
CSC	 372	 Spring	 2014,	 Haskell	 Slide	 1	

Func:onal	
Programming	 with	

Haskell	
CSC	 372,	 Spring	 2014	

The	 University	 of	 Arizona	
William	 H.	 Mitchell	

whm@cs	
	

Programming Paradigms

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 2	

Thomas Kuhn's The Structure of Scientific Revolutions
describes a paradigm as a scientific achievement that is...

•  "...sufficiently unprecedented to attract an enduring group

of adherents away from competing modes of scientific
activity."

•  "...sufficiently open-ended to leave all sorts of problems
for the redefined group of practitioners to resolve."

Kuhn cites works such as Newton's Principia, Lavoisier's
Chemistry, and Lyell's Geology as serving to document
paradigms.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 3	

Paradigms

Kuhn also wrote,

"[I take] paradigms to be universally recognized scientific
achievements that for a time provide model problems and
solutions to a community of practitioners."

A paradigm has a world view, a vocabulary, and a set of
techniques that can be applied to solve a problem.

A paradigm provides a conceptual framework for
understanding and solving problems.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 4	

Paradigms, continued

From the early days of programming into the 1980s the
dominant paradigm was procedural programming:

Programs are composed of bodies of code (procedures) that
manipulate individual data elements or structures.

Much study was focused on how best to decompose a large
computation into a set of procedures and a sequence of calls.

Languages like FORTRAN, COBOL, Pascal, and C facilitate
procedural programming.

Java programs with a single class are typically examples of
procedural programming.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 5	

The procedural programming paradigm

In the 1990s, object-oriented programming became the
dominant paradigm. Problems are solved by creating systems
of objects that interact.

"Instead of a bit-grinding processor plundering data
structures, we have a universe of well-behaved objects that
courteously ask each other to carry out their various
desires." —Dan Ingalls

Study shifted from how to decompose computations into
procedures to how to model systems as interacting objects.

Languages like C++ and Java facilitate use of an object-
oriented paradigm.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 6	

The object-oriented programming paradigm

The programming paradigm(s) we know affect how we
approach problems.

If we use the procedural paradigm, we'll first think about
breaking down a computation into a series of steps.

If we use the object-oriented paradigm, we'll first think about
we modeling the problem with a set of objects and then
consider their interactions.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 7	

The influence of paradigms

If a language makes it easy and efficient to use a particular
paradigm, we say that the language supports the paradigm.

What language features are required to support procedural
programming?

•  The ability to break programs into procedures.

What language features does OO programming require, for OO
programming as you know it?

•  Ability to define classes that comprise data and methods
•  Ability to specify inheritance between classes

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 8	

Language support for programming paradigms

Paradigms in a field of science are often incompatible.
 Example: geocentric vs. heliocentric model of the universe

Can a programming language support multiple paradigms?

 Yes! We can do procedural programming with Java.

The programming language Leda fully supports the procedural,
imperative, object-oriented, functional, and logic programming
paradigms.

Wikipedia's Programming_paradigm cites 60+ paradigms!

But, are "programming paradigms" really paradigms by Kuhn's
definition or are they just characteristics?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 9	

Multiple paradigms

The imperative paradigm has its roots in programming at the
machine level, usually via assembly language.

Machine-level programming:
•  Instructions change memory locations or registers
•  Instructions alter the flow of control

Programming with an imperative language:
•  Expressions compute values based on memory contents
•  Assignments alter memory contents
•  Control structures guide the flow of control

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 10	

The imperative programming paradigm

Both the procedural and object-oriented paradigms typically
make use of the imperative programming paradigm.

Two fundamental characteristics of languages that support the
imperative paradigm:

•  "Variables"—data objects whose values typically change as

execution proceeds.

•  Support for iteration—a “while” control structure, for

example.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 11	

The imperative programming paradigm

Here's an imperative solution in Java to sum the integers in an
array:

 int sum(int a[])
 {
 int sum = 0;
 for (int i = 0; i < a.length; i++)
 sum += a[i];

 return sum;
 }

The for loop causes i to vary over the indices of the array, as
the variable sum accumulates the result.

How can the above solution be improved?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 12	

Imperative programming, continued

With Java's "enhanced for", also known as a for-each loop, we
can avoid array indexing.

 int sum(int a[])
 {
 int sum = 0;
 for (int val: a)
 sum += val;

 return sum;
 }

Is this an improvement? If so, why?

Can we write sum in a non-imperative way?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 13	

Imperative programming, continued

We can use recursion instead of a loop, but...ouch!

 int sum(int a[]) { return sum(a, 0); }

 int sum(int a[], int i)
 {
 if (i == a.length)
 return 0;
 else
 return a[i] + sum(a, i+1);
 }

Wrt. correctness, which of the three versions would you bet
your job on?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 14	

Imperative programming, continued

Programming paradigms can apply at different levels:

•  Making a choice between procedural and object-oriented

programming fundamentally determines the high-level structure
of a program.

•  The imperative paradigm is focused more on the small aspects
of programming—how code looks at the line-by-line level.

Java combines the object-oriented and imperative paradigms.

The procedural and object-oriented paradigms apply to
programming in the large.

The imperative paradigm applies to programming in the small.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 15	

Sidebar: The level of a paradigm

Java methods can be classified as imperative or applicative.

•  An imperative method changes an object.

"Change this."

•  An applicative method produces a new object.
"Make me a such and such from this."

In some cases we have an opportunity to choose between the
two.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 16	

Imperative vs. applicative methods in Java

Consider a Java class representing a 2D point:

class Point {
 private int x, y;
}

An imperative method to translate by an x and y displacement:

 public void translate(int dx, int dy) {
 x += dx; y += dy;
 }

An applicative translate:

public Point translate(int dx, int dy) {
 return new Point(x + dx, y + dy);
}

What are the pros and cons?

 CSC	 372	 Spring	 2014,	 Haskell	 Slide	 17	

Imperative vs. applicative methods, continued

Imagine a Line class, whose instances are constructed with
two Points.

What's the following code doing?

 Point end = p.clone();
 end.translate(10,20);
 Line L = new Line(p, end);

How about this code? (using an applicative translate())

 Line L = new Line(p, p.translate(10,20));

Are methods on Java strings imperative or applicative?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 18	

Imperative vs. applicative methods, continued

An expression is a sequence of symbols that can be evaluated
to produce a value. Here's a Java expression:

 i + j * k

If evaluating an expression also causes a value somewhere to
change, we say that expression has a side effect.

Here's a Java expression with a side effect:

 i + j++ * k

Do these two expressions have the same value?

What's the side effect?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 19	

Side effects

Which of these Java expressions have a side effect?

x = 10

p1.translate(10, 20) // Consider both!

"testing".toUpperCase()

L.add("x"), where L is an ArrayList

System.out.println("Hello!")

A machine language side effect: Loading a register might set a
condition code.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 20	

Side effects, continued

Side effects are a hallmark of imperative programing.

Programs written in an imperative style are essentially an
orchestration of side effects.

Can we program without side effects?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 21	

Side effects, continued

The Functional Paradigm

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 22	

One of the cornerstones of the functional paradigm is writing
functions that are like pure mathematical functions, which:

•  Map values from a domain set to unique values in a range

set

•  Can be combined to produce more powerful functions

•  Have no side effects

Ideally, functions are specified with notation that's similar to
what you see in math books—cases and expressions.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 23	

The functional programming paradigm

Other characteristics of the functional paradigm:

•  Values are never changed but lots of new values are

created.

•  Recursion is used in place of iteration.

•  Functions are values. Functions are put into in data
structures, passed to functions, returned from functions,
and lots of temporary functions are created.

Based on the above, how well would Java support functional
programming? How about C?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 24	

Functional programming, continued

Haskell basics

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 25	

Haskell is a pure functional programming language. It has no
imperative features.

Was designed by a committee with the goal of creating a
standard language for research into functional programming.

First version appeared in 1990. Latest version is known as
Haskell 2010.

Is said to be non-strict—it supports lazy evaluation.

It is not object-oriented in any way.

My current opinion: it has a relatively large mental footprint.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 26	

What is Haskell?

Website: haskell.org
 All sorts of resources!

Books: (on Safari, too)
 Learn You a Haskell for Great Good!, by Miran Lipovača
 http://learnyouahaskell.com (I'll call it GG.)

Real World Haskell, by O'Sullivan, Stewart, and Goerzen

 http://realworldhaskell.org (I'll call it RWH.)

Programing in Haskell, by Hutton

 Note: See appendix B for mapping of non-ASCII chars!

Haskell 2010 Report (I'll call it H10.)
 http://haskell.org/definition/haskell2010.pdf

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 27	

Haskell resources

On lectura we can interact with Haskell by running ghci:

$ ghci
GHCi, version 7.4.1: ...more... :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
>

With no arguments, ghci starts a read-eval-print-loop (REPL)—
expressions that we type at the prompt (>) are evaluated and the
result is printed.

Note: the standard prompt is Prelude> but I've got

 :set prompt "> "
in my ~/.ghci file.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 28	

Interacting with Haskell

Let's try some expressions with ghci:

> 3+4
7

> 3 * 4.5
13.5

> (3 > 4) || (5 < 7)
True

> 2 ^ 200
160693804425899027554196209234116260252220299378
2792835301376

> "abc" ++ "xyz"
"abcxyz"

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 29	

Interacting with Haskell, continued

We can use :help to see available commands:
> :help
 Commands available from the prompt:
 <statement> evaluate/run <statement>
 : repeat last command
 :{\n ..lines.. \n:}\n multiline command
 ...lots more...

The command :set +t causes types to be shown:

> :set +t
> 3+4
7
it :: Integer

"::" is read as "has type". The value of the expression is
"bound" to the name it.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 30	

Interacting with Haskell, continued

We can use it in subsequent computations:

> 3+4
7
it :: Integer

> it + it * it
56
it :: Integer

> it /= it
False
it :: Bool

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 31	

Interacting with Haskell, continued

Getting Haskell

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 32	

You can either get Haskell for your machine or use Haskell on
lectura.

To work on your own machine, get a copy of the Haskell
Platform for your operating system from haskell.org.

On OS X, I'm using Haskell Platform 2013.2.0.0 for Mac OS
X, 64 bit from www.haskell.org/platform/mac.html

On Windows, use Haskell Platform 2013.2.0.0 for Windows
from http://www.haskell.org/platform/windows.html

You'll need an editor that can create plain text files. Sublime
Text is very popular.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 33	

Getting Haskell

To work on lectura from a Windows machine, you might login with
PuTTY.

OS X, do ssh YOUR-NETID@lectura.cs.arizona.edu

You might edit Haskell files on lectura with vim, emacs, or nano
(ick!), or use something like gedit on a Linux machine in a CS lab.

Alternatively, you might edit on your machine with something like
Sublime Text and use a synchronization tool (like WinSCP on
Windows) to keep your copy on lectura constantly up to date.

If you go the route of editing on your machine and running on
lectura, let us know if you have trouble figuring out how to do
automatic synchronization—we can help! It's a terrible waste of
time to do a manual copy of any sort in the middle of your edit/run
cycle.

CSC	 337	 Fall	 2013,	 PHP	 Slide	 34	

Using Haskell on lectura

If you Google for "putty", the first hit should be this:

 PuTTY Download Page
• www.chiark.greenend.org.uk/~sgtatham/

putty/download.html

Download putty.exe. It's just an executable—no installer!

CSC	 337	 Fall	 2013,	 PHP	 Slide	 35	

Getting and running PuTTY

Click on putty.exe to run it. In the dialog that opens, fill in
lec.cs.arizona.edu for Host Name and click Open.

CSC	 337	 Fall	 2013,	 PHP	 Slide	 36	

PuTTY, continued

Login to lectura using your UA NetID. Run ghci, and try
some expressions:

Go to http://cs.arizona.edu/computing/services and use
"Reset my forgotten Unix password" if needed.

CSC	 337	 Fall	 2013,	 PHP	 Slide	 37	

ghci on lectura

Functions and function types

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 38	

In Haskell, juxtaposition indicates a function call:

> negate 3
-3
it :: Integer

> even 5
False
it :: Bool

> pred 'C'
'B'
it :: Char

> signum 2
1
it :: Integer

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 39	

Calling functions

Note: These functions and many
more are defined in the Haskell
"Prelude", which is loaded by
default when ghci starts up.

Function call with juxtaposition is left-associative.

signum negate 2 means (signum negate) 2. It's an error:

> signum negate 2
<interactive>:40:1:
 No instance for (Num (a0 -> a0)) arising from a
use of `signum'
...

We add parentheses to call negate 2 first:

> signum (negate 2)
-1
it :: Integer

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 40	

Calling functions, continued

Function call with juxtaposition has higher precedence than any
operator.

> negate 3+4
1
it :: Integer

negate 3 + 4 means (negate 3) + 4. Use parens to force + first:

> negate (3 + 4)
-7
it :: Integer

> signum (negate (3 + 4))
-1
it :: Integer

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 41	

Calling functions, continued

Haskell's Data.Char module has a number of functions for working
with characters. It provides some simple examples of function types.

