = broccoli ;
F = lettuce ;
No

The query has two goals separated by a comma, which
indicates conjunction—both goals must succeed in order
for the query to succeed.

We might state it like this: "Is there an F for which you can

prove both food(F) and color(F, green)?

Let's see if any foods are blue:

?- color(F, blue), food(F).
No

Note that the ordering of the goals was reversed. In this case the order doesn't matter.

Goals are always executed from left to right.

food(apple).
food(broccoli).
food(carrot).
food(lettuce).
food(rice).

color(sky, blue).
color(dirt, brown).
color(grass, green).
color(broccoli, green).
color(lettuce, green).
color(apple, red).
color(carrot, orange).
color(rice, white).
color(rose, red).
color(tomato,red).

CSc 372, Fall 2006 Prolog, Slide 20
W. H. Mitchell (whm@msweng.com)

More queries, continued

Write these queries:

Who likes baseball?

Who likes a food?

Who likes green foods?

Who likes foods with the same color as foods that
Mary likes?

Answers:
likes(Who, baseball).
likes(Who, X), food(X).
likes(Who, X), food(X), color(X,green).
likes(mary,F), food(F), color(F,C), likes(Who,F2), food(F2), color(F2,C).

food(apple).
...

color(sky,blue).
...

likes(bob, carrot).
likes(bob, apple).
likes(joe, lettuce).
likes(mary, broccoli).
likes(mary, tomato).
likes(bob, mary).
likes(mary, joe).
likes(joe, baseball).
likes(mary, baseball).
likes(jim, baseball).

CSc 372, Fall 2006 Prolog, Slide 21
W. H. Mitchell (whm@msweng.com)

More queries, continued

Are any two foods the same color?

 ?- food(F1),food(F2),color(F1,C),color(F2,C).
F1 = apple
F2 = apple
C = red ;

F1 = broccoli
F2 = broccoli
C = green ;

To avoid foods matching themselves we can specify "not equal" with \==.

?- food(F1), food(F2), F1 \== F2, color(F1,C), color(F2,C).
F1 = broccoli
F2 = lettuce
C = green

Remember that in order for a query to produce an answer for the user, all goals must succeed.

Etymology: \== symbolizes a struck-through "equals".

CSc 372, Fall 2006 Prolog, Slide 22
W. H. Mitchell (whm@msweng.com)

Sidebar: Predicates in operator form

The op/3 predicate, which we may discuss later, allows a predicate to be expressed as an

operator. These two queries are equivalent:

?- abc \== xyz.
Yes

?- \==(abc,xyz).
Yes

In fact, the sequence abc \== xyz causes Prolog to create a structure. display/1 can

be used to show the structure:

?- display(abc \== xyz).
\==(abc, xyz)

Ultimately, abc \== xyz means "invoke the predicate named \== and pass it two terms,

abc and xyz".

Nested sidebar: help/1 displays the documentation for a predicate. To learn about the op

predicate, do this:

?- help(op).

CSc 372, Fall 2006 Prolog, Slide 23
W. H. Mitchell (whm@msweng.com)

Alternative representations

A given body of knowledge may be represented in a variety of ways using Prolog facts. Here
is another way to represent the food and color information:

thing(apple, red, yes).
thing(broccoli, green, yes).
thing(carrot, orange, yes).
thing(dirt, brown, no).
thing(grass, green, no).
thing(lettuce, green, yes).
thing(rice, white, yes).
thing(sky, blue, no).

What is a food?

?- thing(X, _, yes).
X = apple ;
X = broccoli ;
X = carrot ;
...

The underscore designates an anonymous logical variable. It indicates that any value
matches and that we don't want to have the value associated with a variable (and displayed).

CSc 372, Fall 2006 Prolog, Slide 24
W. H. Mitchell (whm@msweng.com)

Alternate representation, continued

Practice:

What is green that is not a food?

What color is lettuce?

What foods are orange?

What foods are the same color as lettuce?

Is thing/3 a better or worse representation of the knowledge than the combination of

food/1 and color/2?

Answers:
thing(lettuce, Color, _).
thing(X, green, no).
thing(F, orange, yes).
thing(lettuce, Color, _), thing(Food, Color, yes).

thing(apple, red, yes).
thing(broccoli, green, yes).
thing(carrot, orange, yes).
thing(dirt, brown, no).
thing(grass, green, no).
thing(lettuce, green, yes).
thing(rice, white, yes).
thing(sky, blue, no).

CSc 372, Fall 2006 Prolog, Slide 25
W. H. Mitchell (whm@msweng.com)

Unification

Prolog has a more complex notion of equality than conventional languages.

The operators == and \== test for equality and inequality. They are roughly analogous

to = / <> in ML and == / != in Ruby:

?- abc == 'abc'.
Yes

?- 3 \== 5.
Yes

?- abc(xyz) == abc(xyz).
Yes

?- abc(xyz) == abc(xyz,123).
No

Just like comparing tuples and lists in ML, and arrays in Ruby, structure comparisons in
Prolog are "deep". Two structures are equal if they have the same functor, the same number
of terms, and the terms are equal. Later we'll see that deep comparison is used with lists, too.

Think of == and \== as asking a question: is one thing equal (or not equal) to another.

CSc 372, Fall 2006 Prolog, Slide 26
W. H. Mitchell (whm@msweng.com)

Unification, continued

The = operator, which we'll read as "unify" or "unify with", can be used in a variety of ways.

If both operands are variables then A = B specifies that A must have the same value as B.

Examples:

?- A = 1, B = abc, A = B.
No

?- A = 1, B = 1, A = B.
A = 1
B = 1 <CR>
Yes

Unification is not a question; it is a demand! Consider the following:

?- A = B, B = 1.
A = 1
B = 1

There are two unifications. The first unification demands that A must equal B. The second

unification demands that B must equal 1. In order to satisfy those two demands, Prolog says

that A must be 1.

CSc 372, Fall 2006 Prolog, Slide 27
W. H. Mitchell (whm@msweng.com)

Unification, continued

At hand:

?- A = B, B = 1.
A = 1
B = 1

Variables are initially uninstantiated. After A = B we can say that A is unified with B but

both A and B are still uninstantiated.

The unification B = 1 instantiates B to the value 1. Because A and B are unified, B = 1

also causes A to be instantiated to 1.

Another way to think about it is that unifications create constraints that Prolog must honor in
order for a query to succeed. If the constraints can't be honored, the query fails.

?- A = 1, A = 2.
No

?- B = C, A = B, B = 1, C = 2.
No

DO NOT think of unification as assignment or comparison. It is neither!

CSc 372, Fall 2006 Prolog, Slide 28
W. H. Mitchell (whm@msweng.com)

Unification, continued

Here's how we might say that S must be a structure with functor f and term A, and that A

must be abc:

?- S = f(A), A = abc.
S = f(abc)
A = abc
Yes

As a result of the unifications, S is instantiated to f(abc) and A is instantiated to abc.

A series of unifications can be arbitrarily complex. Here's a more complicated sequence:

?- Term1 = B, S = abc(Term1,Term2), B = abc, Term2=g(B,B,xyz).
Term1 = abc
B = abc
S = abc(abc, g(abc, abc, xyz))
Term2 = g(abc, abc, xyz)

Remember that a query specifies a series of goals. The above goals can be placed in any
order. The result is the same regardless of the order.

CSc 372, Fall 2006 Prolog, Slide 29
W. H. Mitchell (whm@msweng.com)

Unification, continued

We can think of the query

?- food(carrot).

as a search for facts that can be unified with food(apple).

Here's a way to picture how Prolog considers the first fact, which is food(apple).

?- Fact = food(apple), Query = food(carrot), Fact = Query.
No

The demands of the three unifications cannot be satisfied simultaneously . The same is true
for the second fact, food(broccoli).

The third fact produces a successful unification:

?- Fact = food(carrot), Query = food(carrot), Fact = Query.
Fact = food(carrot)
Query = food(carrot)
Yes

The instantiations for Fact and Query are shown, but are no surprise.

CSc 372, Fall 2006 Prolog, Slide 30
W. H. Mitchell (whm@msweng.com)

Unification, continued

Things are more interesting when the query involves a variable, like ?- food(F).

?- Fact = food(apple), Query = food(F), Query = Fact.
Fact = food(apple)
Query = food(apple)
F = apple

The query succeeds and Prolog shows that F has been instantiated to apple.

CSc 372, Fall 2006 Prolog, Slide 31
W. H. Mitchell (whm@msweng.com)

Unification, continued

Consider again this interaction:

?- food(F).
F = apple ;
F = broccoli ;
F = carrot ;
F = lettuce ;
F = rice ;
No

Prolog first finds that food(apple) can be unified with food(F) and shows that F is

instantiated to apple.

When the user types semicolon F is uninstantiated and the search for another fact to unify

with food(F) resumes.

food(broccoli) is unified with food(F), F is instantiated to broccoli, and the user

is presented with F = broccoli.

The process continues until Prolog has found all the facts that can be unified with food(F)

or the user is presented with a value for F that is satisfactory.

CSc 372, Fall 2006 Prolog, Slide 32
W. H. Mitchell (whm@msweng.com)

Unification, continued

Following an earlier example, here's how we might view successful unifications with
the query ?- food(F), color(F,C):

?- Fact1 = food(lettuce), Fact2 = color(lettuce,green),
 Query1 = food(F), Query2 = color(F,C),
 Fact1 = Query1, Fact2 = Query2.

C = green
F = lettuce
...

Only the interesting instantiations, for F and C, are shown above

What we see is that unifying Fact1 with Query1 causes F to be instantiated to lettuce.

Query2, which due to the value of F is effectively color(lettuce,C), can be unified

with Fact2 if C is instantiated to green.

Unification and variable instantiation are cornerstones of Prolog.

CSc 372, Fall 2006 Prolog, Slide 33
W. H. Mitchell (whm@msweng.com)

Query execution

Goals, like food(fries) or color(What, Color) can be thought of as having four

ports:

In the Active Prolog Tutor, Dennis Merritt describes the ports in this way:

 call: Using the current variable bindings, begin to search for the facts which unify with
the goal.

 exit: Set a place marker at the fact which satisfied the goal. Update the variable table to
reflect any new variable bindings. Pass control to the right.

 redo: Undo the updates to the variable table [that were made by this goal]. At the place
marker, resume the search for a clause which unifies with the goal.

 fail: No (more) clauses unify, pass control to the left.

CSc 372, Fall 2006 Prolog, Slide 34
W. H. Mitchell (whm@msweng.com)

Query execution, continued

Example:

?- food(X).
X = apple ;
X = broccoli ;
X = carrot ;
X = lettuce ;
X = rice ;
No

CSc 372, Fall 2006 Prolog, Slide 35
W. H. Mitchell (whm@msweng.com)

Query execution, continued

The goal trace/0 activates "tracing" for a

query. Here's what it looks like:

?- trace, food(X).
 Call: food(_G410) ? <CR>
 Exit: food(apple) ? <CR>
X = apple ;
 Redo: food(_G410) ? <CR>
 Exit: food(broccoli) ? <CR>
X = broccoli ;
 Redo: food(_G410) ? <CR>
 Exit: food(carrot) ? <CR>
X = carrot ;

Tracing shows the transitions through each port. The first transition is a call on the goal
food(X). The value shown, _G410, stands for the uninstantiated variable X. We next see

that goal being exited, with X instantiated to apple. The user isn't satisfied with the value

and by typing a semicolon forces the redo port to be entered, which causes X, previously
bound to apple, to be uninstantiated. The next food fact, food(broccoli) is tried,

instantiating X to broccoli, exiting the goal, and presenting X = broccoli to the user.

(etc.)

CSc 372, Fall 2006 Prolog, Slide 36
W. H. Mitchell (whm@msweng.com)

Query execution, continued

Query: Who likes green foods?

?- food(F), likes(Who,F), color(F, green).

Facts:

food(apple). likes(bob, carrot). color(sky, blue).
food(broccoli). likes(bob, apple). color(dirt, brown).
food(carrot). likes(joe, lettuce). color(grass, green).
food(lettuce). likes(mary, broccoli). color(broccoli,green).
food(rice). likes(mary, tomato). color(lettuce, green).
 likes(bob, mary). color(apple, red).
 likes(mary, joe). color(tomato, red).
 likes(joe, baseball). color(carrot, orange).
 likes(mary, baseball). color(rose, red).
 likes(jim, baseball). color(rice, white).

Try tracing it!

CSc 372, Fall 2006 Prolog, Slide 37
W. H. Mitchell (whm@msweng.com)

Producing output

The predicate write/1 always succeeds and as a side effect prints the term it is called with.

writeln/1 is similar, but appends a newline.

?- write('apple'), write(' '), write('pie').
apple pie
Yes

?- writeln('apple'), writeln('pie').
apple
pie
Yes

?- writeln('apple\npie').
apple
pie
Yes

CSc 372, Fall 2006 Prolog, Slide 38
W. H. Mitchell (whm@msweng.com)

Producing output, continued

The predicate format/2 is much like printf in other languages.

?- format('x = ~w\n', 10).
x = 10

Yes

?- format('label = ~w, value = ~w, x = ~w\n',
 ['abc', 10, 3+4]).
label = abc, value = 10, x = 3+4

Yes

If more than one value is to be output, the values must be in a list. We'll see more on lists
later but for now note that we make a list by enclosing zero or more terms in square brackets.
Lists are heterogeneous, like Ruby arrays

~w is one of many format specifiers. The "w" indicates to use write/1 to output the value.

