
CSC 372 Midterm Exam Solutions
Wednesday, November 2, 2022

Problem 1:  (5 points) (one point each) (mean: 3.4, median: 3.5, 3rd quartile: 4)

What is the type of each of the following Haskell expressions?  If the expression is invalid, briefly state
why.

[1..3]
[Int]

 
('x',['x'])

(Char, [Char])

length
[a] -> Int

tail "head"
[Char] (or String)

map isDigit
[Char] -> [Bool]

Problem 2:  (6 points) (mean: 4.5, median: 5.3, 3rd quartile: 5.5)

This problem is like ftypes.hs on a3.  Write functions f1, f2, and f3 having each of the following
types.   There are no restrictions other than you may not use explicit type declarations.  (e.g. f1::...)

f1 :: [a] -> Int
f1 [a] = length [a]

f2 :: a -> b -> c -> [b]
f2 a b c = [b]

f3 :: [(a, b)] -> ([b], [c])
f3 [(a,b)] = ([b],[])

 
Problem 3:  (4 points, as indicated) (mean: 2.75, median: 3, 3rd quartile: 4)

This problem is like warmup.hs on the assignments—write the following Haskell Prelude functions.

tail [1 point] (Assume the list is never empty.)

tail (_:t) = t
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last [1 point]  (Assume the list is never empty.)

last [x] = x
last (_:t) = mylast t

zip   [2 points] (Remember that the length of the shorter list is the length of the result.)

zip (a:as) (b:bs) = (a,b) : zip as bs
zip _   _ = []

Problem 4:  (18 points) (8 points each + 2 points for types)
(recursive—mean: 6.1, median: 8, 3rd quartile: 8)

        (non-recursive—mean: 6.2, median: 8, 3rd quartile: 8)
(types—mean: 1.8, median: 2, 3rd quartile: 2)

For this problem you are to write both recursive and non-recursive versions of a Haskell function
mkintlists that takes a list of strings of digits and returns a list of Ints with corresponding values.

> mkintlists ["315","91", "", "713"]
[[3,1,5],[9,1],[],[7,1,3]]

In the recursive version ONLY, use error "even!" to produce an error if an even digit is encounted:

> mkintlists ["31","12"] 
*** Exception: even!  (Non-recursive version would produce [[3,1],[1,2]]).

BEFORE writing your two versions of mkintlists, what is the type of...
 mkintlist?    [[Char]] -> [[Int]]
digitToInt?   Char -> Int

Recursive:

mkintlists [] = []
mkintlists (s:ss) = doStr s : mkintlists ss

doStr [] = []
doStr (d:ds)
  | even val = error "even!"
  | otherwise = val : doStr ds
  where
    val = digitToInt d

Non-recursive:
mkintlists strings = map (map digitToInt) strings
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Problem 5:  (15 points) (mean: 10.1, median: 14, 3rd quartile: 15)

Without writing any recursive code, write a Haskell function vcnp :: String -> Int that
counts the number of vowels in a string that are not immediately preceded by a vowel.  Vowels may be in
upper or lower case.  Examples:

> vcnp "ate"
2

> vcnp "Oopsie!"
2

> vcnp "a-e-i-o-u-A-E-I-O-U"
10

Solution:

isv c = toLower c `elem` "aeiou"

f (last,count) c
    | isv last = (c, count)
    | isv c = (c, count+1)
    | otherwise = (c, count)
        
vcnp s = snd $ foldl f ('x',0) s

I was dismayedby the number of students who wrote out ['a','e','i','o','u'] instead of
"aeiou".  And, at least one student, wrote that out twice.

Problem 6:  (17 points) (mean: 10.7, median: 15.5, 3rd quartile: 16.5)

Write a Haskell function coords rows cols with type Int -> Int -> IO () that PRINTS row
and column coordinates for a grid with the given number of rows and columns. Example:

> coords 3 4
(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2,3)

Solution:

-- my first version of mkrc:
-- mkrc row col = concat ["(",show row,",",show col,")"]
mkrc row col = show (row, col)

mkrow cols row = unwords $ map (mkrc row) [0..cols-1]

coords rows cols =
putStr $ unlines $ map (mkrow cols) [0..rows-1]
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Problem 7:  (5 points) (one point each unless otherwise indicated) (mean: 2.9, median: 3, 3rd quartile: 4)
The following questions and problems are related to Haskell.

(1) The Haskell expression below has more parentheses than are needed!  Mark ALL the parentheses
that can be removed without changing the value of the expression. 