> :m Data.Char -- loads module

> isLower 'b'
True
it :: Bool

> toUpper 'a'
'A'
it :: Char

> ord 'A'
65
it :: Int

> chr 65
'A'
it :: Char

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 42	

Function types

We can use gchi's :type command to see what the type of a
function is:

> :type isLower
isLower :: Char -> Bool

The type Char -> Bool means that the function takes an
argument of type Char and produces a result of type Bool.

What are the types of toUpper, ord, and chr?

We can use :browse Data.Char to see everything in the
module.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 43	

Function types, continued

Like most languages, Haskell requires that expressions be type-
consistent (or well-typed). Here is an example of an inconsistency:

> :type chr
chr :: Int -> Char

> :type 'x'
'x' :: Char

> chr 'x'
<interactive>:32:5:
 Couldn't match expected type Int with actual type Char
 In the first argument of `chr', namely 'x'

chr requires its argument to be an Int but we gave it a Char. We
can say that chr 'x' is ill-typed.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 44	

Type consistency

State whether each expression is well-typed and if so, its type.

'a'

isUpper

isUpper 'a'

not (isUpper 'a')

not not (isUpper 'a')

toUpper (ord 97)

isUpper (toUpper (chr 'a'))

isUpper (intToDigit 100)

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 45	

Type consistency, continued

'a' :: Char

chr :: Int -> Char

digitToInt :: Char -> Int

intToDigit :: Int -> Char

isUpper :: Char -> Bool

not :: Bool -> Bool

ord :: Char -> Int

toUpper :: Char -> Char

Recall the negate function:

> negate 5
-5
it :: Integer

> negate 5.0
-5.0
it :: Double

What is the type of negate? (Is it both Integer -> Integer
and Double -> Double??)

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 46	

Type consistency, continued

Type classes

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 47	

Bool, Char, and Integer are examples of Haskell types.

Haskell also has type classes. A type class specifies the
operations must be supported on a type in order for that type to
be a member of that type class.

Num is one of the many type classes defined in the Prelude.

:info Num shows that for a type to be a Num, it must support
addition, subtraction, multiplication and four functions:
negate, abs, signNum, and fromInteger. (The Num club!)

There are four types in the Num type class: Int (word-size)
Integer (unlimited size), Float and Double.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 48	

Type classes

Here's the type of negate:

> :type negate
negate :: Num a => a -> a

The type of negate is specified using a type variable, a.

The portion a -> a specifies that negate returns a value
having the same type as its argument.

 "If you give me an Int, I'll give you back an Int."

The portion Num a => is a class constraint. It specifies that
the type a must be in an instance of the type class Num.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 49	

Type classes, continued

What type do integer literals have?
> :type 3
3 :: Num a => a

> :type (-27) -- Note: Parens needed!
(-27) :: Num a => a

Literals are typed with a class constraint of Num, so they can
be used by any function that accepts Num a => a.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 50	

Type classes, continued

Why does negate 3.4 work?

> :type negate
negate :: Num a => a -> a

> :type 3.4
3.4 :: Fractional a => a

> negate 3.4
-3.4

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 51	

Type classes, continued

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 52	

Type classes, continued

Adapted	 from	 hPp://en.wikibooks.org/wiki/Haskell/Classes_and_types	

Haskell type classes form a hierarchy. The Prelude has these:

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 53	

Type classes, continued
Num	

Int,	 Integer,	
Float,	 Double	

Frac)onal	
Float,	
Double	

The arrow from Num to Fractional means that a Fractional can
be used as a Num. (What does that remind you of?)

Given

 negate :: Num a => a -> a
and

 5.0 :: Fractional a => a
then

 negate 5.0 is valid.

Excerpt:

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 54	

Type classes, continued
What's meant by the type of pz?

 pz :: (Bounded a, Fractional b) => a -> b

Would pz 'a' be valid? How about pz 5.5? pz 7?

GG pp. 27-33 has a good description of the Prelude's type classes.

RWH uses the term "typeclasses"—one word!

In essence, negate :: Num a => a -> a describes many
functions:

 negate :: Integer -> Integer
 negate :: Int -> Int
 negate :: Float -> Float
 negate :: Double -> Double
 ...and more...

We can say that negate is a polymorphic function. It handles
values of many forms.

If a function's type has any type variables, it's a polymorphic
function. (not on handout)

How does Java handle this problem? How about C? C++?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 55	

negate is polymorphic

Type checking

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 56	

A fundamental characteristic of a programming language is
whether an expression can be checked for type consistency
without executing the expression.

Static type checking is checking for type consistency without
executing an expression.

A language that primarily or exclusively uses static type
checking is said to be statically typed. (Some say strongly
typed or type-safe but those terms are debatable.)

Static typing allows us to guarantee that type mismatches do
not occur in a body of code.

Is Java statically typed? If so, exclusively or primarily?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 57	

Static type checking

Java is statically typed.

Example:

If a class has a method String f(), we don't need to execute
any code to know that f() * 3 is invalid.

Reasoning:

 (1) f() returns a String
 (2) String * int is not a supported operation

Consider f() + x * 3. When is it valid?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 58	

Static type checking, continued

Recall:
Static type checking is checking for type consistency
without executing an expression.

With dynamic type checking, types are not checked for
consistency until execution time.

Python, Ruby, PHP, and Icon are dynamically typed languages.

Here's an expression in Icon:

 ?["abc", 7] * 2

It randomly selects an element from the list ["abc", 7] and
multiplies it by 2. It either produces 14 or blows up.

Can we write a Java expression that is ill-typed half the time?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 59	

Dynamic type checking

Consider this method:

static Object f() {
 if (Math.random() < 0.5)
 return "abc";
 else
 return new Integer(7);
 }

Given int x, does x = (Integer)f() + 5 pass a static type
check?

Does this affect our claim that Java is statically typed?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 60	

Java revisited

Java is statically typed but casts introduce the possibility of a
type error during execution. However, type errors are detected.

C is statically typed but has casts that allow type errors during
execution that are never detected.

Ruby, Python, and Icon have no static type checking
whatsoever, but type errors in execution are always detected.

An example of a typing-related trade-off in execution time:
•  C spends zero time during execution checking types.
•  Java checks types only in certain cases.
•  Languages with dynamic typing check types on every

operation, at least conceptually.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 61	

Variety in type checking

Haskell is statically typed and by design allows no possibility
of type errors during execution.

This decision, an aspect of Haskell's philosophy, permeates the
language.

Good news:
•  An entire class of errors is eliminated, yet with zero

execution-time overhead.

Bad news:
•  Supporting it substantially increases the mental footprint.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 62	

Variety in type checking, continued

More on functions

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 63	

A function can be defined in the REPL by using let. Example:

> let double x = x * 2
double :: Num a => a -> a

> double 5
10
it :: Integer

> double 2.7
5.4
it :: Double

> double (double (double 1111111111111))
8888888888888
it :: Integer

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 64	

Writing simple functions

More examples:

> let neg x = -x
neg :: Num a => a -> a

> let isPositive x = x > 0
isPositive :: (Num a, Ord a) => a -> Bool

> let toCelsius temp = (temp - 32) * 5/9
toCelsius :: Fractional a => a -> a

The determination of types based on the operations performed
is known as type inferencing. (More on it later!)

Note: function names must begin with a lowercase letter or _.

 CSC	 372	 Spring	 2014,	 Haskell	 Slide	 65	

Simple functions, continued

We can use :: type to constrain the type inferred for a function:

> let neg x = -x :: Integer
neg :: Integer -> Integer

> let isPositive x = x > (0::Integer)
isPositive :: Integer -> Bool

> let toCelsius temp = (temp - 32) * 5/(9::Double)
toCelsius :: Double -> Double

We'll use :: type to simplify some following examples.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 66	

Simple functions, continued

We can put function definitions in a file. When we do, we
leave off the let!

I've got four function definitions in the file simple.hs, as
shown with the UNIX cat command:

% cat simple.hs
double x = x * 2 :: Integer -- Note: no "let"!
neg x = -x :: Integer
isPositive x = x > (0::Integer)
toCelsius temp = (temp - 32) * 5/(9::Double)

The .hs suffix is required.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 67	

Sidebar: loading functions from a file

Assuming simple.hs is in the current directory, we can load it
with :load and see what we got with :browse.

% ghci
> :load simple
[1 of 1] Compiling Main (simple.hs, interpreted)
Ok, modules loaded: Main.

> :browse
double :: Integer -> Integer
neg :: Integer -> Integer
isPositive :: Integer -> Bool
toCelsius :: Double -> Double

Note the colon in :load, and that the suffix .hs is assumed.

We can use a path, like :load ~/372/hs/simple, too.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 68	

Sidebar, continued

Here's a function that produces the sum of its two arguments:
 > let add x y = x + y :: Integer

Here's how we call it: (no commas or parentheses!)

> add 3 5
8

Here is its type:

> :type add
add :: Integer -> Integer -> Integer

The operator -> is right-associative, so the above means this:

 add :: Integer -> (Integer -> Integer)

But what does that mean?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 69	

Functions with multiple arguments

Recall our negate function:
> let neg x = -x :: Integer
neg :: Integer -> Integer

Here's add again, with parentheses to reflect precedence:

> let add x y = x + y :: Integer
add :: Integer -> (Integer -> Integer)

add is a function that takes an integer as an argument and
produces a function as its result!

add 3 5 means (add 3) 5

Call add with the value 3, producing a nameless function.
Call that nameless function with the value 5.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 70	

Multiple arguments, continued

When we give a function fewer arguments than it requires, the
result is called a partial application.

We can bind a partial application to a name like this:

> let plusThree = add 3
plusThree :: Integer -> Integer

The name plusThree now references a function that takes an
Integer and returns an Integer.

What will plusThree 5 produce?

> plusThree 5
8
it :: Integer

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 71	

Partial application

At hand:
> let add x y = x + y :: Integer
add :: Integer -> (Integer -> Integer) -- parens
added

> let plusThree = add 3
plusThree :: Integer -> Integer

Analogy: plusThree is like a calculator where you've clicked
3, then +, and handed it to somebody.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 72	

Partial application, continued

At hand:
> let add x y = x + y :: Integer
add :: Integer -> (Integer -> Integer) -- parens added

Another:

> let add3 x y z = x + y + z :: Integer
add3 :: Integer -> (Integer -> (Integer -> Integer))

These functions are said to be defined in curried form, which allows
partial application of arguments.

The idea of a partially applicable function was first described by
Moses Schönfinkel. It was further developed by Haskell B. Curry.
Both worked wtih David Hilbert in the 1920s.

What prior use have you made of partially applied functions?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 73	

Partial application, continued

Key points:

•  A function with a type like Integer -> Char -> Char

takes two arguments, an Integer and a Char. It produces
a Char.

•  A function call like
 f x y z
means
 ((f x) y) z
and (conceptually) causes two temporary, unnamed
functions to be created.

• Calling a function with fewer arguments that it requires

creates a partial application.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 74	

Some key points

It is common practice to specify the type of a function along
with its definition in a file.

What's the ramification of the difference in these two type
specifications?

add1::Num a => a -> a -> a
add1 x y = x + y

add2::Integer -> Integer -> Integer
add2 x y = x + y

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 75	

Specifying a function's type

Haskell operators are simply functions that can be invoked
with an infix form.

We can use :info to find out about an operator.

> :info (^)
(^) :: (Num a, Integral b) => a -> b -> a
infixr 8 ^

(Num a, Integral b) => a -> b -> a shows that the first
operand must be a number and the second must be an integer.

infixr 8 shows that it is right-associative, with priority 8.

Explore ==, >, +, *,||, ^^ and **.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 76	

Function/operator equivalence

To use an operator as a function, enclose it in parentheses:
> (+) 3 4
7

We can use a function as an operator by enclosing it in
backquotes:

> 3 `add` 4
7

> 11 `rem` 3
2

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 77	

Function/operator equivalence, continued

Haskell lets us define custom operators.

Example: (load from a file)

(+%) x percentage = x + x * percentage / 100
infixl 6 +%

Usage:

> 100 +% 1
101.0
> 12 +% 25
15.0

The characters ! # $ % & * + . / < = > ? @ \ ^ | - ~ : and
non-ASCII Unicode symbols can be used in custom operators.

Modules often define custom operators.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 78	

Function/operator equivalence, continued

Precedence Left associative
operators

Non associative
operators

Right associative
operators

9 !! .

8 ^, ^^, **

7 *, /, `div`, `mod`,
`rem`, `quot`

6 +, -

5 :, ++

4 ==, /=, <, <=,
>, >=, `elem`,
`notElem`

3 &&

2 ||

1 >>, >>=

0 $, $!, `seq`

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 79	

Reference: Operators from the Prelude

Note: From page 51 in Haskell 2010 report

The general form of a function definition (for now):

 let name arg1 arg2 ... argN = expression

Problem: Define a function min3 that computes the minimum
of three values. The Prelude has a min function.

> min3 5 2 10
2

> let min3 a b c = min a (min b c)
min3 :: Ord a => a -> a -> a -> a

Problem: Define a function eq3 that returns True if its three
arguments are equal, False otherwise.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 80	

More functions

Recall this characteristic of functional programming:
"Ideally, functions are specified with notation that's similar
to what you see in math books—cases and expressions."