Use help(format/2) to see the documentation on format.

CSc 372, Fall 2006 Prolog, Slide 39
W. H. Mitchell (whm@msweng.com)

Producing output, continued

First attempt: print all the foods

?- food(F), format('~w is a food\n', F).
apple is a food

F = apple ;
broccoli is a food

F = broccoli ;
carrot is a food

Ick—we have to type semicolons to cycle through the foods.

Any ideas?

CSc 372, Fall 2006 Prolog, Slide 40
W. H. Mitchell (whm@msweng.com)

Producing output, continued

Second attempt: Force alternatives by specifying a goal that always fails.

?- food(F), format('~w is a food\n', F), food('none').
apple is a food
broccoli is a food
carrot is a food
...
No

In essence, this query is a loop. food(F) unifies with the first food fact and instantiates F

to its term, the atom apple. Then format is called, printing a string with the value of F

interpolated. food('none') unifies with nothing, and fails. Control then moves left, into

the redo port of format. format doesn't erase the output but it doesn't have an

alternatives either, so it fails, causing the redo port of food(F) to be entered. F is

uninstantiated and food(F) is unified with the next food fact in turn, instantiating F to

broccoli. The process continues, with control repeatedly moving back and forth until all

the food facts have been tried.

CSc 372, Fall 2006 Prolog, Slide 41
W. H. Mitchell (whm@msweng.com)

Backtracking

At hand:

?- food(F), format('~w is a food\n', F), food('none').
apple is a food
broccoli is a food
...
No

The activity of moving leftwards through the goals is known as backtracking.

We might say, "The query gets a food F, prints it, fails, and then backtracks to try the next

food."

By design, Prolog does not analyze things far enough to recognize that it will never be able to
"prove" what we're asking. Instead it goes through the motions of trying to prove it and as
side-effect, we get the output we want. This is a key idiom of Prolog programming.

CSc 372, Fall 2006 Prolog, Slide 42
W. H. Mitchell (whm@msweng.com)

Backtracking, continued

At hand:

?- food(F), format('~w is a food\n', F), food('none').
apple is a food
broccoli is a food
...
No

It's important to note that different predicates respond to "redo" in various ways. With only a
collection of facts for food/1, redo amounts to advancing to the next fact, if any. If there is

one, the goal exits (goes to the right). If not, it fails (goes to the left).

A predicate might create a file when called and delete it on redo.

A sequence of redos might cause a predicate to work through a series of URLs to find a
current data source.

A geometry manager might force a collection of predicates representing windows to produce
a configuration that is mutually acceptable.

CSc 372, Fall 2006 Prolog, Slide 43
W. H. Mitchell (whm@msweng.com)

The predicate fail

The predicate fail/1 always fails. It's important to understand that an always-failing goal

like food('none') or 1==2 produces exhaustive backtracking but in practice we'd use

fail instead:

?- food(F), format('~w is a food\n', F), fail.
apple is a food
broccoli is a food
carrot is a food
lettuce is a food
rice is a food

No

In terms of the four-port model, think of fail as a box whose call port is "wired" to its fail

port:

Another way to think about it: fail/1 causes control to make a U-turn.

CSc 372, Fall 2006 Prolog, Slide 44
W. H. Mitchell (whm@msweng.com)

fail, continued

The predicate between/3 can be used to instantiate a variable to a sequence of values:

?- between(1,3,X).
X = 1 ;
X = 2 ;
X = 3 ;
No

Problem: Print this sequence:

000
001
010
011
100
101
110
111

No, you can't do write('000\n001\n....')!

Extra credit:

10101000
10101001
10101010
10101011
10111000
10111001
10111010
10111011

CSc 372, Fall 2006 Prolog, Slide 45
W. H. Mitchell (whm@msweng.com)

Rules

showfoods: a simple "rule"

Horn clauses

Rules with arguments

Instantiation as "return"

Computing with facts

Sidebar: Describing predicates

Arithmetic

Comparisons

CSc 372, Fall 2006 Prolog, Slide 46
W. H. Mitchell (whm@msweng.com)

showfoods: a simple "rule"

Facts are one type of Prolog clause. The other type of clause is a rule. Here is a rule:

showfoods :- food(F), format('~w is a food\n', F), fail.

Just like facts, rules are not entered at the query prompt (it would be interpreted as a query!).
Instead, they put into a file along with facts. The rules are loaded by consulting the file.

% cat facts1.pl
showfoods :- food(F), format('~w is a food\n', F), fail.

food(apple).
food(broccoli).
...

% pl
Welcome to SWI-Prolog (Multi-threaded, Version 5.6.12)
?- [facts1].
...

The order doesn't matter—even though showfoods/0 uses food/1, it can precede it.

"facts1.pl" is now a misnomer because it now contains rules, too. We'll ignore that.

CSc 372, Fall 2006 Prolog, Slide 47
W. H. Mitchell (whm@msweng.com)

Sidebar: Horn Clauses

Prolog borrows from the idea of Horn Clauses in symbolic logic. A simplified explanation is
that a Horn Clause represents logic like this:

1 2 3 nIf Q , Q , Q , ..., Q , are all true, then P is true.

In Prolog we might represent a three-element Horn clause with this rule:

p :- q1, q2, q3.

The query

?- p.

which asks Prolog to "prove" p, causes Prolog to try and prove q1, then q2, and then q3. If

it can prove all three, and can therefore prove p, Prolog will respond with Yes. (If not, then

No.)

Note that this is an abstract example—we haven't defined the predicates q1/0 et al.

CSc 372, Fall 2006 Prolog, Slide 48
W. H. Mitchell (whm@msweng.com)

showfoods, continued

At hand are the following rules:

p :- q1, q2, q3.

showfoods :- food(F), format('~w is a food\n', F), fail.

We can print all the foods with this query:

?- showfoods.
apple is a food
broccoli is a food
carrot is a food
lettuce is a food
rice is a food

No

In its unsuccessful attempt to "prove" showfoods, and thus trying to prove all three goals

in the body of the showfoods rule, Prolog ends up doing what we want: all the foods are

printed.

In other words, we send Prolog on a wild goose chase to get our work done!

CSc 372, Fall 2006 Prolog, Slide 49
W. H. Mitchell (whm@msweng.com)

showfoods, continued

Let's print all the foods three times:

 ?- showfoods, showfoods, showfoods.
apple is a food
broccoli is a food
carrot is a food
lettuce is a food
rice is a food

No

What's wrong?

CSc 372, Fall 2006 Prolog, Slide 50
W. H. Mitchell (whm@msweng.com)

showfoods, continued

At hand:

showfoods :- food(F), format('~w is a food\n', F), fail.

?- showfoods, showfoods, showfoods.
apple is a food
...
rice is a food
[Just one listing of the foods]

No

The showfoods rule above ALWAYS fails—there's NO WAY to get past the fail/0 at

the end. We get the output we want but because the first showfoods goal ultimately fails

(when the food facts are exhausted) Prolog doesn't try the second two goals—it can't even get
past the first goal!

You might have noticed that Prolog concludes with No after printing the foods. That's

because it fails to prove showfoods.

What can we do?

CSc 372, Fall 2006 Prolog, Slide 51
W. H. Mitchell (whm@msweng.com)

showfoods, continued

We've seen Prolog try all facts in turn for predicates like food/1, and color/2 in order to

satisfy a query. Let's add a second clause to the predicate showfoods/0. The second

clause is a fact:

showfoods :- food(F), format('~w is a food\n', F), fail.
showfoods.

Result:

 ?- showfoods.
apple is a food
broccoli is a food
carrot is a food
lettuce is a food
rice is a food

Yes % IMPORTANT: Now it says Yes, not No!

Prolog tried the two clauses for the predicate showfoods/0 in turn. The first clause, a

rule, was ultimately a failure but printed the foods as a side-effect. Because the first clause
failed, Prolog tried the second clause, a fact which is trivially proven.

CSc 372, Fall 2006 Prolog, Slide 52
W. H. Mitchell (whm@msweng.com)

Sidebar: Tracing execution with gtrace

On a Windows machine the predicate gtrace/0 activates a graphical tracer in a separate

window. This query,

?- gtrace, showfoods.
apple is a food

and a few clicks on the right-arrow button, produces the output above and the display below.

CSc 372, Fall 2006 Prolog, Slide 53
W. H. Mitchell (whm@msweng.com)

Rules with arguments

Here is a one-rule predicate that asks if there is a food with a particular color:

foodWithColor(Color) :- food(F), color(F,Color).

?- foodWithColor(green).
Yes

To prove the goal foodWithColor(green), Prolog first searches its clauses for one that

can be unified with the goal. It finds a rule (above) whose head can be unified with the goal.
Then the variable Color in the clause is instantiated to the atom green. It then attempts to

prove food(F), and color(F, green) for some value of F. The Yes response tells us

that at least one green food exists, but that's all we know.

A failure:

?- foodWithColor(blue).
No

Ignoring the facts that you know are present, what are two distinct possible causes for the
failure?

Can we do anything with it other than asking if there is a food with a particular color?

CSc 372, Fall 2006 Prolog, Slide 54
W. H. Mitchell (whm@msweng.com)

Rules with arguments, continued

foodWithColor(Color) :- food(F), color(F,Color).

If instead of an atom we supply a variable to foodWithColor the variable is instantiated

to the color of each food in turn:

?- foodWithColor(C).
C = red ;
C = green ;
...

A very important rule:

When a variable is supplied in a query and it matches a fact or the head of a rule with a
variable in the corresponding term, the two variables are unified. (Instantiating one
instantiates the other.)

In the above case the variable C first has the value red because C in the query was unified

with Color in the head of the rule, AND the goals in the body of the rule succeeded, AND

Color was instantiated to red.

When we type a semicolon in response to C = red, Prolog backtracks and then comes up

with another food color, green.

CSc 372, Fall 2006 Prolog, Slide 55
W. H. Mitchell (whm@msweng.com)

Instantiation as "return"

foodWithColor(Color) :- food(F), color(F,Color).

Prolog has no analog for "return x" as is found in most languages. In Prolog there is no

way to say something like this,

?- Color = foodWithColor(), writeln(Color), fail.

or this,

?- writeln(foodWithColor()), fail.

Instead, predicates "return" values by instantiating logical variables.

?- foodWithColor(C), writeln(C), fail.
red
green
...

CSc 372, Fall 2006 Prolog, Slide 56
W. H. Mitchell (whm@msweng.com)

Instantiation as "return", continued

Here's a one-rule predicate that produces structures with food/color pairs:

get_fwc(Color, Result) :-
food(F), color(F,Color), Result = fwc(F,Color).

Usage:

?- get_fwc(green, R).
R = fwc(broccoli, green) ;
R = fwc(lettuce, green) ;
No

?- get_fwc(_, R).
R = fwc(apple, red) ;
R = fwc(broccoli, green) ;
R = fwc(carrot, orange) ;
R = fwc(lettuce, green) ;
R = fwc(rice, white) ;
No

How could we make the predicate more concise?

CSc 372, Fall 2006 Prolog, Slide 57
W. H. Mitchell (whm@msweng.com)

Instantiation as "return", continued

First version and usage:

get_fwc(Color, Result) :-
food(F), color(F,Color), Result = fwc(F,Color).

?- get_fwc(green,R).
R = fwc(broccoli, green)

Above, R is unified with Result, and Result is unified with fwc(F,Color),

(transitively) unifying R with fwc(broccoli, green).

Instead of unifying Result with a structure in the body of the rule, we can eliminate the

"middle-man" Result and specify the structure in the head, unifying it with whatever is

specified in the query:

get_fwc(Color, fwc(F,Color)) :- food(F), color(F,Color).

CSc 372, Fall 2006 Prolog, Slide 58
W. H. Mitchell (whm@msweng.com)

Computing with facts

Consider these two nearly-identical predicates:

equal_e(X,Y) :- X == Y. % equality

equal_u(X,Y) :- X = Y. % unification

How does their behavior differ? What's something we could do with one that we couldn't do
with the other?

CSc 372, Fall 2006 Prolog, Slide 59
W. H. Mitchell (whm@msweng.com)

Computing with facts, continued

equal_e(X,Y) :- X == Y. % equality

equal_u(X,Y) :- X = Y. % unification

Usage:

?- equal_e(abc,abc).
Yes

?- equal_e(abc,X).
No

?- equal_u(abc,X).
X = abc

?- equal_u(X,abc).
X = abc

What is the result of the following queries?
?- A = 1, equal_u(A,B).
?- equal_u(B, A), A = 1, equal_u(B, 2).

Can equal_u be shortened?

CSc 372, Fall 2006 Prolog, Slide 60
W. H. Mitchell (whm@msweng.com)

Computing with facts, continued

At hand:

equal_u(X,Y) :- X = Y.

The right way to do it:

equal_u(X,X).

equal_u is a fact that performs computation via unification and instantiation.

Below are some more facts that perform computation. Describe what they do.

square(rectangle(S, S)).

rotate(rectangle(W, H), rectangle(H, W)).

width(rectangle(W, _), W).

height(rectangle(_, H), H).