Before:  (take 3) (show x) ++ (replicate 5) (chr 66)
After:  take 3 (show x) ++ replicate 5 (chr 66)

(2) Given the type of a function, how can we quickly tell if the function is polymorphic?

A function is polymorphic if any parameter has a type variable.

(3) Add parentheses to the type below to fully show the right-associativity of the -> type operator.

Before:  Int -> [Int] -> (Char -> Bool -> Bool) -> String
After:    Int -> ([Int] -> ((Char -> (Bool -> Bool)) -> String))

(4) Briefly explain how the following map works, paying particular attention to the function being
mapped.  (That function is the result of  (uncurry $ flip replicate).)

> map (uncurry $ flip replicate) [('a',3),('b',2)]
["aaa","bb"]

flip replicate creates a version of replicate with the parameters swapped:

> flip replicate
<function>

> :type it
it :: a -> Int -> [a]

Then, uncurrying the result function produces a function that can be applied to an (a, Int)
tuple:

> uncurry it
<function>
> :type it
it :: (a, Int) -> [a]

> it ('a',3)
"aaa"   

It was sufficient to say something like, "flip swaps the order of replicate's arguments and then
uncurrying it lets it be mapped onto the tuples."

This question was mentioned as a possible midterm question in the a5 solution write-up for
rtext.hs.
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(5) Consider the Haskell expression below.  Does it have any partial applications?  If so, briefly
describe what constitutes each of the partial applications.

map (take 5)

First, take 5 produces a partial application.  Then map is applied to that function, producing a
second partial applications.

Most students identified take 5 as a partial application but only a few recognized that there is
also a partial application of map.

Problem 8:  (7 points) (mean: 5.1, median: 6.5, 3rd quartile: 7)

Using our DIY cons lists, write a Prolog predicate eqalen/2 that succeeds iff its two arguments are lists
that consist entirely of atoms and the length of all atoms in corresponding positions are equal.  Examples:

?- eqalen(a:test:now:empty, i:went:too:empty).
true. (Atoms in both lists have lengths of 1, 4, and 3, respectively.)

?- eqalen(a:test:now:empty, i:went:too:far:empty).
false.  (Four atoms in second list.)

RESTRICTION: The symbol = may NOT APPEAR in your solution!  (This rules out == and \==,
too, for example.)

Solution:

eqalen(empty, empty).
eqalen(A1:T1,A2:T2) :-

atom(A1), atom_length(A1,L),
atom(A2), atom_length(A2,L),
eqalen(T1,T2).
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Problem 9:  (12 points) (mean: 6.4, median: 7.5, 3rd quartile: 10)

Write a Prolog predicate lines(+Pairs, +Separator) with this behavior:

?- lines(three-x:five-ok:four-oops:empty,'.').
x.x.x
ok.ok.ok.ok.ok
oops.oops.oops.oops
true.

?- lines(four-four:five-[]:empty,<>).
four<>four<>four<>four
[]<>[]<>[]<>[]<>[]
true.

?- lines.
Usage: lines(+Pairs,+Sep)
true.

Solution:

lines(Pairs,Sep) :-
member_cl(English-Atom,Pairs), n(English,N),
print(N,Atom,Sep), fail.

lines(_,_).

lines :- writeln('Usage: lines(+Pairs,+Sep)').

print(N,Atom,Sep) :-
between(2,M,_),
format('~w~w', [Atom, Sep]), fail.

print(_,Atom,_) :- writeln(Atom).
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Problem 10:  (5 points) (one point each unless otherwise indicated) (mean: 2.7, median: 3, 3rd quartile: 4)

The following questions and problems are related to Prolog.

(1) x(3,4) is an example of a Prolog structure.  Without using any parentheses, commas, or square
brackets, write another example of a Prolog structure.

3+4

(2) Prolog anatomy question: What are the three parts of a Prolog rule? (½ point)

head, neck, and body

(3) What are three distinct ways in which length/2 can be used? (1½ points)

Get the length of a list.
See if a list has a specific length.
Make a list with a specific number of uninstantiated variables.

(4) What is the output of the following query?

  ?- between(1,3,A), writeln(A), A > 5,
between(5,7,B), writeln(B), B < 10,
writeln('Done!').

The output is:
1
2
3

It was also fine to include the result, "false.", but that's not part of the output.

(5) How do the following two goals differ in meaning?

A+B == 5
Compares the structure 3+5 to the number 5; always fails.

A+B =:= 5
Evaluates A+B as an arithmetic expression and tests whether the result
is equal to 5.
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Problem 11:  (6 points) (one point each unless otherwise indicated) (mean: 3, median: 3, 3rd quartile: 4)

Briefly answer the following general questions.