This function definition uses guards to specify three cases:
sign x | x < 0 = -1
 | x == 0 = 0
 | otherwise = 1

Notes:
• No let—this definition is loaded from a file with :load
•  sign x appears just once. First guard might be on next line.
•  The guard appears between | and =
• What is otherwise?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 81	

Guards

Problem: Using guards, define a function smaller, like min:
> smaller 7 10
7

> smaller 'z' 'a'
'a'

Solution:

smaller x y
 | x <= y = x
 | otherwise = y

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 82	

Guards, continued

Problem: Write a function weather that classifies a given
temperature as hot if 80+, else nice if 70+, and cold otherwise.

> weather 95
"Hot!"
> weather 32
"Cold!"
> weather 75
"Nice"

A solution that takes advantage of the fact that cases are tried
in turn:

weather temp | temp >= 80 = "Hot!"
 | temp >= 70 = "Nice"
 | otherwise = "Cold!"

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 83	

Guards, continued

Here's an example of Haskell's if-else:

> if 1 < 2 then 3 else 4
3

How does this compare to the if-else in Java?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 84	

Haskell's if-else

Java's if-else is a statement. It cannot be used where a value is
required.

Java's conditional operator is the analog to Haskell's if-else.

 1 < 2 ? 3 : 4 (Java conditional, a.k.a ternary operator)

It's an expression that can be used when a value is required.

Java's if-else statement has an else-less form but Haskell's if-
else does not. Why doesn't Haskell allow it?

Java's if-else and conditional operator provide a good example
of a statement vs. an expression.

Pythoners: What's the if-else situation in Python?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 85	

Sidebar: Java's if-else

What's the type of these expressions?

> :type if 1 < 2 then 3 else 4
if 1 < 2 then 3 else 4 :: Num a => a

> :type if 1 < 2 then 3 else 4.0
if 1 < 2 then 3 else 4.0 :: Fractional a => a

> if 1 < 2 then 3 else '4'
 <interactive>:12:15:
 No instance for (Num Char) arising from the literal `3'

> if 1 < 2 then 3

 <interactive>:13:16:
 parse error (possibly incorrect indentation or

mismatched brackets)

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 86	

Haskell's if-else, continued

Which of the versions of sign below is better?

sign x
 | x < 0 = -1
 | x == 0 = 0
 | otherwise = 1

sign x = if x < 0 then -1 else if x == 0 then 0 else 1

We'll later see that patterns add a third possibility for
expressing cases.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 87	

Guards vs. if-else

A recursive function is a function that calls itself either directly or
indirectly.

Computing the factorial of a integer (N!) is a classic example of
recursion. Write it in Haskell (and don't peek below!) What is its
type?

factorial n
 | n == 0 = 1 -- Base case, 0! is 1
 | otherwise = n * factorial (n - 1)

> :type factorial
factorial :: (Eq a, Num a) => a -> a

> factorial 40
815915283247897734345611269596115894272000000000

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 88	

Recursion

One way to manually trace through a recursive computation is
to underline a call, then rewrite the call with a textual
expansion:

factorial 4

4 * factorial 3

4 * 3 * factorial 2

4 * 3 * 2 * factorial 1

4 * 3 * 2 * 1 * factorial 0

4 * 3 * 2 * 1 * 1

 CSC	 372	 Spring	 2014,	 Haskell	 Slide	 89	

Recursion, continued

factorial n
 | n == 0 = 1
 | otherwise = n * factorial (n – 1)

Consider repeatedly dividing a number until the quotient is 1:
> 28 `quot` 3 (Note backquotes to use quot as infix op.)
9
> it `quot` 3 (Remember that it is previous result.)
3
> it `quot` 3
1

Problem: Write a recursive function numDivs divisor x that
computes the number of times x must be divided by divisor to
reach a quotient of 1:

> numDivs 3 28
3
> numDivs 2 7
2

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 90	

Recursion, continued

A solution:
numDivs divisor x
 | (x `quot` divisor) < 1 = 0
 | otherwise =

 1 + numDivs divisor (x `quot` divisor)

What is its type?

 numDivs :: (Integral a, Num a1) => a -> a -> a1

Will numDivs 2 3.4 work?

> numDivs 2 3.4
<interactive>:93:1:
 No instance for (Integral a0) arising from a use of
`numDivs'

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 91	

Recursion, continued

Let's compute two partial applications of numDivs, using let to
bind them to identifiers:

> let f = numDivs 2
> let g = numDivs 10
> f 9
3
> g 1001
3

What are more descriptive names than f and g?

> let floor_log2 = numDivs 2
> floor_log2 1000
9

> let floor_log10 = numDivs 10
> floor_log10 1000
3

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 92	

Sidebar: Fun with partial applications

Lists

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 93	

In Haskell, a list is a sequence of values of the same type.

Here's one way to make a list. Note the type of it for each.

> [7, 3, 8]
[7,3,8]
it :: [Integer]

> [1.3, 10, 4, 9.7]
[1.3,10.0,4.0,9.7]
it :: [Double]

> ['x', 10]
<interactive>:20:7:
 No instance for (Num Char) arising from the literal
`10'

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 94	

List basics

The function length returns the number of elements in a list:
> length [3,4,5]
3

> length []
0

What does the type of length tell us?

> :type length
length :: [a] -> Int

With no class constraint specified, [a] indicates that length
operates on lists containing elements of any type.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 95	

List basics, continued

The head function returns the first element of a list.
> head [3,4,5]
3

What's the type of head?

> :type head
head :: [a] -> a

Here's what tail does. How would you describe it?

> tail [3,4,5]
[4,5]

What's the type of tail?

> :type tail
tail :: [a] -> [a]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 96	

List basics, continued

The ++ operator concatenates two lists, producing a new list.

> [3,4] ++ [10,20,30]
[3,4,10,20,30]

> it ++ it
[3,4,10,20,30,3,4,10,20,30]

> let f = (++) [1,2,3]
> f [4,5]
[1,2,3,4,5]

> f [4,5] ++ reverse (f [4,5])
[1,2,3,4,5,5,4,3,2,1]

What are the types of ++ and reverse?
 CSC	 372	 Spring	 2014,	 Haskell	 Slide	 97	

List basics, continued

A range of values can be specified with a dot-dot notation:
> [1..20]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
it :: [Integer]

> [-5,-3..20]
[-5,-3,-1,1,3,5,7,9,11,13,15,17,19]

> length [-1000..1000]
2001

> [10..5]
[]
it :: [Integer]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 98	

List basics, continued

The !! operator produces a list's Nth element, zero-based:

> :type (!!)
(!!) :: [a] -> Int -> a

> [10,20..100] !! 3
40

Sadly, we can't use a negative value to index from the right:

> [10,20..100] !! (-2)
*** Exception: Prelude.(!!): negative index

Should that be allowed?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 99	

List basics, continued

We can make an infinite list in Haskell! Here's one way:
> [1..]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,2
1,22,23,24,25,26,27,28,29,30,31,32,^C

Any ideas on how to make use of an infinite list?

What does the following let create?

> let nthOdd = (!!) [1,3..]
nthOdd :: Int -> Integer

A function that produces the Nth odd number, zero-based.

Yes, we could say let nthOdd n = (n*2)+1 but that wouldn't
be nearly as much fun! (This is functional programming!)

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 100	

Infinite lists

Consider the following let. Why does it complete?
> let fives=[5,10..]
fives :: [Integer]

Haskell uses lazy evaluation. It only computes as much of a
value as it needs to.

The function take produces the first N elements of a list

> take 5 fives
[5,10,15,20,25]

Haskell computes only enough elements of fives to satisfy
take 5.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 101	

Infinite lists, continued

Here's an expression that doesn't complete:
> length fives
...when tired of waiting...^C Interrupted.

But, we can bind length fives to a name:

> let numFives = length fives
numFives :: Int

That completes because Haskell hasn't yet needed to compute a
value for length fives.

We can hang ourselves again by asking Haskell to print the
value of numFives:

> numFives
...after a while...^CInterrupted.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 102	

Lazy evaluation

let capitals =
 list of state capitals, ordered by state's admission to the union

Evaluate:

 capitals !! 47

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 103	

Lazy state capitals

Imagine that capitals has this binding:
 let capitals =
 [..., capital "AZ", capital "AK", capital "HI"]

Suspend disbelief and further imagine that the capital function gets
its result by scraping it from the Wikipedia page for the state.

Evaluating capitals !! 47 requires only capital "AZ" to be called!

What does this look like in Java? What's the trade-off?

 String cap47th = capitals()[47];

 String cap47th = getCapital(47);

How does Haskell avoid the trade-off?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 104	

Lazy state capitals, continued

Haskell lists are values and can be compared as values:
> [3,4] == [1+2, 2*2]
True

> [3] ++ [] ++ [4] == [3,4]
True

> tail (tail [3,4,5,6]) == [last [4,5]] ++ [6]
True

Conceptually, how many lists are created by each of the above?

A programmer using a functional language writes complex
expression using lists (and more!) as freely as a Java
programmer might write f(x) * a == g(a,b) + c.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 105	

Comparing lists

Lists are compared lexicographically: Corresponding elements
are compared until an inequality is found. The inequality
determines the result of the comparison.

Example:

> [1,2,3] < [1,2,4]
True

Why: The first two elements are equal, and 3 < 4.

More examples:

> [1,2,3] < [1,1,1,1]
False
> [1,2,3] > [1,2]
True
> [1..] < [1,3..] -- Comparing infinite lists!
True

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 106	

Comparing lists, continued

We can make lists of lists.
> let x = [[1], [2,3,4], [5,6]]
x :: [[Integer]]

Note the type: x is a list of Integer lists.

length counts elements at the top level.

> length x
3

Recall that length :: [a] -> Int Given that, what's the type of
a for length x?

What's the value of length (x ++ x ++ [3])?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 107	

Lists of lists

> let x = [[1], [2,3,4], [5,6]]

> head x
[1]

 > tail x
[[2,3,4],[5,6]]

> x !! 1 !! 2
4

> let y = [[1..],[10,20..]] ++ [[2,3]]
> take 5 (head (tail y))
[10,20,30,40,50]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 108	

Lists of lists, continued

Strings in Haskell are simply lists of characters.

> "testing"
"testing"
it :: [Char]

> ['a'..'z']
"abcdefghijklmnopqrstuvwxyz"
it :: [Char]

> ["just", "a", "test"]
["just","a","test"]
it :: [[Char]]

What's the beauty of this?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 109	

Strings are [Char]

All list functions work on strings, too!

> let asciiLets = ['A'..'Z'] ++ ['a'..'z']
asciiLets :: [Char]

> length asciiLets
52

> reverse (drop 26 asciiLets)
"zyxwvutsrqponmlkjihgfedcba"

> :type elem
elem :: Eq a => a -> [a] -> Bool

> let isAsciiLet c = c `elem` asciiLets
isAsciiLet :: Char -> Bool

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 110	

Strings, continued

The Prelude defines String as [Char].
> :info String
type String = [Char]

A number of functions operate on Strings. Here are two:
> :type words
words :: String -> [String]

> :type putStr
putStr :: String -> IO () -- an "action" (more later!)

What's the following doing?

> putStr (unwords (tail (words "Just some words!")))
some words!it :: ()

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 111	

Strings, continued

What's the following expression computing?
> length [(Data.Char.chr 0)..]
1114112

Another way:

> length ([minBound..maxBound]::[Char])
1114112

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 112	

Strings, continued Note: next set of slides

Like most functional languages, Haskell's lists are "cons" lists.

A "cons" list can viewed as having two parts:

 head: a value
 tail: a list of values

The : (cons) operator creates a list from a value and a list of
values that same type (or an empty list).

> 5 : [10, 20,30]
[5,10,20,30]

What's the type of the cons operator?

> :type (:)
(:) :: a -> [a] -> [a]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 113	

"cons" lists

The cons (:) operation forms a new list from a value and a list.

> let a = 5
> let b = [10,20,30]
> let c = a:b
[5,10,20,30]

> head c
5

> tail c
[10,20,30]

> let d = tail (tail c)
> d
[20,30]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 114	

"cons" lists, continued

10

20

30

a
5

b

5

c

d

A cons node can be referenced by multiple cons nodes.

> let a = 5
> let b = [10,20,30]
> let c = a:b
> let d = tail (tail c)
[20,30]

> let e=2:d
[2,20,30]

> let f=1:c
[1,5,10,20,30]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 115	

"cons" lists, continued

10

20

30

a
5

b

5

c

d

2

e

1

f

What are the values of the following expressions?
> 1:[2,3]
[1,2,3]

> 1:2
...error...

> chr 97:chr 98:chr 99:[]
"abc"

> []:[]
[[]]

> [1,2]:[]
[[1,2]]

> []:[1]
...error...

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 116	

"cons" lists, continued

It's important to understand that tail does not create a new list.
Instead it simply returns an existing cons node.

> let a = [5,10,20,30]

> let h = head a
> h
5

> let t = tail a
> t
[10,20,30]

> let t2 = tail (tail t)
> t2
[30]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 117	

head and tail visually

10

20

30

5

a

t h
5

t2

What operations are likely fast with cons lists?
 Get the head of a list
 Get the tail of a list
 Making a new list from a head and tail

What operations are likely slower?