CSc 372, Fall 2006 Prolog, Slide 61
W. H. Mitchell (whm@msweng.com)

Computing with facts, continued

square(rectangle(S, S)).
rotate(rectangle(W, H), rectangle(H, W)).
width(rectangle(W, _), W).

Usage:

?- square(rectangle(3,3)).
Yes

?- rotate(rectangle(3,5),R2).
R2 = rectangle(5, 3)
Yes

?- rotate(rectangle(3,5),R2), width(R2, W).
R2 = rectangle(5, 3)
W = 5

?- rotate(muffler,M2).
No

Problem: Using only rotate/2, write square/1.

CSc 372, Fall 2006 Prolog, Slide 62
W. H. Mitchell (whm@msweng.com)

Computing with facts, continued

At hand:

rotate(rectangle(W, H), rectangle(H, W)).

One way to think about a square is that it's a rectangle whose 90-degree rotation equals itself:

square(R) :- rotate(R,R).

The thing to appreciate is that rotate describes a relationship between two rectangle

structures. With a single fact Prolog can create a rotated rectangle, determine if one rectangle
is a rotation of another, and more.

CSc 372, Fall 2006 Prolog, Slide 63
W. H. Mitchell (whm@msweng.com)

Sidebar: Describing predicates

Recall this predicate: between(1,10,X)

Here is what help(between) shows:

between(+Low, +High, ?Value)

 Low and High are integers, High >= Low. If Value is an integer,

 Low =< Value =< High. When Value is a variable it is successively

 bound to all integers between Low and High.

If an argument has a plus prefix, like +Low and +High, it means that the argument is an

input to the predicate. A question mark indicates that the argument can be input or output.

The documentation indicates that between can (1) generate values and (2) test for

membership in a range.

?- between(1,10,X).
X = 1
...

?- between(1,10,5).
Yes

CSc 372, Fall 2006 Prolog, Slide 64
W. H. Mitchell (whm@msweng.com)

Describing predicates, continued

How would the arguments of these predicates be described?

rotate(Rect1, Rect2)

square(Rectangle)

equal_u(X, Y)

Here is the synopsis for format/2:

format(+Format, +Arguments)

Speculate: What does sformat/3 do?

sformat(-String, +Format, +Arguments)

Amusement: What does the following query do?

?- between(1,100,X), format('Considering: ~d\n', X),
 between(50,52,X), format('Found ~d\n', X), fail.

CSc 372, Fall 2006 Prolog, Slide 65
W. H. Mitchell (whm@msweng.com)

Arithmetic

Just as we saw with \==, Prolog builds structures out of arithmetic expressions:

?- display(1 + 2 * 3).
+(1, *(2, 3))
Yes

?- display(1 / 2 * (3 + 4)).
*(/(1, 2), +(3, 4))
Yes

?- display(300.0/X*(3+A*0.7**Y)).
*(/(300.0, _G373), +(3, *(_G382, **(0.7, _G380))))

Unlike \==, there are no predicates for the arithmetic operators. Example:

?- +(3,4).
ERROR: Undefined procedure: (+)/2

?- *(10,20).
ERROR: Undefined procedure: * /2

Question: Why would predicates be awkward for arithmetic expressions?

CSc 372, Fall 2006 Prolog, Slide 66
W. H. Mitchell (whm@msweng.com)

Arithmetic, continued

The predicate is/2 evaluates a structure representing an arithmetic expression and unifies

the result with a logical variable:

?- is(X, 3+4*5).

X = 23

Yes

is/2 is usually used as an infix operator:

?- X is 3 + 4, Y is 7 * 5, Z is X / Y.

X = 7
Y = 35
Z = 0.2

All variables in the structure being evaluated by is/2 must be instantiated:

?- A is 3 + X.
ERROR: is/2: Arguments are not sufficiently instantiated

CSc 372, Fall 2006 Prolog, Slide 67
W. H. Mitchell (whm@msweng.com)

Arithmetic, continued

It is not possible to directly specify an arithmetic value as an argument of most predicates:

?- write(3+4).
3+4
Yes

?- 3+4 == 7.
No

?- between(1, 5+5, 7).
ERROR: between/3: Type error: `integer' expected, found `5+5'

CSc 372, Fall 2006 Prolog, Slide 68
W. H. Mitchell (whm@msweng.com)

Arithmetic, continued

A full set of arithmetic operations is available. Here are some of them:

-X negation

X+Y addition

X-Y subtraction

X*Y multiplication

X/Y division—produces float quotient

X//Y integer division

X mod Y integer remainder (Watch out for X is Y % Z—that's a comment!)

integer(X) truncation to integer

float(X) conversion to float

sign(X) sign of X: -1, 0, or 1

?- X is 43243432422342123234 / 77777777777777777.
X = 555.987

?- X is 10 // 3.
X = 3

?- X is e ** sin(pi).
X = 1.0

CSc 372, Fall 2006 Prolog, Slide 69
W. H. Mitchell (whm@msweng.com)

Arithmetic, continued

Here are some predicates that employ arithmetic. Remember that we have to "return" values
via instantiation.

add(X, Y, Sum) :- Sum is X + Y.

around(Prev,X,Next) :- Prev is X - 1, Next is X + 1.

area(rectangle(W,H), A) :- A is W * H.

area(circle(R), A) :- A is pi * R ** 2.

?- add(3,4,X).
X = 7

 ?- around(P, 7, N).
P = 6
N = 8

?- area(circle(3), A).
A = 28.2743

?- area(rectangle(2*3, 2+2), Area).
Area = 24

CSc 372, Fall 2006 Prolog, Slide 70
W. H. Mitchell (whm@msweng.com)

Comparisons

There are several numeric comparison operators:

X =:= Y numeric equality

X =\= Y numeric inequality

X < Y numeric less than

X > Y numeric greater than

X =< Y numeric equal or less than (NOTE the order, not <= !)

X >= Y numeric greater than or equal

Just like is/2, they evaluate their operands. Examples of usage:

?- 3 + 5 =:= 2*3+2.
Yes

?- X is 3 / 5, X > X*X.
X = 0.6

?- X is random(10), X > 5, writeln(X).
6

Note that the comparisons produce no value; they simply succeed or fail.

CSc 372, Fall 2006 Prolog, Slide 71
W. H. Mitchell (whm@msweng.com)

Comparisons, continued

Some predicates for grading:

grade(Score,Grade) :- Score >= 90, Grade = 'A'.
grade(Score,Grade) :- Score >= 80, Score < 90, Grade = 'B'.
grade(Score,Grade) :- Score >= 70, Score < 80, Grade = 'C'.
grade(Score,Grade) :- Score < 70, Grade = 'F'.

print_grade(Score) :- grade(Score,Grade),
 format('~w -> ~w\n', [Score, Grade]).

Usage:

?- grade(95,G).
G = 'A'
Yes

?- print_grade(80).
80 -> B
Yes

?- print_grade(55).
55 -> F
Yes

CSc 372, Fall 2006 Prolog, Slide 72
W. H. Mitchell (whm@msweng.com)

Another example of rules

Here is a set of facts describing parents and children:

male(tom).
male(jim).
male(bob).
male(mike).
male(david).

female(jane).
female(betty).
female(mary).
female(alice).

parent(tom,betty).
parent(tom,bob).
parent(jane,betty).
parent(jane,bob).
parent(jim,mike).
parent(jim,david).
parent(betty,mike).
parent(betty,david).
parent(bob,alice).
parent(mary,alice).

parent(P,C) is read as "P is a parent of C".

Problem: Define rules for father(F,C) and grandmother(GM,GC).

CSc 372, Fall 2006 Prolog, Slide 73
W. H. Mitchell (whm@msweng.com)

Another example, continued

father(F,C) :- parent(F,C), male(F).
mother(M,C) :- parent(M,C), female(M).

grandmother(GM,GC) :- parent(P,GC), mother(GM,P).

Who is Bob's father?

For who is Tom the father?

What are all the father/child relationships?

What are all the father/daughter relationships?

What are the grandmother/grandchild relationships?

Problems: Define sibling(A,B), such that "A is a sibling of B".

 Using sibling, define brother(B,A) such that "B is A's brother".

CSc 372, Fall 2006 Prolog, Slide 74
W. H. Mitchell (whm@msweng.com)

Another example, continued

sibling(A,B) :- father(F,A), mother(M,A),
 father(F,B), mother(M,B), A \== B.

Queries:
Is Mike a sibling of Alice?

What are the sibling relationships?

Who is somebody's brother?

Is the following an equivalent definition of sibling?

sibling2(S1,S2) :- parent(P,S1), parent(P,S2), S1 \== S2.

CSc 372, Fall 2006 Prolog, Slide 75
W. H. Mitchell (whm@msweng.com)

Recursive predicates

Consider an abstract set of parent/child relationships:

parent(a,b).
parent(a,c).
parent(c,e).

parent(c,d).
parent(b,f).
parent(f,g).

If a predicate contains a goal that refers to itself the predicate is said to be recursive.

ancestor(A,X) :- parent(A, X).
ancestor(A,X) :- parent(P, X), ancestor(A,P).

"A is an ancestor of X if A is the parent of X or P is the parent of X and A is an ancestor of P."

?- ancestor(a,f). % Is a an ancestor of f?
Yes

?- ancestor(c,b). % Is c an ancestor of b?
No

?- ancestor(c,Descendant). % What are the descendants of b?
Descendent = e ;
Descendent = d ;
No

CSc 372, Fall 2006 Prolog, Slide 76
W. H. Mitchell (whm@msweng.com)

Recursion, continued

A recursive rule can be used to perform an iterative computation.

Here is a predicate that prints the integers from 1 through N:

printN(0).
printN(N) :- N > 0, M is N - 1, printN(M), writeln(N).

Usage:

?- printN(3).
1
2
3

Yes

Note that we're asking if printN(3)can be proven. The side effect of Prolog proving it is

that the numbers 1, 2, and 3 are printed.

Is printN(0). needed?

Which is better—the above or using between/3?

CSc 372, Fall 2006 Prolog, Slide 77
W. H. Mitchell (whm@msweng.com)

Recursion, continued

A predicate to calculate the sum of the integers from 1 to N:

sumN(0,0).
sumN(N,Sum) :-

N > 0, M is N - 1, sumN(M, Temp), Sum is Temp + N.

Usage:

?- sumN(4,X).
X = 10

Yes

Note that this predicate can't be used to determine N for a given sum:

?- sumN(N, 10).
ERROR: >/2: Arguments are not sufficiently instantiated

Could we write sumN using between/3?

CSc 372, Fall 2006 Prolog, Slide 78
W. H. Mitchell (whm@msweng.com)

Sidebar: A common mistake with arithmetic

Here is the correct definition for sumN:

sumN(0,0).
sumN(N,Sum) :-

N > 0, M is N - 1, sumN(M, Temp), Sum is Temp + N.

Here is a COMMON MISTAKE:

sumN(0,0).
sumN(N,Sum) :-
 N > 0, M is N - 1, sumN(M, Sum), Sum is Sum + N.

Unless N is zero, Sum is Sum + N fails every time!

Remember that is/2 unifies its left operand with the result of arithmetically evaluating it's

right operand. Further remember that unification is neither assignment or comparison.

CSc 372, Fall 2006 Prolog, Slide 79
W. H. Mitchell (whm@msweng.com)

Recursion, continued

A common example of recursion is a factorial computation:

factorial(0,1).

factorial(N,F) :-
 N>0,
 N1 is N-1,
 factorial(N1,F1),
 F is N * F1.

The above example comes from
http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/2_2.html

Near the bottom the page has an excellent animation of the computation
factorial(3,X). TRY IT!

CSc 372, Fall 2006 Prolog, Slide 80
W. H. Mitchell (whm@msweng.com)

Generating alternatives with recursion

Here is a predicate to test whether a number is odd:

odd(N) :- N mod 2 =:= 1.

Remember that =:= evaluates its operands.

An alternative:

odd(1).
odd(N) :- odd(M), N is M + 2.

How do the behavior of the two differ?

CSc 372, Fall 2006 Prolog, Slide 81
W. H. Mitchell (whm@msweng.com)

Generating alternatives, continued

For reference:

odd(1).
odd(N) :- odd(M), N is M + 2.

Usage:

?- odd(5).
Yes

?- odd(X).
X = 1 ;
X = 3 ;
X = 5 ;
...

How does odd(X). work?

What does odd(2). do?

CSc 372, Fall 2006 Prolog, Slide 82
W. H. Mitchell (whm@msweng.com)

Generating alternatives, continued

Query: ?- odd(X).

 odd(1).
 odd(N) :- odd(M), N is M + 2.

 odd(1).
 odd(N) :- odd(M), N is M + 2.

 odd(1).
 odd(N) :- odd(M), N is M + 2.

 odd(1).
 odd(N) :- odd(M), N is M + 2.

Try: ?- gtrace, odd(X). (Or ?- trace, odd(X).)
?- gtrace, odd(2).

CSc 372, Fall 2006 Prolog, Slide 83
W. H. Mitchell (whm@msweng.com)

Generating alternatives, continued

For reference:

odd(1).
odd(N) :- odd(M), N is M + 2.

With generative predicates like this one a key point to understand is that if an
alternative is requested, another activation of the predicate is created.

As a contrast, think about how execution differs with this set of clauses:

odd(1).
odd(3).
odd(N) :- odd(M), N is M + 2.