(1) Who founded The University of Arizona's Computer Science department and when? 

Ralph Griswold, in 1971

(2) What is the value and side effect of the following Python expression?

        print("testing")

The value is None.  The side effect is that "testing" is printed on standard output.

(3) What's the one feature/property that a language must have in order to do anything that even
remotely resembles functional programming?

Functions must be first-class values.  In general, it must be possible to use a function value
in all the contexts where values of others types can be used—be held in variables and data
structures , be passed as parameters and returned as results, etc.

(4) Which one of the following language elements is most essential for imperative programming AND
why? (2 points)

(a) some sort of looping construct like a while or a for
(b) an assignment operation
(c) some sort of  "print" statement
(d) procedures

Much of imperative programming is basically orchestration of changes to the value of
variables but without an assignment operation, the value of a variable can't be changed.

(5) Early in the semester we talked about three aspects of expressions that are often important to
understand and reason about.  What are those three aspects?

Value, type, and side effect
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Extra Credit Section (½ point each unless otherwise noted) (mean: 0.8, median: 0.5, 3rd quartile: 1.5)

(1) Collectively, the body of facts and rules that implement a Prolog predicate is known as the
    procedure     for the predicate. 

Note: "clauses" (plural) was also counted as correct.

(2) Sadly, I never got around to answering this Haskell  puzzle posed on 284:
Make the list [take, tail, init] valid by adding two characters. 

Answer it now!

My thought was [take 5, tail, init] but Mr. Fielding came up with
[(take, tail, init)].  Mr. Meyer, Ms. Rahman, and Mr. Waugaman came up with 
["take, tail, init"]

(3) What's a fundamental difference between using >>> type(x) in the Python shell and using  
> :type x in ghci?

type is a Python function—we can use it in a Python program—but :type is a ghci command,
and not an element of Haskell itself. Similarly, help is a Python function but :help is a ghci
command.  This distinction—whether something is part of a language or part of a tool—is
important to understand!

(4) Write our beloved map function in Python. (1 point)

Here are two versions; the second uses a list comprehension.

def map(f,L):
    result = []
    for e in L:
        result.append(f(e))
    return result

def map(f,L):
    return [f(e) for e in L]

(5) Several places in the Haskell slides mention "H10".  Example: "Lambda abstraction (H10)". What is
H10?

The Haskell 2010 Report.  (Slide 37)

Lots of students said that "H10" referred to a version of Haskell but only Ms. Saran correctly
identified it as my shorthand for a document.
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(6) What would be a big simplification in the following Haskell code?
        g list = foldl1 (\acm elem -> f acm elem) list

The anonymous function does nothing but pass its two arguments to f, so we could just call f
directly, and that's the big simplification:

g list = foldl1 f list

A minor improvement is that we could also turn g into a partial application:
g = foldl1 f

(7) Write a non-imperative version of C's strcpy(...) function.  (If you haven't had 352 nor are
taking it now, plead ignorance for a half-point!)

Nobody recognized that this is simply impossible.  At the heart of strcpy is copying characters
from one location in memory to another, and without assignment—essential for imperative
programming—that's impossible

(8) Once whm decided he should teach Racket instead of Ruby, he held onto Racket like a monkey
holding onto    a piece of fruit   !  [See also youtube.com/watch?v=9jBgo7UipqY.]

(9) Write a good extra credit question related to the course material and answer it. (1 point)

There were several good ones but relatively few students responded to this question.
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Statistics

Here are all fifty scores, in descending order:

98.50, 97.00, 95.50, 95.50, 92.50, 91.50, 91.50, 89.00, 89.00,
88.00, 85.00, 84.00, 83.50, 79.00, 78.00, 78.00, 76.00, 75.50,
75.00, 74.00, 74.00, 74.00, 73.50, 72.50, 71.50, 70.00, 68.50,
67.50, 66.50, 66.00, 65.50, 65.00, 60.00, 60.00, 59.50, 58.00,
53.00, 53.00, 52.50, 52.50, 52.00, 48.50, 43.00, 41.00, 39.00,
31.50, 24.50, 21.00, 20.00, 3.00

Mean: 66.45
Median: 70.75
3rd Quartile: 82.38

Here's a table with per-problem statistics.   Median/possible shows per-problem median scores divided
by possible points, expressed as a percentage.

Adjustment

I'm thinking the exam was perhaps a half-problem too-long, and some of the short answer questions
perhaps took a little longer to answer than I'd anticipated.  Taking all things into account, I've decided to
add seven points to all scores.

With that adjustment applied, here's a histogram of scores:
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