 Get Nth element of a list
 Get length of a list

With cons lists, what does list concatenation involve?

> let m=[1..10000000]
> length (m++[0])
10000001

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 118	

A little on performance

The head of a list is a one-element list.
 False, unless...
 ...it's the head of a list of lists that starts with a one-element list

The tail of a list is a list.
 True

The tail of an empty list is an empty list.
 It's an error!

length (tail (tail x)) == (length x) – 2
 True

A cons list is essentially a singly-linked list.
 True

A doubly-linked list might help performance in some cases.
 Hmm...what's the backlink for a multiply-referenced node?

Changing an element in a list might affect the value of many lists.
Trick question! We can't change a list element. We can only
"cons-up" new lists and reference existing lists.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 119	

True or false?

Here's a function whose value is a list with a range of integers:
> let mToN m n = [m..n]

> mToN 10 15
[10,11,12,13,14,15]

Problem: Write a recursive mToN that uses the cons operator
to build up its result.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 120	

mToN

One solution:
mToN m n
 | m > n = []
 | otherwise = m : mToN (m+1) n

Evaluation of mToN 1 3 via substitution and rewriting:

mToN 1 3
1 : mToN (1+1) 3
1 : mToN 2 3
1 : 2 : mToN (2+1) 3
1 : 2 : mToN 3 3
1 : 2 : 3 : mToN (3+1) 3
1 : 2 : 3 : mToN 4 3
1 : 2 : 3 : []

 CSC	 372	 Spring	 2014,	 Haskell	 Slide	 121	

mToN, continued

Let's do :set +s to get timing and memory information and try
making some lists. Try these:

mToN 1 10
let f = mToN
mToN 8 10
f 1 1000
let f = mToN 1
f 1000
let x = f 1000000
length x
take 5 (f 1000000)

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 122	

mToN, continued

In 1964 Peter Landin coined the term "syntactic sugar".

A language construct that makes something easier to express
but doesn't add a new capability is called syntactic sugar. It
simply makes the language "sweeter" for human use.

Two examples from C:

"abc" is equivalent to a char array initialized with
{'a', 'b', 'c', '\0'}

a[i] is equivalent to *(a + i)

What's an example of syntactic sugar in Java?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 123	

Syntactic sugar

In Haskell a list like [5, 2, 7] can be expressed as 5:2:7:[].

Is the square-bracket list literal notation syntactic sugar?

What about [1..], [1,3..], ['a'..'z']?

 The Enum type class has enumFrom, enumFromTo, etc.

"Syntactic sugar causes cancer of the semicolon."

 —Alan J. Perlis.

Another Perlis quote:

"A language that doesn't affect the way you think about
programming is not worth knowing."

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 124	

Syntactic sugar, continued

What does the following expression mean?
let x = 1:x

One reading: x is a list whose head is 1 and tail is x.

Step by step evaluation with rewriting:

x
1:x
1:1:x
1:1:1:x
...

What are the first 10 elements of x?

> take 10 x
[1,1,1,1,1,1,1,1,1,1]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 125	

Sidebar: An interesting expression

Problem: write a function f that generates the integers starting
at a given value.

> take 10 (f 1)
[1,2,3,4,5,6,7,8,9,10]

> take 10 (f (-100))
[-100,-99,-98,-97,-96,-95,-94,-93,-92,-91]

One solution:

 let f n = n:f (n+1)

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 126	

An interesting expression, continued

Here's a peek at Lisp's lists, via ESC-x ielm in Emacs:

ELISP> (setq x (cons 1 '(10 "twenty" 30.0)))
(1 10 "twenty" 30.0)

ELISP> (car x) ; contents of address part of register
1

ELISP> (cdr x) ; contents of data part of register
 ; —say "could-er"

(10 "twenty" 30.0)

ELISP> (caddr x) ; Speculate: What does caddr mean?
"twenty"

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 127	

Sidebar: Lists in Lisp

Here's a function that computes the sum of a list's elements:
sumElems list
 | null list = 0
 | otherwise = head list + sumElems (tail list)

Usage:

> :type sumElems
sumElems :: Num a => [a] -> a

> sumElems [1..100]
5050

It works but it's not idiomatic Haskell. We should use patterns
instead!

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 128	

Example: Summation

Patterns

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 129	

In Haskell we can use patterns to assign names to elements of
data structures like lists.

> let [x,y] = [10,20]
> x
10
> y
20

> let [inner] = [[2,3]]
> inner
[2,3]

Speculate: Given a list like [10,20,30] how could we use a
pattern to assign names to the head and tail of the list?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 130	

Patterns

We can use the cons operator in a pattern.
> let h:t = [10,20,30]

> h
10

> t
[20,30]

What values get bound by the following pattern?

> let a:b:c:d = [10,20,30]
> [c,b,a]
[30,20,10]

> d
[]
 CSC	 372	 Spring	 2014,	 Haskell	 Slide	 131	

Patterns, continued

If some part of a structure is not of interest, we indicate that
with an underscore, known as the wildcard pattern.

> let _:(a:[b]):c = [[1],[2,3],[4]]
> a
2
> b
3
> c
[[4]]

No binding is done for the wildcard pattern.

This mechanism is completely general—patterns can be
arbitrarily complex.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 132	

Patterns, continued

A name can only appear once in a pattern. This is invalid:
> let a:a:[] = [3,3]
<interactive>:25:5:
 Conflicting definitions for `a'

When using let as we are here, a failed pattern isn't manifested
until we try to see the value that was bound.

> let a:b:[] = [1]
> a
*** Exception: <interactive>:26:5-16: Irrefutable
pattern failed for pattern a : b : []

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 133	

Patterns, continued

Recall our non-idiomatic sumElems:
sumElems list
 | null list = 0
 | otherwise = head list + sumElems (tail list)

Here is an idiomatic version, using patterns:

sumElems [] = 0
sumElems (h:t) = h + sumElems t

Note that sumElems appears on both lines and that there are
no guards.

The parentheses in (h:t) are required!!

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 134	

Patterns in function definitions

Here's a buggy version of sumElems:
buggySum [x] = x
buggySum (h:t) = h + buggySum t

What's the bug?

> buggySum [1..100]
5050
> buggySum []
*** Exception: slides.hs:(62,1)-(63,31): Non-exhaustive
patterns in function buggySum

If we use ghci -Wall, we'll get a warning when :loading:

slides.hs:62:1: Warning:
 Pattern match(es) are non-exhaustive
 In an equation for `buggySum': Patterns not matched: []

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 135	

Patterns in functions, continued

Recursive functions on lists

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 136	

Problem: Write len x, which returns the length of list x.
> len []
0

> len "testing"
7

Solution:
len [] = 0
len (_:t) = 1 + len t -- since head isn't needed, use _

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 137	

Simple recursive list processing functions

Problem: Write odds x, which returns a list having only the
odd numbers in the list x.

> odds [1..10]
[1,3,5,7,9]

 > take 10 (odds [1,4..])
[1,7,13,19,25,31,37,43,49,55]

Solution:

odds [] = []
odds (h:t)
 | odd h = h:odds t
 | otherwise = odds t

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 138	

Simple list functions, continued

Problem: write isElem x vals, like elem in the Prelude.
> isElem 5 [4,3,7]
False

> isElem 'n' "Bingo!"
True

> "quiz" `isElem` words "No quiz today!"
True

Solution:
isElem _ [] = False
isElem x (h:t)
 | x == h = True
 | otherwise = x `isElem` t

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 139	

Simple list functions, continued

Problem: write a function that returns a list's maximum value.
> maxVal "maximum"
'x'

> maxVal [3,7,2]
7

> maxVal (words "i luv this stuff")
"this"

Solution:
maxVal [x] = x
maxVal (x1:x2:xs)
 | x1 >= x2 = maxVal (x1:xs)
 | otherwise = maxVal (x2:xs)
maxVal [] = undefined -- added after copies

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 140	

Simple list functions, continued

C programmers: Write strlen in C in a functional style. Do
strcpy, strcmp, and strchr, too!

Python programmers: In a functional style write size(x),
which returns the number of elements in the string or list x.
Restriction: You may not use type().

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 141	

Sidebar: strlen in C

Tuples

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 142	

A Haskell tuple is an ordered aggregation of two or more
values of possibly differing types.

> (1, "two", 3.0)
(1,"two",3.0)
it :: (Integer, [Char], Double)

> (3 < 4, it)
(True,(1,"two",3.0))
it :: (Bool, (Integer, [Char], Double))

What's something we can represent with a tuple that we can't
represent with a list?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 143	

Tuples

A function can return a tuple:
> let pair x y = (x,y)

What's the type of pair?

pair :: t -> t1 -> (t, t1)

The Prelude has two functions that operate on 2-tuples:
> let p = pair 30 "forty"
p :: (Integer, [Char])

> fst p
30

> snd p
"forty"

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 144	

Tuples, continued

Recall that patterns used to bind names to list elements have
the same syntax as expressions to create lists. Patterns for
tuples are like that, too.

Problem: Write middle, to extract a 3-tuple's second element.

> middle ("372", "BIOW 301", "Mitchell")
"BIOW 301"

> middle (1, [2], True)
[2]

Solution:

 > let middle (_, x, _) = x -- What's the type of middle?
 middle :: (t, t1, t2) -> t1

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 145	

Tuples, continued

Here's the type of zip from the Prelude:
 zip :: [a] -> [b] -> [(a, b)]

Speculate: What do you think zip does?

> zip ["one","two","three"] [10,20,30]
[("one",10),("two",20),("three",30)]

> zip ['a'..'z'] [1..]
[('a',1),('b',2),('c',3),('d',4),('e',5),('f',6),('g',7),('h',8),('i',
9),('j',10),...lots more... ('x',24),('y',25),('z',26)]

What's especially interesting about the second example?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 146	

Tuples, continued

Problem: Write elemPos, which returns the zero-based
position of a value in a list, or -1 if not found.

> elemPos 'm' ['a'..'z']
12

Hint: Have a helper function do most of the work.

Solution:

elemPos x vals = elemPos' x (zip vals [0..])

elemPos' _ [] = -1
elemPos' x ((val,pos):vps)
 | x == val = pos
 | otherwise = elemPos' x vps

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 147	

Tuples, continued

Consider these two functions:
> let add_c x y = x + y -- _c for curried arguments
add_c :: Num a => a -> a -> a

> let add_t (x,y) = x + y -- _t for tuple argument
add_t :: Num a => (a, a) -> a

Usage:
> add_c 3 4
7

> add_t (3,4)
7

Which is the better way to define such a function, add_c or add_t?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 148	

Tuples, continued

:info Eq shows many lines like this:
...
instance (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e)
instance (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d)
instance (Eq a, Eq b, Eq c) => Eq (a, b, c)
instance (Eq a, Eq b) => Eq (a, b)

We haven't talked about instance declarations but let's speculate:
What's being specified by the above?

instance (Eq a, Eq b, Eq c) => Eq (a, b, c)

If values of each of the three types a, b, and c can be tested for
equality then 3-tuples of type (a, b, c) can be tested for equality.

The Ord and Bounded type classes have similar instance
declarations.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 149	

The Eq type class and tuples

Type-wise, lists are homogeneous but tuples are heterogeneous.

We can write a function that handles a list of any length but a
function that operates on a tuple specifies the arity of that tuple.

Example: we can't write an analog for head, to return the first
element of any an arbitrary tuple.

Even if values are homogeneous, using a tuple lets static type-
checking ensure that an exact number of values is being aggregated.

Example: A 3D point could be represented with a 3-element list
but using a 3-tuple guarantees points have three coordinates.

If there were Head First Haskell it would no doubt have an
interview with List and Tuple, each arguing their own merit.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 150	

Lists vs. tuples

More on
patterns and functions

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 151	

Earlier in the slides the general form of a function definition was
shown as this: name arg1 arg2 ... argN = expression

This is more accurate:

 name pattern1 pattern2 ... patternN
 guard1 = expression1
 ...
 guardN = expression N

For a given name, any number of declarations like the above may
be specified. The set of declarations for a given name is the binding
for that name. (See 4.4.3 in H10 for formal details.)

If values in a call match the pattern(s) for a declaration and the
guard is true, the corresponding expression is evaluated. (Note that
currying muddies the meaning of "a call" but we'll stay clear of that
tarpit!)

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 152	

Function bindings, refined

Literal values can be part or all of a pattern. Example:
f 1 = 10
f 2 = 20
f n = n

Usage:
> f 1
10

> f 3
3

Patterns are tried in the order specified.

Here's factorial with literals in patterns instead of guards:
factorial 0 = 1
factorial n = n * factorial (n - 1)

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 153	

Literals in patterns

For contrast, with guards:
f n
 | n == 1 = 10
 | n == 2 = 20
 | otherwise = n

not is a function:
> :type not
not :: Bool -> Bool

> not True
False

Problem: Using literals in patterns, define not.

Solution:

not True = False
not _ = True -- Using wildcard avoids comparison

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 154	

Literals in patterns, continued

A pattern can be:

• A literal value such as 1, 'x', or True
• An identifier (bound to value if there's a match)
• An underscore (the wildcard pattern)
• A tuple composed of patterns
• A list of patterns in square brackets (fixed size list)
• A list of patterns constructed with : operators
• Other things we haven't seen yet

Note the recursion.