CSc 372, Fall 2006 Prolog, Slide 84
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Prolog, Slide 85
W. H. Mitchell (whm@msweng.com)

Lists

Basics

Built-in list-related predicates

member/2

append/3

findall/3

Low-level list processing

CSc 372, Fall 2006 Prolog, Slide 86
W. H. Mitchell (whm@msweng.com)

Lists

A Prolog list can be literally specified by enclosing a comma-separated series of terms in
square brackets:

[1, 2, 3]

[just, a, test, here]

[1, [one], 1.0, [a,[b,['c this']]]]

Common mistake: Entering a list literal as a query is taken as a request to consult files.

 ?- [abc, 123].
ERROR: source_sink `abc' does not exist

One way to "see" a list is to write it; another way is to unify it with a variable:

?- write([1,2,3,4]).
[1, 2, 3, 4]

?- X = [a,1,b,2].
X = [a, 1, b, 2]

CSc 372, Fall 2006 Prolog, Slide 87
W. H. Mitchell (whm@msweng.com)

Lists, continued

Unifications can involve lists:

?- [1,2,3] = [X,Y,Z].
X = 1
Y = 2
Z = 3

?- [X,Y] = [1,[2,[3,4]]].
X = 1
Y = [2, [3, 4]]

?- [X,Y] = [1].
No

?- Z = [X,Y,X], X = 1, Y = [2,3].
Z = [1, [2, 3], 1]
X = 1
Y = [2, 3]

Note the similarity to ML patterns.

CSc 372, Fall 2006 Prolog, Slide 88
W. H. Mitchell (whm@msweng.com)

Lists, continued

What is produced by the following queries?

?- [A, B] = [X, A], X = a.

?- [A, B, C] = [C, C, A].

Write a predicate empty(L) that succeeds iff L is an empty list. BE SURE it succeeds only

on lists and no other types.

Write a predicate f(X) that succeeds iff X is a list with one or three elements or X is an odd

number.

CSc 372, Fall 2006 Prolog, Slide 89
W. H. Mitchell (whm@msweng.com)

Lists, continued

Answers:

?- [A, B] = [X, A], X = a.
A = a
B = a
X = a

?- [A,B,C] = [C,C,A].
A = _G296
B = _G296
C = _G296

empty([]).

f([_]).
f([_,_,_]).
f(N) :- number(N), N mod 2 =:= 1.

CSc 372, Fall 2006 Prolog, Slide 90
W. H. Mitchell (whm@msweng.com)

Built-in list-related predicates

Section A.1 in the SWI-Prolog manual (page 270 in the PDF) describes a number of
predicates for list manipulation. Here are a few of them:

length(?List, ?Len) can be used to get the length of a list OR make a list of

variables:

?- length([10,20,30],Len).
Len = 3

?- length(L,3).
L = [_G319, _G322, _G325]

Speculate: What is the result of ?- length(L,N).?

reverse(?List, ?Reversed) unifies List with Reversed, a reverse of itself.

?- reverse([1,2,3], R).
R = [3, 2, 1]

?- reverse([1,2,3], [1,2,3]).
No

Speculate: What is the result of ?- reverse(X,Y).?

CSc 372, Fall 2006 Prolog, Slide 91
W. H. Mitchell (whm@msweng.com)

List predicates, continued

numlist(+Low, +High, -List) unifies List with the integers from Low to High,

inclusive:

?- numlist(5,10,L).
L = [5, 6, 7, 8, 9, 10]

sumlist(+List, -Sum) unifies Sum with the sum of the values in List, which must

all be numbers or structures that can be evaluated with is/2.

?- numlist(1,5,L), sumlist(L,Sum).
L = [1, 2, 3, 4, 5]
Sum = 15

?- sumlist([1+2, 3*4, 5-6/7],X).
X = 19.1429

CSc 372, Fall 2006 Prolog, Slide 92
W. H. Mitchell (whm@msweng.com)

List predicates, continued

atom_chars(?Atom, ?Charlist) resembles implode and explode in ML:

?- atom_chars('abc',L).
L = [a, b, c]

?- atom_chars(A, [a, b, c]).
A = abc

CSc 372, Fall 2006 Prolog, Slide 93
W. H. Mitchell (whm@msweng.com)

List predicates, continued

msort(+List, -Sorted) unifies List with Sorted, a sorted copy of List:

?- msort([3,1,7], L).
L = [1, 3, 7]

If List is heterogeneous, elements are sorted in "standard order":

?- msort([xyz, 5, [1,2], abc, 1, 5, x(a)], Sorted).

Sorted = [1, 5, 5, abc, xyz, x(a), [1, 2]]

sort/2 is like msort/2 but also removes duplicates.

CSc 372, Fall 2006 Prolog, Slide 94
W. H. Mitchell (whm@msweng.com)

The member predicate

member(?Elem, ?List) succeeds when Elem can be unified with a member of List.

For one thing, member can be used to check for membership:

?- member(30, [10, twenty, 30]).
Yes

It can also be used to generate the members of a list:

?- member(X, [10, twenty, 30]).
X = 10 ;
X = twenty ;
X = 30 ;
No

Problem: Write a predicate has_vowel(+Atom) that succeeds iff Atom has a vowel.

?- has_vowel('ack').
Yes

?- has_vowel('pfft').
No

CSc 372, Fall 2006 Prolog, Slide 95
W. H. Mitchell (whm@msweng.com)

member, continued

Solution:

has_vowel(Atom) :-

atom_chars(Atom,Chars),

member(Char,Chars),

member(Char,[a,e,i,o,u]).

How does it work?

CSc 372, Fall 2006 Prolog, Slide 96
W. H. Mitchell (whm@msweng.com)

The append predicate

The SWI manual states that append(?List1, ?List2, ?List3)succeeds when

List3 unifies with the concatenation of List1and List2.

?- append([1,2],[3,4,5],R).
R = [1, 2, 3, 4, 5]

append is not limited to concatenation. Note what happens when we supply List3, but

not List1 and List2:

?- append(L1, L2, [1,2,3]).
L1 = []
L2 = [1, 2, 3] ;

L1 = [1]
L2 = [2, 3] ;

L1 = [1, 2]
L2 = [3] ;

L1 = [1, 2, 3]
L2 = [] ;
No

CSc 372, Fall 2006 Prolog, Slide 97
W. H. Mitchell (whm@msweng.com)

append, continued

At hand:

?- append(L1, L2, [1,2,3]).
L1 = []
L2 = [1, 2, 3] ;

L1 = [1]
L2 = [2, 3] ;
...

Think of append as demanding a relationship between the three lists: List3 must consist

of the elements of List1 followed by the elements of List2. If List1 and List2 are

instantiated, List3 must be their concatenation. If only List3 is instantiated then List1

and List2 represent (in turn) all possible the ways to split List3.

What else can we do with append?

CSc 372, Fall 2006 Prolog, Slide 98
W. H. Mitchell (whm@msweng.com)

append, continued

Here are some more computations that can be expressed with append:

starts_with(L, Prefix) :- append(Prefix,_,L).

take(L, N, Result) :- append(Result, _, L), length(Result,N).

drop(L, N, Result) :-
append(Dropped, Result, L), length(Dropped, N).

What does the following query do?

?- append(A,B,X), append(X,C,[1,2,3]).

CSc 372, Fall 2006 Prolog, Slide 99
W. H. Mitchell (whm@msweng.com)

append, continued

Here is a predicate that generates successive N-long chunks of a list:

chunk(L,N,Chunk) :-
 length(Chunk,N),
 append(Chunk,_,L).

chunk(L,N,Chunk) :-
 length(Junk, N),
 append(Junk,Rest,L),
 chunk(Rest,N,Chunk).

Usage:

?- chunk([1,2,3,4,5],2,Chunk).

Chunk = [1, 2] ;

Chunk = [3, 4] ;

No

"Leftovers" are discarded.

CSc 372, Fall 2006 Prolog, Slide 100
W. H. Mitchell (whm@msweng.com)

The findall predicate

findall can be used to create a list of values that satisfy a goal. Here is a simple example:

?- findall(F, food(F), Foods).
F = _G350
Foods = [apple, broccoli, carrot, lettuce, rice]

Foods is in alphabetical order because the food facts happen to be in alphabetical order.

The first argument of findall is a template. It is not limited to being a single variable. It

might be a structure. The second argument can be a series of goals joined with conjunction.

?- findall(F-C, (food(F),color(F,C)), FoodAndColors).
F = _G488
C = _G489
FoodAndColors = [apple-red, broccoli-green, carrot-orange,

lettuce-green, rice-white]

Remember that -/2 is a functor that can be placed between its terms. findall(-

(F,C),... produces the same result as the above.

CSc 372, Fall 2006 Prolog, Slide 101
W. H. Mitchell (whm@msweng.com)

findall, continued

The following query creates a list structures representing foods and the lengths of their
names.

?- findall(Len-F, (food(F),atom_length(F,Len)), LFs).
Len = _G497
F = _G498
LFs = [5-apple, 8-broccoli, 6-carrot, 7-lettuce, 4-rice]

Two predicates that are related to findall are bagof/3 and setof/3 but they differ

more than may be grasped at first glance. Section 6.3 in the text has a discussion of them; if
they're needed in an assignment we'll discuss them more.

keysort(+List, -Sorted) sorts a list of structures with the functor '-' based on

their first term:

 ?- findall(Len-F, (food(F),atom_length(F,Len)), LFs),
 keysort(LFs,Sorted), writeln(Sorted), fail.
[4-rice, 5-apple, 6-carrot, 7-lettuce, 8-broccoli]
No

CSc 372, Fall 2006 Prolog, Slide 102
W. H. Mitchell (whm@msweng.com)

Low-level list processing

A list can be specified in terms of a head and a tail.

The list [1,2,3] can be specified as this:

[1 | [2, 3]]

More generally, a list can be described as a sequence of initial elements and a tail.

The list [1,2,3,4] can be specified in any of these ways:

[1 | [2,3,4]]

[1,2 | [3,4]]

[1,2,3 | [4]]

[1,2,3,4 | []]

CSc 372, Fall 2006 Prolog, Slide 103
W. H. Mitchell (whm@msweng.com)

Low-level list processing, continued

Consider this unification:

?- [H|T] = [1,2,3,4].
H = 1
T = [2, 3, 4]

What instantiations are produced by these unifications?

?- [X, Y | T] = [1, 2, 3].

?- [X, Y | T] = [1, 2].

?- [1, 2 | [3,4]] = [H | T].

?- A = [1], B = [A|A].

How does list construction and unification in Prolog compare to ML?

CSc 372, Fall 2006 Prolog, Slide 104
W. H. Mitchell (whm@msweng.com)

Writing list predicates

A rule to produce the head of a list:

head(L, H) :- L = [H|_].

The head of L is H if L unifies with a list whose head is H.

Usage:

?- head([1,2,3],H).
H = 1

?- head([], X).
No

?- L = [X,X,b,c], head(L, a).
L = [a, a, b, c]
X = a

Problem: Define head/2 more concisely.

CSc 372, Fall 2006 Prolog, Slide 105
W. H. Mitchell (whm@msweng.com)

Writing list predicates, continued

Here is one way to implement the standard member/2 predicate:

member(X,L) :- L = [X|_].
member(X,L) :- L = [_|T], member(X, T).

Usage:

?- member(1, [2,1,4,5]).
Yes

?- member(a, [2,1,4,5]).
No

We've seen that member can be used to generate the elements in a list:

?- member(X, [a,b,c]).
X = a ;
X = b ;
...

How does that generation work?

Problem: Define member/2 more concisely.

CSc 372, Fall 2006 Prolog, Slide 106
W. H. Mitchell (whm@msweng.com)

Writing list predicates, continued

A more concise definition of member/2:

member(X,[X|_]).

X is a member of the list having X as its head

member(X,[_|T]) :- member(X,T).

X is a member of the list having T as its tail if X is a member of T

Problem: Define a predicate last(L,X) that describes the relationship between a list L and

its last element, X.

?- last([a,b,c], X).
X = c
Yes

?- last([], X).
No

?- last(L,last), head(L,first), length(L,2).
L = [first, last]
Yes

CSc 372, Fall 2006 Prolog, Slide 107
W. H. Mitchell (whm@msweng.com)

Writing list predicates, continued

last is a built-in predicate but here is one way to write it:

lastx([X],X).
lastx([_|T],X) :- last(T,X).

Problem: Write a predicate len/2 that behaves like the built-in length/2

?- len([], N).
N = 0

?- len([a,b,c,d], N).
N = 4

?- len([a,b,c,d], 5).
No

?- len(L,1).
L = [_G295]

CSc 372, Fall 2006 Prolog, Slide 108
W. H. Mitchell (whm@msweng.com)

Writing list predicates, continued

Here is len:

len([], 0).
len([_|T],Len) :- len(T,TLen), Len is TLen + 1.

Problem: Define a predicate allsame(L) that describes lists in which all elements have the

same value.

?- allsame([a,a,a]).
Yes

?- allsame([a,b,a]).
No

?- allsame([A,B,C]), B = 1.
A = 1
B = 1
C = 1

?- length(L,5), allsame(L), L = [x|_]. % Note change from handout!
L = [x, x, x, x, x]

CSc 372, Fall 2006 Prolog, Slide 109
W. H. Mitchell (whm@msweng.com)

Writing list predicates, continued

Here's another way to test allsame:

?- allsame(L).

L = [_G305] ;

L = [_G305, _G305] ;

L = [_G305, _G305, _G305] ;

L = [_G305, _G305, _G305, _G305] ;

L = [_G305, _G305, _G305, _G305, _G305] ;

Could we test member in a similar way? How about append?

CSc 372, Fall 2006 Prolog, Slide 110
W. H. Mitchell (whm@msweng.com)

Writing list predicates, continued

Problem: Define a predicate listeq(L1,L2) that describes the relationship between two

lists L1 and L2 that hold the same sequence of values.

Problem: Define a predicate p/1 that behaves like this:

?- p(X).
X = [] ;
X = [_G272] ;
X = [_G272, _G272] ;
X = [_G272, _G272, _G278] ;
X = [_G272, _G272, _G278, _G278] ;
X = [_G272, _G272, _G278, _G278, _G284] ;

CSc 372, Fall 2006 Prolog, Slide 111
W. H. Mitchell (whm@msweng.com)

The append predicate

Recall the description of the built-in append predicate:

append(?List1, ?List2, ?List3)

Succeeds when List3 unifies with the concatenation of List1 and List2.

The usual definition of append:

append([], X, X).
append([X|L1], L2, [X|L3]) :- append(L1, L2, L3).

How does it work?

Try tracing it. To avoid getting the built-in version, define the above as my_append instead

of append (three places). Then try these:

?- gtrace, my_append([1,2,3,4],[a,b,c,d],X).

?- gtrace, my_append([a,b,c,d,e,f,g],[],X).

CSc 372, Fall 2006 Prolog, Slide 112
W. H. Mitchell (whm@msweng.com)

Lists are structures

In fact, lists are structures:

 ?- display([1,2,3]).
.(1, .(2, .(3, [])))

Essentially, ./2 is the "cons" operation in Prolog.

By default, lists are shown using the [...] notation:

?- X = .(a, .(b,[])).
X = [a, b]

We can write member/2 like this:

member(X, .(X,_)).
member(X, .(_,T)) :- member(X,T).

Speculate: What the following produce?

?- X = .(1,1).

CSc 372, Fall 2006 Prolog, Slide 113
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Prolog, Slide 114
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Prolog, Slide 115
W. H. Mitchell (whm@msweng.com)

Some odds and ends

Reversing failure with \+

Cut (!)

The "cut-fail" idiom

Green cuts and red cuts

CSc 372, Fall 2006 Prolog, Slide 116
W. H. Mitchell (whm@msweng.com)

Reversing failure with \+

The query \+goal succeeds if goal fails.

?- food(computer).
No

?- \+food(computer).
Yes

\+ is sometimes read as "can't prove" or "fail if".

Example: What foods are not green?

?- food(F), \+color(F, green).
F = apple ;
F = carrot ;
F = rice ;
No

Problem: Write a predicate inedible(X) that succeeds if something is not a food.

Speculate: What will the query ?- inedible(X). do?

CSc 372, Fall 2006 Prolog, Slide 117
W. H. Mitchell (whm@msweng.com)

Reversing failure, continued

inedible/1 and some examples of use:

?- listing(inedible).

inedible(A) :- \+food(A).

?- inedible(computer).
Yes

?- inedible(banana).
Yes

?- inedible(X).
No

Any surprises?

CSc 372, Fall 2006 Prolog, Slide 118
W. H. Mitchell (whm@msweng.com)

Cut (!)

Backtracking can be limited with the "cut" operator, represented by an exclamation mark.

A cut always succeeds when evaluated, but inhibits backtracking.

?- food(F), writeln(F), fail.
apple
broccoli
carrot
lettuce
rice

No

?- food(F), writeln(F), !, fail.
apple

No

One way to picture a cut is like a one-way gate: control can go through it from left to right,
but not from right to left.

CSc 372, Fall 2006 Prolog, Slide 119
W. H. Mitchell (whm@msweng.com)

Cut, continued

Consider these facts:

f(' f1 ').
f(' f2 ').
f(' f3 ').

g(' g1 ').
g(' g2 ').
g(' g3 ').

Queries and cuts:

?- f(F), write(F), g(G), write(G), fail.
 f1 g1 g2 g3 f2 g1 g2 g3 f3 g1 g2 g3

?- f(F), write(F), !, g(G), write(G), fail.
 f1 g1 g2 g3

?- f(F), write(F), g(G), write(G), !, fail.
 f1 g1

What's the output of the following query?

?- !, f(F), !, write(F), !, g(G), !, write(G), !, fail.

Another analogy: A cut is like a door that locks behind you.

CSc 372, Fall 2006 Prolog, Slide 120
W. H. Mitchell (whm@msweng.com)

Cut, continued

In fact, cuts are rarely used at the query prompt. The real use of cuts is in rules. Here's an
artificial example:

ce1(one,1) :- true. % Equivalent to ce1(one,1).
ce1(two,2) :- true, !.
ce1(_, 'something') :- true.

Usage:

?- ce1(one,X).
X = 1 ;
X = something ;
No

?- ce1(two, X).
X = 2 ;
No

Note that the third clause is not tried for ce1(two,X). That's due to the cut.

In a rule, a cut still acts as a one-way gate in the rule itself but it also prevents
consideration of subsequent clauses for the current call of that predicate. It's "do-or-die"
(succeed or fail) with the rule at hand.

CSc 372, Fall 2006 Prolog, Slide 121
W. H. Mitchell (whm@msweng.com)

Cut, continued

Control never backtracks through a cut but backtracking can occur between goals on each
side of a cut.

Consider this abstract rule,

x :- a, b, c, !, d, e, f, !, g, h, i.

and a query:

?- x, y.

Control may circulate between a, b, and c but once c is proven (and the cut passed through),

a, b, and c will be not be considered again during a particular call of x. Similarly, once f

succeeds, we are further committed.

However, if x succeeds and y fails, control will backtrack into g, h, and i if they contain

unexplored alternatives.

CSc 372, Fall 2006 Prolog, Slide 122
W. H. Mitchell (whm@msweng.com)

Cut, continued

Below is a faulty "improvement" for the grade/2, in

the box at right.

grade2(Score, 'A') :- Score >= 90.
grade2(Score, 'B') :- Score >= 80.
grade2(Score, 'C') :- Score >= 70.
grade2(_, 'F').

Usage:

?- grade2(85,G).
G = 'B' ;
G = 'C' ;
G = 'F' ;

No

grade(Score,'A') :-
Score >= 90.

grade(Score,'B') :-
Score >= 80, Score < 90.

grade(Score,'C') :-
Score >= 70, Score < 80.

grade(Score,'F') :-
Score < 70.

CSc 372, Fall 2006 Prolog, Slide 123
W. H. Mitchell (whm@msweng.com)

Cut, continued

Here is a procedure based on grade2:

do_grades(Students) :-
 member(Who-Avg, Students),
 grade2(Avg,Grade),

format('~w: ~w~n',
 [Who, Grade]), fail.

Usage:

?- do_grades([bob-87, mary-92]).
bob: B
bob: C
bob: F
mary: A
mary: B
mary: C
mary: F

What's the problem? How can we fix it?

grade2(Score, 'A') :- Score >= 90.
grade2(Score, 'B') :- Score >= 80.
grade2(Score, 'C') :- Score >= 70.
grade2(_, 'F').

CSc 372, Fall 2006 Prolog, Slide 124
W. H. Mitchell (whm@msweng.com)

Cut, continued

Recall:
In a rule, a cut still acts as a one-way gate in the rule itself but it also prevents
consideration of subsequent clauses for the current call of that predicate. It's "do-
or-die" (succeed or fail) with the rule at hand.

Solution:

grade3(Score, 'A') :- Score >= 90, !.
grade3(Score, 'B') :- Score >= 80, !.
grade3(Score, 'C') :- Score >= 70, !.
grade3(_, 'F').

Usage:

?- grade3(85,G).
G = 'B' ;
No

?- do_grades([bob-87, mary-92]).
bob: B
mary: A

Problem: Write a predicate agf(-F) that finds at most one green food.

do_grades(Students) :-
 member(Who-Avg, Students),
 grade3(Avg,Grade),
 format('~w: ~w~n', [Who, Grade]), fail.

CSc 372, Fall 2006 Prolog, Slide 125
W. H. Mitchell (whm@msweng.com)

Cut, continued

Here is an example from Clause and Effect by Clocksin:

max(X,Y,X) :- X >= Y, !.
max(_,Y,Y).

What's the other way to write it?

Also borrowed from Clause and Effect, here's a variant of member/2:

xmember(X, [X|_]) :- !.
xmember(X, [_|T]) :- xmember(X,T).

How does its behavior differ from the standard version? (below)

member(X, [X|_]).
member(X, [_|T]) :- member(X,T).

There's a built-in predicate, memberchk/2, that has the same behavior as xmember. When

might it be appropriate to use it instead of member/2?

CSc 372, Fall 2006 Prolog, Slide 126
W. H. Mitchell (whm@msweng.com)

Cut, continued

memberchk is useful to avoid exploring alternatives with values that are known to be

worthless. Here is an artificial example that represents a computation that selects several
occurrences of the same value (3) from a list and tries each.

?- X = 3, member(X,[1,3,5,3,3]), writeln('Trying X...'), X > 3.
Trying X...
Trying X...
Trying X...

No

In fact, if the first 3 doesn't work then's no reason to hope that a subsequent 3 will work,
assuming no side-effects. Observe the behavior with memberchk:

 ?- X = 3, memberchk(X,[1,3,5,3,3]), writeln('Trying X...'),
 X > 3.
Trying X...

No

CSc 372, Fall 2006 Prolog, Slide 127
W. H. Mitchell (whm@msweng.com)

The "cut-fail" idiom

Predicates naturally fail when a desired condition is absent but sometimes we want a
predicate to fail when a particular condition is present.

Here is a recursive predicate that succeeds iff all numbers in a list are positive:

allpos([X]) :- X > 0.
allpos([X|T]) :- X > 0, allpos(T).

Another way to write it is with a "cut-fail":

allpos(L) :- member(X, L), X =< 0, !, fail.
allpos(_).

Remember that a cut effectively eliminates all subsequent clauses for the active predicate. If
a non-positive value is found the cut eliminates allpos(_). and then the rule fails.

?- allpos([3,-1,5]).
No

Another way to think about cut-fail: "My final answer is No!"

CSc 372, Fall 2006 Prolog, Slide 128
W. H. Mitchell (whm@msweng.com)

"cut-fail", continued

The SWI documentation for is_list includes its implementation:

is_list(X) :- var(X), !, fail.
is_list([]).
is_list([_|T]) :- is_list(T).

A cut-fail is used in the first rule to say that if X is a free variable (i.e., it is uninstantiated),

look no further and fail.

Problem: Add a clause for food/1 that "turns off" all the foods:

?- food(F).

No

CSc 372, Fall 2006 Prolog, Slide 129
W. H. Mitchell (whm@msweng.com)

Green cuts and red cuts

A cut is said to be a "green cut" if it simply makes a predicate more efficient. By definition,
adding or removing a green cut does not effect the set of results for any call of a predicate.

A "red cut" affects the set of results produced by a predicate.

Are there any examples of green cuts in the preceding examples?

CSc 372, Fall 2006 Prolog, Slide 130
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Prolog, Slide 131
W. H. Mitchell (whm@msweng.com)

Database manipulation

assert and retract

A simple command interpreter

Word tally

Unstacking blocks

CSc 372, Fall 2006 Prolog, Slide 132
W. H. Mitchell (whm@msweng.com)

assert and retract

A Prolog program is a database of facts and rules.

The database can be changed dynamically by adding facts with assert/1 and deleting

facts with retract/1.

A predicate to establish that certain things are food:

makefoods :-
 assert(food(apple)),
 assert(food(broccoli)),
 assert(food(carrot)),
 assert(food(lettuce)),
 assert(food(rice)).

CSc 372, Fall 2006 Prolog, Slide 133
W. H. Mitchell (whm@msweng.com)

assert and retract, continued

Evaluating makefoods adds facts to the database:

?- food(X).
ERROR: Undefined procedure: food/1

?- makefoods.
Yes

?- food(X).
X = apple

A food can be "removed" with retract:

?- retract(food(carrot)).
Yes

?- food(carrot).
No

CSc 372, Fall 2006 Prolog, Slide 134
W. H. Mitchell (whm@msweng.com)

assert and retract, continued

In a predicate like makefoods, use retractall to start with a clean slate:

makefoods :-
 retractall(food(_)),
 assert(food(apple)),
 assert(food(broccoli)),
 assert(food(carrot)),
 assert(food(lettuce)),
 assert(food(rice)).

Without retractall, each call to makefoods creates an identical, duplicated set of

foods.

Here's the behavior of the first version of makefoods:

?- makefoods, makefoods, makefoods.
Yes

?- findall(F, food(F), Foods).
Foods = [apple, broccoli, carrot, lettuce, rice, apple,
broccoli, carrot, lettuce|...]

CSc 372, Fall 2006 Prolog, Slide 135
W. H. Mitchell (whm@msweng.com)

assert and retract, continued

Asserts and retracts are NOT undone with backtracking.

?- assert(f(1)), assert(f(2)), fail.
No

?- f(X).
X = 1 ;
X = 2 ;
No

?- retract(f(1)), fail.
No

?- f(X).
X = 2 ;
No

There is no notion of directly changing a fact. Instead, a fact is changed by retracting it and
then asserting it with different terms.