Patterns can be arbitrarily complicated.

3.17.1 in H10 shows the full syntax for patterns.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 155	

Pattern construction

Intermediate values and/or helper functions can be defined using the
optional where clause for a function.

Here's an example to show the syntax; the computation is not
meaningful.

f x
 | g x < 0 = g a + g b
 | a > b = g b
 | otherwise = g a * g b
 where {
 a = x * 5;
 b = a * 2 + x;
 g t = log t + a
 }

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 156	

The where clause for functions

The names a and b are bound to
expressions; g is a function binding.

The bindings in the where clause
are done first, then the guards are
evaluated in turn.

Like variables defined in a method
or block in Java, a, b, and g are not
visible outside the declaration.

Imagine a function that counts occurrences of even and odd
numbers in a list.

> countEO [3,4,5]
(1,2)

Code:

countEO [] = (0,0)
countEO (x:xs)
 | odd x = (evens, odds+1)
 | otherwise = (evens+1, odds)
 where {
 (evens, odds) = countEO xs
 }

Would it be awkward to write it without using where? (Try it!)

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 157	

where, continued

Imagine a function that returns every Nth value in a list:
> everyNth 2 [10,20,30,40,50]
[20,40]
> everyNth 3 ['a'..'z']
"cfilorux"

Can we write this without a helper function?

We could use zip to pair elements with positions to know that
30 is the third element, for example.
> let everyNth n xs = helper n (zip xs [1..])

 [(10,1),(20,2),(30,3),(40,4),(50,5)]

To learn a different technique, let's not use zip.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 158	

where, continued

Let's write a version of everyNth that has an extra parameter: the
one-based position of the head of the list:

everyNthWithPos n (x:xs) pos
 | pos `rem` n == 0 = x : everyNthWithPos n xs (pos+1)
 | otherwise = everyNthWithPos n xs (pos+1)
everyNthWithPos _ [] pos = []

We then write everyNth:

 everyNth n xs = everyNthWithPos n xs 1

everyNth 2 [10,20,30,40,50] would lead to these calls:

 everyNthWithPos 2 [10,20,30,40,50] 1
 everyNthWithPos 2 [20,30,40,50] 2 -- 2 rem 2 == 0
 everyNthWithPos 2 [30,40,50] 3
 everyNthWithPos 2 [40,50] 4 -- 4 rem 2 == 0
 everyNthWithPos 2 [50] 5

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 159	

where, continued

Let's rewrite using where to conceal everyNthWithPos:

everyNth n xs = everyNthWithPos n xs 1
 where {
 everyNthWithPos _ [] pos = [];
 everyNthWithPos n (x:xs) pos
 | pos `rem` n == 0 = x : everyNthWithPos n xs (pos+1)
 | otherwise = everyNthWithPos n xs (pos+1)
 }

Just like a Java private method, everyNth can't be accessed outside
the body of everyNthWithPos.

The code works, but it's repetitious! How can we improve it?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 160	

where, continued

everyNth n xs = everyNthWithPos n xs 1
 where {
 everyNthWithPos _ [] pos = [];
 everyNthWithPos n (x:xs) pos
 | pos `rem` n == 0 = x : everyNthWithPos n xs (pos+1)
 | otherwise = everyNthWithPos n xs (pos+1) }

Let's use another where to bind the recursive call to rest.

everyNth n xs = everyNthWithPos n xs 1
 where {
 everyNthWithPos _ [] pos = [];
 everyNthWithPos n (x:xs) pos
 | pos `rem` n == 0 = x : rest
 | otherwise = rest
 where { rest = everyNthWithPos n xs (pos+1) }
 }

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 161	

where, continued

A Haskell source file is a series of declarations. Here's a file with
two declarations:

% cat indent1.hs
add::Int->Int->Int
add x y = x + y

A declaration can be continued across multiple lines by indenting
lines more than the first line of the declaration. These weaving
declarations are poor style but are valid:

add
 ::
 Int->Int->Int
add x y
 =
 x
 + y

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 162	

Continuation with indentation

A line that starts in the same column as the previous
declaration ends that declaration and starts a new one.

% cat indent2.hs
add::Int->Int->Int
add x y =
x + y

% runghc indent2.hs
indent2.hs:3:1: parse error (possibly incorrect
indentation or mismatched brackets)

Note that 3:1 indicates line 3, column 1.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 163	

Indentation, continued

This is a valid declaration with a where clause:
 f x = a + b + g a where { a = 1; b = 2; g x = -x }

The where clause has three declarations enclosed in braces and
separated by semicolons.

We can take advantage of the layout rule and write it like this
instead:

f x = a + b + g a
 where
 a = 1
 b = 2
 g x = -x

What's different about the second version?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 164	

The layout rule for where (and more)

At hand:
f x = a + b + g a
 where
 a = 1
 b = 2
 g x =

 -x

The absence of a brace after where activates the layout rule.

The column position of the first token after where establishes
the column in which declarations of the where must start.

Note that the declaration of g is continued onto a second line;
if the minus sign were at or left of the line, it would be an error.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 165	

The layout rule, continued

Another example:

f x = a + b + g a where a = 1
 b = 2
 g x =
 -x

Don't confuse the layout rule with indentation-based
continuation of declarations!

The layout rule allows omission of braces and semicolons in
where, do, let, and of blocks. (We'll see do and let later.)

Indentation-based continuation applies

1.  outside of where/do/let/of blocks
2.  inside where/do/let/of blocks when the layout rule is

triggered by the absence of an opening brace.

The layout rule is also called the off-side rule.

TAB characters are assumed to have a width of 8.

What other languages have rules of a similar nature?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 166	

The layout rule, continued

What's this function doing?
f a = g
 where
 g b = a + b

Type?

 f :: Num a => a -> a -> a

Interaction:

> let f ' = f 10
> f ' 20
30

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 167	

Sidebar: mystery function

Consider this claim:
A function definition in curried form, which is the norm in
Haskell, is really just syntactic sugar.

Compare:

 add x y = x + y

 add a = add' where add' b = a + b

Challenge: Write add3 :: Num t => t -> t -> t -> t with this
do-it-yourself currying.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 168	

Sidebar, continued

Errors

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 169	

What syntax errors do you see in the following file?

% cat synerrors.hs
let f x =
 | x < 0 == y + 10
 | x != 0 = y + 20
 otherwise = y + 30
 where
 g x:xs = x
 y =
 g [x] + 5
 g2 x = 10

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 170	

Syntax errors

What syntax errors do you see in the following file?

% cat synerrors.hs
let f x =
 | x < 0 == y + 10
 | x != 0 = y + 20
 otherwise = y + 30
 where
 g x:xs = x
 y =
 g [x] + 5
 g2 x = 10

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 171	

Syntax errors, continued

no let before
functions in files

no = before guards

=, not ==
before result

use /= for
inequality missing | before

otherwise

Needs parens:
(x:xs)

continuation should
be indented violates off-side rule

Line and column information is included in syntax errors.

% cat synerror2.hs
weather temp | temp >= 80 = "Hot!"
 | temp >= 70 "Nice"
 | otherwise = "Cold!"

% ghci synerror2.hs
...
[1 of 1] Compiling Main (synerror2.hs, interpreted)

synerror2.hs:3:14: parse error on input `|'

3:14 indicates an error has been detected at line 3, column 14.

What's the error?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 172	

Syntax errors, continued

If only concrete types are involved, type errors are typically
easy to understand.

> chr 'x'
<interactive>:9:5:
 Couldn't match expected type `Int' with actual

 type `Char'
 In the first argument of `chr', namely 'x'
 In the expression: chr 'x'
 In an equation for `it': it = chr 'x'

> :type chr
chr :: Int -> Char

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 173	

Type errors

Code:
countEO (x:xs)
 | odd x = (evens, odds+1)
 | otherwise = (evens+1, odds)
 where (evens,odds) = countEO

 What's the error?
 Couldn't match expected type `(t3, t4)'
 with actual type `[t0] -> (t1, t2)'
 In the expression: countEO
 In a pattern binding: (evens, odds) = countEO

What's the problem?
It's expecting a tuple, (t3,t4) but it's getting a function,
[t0] -> (t1, t2)

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 174	

Type errors, continued

How about this one?
> length
 No instance for (Show ([a0] -> Int)) arising from a
 use of `print'
 Possible fix: add an instance declaration for

 (Show ([a0] -> Int))
 In a stmt of an interactive GHCi command: print it

> :type print
print :: Show a => a -> IO ()

Typing an expression at the ghci prompt causes it to be
evaluated and print called with the result. The (trivial) result
here is a function, and functions aren't in the Show type class.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 175	

Type errors, continued

Code and error:
f x y
 | x == 0 = []
 | otherwise = f x

 Couldn't match expected type `[a1]' with actual type
 `t0 -> [a1]'
 In the return type of a call of `f'
 Probable cause: `f' is applied to too few arguments
 In the expression: f x

The error message is perfect in this case but in general note
that an unexpected actual type that's a function suggests too
few arguments are being supplied for some function.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 176	

Type errors, continued

Is there an error in the following?
f [] = []
f [x] = x
f (x:xs) = x : f xs

 Occurs check: cannot construct the infinite

 type: a0 = [a0] ("a0 is a list of a0s"--whm)
 In the first argument of `(:)', namely `x'
 In the expression: x : f xs
 In an equation for `f': f (x : xs) = x : f xs

Without the second pattern, it turns into an identity function on lists:
f [1,2,3] == [1,2,3]

What's the problem?

Technique: Comment out cases to find the troublemaker.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 177	

Type errors, continued

What's happening here?
> :type ord
ord :: Char -> Int

> ord 5
<interactive>:2:5:
 No instance for (Num Char) arising from the

 literal `5'
 Possible fix: add an instance declaration for

 (Num Char)

Why does that error cite (Num Char)? It seems to be saying
that if Char were in the Num type class the expression would
be valid.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 178	

Type errors, continued

Larger examples

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 179	

Imagine a robot that travels on an infinite grid of cells. Movement is
directed by a series of one character commands: n, e, s, and w.

Let's write a function travel that moves the robot about the grid and
determines if the robot ends up where it started (i.e., it got home) or
elsewhere (it got lost).

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 180	

travel

1	
2	

R	

If the robot starts in square R the
command string nnnn leaves the robot
in the square marked 1.

The string nenene leaves the robot in
the square marked 2.

nnessw and news move the robot in a
round-trip that returns it to square R.

Usage:

> travel "nnnn" -‐-‐	 ends	 at	 1	
"Got lost"

> travel "nenene" -‐-‐	 ends	 at	 2
"Got lost"

> travel "nnessw"
"Got home"

How can we approach this problem?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 181	

travel, continued

1	
2	

R	

One approach:
1.  Map letters into integer 2-tuples representing X and Y

displacements on a Cartesian plane.
2.  Sum the X and Y displacements to yield a net displacement.

Example:
 Argument value: "nnee"
 Mapped to tuples: (0,1) (0,1) (1,0) (1,0)
 Sum of tuples: (2,2)

Another:

 Argument value: "nnessw"
 Mapped to tuples: (0,1) (0,1) (1,0) (0,-1) (0,-1) (-1,0)
 Sum of tuples: (0,0)

 CSC	 372	 Spring	 2014,	 Haskell	 Slide	 182	

travel, continued

Two helpers:

mapMove 'n' = (0,1)
mapMove 's' = (0,-1)
mapMove 'e' = (1,0)
mapMove 'w' = (-1,0)

sumTuples [] = (0,0)
sumTuples ((x,y):ts) = (x + sumX, y + sumY)
 where
 (sumX, sumY) = sumTuples ts

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 183	

travel, continued

travel itself:

travel s
 | disp == (0,0) = "Got home"
 | otherwise = "Got lost"
 where
 makeTuples [] = []
 makeTuples (c:cs) = mapMove c : makeTuples cs

 tuples = makeTuples s
 disp = sumTuples tuples

As is, mapMove and sumTuples are at the top level but
makeTuples is hidden inside travel. How should they be
arranged?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 184	

travel, continued

travel s
 | disp == (0,0) = "Got home"
 | otherwise = "Got lost"
 where
 tuples = makeTuples s
 disp = sumTuples tuples

 makeTuples [] = []
 makeTuples (c:cs) =

 mapMove c:makeTuples cs

 mapMove 'n' = (0,1)
 mapMove 's' = (0,-1)
 mapMove 'e' = (1,0)
 mapMove 'w' = (-1,0)

 sumTuples [] = (0,0)
 sumTuples ((x,y):ts) = (x + sumX, y + sumY)
 where
 (sumX, sumY) = sumTuples ts

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 185	

Sidebar: top-level vs. hidden functions
Top-level functions can be
tested after code is loaded
but functions inside a
where block are not visible.

The functions at left are
hidden in the where block
but they can easily be
changed to top-level using a
shift or two with an editor.

Consider a function tally that counts character occurrences in a
string:

> tally "a bean bag"!
a 3!
b 2!
 2!
g 1!
n 1!
e 1!

Note that the characters are shown in order of decreasing
frequency.