CSc 372, Fall 2006 Prolog, Slide 136
W. H. Mitchell (whm@msweng.com)

assert and retract, continued

A rule to remove foods of a given color (assuming the color/2 facts are present):

rmfood(C) :- food(F), color(F,C),
retract(food(F)),

 write('Removed '), write(F), nl, fail.

Usage:

?- rmfood(green).
Removed broccoli
Removed lettuce
No

?- food(X).
X = apple ;
X = carrot ;
X = rice ;
No

The color facts are not affected—color(broccoli, green) and

color(lettuce,green) still exist.

CSc 372, Fall 2006 Prolog, Slide 137
W. H. Mitchell (whm@msweng.com)

A simple command interpreter

Imagine a simple interpreter to manipulate an integer value:

?- run.
? print.
0
? add(20).
? sub(7).
? print.
13
? set(40).
? print.
40
? exit.

Yes

Note that the commands themselves are Prolog terms.

CSc 372, Fall 2006 Prolog, Slide 138
W. H. Mitchell (whm@msweng.com)

A simple command interpreter, continued

Here is a loop that simply reads and prints terms:

run0 :- repeat, write('? '), read(X), format('Read ~w~n', X),
 X = exit.

Usage:

?- run0.
? a.
Read a
? ab(c,d,e).
Read ab(c, d, e)
? exit.
Read exit

Yes

repeat/0 always succeeds. If repeat is backtracked into, it simply sends control back to

the right. (Think of its redo port being wired to its exit port.)

The predicate read(-X) reads a Prolog term and unifies it with X.

Problem: Explain the operation of the loop.

CSc 372, Fall 2006 Prolog, Slide 139
W. H. Mitchell (whm@msweng.com)

A simple command interpreter, continued

Partial implementation:

init :-
retractall(value(_)),

 assert(value(0)).

do(set(V)) :-
retract(value(_)),
assert(value(V)).

do(print) :- value(V), write(V), nl.

do(exit).

run :-
init,

 repeat, write('? '), read(X), do(X), X = exit.

How can add(N) and sub(N) be implemented?

Challenge: Add mul and div without having any repetitious code. Hint: Think about

building a structure to evaluate with is/2.

?- run.
? print.
0
? add(20).
? sub(7).
? print.
13
? set(40).
? print.
40
? exit.

Yes

CSc 372, Fall 2006 Prolog, Slide 140
W. H. Mitchell (whm@msweng.com)

Word tally

Manipulation of facts is very efficient in most Prolog implementations. We can use facts like
we might use a Java map or a Ruby hash.

Imagine a word tallying program in Prolog:

?- tally.
|: to be or
|: not to be ought not
|: to be the question

|: (Empty line ends the input)

-- Results --
be 3
not 2
or 1
ought 1
question 1
the 1
to 3

Yes

CSc 372, Fall 2006 Prolog, Slide 141
W. H. Mitchell (whm@msweng.com)

Word tally, continued

Implementation:

readline(Line) :-
current_input(In), read_line_to_codes(In, Codes),

 atom_chars(Line, Codes).

tally :- retractall(word(_,_)),
repeat, readline(Line), do_line(Line), Line == '',

 show_counts.

do_line('').
do_line(Line) :-
 concat_atom(Words, ' ', Line), % splits Line on blanks
 member(Word, Words),
 count(Word), fail.
do_line(_).

count(Word) :-
 word(Word,Count0), retract(word(Word,_)),
 Count is Count0+1, assert(word(Word,Count)), !.

count(Word) :- assert(word(Word,1)).

CSc 372, Fall 2006 Prolog, Slide 142
W. H. Mitchell (whm@msweng.com)

Word tally, continued

show_counts shows the results.

show_counts :-
writeln('\n-- Results --'),
findall(W-C, word(W,C), Pairs),
keysort(Pairs, Sorted),

 member(W-C, Sorted),
format('~w~t~12|~w~n', [W,C]),
fail.

show_counts.

Problem: Modify the above so that words are ordered by count.

Is keysort really needed in the version shown?

Challenge: Create show_counts(+Which) where Which is w or c to cause ordering by

words or counts.

CSc 372, Fall 2006 Prolog, Slide 143
W. H. Mitchell (whm@msweng.com)

Example: Unstacking blocks

Consider a stack of blocks, each of which is uniquely labeled with a letter:

a b

 c d

e f g

floor

This arrangement could be represented with these facts:

on(a,c).
on(a,d).
on(b,d).

on(c,e).
on(c,f).
on(d,f).
on(d,g).

on(e,floor).
on(f,floor).
on(g,floor).

Problem: Define a predicate clean that will print a sequence of blocks to remove from the

floor such that no block is removed until nothing is on it.

A suitable sequence of removals for the above diagram is: a, c, e, b, d, f, g. Another is a,

b, c, d, e, f, g.

CSc 372, Fall 2006 Prolog, Slide 144
W. H. Mitchell (whm@msweng.com)

Unstacking blocks, continued

One solution: (blocks.pl)

removable(B) :- \+on(_,B).

remove(B) :-
removable(B),
retractall(on(B,_)),
write('Remove '), write(B), nl.

remove(B) :-
 on(Above,B), remove(Above), remove(B).

clean :- on(B,floor), remove(B), clean.
clean.

Important: If we want to be able to assert and retract facts of a predicate defined in a

file, we must use the dynamic directive:

% cat blocks.pl
:-dynamic(on/2).
on(a,c). on(a,d).
...

a b

 c d

e f g

floor

on(a,c).
on(a,d).
on(b,d).
on(e,floor).
on(f,floor).
on(g,floor).

on(c,e).
on(c,f).
on(d,f).
on(d,g).

CSc 372, Fall 2006 Prolog, Slide 145
W. H. Mitchell (whm@msweng.com)

Unstacking blocks, continued

A more concise solution: (blocks2.pl)

clean :-
on(A,_), \+on(_,A),
write('Remove '), write(A), nl,
retractall(on(A,_)), clean.

clean.

Output:

?- clean.
Remove a
Remove b
Remove c
Remove d
Remove e
Remove f
Remove g

Yes

a b

 c d

e f g

floor

on(a,c).
on(a,d).
on(b,d).
on(e,floor).
on(f,floor).
on(g,floor).

on(c,e).
on(c,f).
on(d,f).
on(d,g).

CSc 372, Fall 2006 Prolog, Slide 146
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Prolog, Slide 147
W. H. Mitchell (whm@msweng.com)

Puzzle solving

Brick laying

The Zebra Puzzle

CSc 372, Fall 2006 Prolog, Slide 148
W. H. Mitchell (whm@msweng.com)

Example: brick laying

Consider six bricks of lengths 7, 5, 6, 4, 3, and 5. One way they can be laid into three rows
of length 10 is like this:

7 3

5 5

6 4

Problem: Write a predicate laybricks/3 that produces a suitable sequence of bricks for

three rows of a given length:

?- laybricks([7,5,6,4,3,5], 10, Rows).
Rows = [[7, 3], [5, 5], [6, 4]]

?- laybricks([7,5,6,4,3,5], 12, Rows).
No

In broad terms, how can we approach this problem?

CSc 372, Fall 2006 Prolog, Slide 149
W. H. Mitchell (whm@msweng.com)

Brick laying, continued

Here is a helper predicate getone(X, List, Remaining) that produces in

Remaining a copy of List with X removed:

getone(X, [X|T], T).
getone(X, [H|T], [H|N]) :- getone(X, T, N).

Usage:

?- getone(X,[a,b,a,d],R).
X = a
R = [b, a, d] ;

X = b
R = [a, a, d] ;

X = a
R = [a, b, d] ;

X = d
R = [a, b, a] ;

What is the result of ?- getone(a, [a,b,a], R).?

CSc 372, Fall 2006 Prolog, Slide 150
W. H. Mitchell (whm@msweng.com)

Brick laying, continued

layrow produces a sequence of bricks for a row of a given length:

layrow(Bricks, 0, Bricks, []).

layrow(Bricks, RowLen, Left, [Brick|MoreBricksForRow]) :-
 getone(Brick, Bricks, Left0),
 RemLen is RowLen - Brick, RemLen >= 0,
 layrow(Left0, RemLen, Left, MoreBricksForRow).

Usage:

?- layrow([3,2,7,4], 7, BricksLeft, Row).
BricksLeft = [2, 7]
Row = [3, 4] ;

BricksLeft = [3, 2, 4]
Row = [7] ;

BricksLeft = [2, 7]
Row = [4, 3] ;
No

What were the intermediate steps to arrive at the first row cited?

CSc 372, Fall 2006 Prolog, Slide 151
W. H. Mitchell (whm@msweng.com)

Brick laying, continued

Now we can write laybricks, which is hardwired for three rows:

laybricks(Bricks, RowLen, [Row1, Row2, Row3]) :-
 layrow(Bricks, RowLen, LeftAfter1, Row1),
 layrow(LeftAfter1, RowLen, LeftAfter2, Row2),
 layrow(LeftAfter2, RowLen, LeftAfter3, Row3),
 LeftAfter3 = [].

Usage:

?- laybricks([2,1,3,1,2], 3, Rows).
Rows = [[2, 1], [3], [1, 2]] ;

Rows = [[2, 1], [3], [2, 1]] ;

Rows = [[2, 1], [1, 2], [3]] ;

...many more...

What is the effect of LeftAfter3 = []?

CSc 372, Fall 2006 Prolog, Slide 152
W. H. Mitchell (whm@msweng.com)

Brick laying, continued

A more general predicate, to lay Nrows rows of length RowLen:

laybricks2([], 0, _, []).

laybricks2(Bricks, Nrows, RowLen, [Row|Rows]) :-
 layrow(Bricks, RowLen, BricksLeft, Row),
 RowsLeft is Nrows - 1,
 laybricks2(BricksLeft, RowsLeft, RowLen, Rows).

Usage:

?- laybricks2([5,1,6,2,3,4,3], 3, 8, Rows).
Rows = [[5, 3], [1, 4, 3], [6, 2]]

?- laybricks2([5,1,6,2,3,4,3], 8, 3, Rows).
No

?- laybricks2([5,1,6,2,3,4,3], 2, 12, Rows).
Rows = [[5, 1, 6], [2, 3, 4, 3]]

?- laybricks2([5,1,6,2,3,4,3], 4, 6, Rows).
Rows = [[5, 1], [6], [2, 4], [3, 3]]

As is, laybricks2 requires that all bricks be used. How can we remove that requirement?

CSc 372, Fall 2006 Prolog, Slide 153
W. H. Mitchell (whm@msweng.com)

Brick laying continued

Some facts for testing:

b(3, [8,5,1,4,6,6,2,3,4,3,3,6,3,8,6,4]). % 6x12
b(4, [8,5,1,4,6,6,2,3,4,3,3,6,3,8,6,4,1]). % 6x12 with extra 1

Usage:

?- b(3,Bricks), laybricks2(Bricks,6,12,Rows).
Bricks = [8, 5, 1, 4, 6, 6, 2, 3, 4|...]
Rows = [[8, 1, 3], [5, 4, 3], [6, 6], [2, 4, 3, 3], [6, 6], [8,
4]]
Yes

Is the getone predicate really necessary? Or could we just use permute/2 and try all

combinations of bricks?

CSc 372, Fall 2006 Prolog, Slide 154
W. H. Mitchell (whm@msweng.com)

Brick laying, continued

Let's try a set of bricks that can't be laid into six rows of twelve:

?- b(4,Bricks), laybricks2(Bricks, 6, 12, Rows).
...[the sound of a combinatorial explosion]...
^C
Action (h for help) ? a
% Execution Aborted

?- statistics.
8.05 seconds cpu time for 25,594,610 inferences
2,839 atoms, 1,854 functors, 1,451 predicates, 23 modules,
35,904 VM-codes

The speed of a Prolog implementation is sometimes quoted in LIPS—logical inferences per
second.

CSc 372, Fall 2006 Prolog, Slide 155
W. H. Mitchell (whm@msweng.com)

The "Zebra Puzzle"

The Wikipedia entry for "Zebra Puzzle" presents a puzzle said to have been first published
in the magazine Life International on December 17, 1962. Here are the facts:

There are five houses.

The Englishman lives in the red house.

The Spaniard owns the dog.

Coffee is drunk in the green house.

The Ukrainian drinks tea.

The green house is immediately to the right of the ivory house.

The Old Gold smoker owns snails.

Kools are smoked in the yellow house.

Milk is drunk in the middle house.

The Norwegian lives in the first house.

The man who smokes Chesterfields lives in the house next to the man with the fox.

Kools are smoked in the house next to the house where the horse is kept.

The Lucky Strike smoker drinks orange juice.

The Japanese smokes Parliaments.

The Norwegian lives next to the blue house.

The article asked readers, "Who drinks water? Who owns the zebra?"

CSc 372, Fall 2006 Prolog, Slide 156
W. H. Mitchell (whm@msweng.com)

The Zebra Puzzle, continued

We can solve this problem creating a set of goals and asking Prolog to find the condition

under which all the goals are true.

A good starting point is these two facts:

The Norwegian lives in the first house.

Milk is drunk in the middle house.

That information can be represented as this goal:

 Houses = [house(norwegian, _, _, _, _), % First house

 _,

 house(_, _, _, milk, _), % Middle house

 _, _]

Note that there are five variables: nationality, pet, smoking preference (remember, it was

1962!), beverage of choice and house color. We'll use instances of house structures to

represent knowledge about a house. Anonymous variables are used to represent "don't-

knows".

CSc 372, Fall 2006 Prolog, Slide 157
W. H. Mitchell (whm@msweng.com)

The Zebra Puzzle, continued

Some facts can be represented with goals that specify structures as members of Houses with

unknown position:

The Englishman lives in the red house.
member(house(englishman, _, _, _, red), Houses)

The Spaniard owns the dog.
member(house(spaniard, dog, _, _, _), Houses)

Coffee is drunk in the green house.
member(house(_, _, _, coffee, green), Houses)

How can we represent The green house is immediately to the right of the ivory house.?

CSc 372, Fall 2006 Prolog, Slide 158
W. H. Mitchell (whm@msweng.com)

The Zebra Puzzle, continued

At hand:

The green house is immediately to the right of the ivory house.

Here's a predicate that expresses left/right positioning:

left_right(L, R, [L, R | _]).

left_right(L, R, [_ | Rest]) :- left_right(L, R, Rest).

Testing:

?- left_right(Left,Right, [1,2,3,4]).

Left = 1

Right = 2 ;

Left = 2

Right = 3 ;

...

Goal: left_right(house(_, _, _, _, ivory),

 house(_, _, _, _, green), Houses)

CSc 372, Fall 2006 Prolog, Slide 159
W. H. Mitchell (whm@msweng.com)

The Zebra Puzzle, continued

Remaining facts:

The man who smokes Chesterfields lives in the house next to the man with the fox.

Kools are smoked in the house next to the house where the horse is kept.

The Norwegian lives next to the blue house.

How can we represent these?

CSc 372, Fall 2006 Prolog, Slide 160
W. H. Mitchell (whm@msweng.com)

The Zebra Puzzle, continued

The man who smokes Chesterfields lives in the house next to the man with the fox.

Kools are smoked in the house next to the house where the horse is kept.

The Norwegian lives next to the blue house.

We can say that two houses are next to each other if one is immediately left or right of the

other:

next_to(X, Y, List) :- left_right(X, Y, List).

next_to(X, Y, List) :- left_right(Y, X, List).

More goals:

next_to(house(_, _, chesterfield, _, _),

 house(_, fox, _, _, _), Houses)

next_to(house(_, _, kool, _, _),

 house(_, horse, _, _, _), Houses)

next_to(house(norwegian, _, _, _, _),

 house(_, _, _, _, blue), Houses)

CSc 372, Fall 2006 Prolog, Slide 161
W. H. Mitchell (whm@msweng.com)

The Zebra Puzzle, continued

A rule that comprises all the goals developed thus far:

zebra(Houses, Zebra_Owner, Water_Drinker) :-

 Houses = [house(norwegian, _, _, _, _), _,

 house(_, _, _, milk, _), _, _],

 member(house(englishman, _, _, _, red), Houses),

 member(house(spaniard, dog, _, _, _), Houses),

 member(house(_, _, _, coffee, green), Houses),

 member(house(ukrainian, _, _, tea, _), Houses),

 left_right(house(_,_,_,_,ivory), house(_,_,_,_,green), Houses),

 member(house(_, snails, old_gold, _, _), Houses),

 member(house(_, _, kool, _, yellow), Houses),

 next_to(house(_,_,chesterfield,_,_),house(_, fox,_,_,_), Houses),

 next_to(house(_,_,kool,_,_), house(_, horse, _, _, _), Houses),

 member(house(_, _, lucky_strike, orange_juice, _), Houses),

 member(house(japanese, _, parliment, _, _), Houses),

 next_to(house(norwegian,_,_,_,_), house(_,_,_,_, blue), Houses),

 member(house(Zebra_Owner, zebra, _, _, _), Houses),

 member(house(Water_Drinker, _, _, water, _), Houses).

Note that the last two goals ask the questions of interest.

CSc 372, Fall 2006 Prolog, Slide 162
W. H. Mitchell (whm@msweng.com)

The Zebra Puzzle, continued

The moment of truth:

?- zebra(_, Zebra_Owner, Water_Drinker).

Zebra_Owner = japanese

Water_Drinker = norwegian ;

No

The whole neighborhood:

?- zebra(Houses,_,_), member(H,Houses), writeln(H), fail.

house(norwegian, fox, kool, water, yellow)

house(ukrainian, horse, chesterfield, tea, blue)

house(englishman, snails, old_gold, milk, red)

house(spaniard, dog, lucky_strike, orange_juice, ivory)

house(japanese, zebra, parliment, coffee, green)

No

Credit: The code above was adapted from http://sandbox.rulemaker.net/ngps/119, by Ng

Pheng Siong, who in turn apparently adapted it from work by Bill Clementson in Allegro

Prolog.

CSc 372, Fall 2006 Prolog, Slide 163
W. H. Mitchell (whm@msweng.com)

Parsing and grammars

A very simple grammar

A very simple parser

Grammar rule notation

Goals in grammar rules

Parameters in non-terminals

Accumulating an integer

A list recognizer

"Real" compilation

Credit: The first part of this section borrows heavily from chapter 12 in Covington, et al.

CSc 372, Fall 2006 Prolog, Slide 164
W. H. Mitchell (whm@msweng.com)

A very simple grammar

Here is a grammar for a very simple language:

Sentence => Article Noun Verb

Article => the | a

Noun => dog | cat | girl | boy

Verb => ran | talked | slept

Here are some sentences in the language:

the dog ran

a boy slept

the cat talked

CSc 372, Fall 2006 Prolog, Slide 165
W. H. Mitchell (whm@msweng.com)

A very simple parser

Here is a simple parser for the grammar: (parser0.pl)

sentence(Words) :-

article(Words, Left0), noun(Left0, Left1), verb(Left1, []).

article([the| Left], Left). article([a| Left], Left).

noun([Noun| Left], Left) :- member(Noun, [dog,cat,girl,boy]).

verb([Verb|Left], Left) :- member(Verb, [ran,talked,slept]).

Usage:

?- sentence([the,dog,ran]).

Yes

?- sentence([the,dog,boy]).

No

?- sentence(S). % Generates all valid sentences

S = [the, dog, ran] ;

S = [the, dog, talked]

...

CSc 372, Fall 2006 Prolog, Slide 166
W. H. Mitchell (whm@msweng.com)

A very simple parser, continued

For reference:

sentence(Words) :-

article(Words, Left0), noun(Left0, Left1), verb(Left1, []).

article([the|Left], Left). article([a| Left], Left).

noun([Noun|Left], Left) :- member(Noun, [dog,cat,girl,boy]).

verb([Verb|Left], Left) :- member(Verb, [ran,talked,slept]).

Note that the heads for article, noun, and verb all have the same form.

Let's look at a clause for article and a unification:

article([the|Left], Left).

?- article([the,dog,ran], Remaining).

Remaining = [dog, ran]

If Words begins with the or a, then article(Words, Remaining) succeeds and

unifies Remaining with the rest of the list. The key idea: article, noun, and verb

each consume an expected word and produce the remaining words.

CSc 372, Fall 2006 Prolog, Slide 167
W. H. Mitchell (whm@msweng.com)

A very simple parser, continued

sentence(Words) :-

article(Words, Left0), noun(Left0, Left1), verb(Left1, []).

A query sheds light on how sentence operates:

?- article(Words, Left0), noun(Left0, Left1),

verb(Left1, Left2), Left2 = [].

Words = [the, dog, ran]

Left0 = [dog, ran]

Left1 = [ran]

Left2 = []

?- sentence([the,dog,ran]).

Yes

Each goal consumes one word. The remainder is then the input for the next goal.

Why is verb's result, Left2, unified with the empty list?

CSc 372, Fall 2006 Prolog, Slide 168
W. H. Mitchell (whm@msweng.com)

A very simple parser, continued

For convenient use, let's add a predicate s/1 that uses concat_atom to split up a string

based on spaces:

s(String) :-

concat_atom(Words, ' ', String), sentence(Words).

sentence(Words) :-

article(Words, Left0), noun(Left0, Left1),

verb(Left1, []).

Usage:

?- s('the dog ran').

Yes

?- s('ran the dog').

No

CSc 372, Fall 2006 Prolog, Slide 169
W. H. Mitchell (whm@msweng.com)

Grammar rule notation

Prolog's grammar rule notation provides a convenient way to express these stylized rules.

Instead of this,

sentence(Words) :-

article(Words, Left0), noun(Left0, Left1), verb(Left1, []).

article([the| Left], Left).

article([a| Left], Left).

noun([Noun| Left], Left) :- member(Noun, [dog,cat,girl,boy]).

verb([Verb|Left], Left) :- member(Verb, [ran,talked,slept]).

we can take advantage of grammar rule notation and say this,

sentence --> article, noun, verb.

article --> [a]; [the].

noun --> [dog]; [cat]; [girl]; [boy].

verb --> [ran]; [talked]; [slept].

Note that the literals are specified as singleton lists.

The semicolon is an "or". Alternative: noun --> [dog]. noun --> [cat]. ...

CSc 372, Fall 2006 Prolog, Slide 170
W. H. Mitchell (whm@msweng.com)

Grammar rule notation, continued

% cat parser1.pl

sentence --> article, noun, verb.

article --> [a]; [the].

noun --> [dog]; [cat]; [girl]; [boy].

verb --> [ran]; [talked]; [slept].

listing can be used to see the clauses generated by Prolog:

 ?- listing(sentence).

sentence(A, D) :- article(A, B), noun(B, C), verb(C, D).

?- listing(article).

article(A, B) :-

 ('C'(A, a, B)

 ; 'C'(A, the, B)

).

?- listing('C').

'C'([A|B], A, B).

Note that the predicates generated for sentence, article and others have an arity of 2.

CSc 372, Fall 2006 Prolog, Slide 171
W. H. Mitchell (whm@msweng.com)

Grammar rule notation, continued

% cat parser1a.pl

s(String) :-

concat_atom(Words, ' ', String), sentence(Words,[]).

sentence --> article, noun, verb.

article --> [a]; [the].

noun --> [dog]; [cat]; [girl]; [boy].

verb --> [ran]; [talked]; [slept].

verb([Verb|Left], Left) :- verb0(Verb).

verb0(jumped). verb0(ate). verb0(computed).

Points to note:

sentence, article, verb, and noun are known as non-terminals. dog, cat,

ran, talked, etc. are known as terminals.

The call to sentence in s now has two terms to match the generated rule.

verb has both a grammar rule and an ordinary rule. The latter makes use of verb0

facts.

CSc 372, Fall 2006 Prolog, Slide 172
W. H. Mitchell (whm@msweng.com)

Goals in grammar rules

We can insert ordinary goals into grammar rules by enclosing the goal(s) in curly braces.

Here is a chatty parser that recognizes the language described by the regular expression a*:

parse(S) :- atom_chars(S,Chars), string(Chars,[]). % parser6.pl

string --> as.

as --> [a], {writeln('Got an a')}, as.

as --> [], {writeln('out of a\'s')}.

Usage:

?- parse('aaa').

Got an a

Got an a

Got an a

out of a's

Yes

What would the behavior be if the order of the as clauses was reversed?

CSc 372, Fall 2006 Prolog, Slide 173
W. H. Mitchell (whm@msweng.com)

Parameters in non-terminals

We can add parameters to the non-terminals in grammar rules. The following grammar

recognizes a* and produces the length, too.

parse(S, Count) :- % parser6a.pl

atom_chars(S, Chars), string(Count, Chars, []).

string(N) --> as(N).

as(N) --> [a], as(M), {N is M + 1}.

as(0) --> [].

Usage:

?- parse('aaa',N).

N = 3

?- parse('aaab',N).

No

CSc 372, Fall 2006 Prolog, Slide 174
W. H. Mitchell (whm@msweng.com)

Parameters in non-terminals, continued

Here is a grammar that recognizes a b c : (parser7a.pl)N 2N 3N

parse(S,L) :- atom_chars(S,Chars), string(L, Chars, []).

string([N,NN,NNN])

--> as(N), {NN is 2*N}, bs(NN), {NNN is 3*N}, cs(NNN).

as(N) --> [a], as(M), {N is M+1}. as(0) --> [].

bs(N) --> [b], bs(M), {N is M+1}. bs(0) --> [].

cs(N) --> [c], cs(M), {N is M+1}. cs(0) --> [].

?- parse('aabbbbcccccc', L).

L = [2, 4, 6]

?- parse('abbc', L).

No

Can this language be described with a regular expression?

Problem: Recognize a b c where X <= Y <= Z .X Y Z

CSc 372, Fall 2006 Prolog, Slide 175
W. H. Mitchell (whm@msweng.com)

Parameters in non-terminals, continued

A parser for a b c where X <= Y <= Z: (parser7b.pl)X Y Z

parse(S,L) :- atom_chars(S,Chars), string(L, Chars, []).

string([X,Y,Z]) --> as(X), bs(Y), {X =< Y}, cs(Z), {Y =< Z}.

as(N) --> [a], as(M), {N is M+1}. as(0) --> [].

bs(N) --> [b], bs(M), {N is M+1}. bs(0) --> [].

cs(N) --> [c], cs(M), {N is M+1}. cs(0) --> [].