How can this problem be approached?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 186	

tally

{-
incEntry c tups

tups is a list of (Char, Int) tuples that indicate how many
times a character has been seen.

incEntry produces a copy of tups with the count in the
tuple containing the character c incremented by one.

If no tuple with c exists, one is created with a count of 1.

-}

incEntry::Char -> [(Char,Int)] -> [(Char,Int)]

incEntry c [] = [(c, 1)]
incEntry c ((char, count):entries)
 | c == char = (char, count+1) : entries
 | otherwise = (char, count) : incEntry c entries

Note that we're including an explicit type specification for this
function. What's the merit of it? Should it be more general?
 CSC	 372	 Spring	 2014,	 Haskell	 Slide	 187	

tally, continued

Calls to incEntry with 't', 'o', 'o':
> incEntry 't' []
[('t',1)]

> incEntry 'o' it
[('t',1),('o',1)]

> incEntry 'o' it
[('t',1),('o',2)]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 188	

tally, continued

-- mkentries s calls incEntry for each character
-- in the string s

mkentries :: [Char] -> [(Char, Int)]
mkentries s = mkentries' s []
 where
 mkentries' [] entries = entries
 mkentries' (c:cs) entries =
 mkentries' cs (incEntry c entries)

> mkentries "tupple"
[('t',1),('u',1),('p',2),('l',1),('e',1)]

> mkentries "cocoon"
[('c',2),('o',3),('n',1)]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 189	

tally, continued

{- insert, isOrdered, and sort provide an insertion sort -}
insert v [] = [v]
insert v (x:xs)
 | isOrdered (v,x) = v:x:xs
 | otherwise = x:insert v xs

isOrdered ((_, v1), (_, v2)) = v1 > v2

sort [] = []
sort (x:xs) = insert x (sort xs)

> mkentries "cocoon"
[('c',2),('o',3),('n',1)]

> sort it
[('o',3),('c',2),('n',1)]
 CSC	 372	 Spring	 2014,	 Haskell	 Slide	 190	

tally, continued

{- fmt_entries prints (Char, Int) tuples one per line -}
fmt_entries [] = ""
fmt_entries ((c, count):es) =

 [c] ++ " " ++ (show count) ++ "\n" ++ fmt_entries es

{- grand finale -}
tally s = putStr (fmt_entries (sort (mkentries s)))

> tally "cocoon"
o 3
c 2
n 1

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 191	

tally, continued

[Added post-copies]
•  How does this solution exemplify functional

programming? (slide 23)

•  How is it like imperative programming?

•  How is it like procedural programming (s. 5)

Let's run it on lectura...
% code=/cs/www/classes/cs372/spring14/code

% cat $code/tally.hs
... everything we've seen before and now a main:
main = do
 bytes <- getContents -- reads all of standard input
 tally bytes

% echo -n cocoon | runghc $code/tally.hs
o 3
c 2
n 1

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 192	

Running tally from the command line

$code/genchars N generates N random letters:

% $code/genchars 20
KVQaVPEmClHRbgdkmMsQ

Lets tally a million characters:
 % $code/genchars 1000000 |

 time runghc $code/tally.hs >out
21.79user 0.24system 0:22.06elapsed
% head -3 out
s 19553
V 19448
 J 19437

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 193	

tally from the command line, continued

Let's try a compiled executable.

% ghc --make -rtsopts tally.hs

% ls -l tally
-rwxrwxr-x 1 whm whm 1118828 Feb 1 22:41 tally

% $code/genchars 1000000 |

 time ./tally +RTS -K40000000 -RTS >out
7.44user 0.29system 0:07.82elapsed 98%CPU

Speculate: How fast would a Java version of tally run? C?
Python? Ruby?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 194	

tally from the command line, continued

List comprehensions

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 195	

Back to 123 for "syntactic sugar"!

Here's a simple example of a list comprehension:

> [x^2 | x <- [1..10]]
[1,4,9,16,25,36,49,64,81,100]

This describes a list of the squares of x where x takes on each
of the values from 1 through 10.

The portion x <- [1..10] is a generator.

Multiple generators can be specified:

> [(x,y)| x <- [1..3], y <- "ab"]
[(1,'a'),(1,'b'),(2,'a'),(2,'b'),(3,'a'),(3,'b')]

Which generator varies most rapidly?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 196	

Basics

Page 39 (5.2) in Programming in Haskell by Hutton has some
interesting examples of computations with comprehensions:

> let firsts pairs = [x | (x,_) <- pairs]
> firsts [(1, 'x'),(5, 'y'),(10, 'z')]
[1,5,10]

> let len xs = sum [1 | x <- xs]
> len "test"
4

> let concat xss = [x | xs <- xss, x <- xs]
> concat ["just", "a", "test"]
"justatest"

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 197	

Examples from Hutton

This is the general form of a list comprehension:
 [expr | qualifier1 , ... , qualifierN]

Qualifiers can be one of three things:

 pattern <- expr (a generator)
 let declarations
 guard

Guards are boolean expressions that act as filters. If a guard is
false, the value at hand is discarded and the previous generator
produces its next value, if any. Example:

> let justDigits s = [ch | ch <- s, isDigit ch]
> justDigits "(800) 555-1212"
"8005551212"

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 198	

General form

Hutton has an interesting example of computing primes with list
comprehensions. (Section 5.2)

First he defines a function to compute the factors of a number:

> let factors n = [x | x <- [1..n], n `mod` x == 0]
> factors 20
[1,2,4,5,10,20]
> factors 7
[1,7]

If a number's only factors are 1 and the number, it's a prime.

> let prime n = factors n == [1,n]
> prime 7
True
> prime 20
False

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 199	

Primes via comprehensions

At hand:
factors n = [x | x <- [1..n], n `mod` x == 0]
prime n = factors n == [1,n]

Now we can write a function to generate primes starting at any
number:

> let primes n = [p | p <- [n..], p > 1, prime p]

> take 15 (primes 2)
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47]

> take 5 (primes 1000000)
[1000003,1000033,1000037,1000039,1000081]

Added: On your own, look at quicksort, p. 57 in GG.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 200	

Primes, continued

Higher-order functions

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 201	

A fundamental characteristic of a functional language is that
functions are values that can be used as flexibly as values of other
types.

This let creates a function value and binds the name add to that
value.

 > let add x y = x + y

This let binds the name plus to the value of add, whatever it is.

 > let plus = add

Either of the names can be used to reference the function value:

> add 3 4
7
> plus 5 6
11

 CSC	 372	 Spring	 2014,	 Haskell	 Slide	 202	

Functions as values

By default, if an expression evaluated at ghci's REPL prompt
produces a function, we get an error because function values
aren't in the Show type class.

> let add x y = x + y

> add
No instance for (Show (a0 -> a0 -> a0) arising from a
use of `print'

> add 3
No instance for (Show (a0 -> a0)) arising from a use
of `print'

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 203	

Sidebar: printing function values

Contrast: With Chrome's JavaScript console, we can see the
code for some functions:

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 204	

Sidebar, continued

Confession: I wish I'd found the Text.Show.Functions
module sooner. It's a trivial instance declaration:

instance Show (a -> b)
 where showsPrec _ _ = showString "<function>"

Usage:

> :m Text.Show.Functions
> let add x y = x + y
> add
<function>
> it 3
<function>
> it 5
8

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 205	

Sidebar, continued

I've added this to my ~/.ghci:
:m Text.Show.Functions

You should add it to yours, too!

trouble with :m Data.Char!

Line by line, what are the following expressions doing?
> let fs = [head, last]

> fs
[<function>,<function>]

> let ints = [1..10]

> head fs ints
1

> (fs!!1) ints
10

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 206	

Functions as values, continued

Is the following valid?
> [take, tail, init]
Couldn't match type `[a2]' with `Int'
 Expected type: Int -> [a0] -> [a0]
 Actual type: [a2] -> [a2]
 In the expression: init

What's the problem?
 take does not have the same type as tail and init.

Puzzle: Make it valid by adding two characters.

> [take 5, tail, init]
[<function>,<function>,<function>]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 207	

Functions as values, continued

A higher-order function is a function that:
•  Has one or more arguments that are functions.
•  And/or returns a function.

Have we seen any functions thus far that are higher-order
functions?

Strictly speaking, any curried function with more than one
argument meets the above definition.

> :type add
add :: Num a => a -> a -> a

> :type take
take :: Int -> [a] -> [a]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 208	

Definition

We'll ignore this fine point wrt. the
a1 prohibition on higher-order
functions!

Here's a simple higher-order function:
 twice f x = f (f x)

What does it do?

> twice tail [1..5]
[3,4,5]

What is its type?

twice :: (t -> t) -> t -> t

What's going on here?
> twice tail
<function>
> it [1..5]
[3,4,5] Note: line missing on handout!

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 209	

A simple higher-order function

A higher-order function is a
function that:

•  Has one or more arguments
that are functions.

•  And/or returns a function.

Here's a simpler higher-order function. What does it do?
apply f x = f x

What's its type? Translate it to English.
apply :: (t1 -> t) -> t1 -> t

Usage:

> apply head [5,6,7]
5
> apply negate it
-5
> apply length ['a'..'z']
26

In what other languages could we write apply?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 210	

A simpler higher-order function

Recall double x = x * 2

map is a Prelude function that applies a function to each
element of a list, producing a new list:

> map double [1..5]
[2,4,6,8,10]

> map length (words "a few words")
[1,3,5]

> map head (words "a few words")
"afw"

Let's write map ourselves!

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 211	

The Prelude's map function

Solution:
 map _ [] = []
map f (x:xs) = f x : map f xs

What is its type?

map :: (t -> a) -> [t] -> [a]

What's the relationship between the length of the argument and
the result?

Is map a higher order function?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 212	

map, continued

A few more maps...

> map chr [97,32,98,105,103,32,99,97,116]
"a big cat"

> map isLetter it
[True,False,True,True,True,False,True,True,True]

> map not it
[False,True,False,False,False,True,False,False,False]

> map head (map show it) -- show True is "True"
"FTFFFTFFF"

> map weather [85,55,75]
["Hot!","Cold!","Nice"]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 213	

map, continued

What's the result of these?
> map (add 5) [1..10]
[6,7,8,9,10,11,12,13,14,15]

> map (drop 1) (words "the knot was cold")
["he","not","as","old"]

> map (replicate 5) "abc"
["aaaaa","bbbbb","ccccc"]

> let f = map double
> f [1..5]
[2,4,6,8,10]

> map f [[1..3],[10..15]] -- same as map (map double) ...
[[2,4,6],[20,22,24,26,28,30]]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 214	

map and partial applications

Instead of using map (add 5) to add 5 to the values in a list,
we can use a section instead:

> map (5+) [1..3]
[6,7,8]

More sections:

> map (10*) [1..3]
[10,20,30]

> map (++"*") (words "a few words")
["a*","few*","words*"]

> map ("*"++) (words "a few words")
["*a","*few","*words"]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 215	

"sections"

Sections have one of two forms:

 (infix-operator value) Examples: (+5) (/10)

 (value infix-operator) Examples: (5*), ("x"++)

Iff the operator is commutative, the two forms are equivalent.

> map (3<=) [1..5]
[False,False,True,True,True]

> map (<=3) [1..5]
[True,True,True,False,False]

Sections aren't just for map; they're a general mechanism.
> twice (+5) 3
13

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 216	

"sections", continued

Another higher order function in the Prelude is filter:
> filter odd [1..10]
[1,3,5,7,9]

> filter isDigit "(800) 555-1212"
"8005551212"

What's filter doing? What is its type?

filter :: (a -> Bool) -> [a] -> [a]

Two more:

> filter (`elem` "aeiou") "some words here"
"oeoee" -- Note that (`elem` ...) is a section!

> filter (5 >=) (filter odd [1..10])
[1,3,5]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 217	

Filtering

At hand:
> filter odd [1..10]
[1,3,5,7,9]

> :t filter
filter :: (a -> Bool) -> [a] -> [a]

Let's write filter!
myfilter _ [] = []
myfilter f (x:xs)
 | f x = x : filteredTail
 | otherwise = filteredTail
 where
 filteredTail = myfilter f xs

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 218	

filter, continued

filter's first argument (a function) is called a predicate because
inclusion of each value is predicated on the result of calling
that function with value.

Several Prelude functions use predicates. Here are two:

all :: (a -> Bool) -> [a] -> Bool
> all even [2,4,6,8]
True
> all even [2,4,6,7]
False

dropWhile :: (a -> Bool) -> [a] -> [a]
> dropWhile isSpace " testing "
"testing "
> dropWhile isLetter it
" "

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 219	

 filter uses a predicate

Write a non-recursive function longerThan n lists that
produces the lists in lists that have more than n elements.

> longerThan 2 [[1..3],[10,20],[5..8]]
[[1,2,3],[5,6,7,8]]

> longerThan 3 (words "up and down it went")
["down","went"]

How can we approach it? (non-recursive helpers are allowed)

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 220	

Problem: longerThan

We could map with length and then filter with a section, but
then we lose the lists themselves:

> let lists = [[1..3],[10,20],[5..8]]

> map length lists
[3,2,4]

> filter (>2) it
[3,4]

> filter (>3) (map length (words "up and down it
went"))
[4,4]

"I can't tell what they are but I can tell you how many we got."

 CSC	 372	 Spring	 2014,	 Haskell	 Slide	 221	

longerThan, continued

Let's write a helper:
 isLonger :: Int -> [a] -> Bool
isLonger n list = length list > n

But how can we use it? filter needs an (a -> Bool) predicate:

 filter :: (a -> Bool) -> [a] -> [a]

This is a perfect place for a partial application:

> :type isLonger 3
isLonger 3 :: [a] -> Bool
> filter (isLonger 3) (words "up and down it went")
["down","went"]

A final solution:

isLonger n list = length list > n
longerThan n lists = filter (isLonger n) lists

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 222	

longerThan, continued

Recall:
isLonger n list = length list > n
longerThan n lists = filter (isLonger n) lists

A solution that takes advantage of scoping rules:

longerThan2 n lists = filter isLonger lists
 where

 isLonger list = length list > n

In the latter case, isLonger must be in the where to have
access to the argument n.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 223	

longerThan, continued

We can map a section to double the numbers in a list:
> map (*2) [1..5]
[2,4,6,8,10]

Alternatively we could use an anonymous function:

> map (\x -> x * 2) [1..5]
[2,4,6,8,10]

What are things we can do with an anonymous function that we
can't do with a section?

> map (\n -> n * 3 + 7) [1..5]
[10,13,16,19,22]

> filter (\x -> head x == last x) (words "pop top suds")
["pop","suds"]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 224	

Anonymous functions

The general form:
 \ pattern1 ... patternN -> expression

Simple syntax rule: enclose the works in parentheses.

The typical use case for an anonymous function is a single
instance of supplying a higher order function with a
computation that can't be expressed with a section or partial
application.

Anonymous functions are also called lambdas, lambda
expressions, and lambda abstractions.

The \ character was chosen due to its similarity to λ, used in
Lambda calculus, another system for expressing computation.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 225	

Anonymous functions, continued

Imagine a program to print the longest line(s) in a file, along
with their line numbers:

% runghc longest.hs /usr/share/dict/web2!
72632:formaldehydesulphoxylate!
140339:pathologicopsychological!
175108:scientificophilosophical!
200796:tetraiodophenolphthalein!
203042:thyroparathyroidectomize!

What are some ways in which we could approach it?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 226	

Example: longest line(s) in a file

Let's work with a shorter file for development testing:
% cat longest.1!
data!
to!
test!

readFile in the Prelude returns the full contents of a file as a
string:

> readFile "longest.1"
"data\nto\ntest\n"

To avoid wading into I/O yet, let's focus on a function that
operates on a string of characters (the full contents of a file):

> longest "data\nto\ntest\n"
"1:data\n3:test\n"

 CSC	 372	 Spring	 2014,	 Haskell	 Slide	 227	

longest, continued

Let's work through a series of transformations of the data:
> let bytes = "data\nto\ntest\n"

> let lns = lines bytes
["data","to","test"]

Note: To save space, values of let bindings are being shown
immediately after each let. E.g., > lns is not shown above.

Let's use zip3 and map length to create (length, line-number,
line) triples:

> let triples = zip3 (map length lns) [1..] lns
[(4,1,"data"),(2,2,"to"),(4,3,"test")]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 228	

longest, continued

We have (length, line-number, line) triples at hand:
> triples
[(4,1,"data"),(2,2,"to"),(4,3,"test")]

Let's use sort :: Ord a => [a] -> [a] on them:

> let sortedTriples = reverse (sort triples)
[(4,3,"test"),(4,1,"data"),(2,2,"to")]

Note that by having the line length first, triples are sorted first by
line length, with ties resolved by line number.

We use reverse to get a descending order.

If line length weren't first, we'd instead use

 Data.List.sortBy :: (a -> a -> Ordering) -> [a] -> [a]
and supply a function that returns an Ordering.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 229	

longest, continued

At hand:
> sortedTriples
[(4,3,"test"),(4,1,"data"),(2,2,"to")]

We'll handle ties by using takeWhile to get all the triples with lines
of the maximum length.

Let's use a helper function to get the first element of a 3-tuple:

> let first (len, _, _) = len
> let maxLength = first (head sortedTriples)
4

first will be used in another place but were it not for that we might
have used an anonymous function:
 > let maxLength = (\(len, _, _) -> len) (head sortedTriples)
a pattern: let (maxLength,_,_) = head sortedTriples

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 230	

longest, continued

At hand:
> sortedTriples
[(4,3,"test"),(4,1,"data"),(2,2,"to")]

> maxLength
4

Let's use takeWhile :: (a -> Bool) -> [a] -> [a] to get the
triples having the maximum length:

> let maxTriples = takeWhile

 (\triple -> first triple == maxLength) sortedTriples
[(4,3,"test"),(4,1,"data")]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 231	

longest, continued

At hand:
> maxTriples
[(4,3,"test"),(4,1,"data")]

Let's map an anonymous function to turn the triples into lines
prefixed with their line number:

> let linesWithNums =
 map (\(_,num,line) -> show num ++ ":" ++ line)
 maxTriples

 ["3:test","1:data"]

We can now produce a ready-to-print result:

> let result = unlines (reverse linesWithNums)
> result
"1:data\n3:test\n"

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 232	

longest, continued

Let's package up our work into a function:
longest bytes = result
 where
 lns = lines bytes
 triples = zip3 (map length lns) [1..] lns
 sortedTriples = reverse (sort triples)
 maxLength = first (head sortedTriples)
 maxTriples = takeWhile
 (\triple -> first triple == maxLength) sortedTriples

 linesWithNums =
 map (\(_,num,line) -> show num ++ ":" ++ line)
 maxTriples

 result = unlines (reverse linesWithNums)

 first (x,_,_) = x

 CSC	 372	 Spring	 2014,	 Haskell	 Slide	 233	

longest, continued

At hand:
> longest "data\nto\ntest\n"
"1:data\n3:test\n"

Let's add a main that does I/O:

% cat longest.hs
import System.Environment (getArgs)
import Data.List (sort)

longest bytes = ...from previous slide...

main = do
 args <- getArgs -- Get command line args as list
 bytes <- readFile (head args)
 putStr (longest bytes)

 CSC	 372	 Spring	 2014,	 Haskell	 Slide	 234	

longest, continued

Given two functions f and g, the composition of f and g is a
function c that for all values of x, (c x) equals (f (g x))

Here is a primitive compose function that applies two
functions in turn:

> let compose f g x = f (g x)

> :type compose
compose :: (t1 -> t) -> (t2 -> t1) -> t2 -> t

> compose init tail [1..5]
[2,3,4]

> compose signum negate 3
-1

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 235	

Function composition

Haskell has a function composition operator. It is a dot (.)
> :t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c

Its two operands are functions, and its result is a function.

> let numwords = length . words

> numwords "just testing this"
3

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 236	

Composition, continued

Problem: Using composition create a function that returns the
next-to-last element in list:

> ntl [1..5]
4

> ntl "abc"
'b'

Here's one solution, but what's another?
> let ntl = head . tail . reverse

> let ntl = head . reverse . init

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 237	

Composition, continued

Problem: Create a function to remove the digits from a string:
> rmdigits "Thu Feb 6 19:13:34 MST 2014"
"Thu Feb :: MST "

Solution:

> let rmdigits = filter (not . isDigit)

Given the following, describe f:
> let f = (*2) . (+3)

> map f [1..5]
[8,10,12,14,16]

Would an anonymous function be a better choice?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 238	

Composition, continued

Given the following, what's the type of numwords?
> :type words
words :: String -> [String]

> :type length
length :: [a] -> Int

> let numwords = length . words

Type:

 numwords :: String -> Int

Assuming a composition is valid, the type is based only on the input
of the rightmost function and the output of the leftmost function.

 (.) :: (b -> c) -> (a -> b) -> a -> c
CSC	 372	 Spring	 2014,	 Haskell	 Slide	 239	

Composition, continued

Recall rmdigits:
> rmdigits "Thu Feb 6 19:13:34 MST 2014"
"Thu Feb :: MST "

What the difference between these two declarations?

rmdigits s = filter (not . isDigit) s

rmdigits = filter (not . isDigit)

The latter declaration is in point-free style.

A point-free declaration of a function f does not mention the
parameter of f. (Wording revised after handouts.)

Is the following a point-free function declaration or a partial
application?

 t5 = take 5

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 240	

Point-free style

Problem: Using point-free style, declare a function named len
that works like the Prelude's length.

Hint:

> :t const
const :: a -> b -> a
> const 10 20
10
> const [1] "foo"
[1]

Solution:
len = sum . map (const 1)

See also: Tacit programming on Wikipedia

 CSC	 372	 Spring	 2014,	 Haskell	 Slide	 241	

Point-free style, continued

Hocus pocus with
higher-order functions

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 242	

What's this function doing?
f a = g
 where
 g b = a + b

Type?

 f :: Num a => a -> a -> a

Interaction:

> let f ' = f 10
> f ' 20
30

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 243	

Mystery function

Consider this claim:
A function definition in curried form, which is idiomatic in
Haskell, is really just syntactic sugar.

Compare these two completely equivalent declarations for add:

 add x y = x + y

 add x = add'
 where
 add' y = x + y

The result of the call add 5 is essentially this function:

 add' y = 5 + y

The combination of the code for add' and the binding for x is
known as a closure. It contains what's needed for execution.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 244	

DIY Currying

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 245	

DIY currying in JavaScript
JavaScript doesn't provide the syntactic sugar of curried
function definitions but we can do this:

function add(x) {
 return function (y) { return x + y }
 }

Try it!

View>Developer>	
JavaScript	 Console
brings up the
console.

Type in the code for
add	 on one line.

>>> def add(x):
... return lambda y: x + y
...

>>> f = add(5)

>>> type(f)
<type 'function'>

>>> map(f, [10,20,30])
[15, 25, 35]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 246	

DIY currying in Python

Here's another mystery function:

> let m f x y = f y x

> :type m
m :: (t1 -> t2 -> t) -> t2 -> t1 -> t

Can you devise a call to m?
> m add 3 4
7

> m (++) "a" "b"
"ba"

What is it doing? What could it be useful for?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 247	

Another mystery function

At hand:
 m f x y = f y x

 m is actually a Prelude function named flip:
> :t flip
flip :: (a -> b -> c) -> b -> a -> c

> flip take [1..10] 3
[1,2,3]

> let ftake = flip take
> ftake [1..10] 3
[1,2,3]

Any ideas on how to use it?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 248	

flip

At hand:
 flip f x y = f y x

> map (flip take "Haskell") [1..7]
["H","Ha","Has","Hask","Haske","Haskel","Haskell"]

Problem: write a function that behaves like this:

> f 'a'
["a","aa","aaa","aaaa","aaaaa",...

Solution:
 > let f x = map (flip replicate x) [1..]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 249	

flip, continued

From assignment 1:
> splits "abcd"
[("a","bcd"),("ab","cd"),("abc","d")]

Many students have noticed the Prelude's splitAt:
> splitAt 2 [10,20,30,40]
([10,20],[30,40])

Problem: Write splits using higher order functions but no
explicit recursion.

Solution:

splits list = map (flip splitAt list) [1..(length list - 1)]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 250	

flip, continued

$ is the "application operator". Note what :info shows:
> :info ($)
($) :: (a -> b) -> a -> b
infixr 0 $ -- right associative infix operator with very
 -- low precedence

The following declaration of $ uses an infix syntax:

f $ x = f x -- Equivalent: ($) f x = f x

Usage:

> negate $ 3 + 4
-7

What's the point of it?
CSC	 372	 Spring	 2014,	 Haskell	 Slide	 251	

The $ operator

$ is a low precedence, right associative operator that calls a
function.

 f $ x = f x

Because + has higher precedence than $ the expression

 negate $ 3 + 4
 groups like this:

 negate $ (3 + 4)

How does the following expression group?

 filter (>3) $ map length $ words "up and down"

 filter (>3) (map length (words "up and down"))

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 252	

The $ operator, continued

Problem: We're given a function whose argument is a two-tuple
but we wish it were curried so we could use a partial
application of it.

g :: (Int, Int) -> Int
g (x,y) = x^2 + 3*x*y + 2*y^2

> g (3,4)
77

Solution: Curry it with curry from the Prelude!

> map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]

Your problem: Write curry!

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 253	

Currying the uncurried

At hand:
> g (3,4)
77
> map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]

Here's curry, and use of it:

 curry :: ((a, b) -> c) -> (a -> b -> c) (latter parens added to help)
 curry f x y = f (x,y)

> let cg = curry g
> :type cg
cg :: Int -> Int -> Int

> cg 3 4
77

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 254	

Currying the uncurried, continued

At hand:
 curry :: ((a, b) -> c) -> (a -> b -> c) (parentheses added)
 curry f x y = f (x, y)

> map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]

The key: (curry g 3) is a partial application of curry!

 Call: curry g 3

 Dcl: curry f x y = f (x, y)
 = g (3, y)

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 255	

Currying the uncurried, continued

At hand:
 curry :: ((a, b) -> c) -> (a -> b -> c) (parentheses added)
 curry f x y = f (x, y)

> map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]

Let's get flip into the game!