Usage:

?- parse('abbbcccccc', L).

L = [1, 3, 6]

?- parse('aabbc', L).

No

?- parse('c', L).

L = [0, 0, 1]

CSc 372, Fall 2006 Prolog, Slide 176
W. H. Mitchell (whm@msweng.com)

Accumulating an integer

Here is a parser that recognizes a string of digits and creates an integer from them:

parse(S,N) :- % parser8.pl

atom_chars(S, Chars), intval(N,Chars,[]), integer(N).

intval(N) --> digits(Digits), { atom_number(Digits,N) }.

digits(Digit) --> [Digit], {digit(Digit)}.

digits(Digits) -->

[Digit], {digit(Digit)},

 digits(More), { concat_atom([Digit,More],Digits)}.

digit('0'). digit('1'). ... digit('9').

Usage:

?- parse('4312', N).

N = 4312

CSc 372, Fall 2006 Prolog, Slide 177
W. H. Mitchell (whm@msweng.com)

A list recognizer

Here is a parser that recognizes lists consisting of integers and lists: (list.pl)

parse(S) :- atom_chars(S, Chars), list(Chars, []).

list --> ['['], values, [']'].

list --> ['['], [']'].

values --> value.

values --> value, [','], values.

value --> digits(_).

value --> list.

% assume digits from previous slide

?- parse('[1,20,[30,[[40]],6,7],[]]').

Yes

?- parse('[1,20,,30,[[40]],6,7],[]]').

No

?- parse('[1, 2, 3]'). % Whitespace! How could we handle it?

No

CSc 372, Fall 2006 Prolog, Slide 178
W. H. Mitchell (whm@msweng.com)

"Real" compilation

These parsing examples fall short of what's done in a compiler. The first phase of

compilation is typically to break the input into "tokens". Tokens are things like identifiers,

individual parentheses, string literals, etc.

The input

[1, [30+400], 'abc']

might be represented as a stream of tokens with this Prolog list:

[lbrack, integer(1), comma, lbrack, integer(30), plus,

integer(400), rbrack, comma, string(abc), rbrack]

The second phase of compilation is to parse the stream of tokens and generate code

(traditional compilation) or execute it immediately (interpretation).

We could use a pair of Prolog grammars to parse source code. The first one would parse

character-by-character and generate a token stream like the list above. The second grammar

would parse that token stream.

CSc 372, Fall 2006 Prolog, Slide 179
W. H. Mitchell (whm@msweng.com)

Odds and Ends

Collberg's ADT

The Prolog 1000

Lots of Prologs

Ruby meets Prolog

CSc 372, Fall 2006 Prolog, Slide 180
W. H. Mitchell (whm@msweng.com)

Collberg's Architecture Discovery Tool

In the mid-1990s Christian Collberg developed a system that is able to discover the

instruction set, registers, addressing modes and more for a machine given only a C compiler

for that machine.

The basic idea is to use the C compiler of the target system to compile a large number of

small but carefully crafted programs and then examine the machine code produced for each

program to make inferences about the architecture. The end result is a machine description

that in turn can be used to generate a code generator for the architecture.

The system is written in Prolog. What do you suppose makes Prolog well-suited for this

task?

See http://www.cs.arizona.edu/~collberg/Research/AutomaticRetargeting/index.html

for more details.

CSc 372, Fall 2006 Prolog, Slide 181
W. H. Mitchell (whm@msweng.com)

The Prolog 1000

The Prolog 1000 is a compilation of applications written in Prolog and related languages.

Here is a sampling of the entries:

AALPS

The Automated Air Load Planning System provides a flexible spatial representation and

knowledge base techniques to reduce the time taken for planning by an expert from

weeks to two hours. It incorporates the expertise of loadmasters with extensive cargo

and aircraft data.

ACACIA

A knowledge-based framework for the on-line dynamic synthesis of emergency

operating procedures in a nuclear power plant.

ASIGNA

Resource-allocation problems occur frequently in chemical plans. Different processes

often share pieces of equipment such as reactors and filters. The program ASIGNA

allocates equipment to some given set of processes. (2,000 lines)

CSc 372, Fall 2006 Prolog, Slide 182
W. H. Mitchell (whm@msweng.com)

The Prolog 1000, continued

Coronary Network Reconstruction

The program reconstructs a three-dimensional image of coronary networks from two

simultaneous X-Ray projections. The procedures in the reconstruction-labelling process

deal with the correction of distortion, the detection of center-lines and boundaries, the

derivation of 2-D branch segments whose extremities are branching, crossing or end

points and the 3-D reconstruction and display.

All algorithmic components of the reconstruction were written in the C language,

whereas the model and resolution processes were represented by predicates and

production rules in Prolog. The user interface, which includes a main panel with

associated control items, was developed using Carmen, the Prolog by BIM user

interface generator.

DAMOCLES

A prototype expert system that supports the damage control officer aboard Standard

frigates in maintaining the operational availability of the vessel by safeguarding it and

its crew from the effects of weapons, collisions, extreme weather conditions and other

calamities. (> 68,000 lines)

CSc 372, Fall 2006 Prolog, Slide 183
W. H. Mitchell (whm@msweng.com)

The Prolog 1000, continued

DUST-EXPERT

Expert system to aid in design of explosion relief vents in environments where

flammable dust may exist. (> 10,000 lines)

EUREX

An expert system that supports the decision procedures about importing and exporting

sugar products. It is based on about 100 pages of European regulations and it is

designed in order to help the administrative staff of the Belgian Ministry of Economic

Affairs in filling in forms and performing other related operations. (>38,000 lines)

GUNGA CLERK

Substantive legal knowledge-based advisory system in New York State Criminal Law,

advising on sentencing, pleas, lesser included offenses and elements.

MISTRAL

An expert system for evaluating, explaining and filtering alarms generated by automatic

monitoring systems of dams. (1,500 lines)

The full list is in fall06/pl/Prolog1000.txt. Several are over 100,000 lines of

code.

CSc 372, Fall 2006 Prolog, Slide 184
W. H. Mitchell (whm@msweng.com)

Lots of Prologs

For an honors section assignment Maxim Shokhirev was given the task of finding as many

Prolog implementations as possible in one hour. His results:

1. DOS-PROLOG

http://www.lpa.co.uk/dos.htm

2. Open Prolog

http://www.cs.tcd.ie/open-prolog/

3. Ciao Prolog

http://www.clip.dia.fi.upm.es/Software/Ciao

4. GNU Prolog

http://pauillac.inria.fr/~diaz/gnu-prolog/

5. Visual Prolog (PDC Prolog and Turbo Prolog)

http://www.visual-prolog.com/

6. SWI-Prolog

http://www.swi-prolog.org/

7. tuProlog

http://tuprolog.alice.unibo.it/

8. HiLog

ftp://ftp.cs.sunysb.edu/pub/TechReports/kifer/hilog.pdf

9. ?Prolog

http://www.lix.polytechnique.fr/Labo/Dale.Miller/lProlog/

10. F-logic

http://www.cs.umbc.edu/771/papers/flogic.pdf

11. OW Prolog

http://www.geocities.com/owprologow/

12. FLORA-2

http://flora.sourceforge.net/

13. Logtalk

http://www.logtalk.org/

DataLog implementations:

14. bddbddb

http://bddbddb.sourceforge.net/

15. ConceptBase

http://www-i5.informatik.rwth-aachen.de/CBdoc/

16. DES

http://www.fdi.ucm.es/profesor/fernan/DES/

17. DLV

http://www.dlvsystem.com/

18. XSB

http://xsb.sourceforge.net/

19. WIN Prolog

http://www.lpa.co.uk/

20. YAP Prolog

http://www.ncc.up.pt/~vsc/Yap

21. AI::Prolog

http://search.cpan.org/~ovid/AI-Prolog-0.734/lib/AI/Prolog.pm

22. SICStus Prolog

http://www.sics.se/sicstus/

CSc 372, Fall 2006 Prolog, Slide 185
W. H. Mitchell (whm@msweng.com)

23. ECLiPSe Prolog

http://eclipse.crosscoreop.com/

24. Amzi! Prolog

http://www.amzi.com/

25. B-Prolog

http://www.probp.com/

26. MINERVA

http://www.ifcomputer.co.jp/MINERVA/

27. Trinc Prolog

http://www.trinc-prolog.com/

28. Strawberry Prolog

http://www.dobrev.com/

29. hProlog

http://www.cs.kuleuven.ac.be/~bmd/hProlog/

30. ilProlog

http://www.pharmadm.com/dmax.asp

31. CxProlog

http://ctp.di.fct.unl.pt/~amd/cxprolog/

32. NanoProlog

http://ctp.di.fct.unl.pt/~amd/cxprolog/

33. BinProlog

http://www.binnetcorp.com/BinProlog/

34. Quintus Prolog

http://www.sics.se/quintus/

35. Allegro Prolog

http://www.franz.com/products/prolog/

36. ALS Prolog

http://www.als.com/

37. W-Prolog

http://ktiml.mff.cuni.cz/~bartak/prolog/testing.html

38. Aquarius Prolog

listserv@acal-server.usc.edu

39. EZY Prolog

http://www.ezy-software.com/ezyprolog/EZY_Prolog_-_born_

to_be_easy.htm

40. Poplog

http://www.cs.bham.ac.uk/research/poplog/freepoplog.html

41. OpenPoplog

http://openpoplog.sourceforge.net/

42. REBOL Prolog

http://www.rebol.org/cgi-bin/cgiwrap/rebol/view-script.r?script

=prolog.r

43. Arity Prolog

pgweiss@netcom.com

44. CHIP

http://www.cosytec.com/

45. IF/Prolog

http://www.ifcomputer.com/IFProlog/

46. LPA Prolog

http://www.lpa.co.uk/

47. cu-Prolog

ftp://ftp.icot.or.jp/pub/cuprolog/

48. Tricia

ftp://ftp.csd.uu.se/pub/Tricia/

49. Visual Prolog Personal Edition

http://www.visual-prolog.com/vip/vipinfo/freeware_version.ht

m

50. JLog

http://jlogic.sourceforge.net/

51. JIProlog

http://www.ugosweb.com/jiprolog

52. CKI-Prolog

http://www.students.cs.uu.nl/~smotterl/prolog/index.htm

53. JavaLog

mailto:pgweiss@netcom.com

CSc 372, Fall 2006 Prolog, Slide 186
W. H. Mitchell (whm@msweng.com)

http://www.exa.unicen.edu.ar/~azunino/javalog.html

54. jProlog

http://www.cs.kuleuven.ac.be/~bmd/PrologInJava/

55. tiny_prolog.rb (Ruby implementation)

http://swik.net/Ruby/Inside+Ruby/A+Basic+Prolog+Implemen

tation+in+Ruby/ofun

56. WAM (Warren Abstract Machine)

http://64.233.187.104/search?q=cache:fgeYFaPXclIJ:www.clip

.dia.fi.upm.es/~logalg/slides/PS/8_wam.ps+Prolog+Implement

ation+list&hl=en&gl=us&ct=clnk&cd=49

57. Allegro Prolog

http://www.franz.com/support/tech_corner/prolog-071504.lhtm

l

58. NU-Prolog

http://www.cs.mu.oz.au/~lee/src/nuprolog/

59. Mimola Software System (MSS)

citeseer.ist.psu.edu/22901.html

60. LogTalk

http://www.logtalk.org/

61. Palm Toy Language

http://www.geocities.com/willowfung/

62. Qu-Prolog

http://www.itee.uq.edu.au/~pjr/HomePages/QuPrologHome.ht

ml

63. K-Prolog

http://prolog.isac.co.jp/doc/en/

64. ProFIT

http://www.coli.uni-sb.de/~erbach/formal/profit/profit.html

65. Arity/Prolog

http://www.arity.com/www.pl/products/ap.htm

66. Brain Aid Prlog

http://www.comnets.rwth-aachen.de/~ost/private.html

67. Reform Prolog

http://user.it.uu.se/~thomasl/reform.html

68. CMU Free/Shareware Prolog

http://www-2.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/pr

olog/impl/prolog/0.html

69. Babol Prolog

http://zamek.gda.pl/~budyn/

70. INRIA wamcc

ftp://ftp.inria.fr/INRIA/Projects/contraintes/wamcc/

71. PyProlog

http://sourceforge.net/projects/pyprolog/

72. Artiware Prolog

www.artiware.com

73. DGKS Prolog

www.geocities.com/SiliconValley/Campus/7816/

CSc 372, Fall 2006 Prolog, Slide 187
W. H. Mitchell (whm@msweng.com)

Ruby meets Prolog

http://eigenclass.org/hiki.rb?tiny+prolog+in+ruby describes a "tiny Prolog in Ruby".

From that page, here is member:

member[cons(:X,:Y), :X] <<= :CUT

member[cons(:Z,:L), :X] <<= member[:L,:X]

Here's the standard family example:

sibling[:X,:Y] <<= [parent[:Z,:X], parent[:Z,:Y], noteq[:X,:Y]]

parent[:X,:Y] <<= father[:X,:Y]

parent[:X,:Y] <<= mother[:X,:Y]

facts: rules with "no preconditions"

father["matz", "Ruby"].fact

mother["Trude", "Sally"].fact

...

query sibling[:X, "Sally"]

>> 1 sibling["Erica", "Sally"]

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187