> map (flip (curry g) 4) [1..10]
[45,60,77,96,117,140,165,192,221,252]

The counterpart of curry is uncurry:

> uncurry (+) $ (3,4)
7

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 256	

Currying the uncurried, continued

function curry(f) {
 return function(x) {
 return function (y) { return f(x,y) }

 }
 }

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 257	

A curry function for JavaScript

Folding

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 258	

We can reduce a list by a binary operator by inserting that operator
between the elements in the list:

[1,2,3,4] reduced by + is 1 + 2 + 3 + 4

["a","bc", "def"] reduced by ++ is "a" ++ "bc" ++ "def"

Imagine a function reduce that does reduction by an operator.

> reduce (+) [1,2,3,4]
10

> reduce (++) ["a","bc","def"]
"abcdef"

> reduce max [10,2,4]
10

> map (reduce max) (permutations [10,2,4])
[10,10,10,10,10,10] -- permutations is from Data.List

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 259	

Reduction

At hand:
> reduce (+) [1,2,3,4]
10

An implementation of reduce:

reduce _ [] = undefined
reduce _ [x] = x
reduce op (x:xs) = x `op` reduce op xs

Does reduce + [1,2,3,4] do
 ((1 + 2) + 3) + 4

or
 1 + (2 + (3 + 4))

?

In general, when would the grouping matter?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 260	

Reduction, continued

In the Prelude there's no reduce but there is foldl1 and foldr1.

>	 foldl1	 (/)	 [1,2,3]	
0.16666666666666666	 	 -‐-‐	 le`	 associa:ve:	 (1	 /	 2)	 /	 3	
	
>	 foldr1	 (/)	 [1,2,3] 	 	 	 -‐-‐	 right	 associa:ve:	 1	 /	 (2	 /	 3)	
1.5	

Here's the type of foldr1:

	 foldr1	 ::	 (a	 -‐>	 a	 -‐>	 a)	 -‐>	 [a]	 -‐>	 a	

Here's the type of a related function, foldr (no "1"):

 foldr	 ::	 (a	 -‐>	 b	 -‐>	 b)	 -‐>	 b	 -‐>	 [a]	 -‐>	 b	

What are the differences between the two?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 261	

foldl1 and foldr1	

For reference:
foldr1	 ::	 (a	 -‐>	 a	 -‐>	 a)	 -‐>	 [a]	 -‐>	 a	
foldr	 ::	 (a	 -‐>	 b	 -‐>	 b)	 -‐>	 b	 -‐>	 [a]	 -‐>	 b	
	

Use:
>	 foldr1	 (+)	 [1..4]	
10	
	
>	 foldr	 (+)	 0	 [1..4]	
10	
	
>	 foldr	 (+)	 0	 [] 	 -‐-‐	 Empty	 list	 is	 excep:on	 with	 foldr1	
0	

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 262	

foldr1 vs. foldr	

For reference:
foldr1	 ::	 (a	 -‐>	 a	 -‐>	 a)	 -‐>	 [a]	 -‐>	 a	
foldr	 ::	 (a	 -‐>	 b	 -‐>	 b)	 -‐>	 b	 -‐>	 [a]	 -‐>	 b	
	

The big difference is that foldr	 can fold a list of values into a
different type!

>	 foldr	 (\elem	 acm	 -‐>	 acm	 +	 elem)	 0	 [1..4]	 	
10	
	

(acm	 stands for "accumulated")

>	 foldr	 (\elem	 acm	 -‐>	 show	 elem	 ++	 acm)	 ""	 [1..4]	
"1234"	

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 263	

foldr1 vs. foldr, continued

Fill in the blank, creating a folding function that can be used to
compute the length of a list:

>	 foldr	 (\	 ______________)	 0	 [10,20,30]	
3	

Solution:
>	 let	 len	 =	 foldr	 (\elem	 acm	 -‐>	 acm	 +	 1)	 0	
>	 len	 ['a'..'z']	
26	

Problem: Define map	 in terms of foldr.
>	 let	 mp	 f	 =	 foldr	 (\elem	 acm	 -‐>	 f	 elem	 :	 acm)	 []	
>	 mp	 toUpper	 "test"	
"TEST"	

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 264	

Folding

Recall our even/odd counter
>	 countEO	 [3,4,7,9]	
(1,3)	
	

Define it terms of foldr.
>	 let	 eo	 =	 foldr	 (\val	 (e,o)	 -‐>	

	 	 	 	 	 if	 even	 val	 then	 (e+1,o)	 else	 (e,o+1))	 (0,0)	
>	 eo	 [3,4,7,9]	
(1,3)	
	
>	 eo	 []	
(0,0)	
	

Strictly FYI: Instead of if/else we could have used Haskell's case:
>	 let	 eo	 =	 myfoldr	 (\val	 (e,o)	 -‐>	 	

	 case	 even	 val	 of	 {True	 -‐>	 (e+1,o);	 False	 -‐>	 (e,o+1)})	 (0,0)	

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 265	

Folding, continued

Here's a definition for foldr. We're using a type specification with
multicharacter type variables to help know which is which:

foldr	 ::	 (val	 -‐>	 acm	 -‐>	 acm)	 -‐>	 acm	 -‐>	 [val]	 -‐>	 acm	
foldr	 f	 acm	 []	 =	 acm	
foldr	 f	 acm	 (val:vals)	 =	 f	 val	 $	 foldr	 f	 acm	 vals	

When loaded, we see this:

>	 :t	 foldr	
foldr	 ::	 (val	 -‐>	 acm	 -‐>	 acm)	 -‐>	 acm	 -‐>	 [val]	 -‐>	 acm	
	
>	 foldr	 (\val	 acm	 -‐>	 acm	 ++	 val)	 "?"	 $	 words	 "a	 test	 here"	
"?heretesta"	

IMPORTANT: There's no connection between the type variable
names and the names in functions. We might have done this
instead: foldr	 (\v	 a	 -‐>	 a	 ++	 v)	 ...

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 266	

Folding, continued

Problem: Write reverse in terms of a foldr.	
	
Two solutions, but both with issues:

	 rv1	 =	 foldr	 (\val	 acm	 -‐>	 acm	 ++	 [val])	 []	
	 rv2	 =	 reverse	 .	 foldr	 (:)	 []	 	 (Oops!	 This	 is	 completely	 stupid!)	

	
The issue: reverse and ++ are relatively expensive wrt. cons.

By definition, foldr operates like this:

	 foldr	 f	 zero	 [x1,	 x2,	 ...,	 xn]	 ==	 x1	 `f`	 (x2	 `f`	 ...	 (xn	 `f`	 zero)...)
	
The first application of f is with the last element and the "zero"
value, but the first cons would need to be with the first element
of the list.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 267	

Folding, continued

The counterpart of foldr	 is foldl. Compare their meanings:

foldr	 f	 zero	 [x1,	 x2,	 ...,	 xn]	 ==	 x1	 `f`	 (x2	 `f`	 ...	 (xn	 `f`	 zero)...)	 	
	
foldl	 f	 zero	 [x1,	 x2,	 ...,	 xn]	 ==	 (...((zero	 `f`	 x1)	 `f`	 x2)	 `f`...)`f`	 xn	
	

Their types, with long type variables:
	 foldr	 ::	 (val	 -‐>	 acm	 -‐>	 acm)	 -‐>	 acm	 -‐>	 [val]	 -‐>	 acm	

	
	 foldl	 ::	 (acm	 -‐>	 val	 -‐>	 acm)	 -‐>	 acm	 -‐>	 [val]	 -‐>	 acm	

Problem: Write reverse in terms of foldl.

>	 let	 rev	 =	 foldl	 (\acm	 val	 -‐>	 val:acm)	 []	
>	 rev	 "tes:ng"	
"gnitset"	

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 268	

Folding, continued

Recall paired from assignment 1:
> paired "((())())"
True

Can we implement paired with a fold?

counter (-1) _ = -1
counter total '(' = total + 1
counter total ')' = total - 1
counter total _ = total

paired s = foldl counter 0 s == 0

Point-free:
paired = (0==) . foldl counter 0

 CSC	 372	 Spring	 2014,	 Haskell	 Slide	 269	

Folding, continued

Data.List.partition partitions a list based on a predicate:

> partition isLetter "Thu Feb 13 16:59:03 MST 2014"
("ThuFebMST"," 13 16:59:03 2014")

> partition odd [1..10]
([1,3,5,7,9],[2,4,6,8,10])

Write it using a fold!
sorter f val (pass, fail) =
 if f val then (val:pass, fail)
 else (pass, val:fail)

partition f = foldr (sorter f) ([],[])

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 270	

Folding, continued

True or false?
Any operation that processes a list can be expressed in a
terms of a fold, perhaps with a simple wrapper.

scans are similar to folds but all intermediate values are
produced:

> scanl (+) 0 [1..5]
[0,1,3,6,10,15]

> let scanEO = scanl (\(e,o) val ->
 if even val then (e+1,o) else (e,o+1)) (0,0)

> scanEO [1,3,5,6,7,9]
[(0,0),(0,1),(0,2),(0,3),(1,3),(1,4),(1,5)]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 271	

Folding up on folding

 A little I/O

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 272	

Consider this function declaration
f2 x = a + b + c
 where
 a = f x
 b = g x
 c = h x

Haskell guarantees that the order of the where clause bindings is
inconsequential—those three lines can be in any order.

What enables that guarantee?

(Pure) Haskell functions depend only on the argument value. For
a given value of x, f x always produces the same result.

You can shuffle the bindings of any function's where clause without
changing the function's behavior! (Try it with longest, slide 233.)

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 273	

Sequencing

a = f x
c = h x
b = g x

c = h x
b = g x
a = f x

Imagine a getInt function, which reads an integer from standard
input (e.g., the keyboard).

Can the where clause bindings in the following function be done in
any order?

f x = r
 where
 a = getInt
 b = getInt
 r = a * 2 + b + x

The following is not valid syntax but ignoring that, is it reorderable?
greet name = ""
 where
 putStr "Hello, "
 putStr name
 putStr "!\n"

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 274	

I/O and sequencing

One way we can specify that operations are to be performed in
a specific sequence is to use a do:

% cat io2.hs
main = do
 putStrLn "Who goes there?"
 name <- getLine
 let greeting = "Hello, " ++ name ++ "!"
 putStrLn greeting

Interaction:

% runghc io2.hs
Who goes there?
whm (typed)
Hello, whm!

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 275	

I/O and sequencing, continued

Here's the type of putStrLn:

putStrLn :: String -> IO () ("unit", (), is the no-value value)

The type IO x represents an interaction with the outside world that
produces a value of type x. Instances of IO x are called actions.

When an action is evaluated the corresponding outside-world
activity is performed.

> let hello = putStrLn "hello!" (Note: no output here!)
hello :: IO () (Type of hello is an action.)

> hello
hello! (Evaluating hello, an action, caused output.)
it :: ()

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 276	

Actions

The value of getLine is an action that reads a line:
getLine :: IO String

We can evaluate the action, causing the line to be read, and
bind a name to the string produced:

> s <- getLine
testing

> s
"testing"

Note that getLine is not a function!

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 277	

Actions, continued

Recall io2.hs:
main = do
 putStrLn "Who goes there?"
 name <- getLine
 let greeting = "Hello, " ++ name ++ "!"
 putStrLn greeting

Note the type: main :: IO (). We can say that main is an
action. Evaluating main causes interaction with the outside
world.

> main
Who goes there?
hello?
Hello, hello?!

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 278	

Actions, continued

A pure function (1) always produces the same result for a given
argument value, and (2) has no side effects.

Is this a pure function?

twice :: String -> IO ()
twice s = do
 putStr s
 putStr s

twice "abc" will always produce the same value, an action
that if evaluated will cause "abcabc" to be output.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 279	

Is it pure?

We want to use pure functions whenever possible but we want
to be able to do I/O, too.

In general, evaluating an action produces side effects.

Here's the Haskell solution for I/O in a nutshell:

Actions can evaluate other actions and pure functions but
pure functions don't evaluate actions.

Recall longest.hs from 233-234:
longest bytes = result where ...lots...
main = do
 args <- getArgs -- gets command line arguments
 bytes <- readFile (head args)
 putStr (longest bytes)

 CSC	 372	 Spring	 2014,	 Haskell	 Slide	 280	

The Haskell solution for I/O

User-defined types

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 281	

A new type can be created with a data declaration.

Here's a simple Shape type whose instances represent circles or
rectangles:

data Shape =
 Circle Double | -- just a radius
 Rect Double Double -- width and height

 deriving Show

The shapes have dimensions but no position.

Circle and Rect are data constructors.

"deriving Show" declares Shape to be an instance of the Show type
class, so that values can be shown using some simple, default rules.

Shape is called an algebraic type because instances of Shape are built
using other types.

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 282	

A Shape type

Instances of Shape are created by calling the data constructors:

> let r1 = Rect 3 4
> r1
Rect 3.0 4.0

> let r2 = Rect 5 3

> let c1 = Circle 2

> let shapes = [r1, r2, c1]

> shapes
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0]

Lists must be homogeneous—why are both Rects and Circles
allowed in the same list?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 283	

Shape, continued

data Shape =
 Circle Double |
 Rect Double Double

 deriving Show

The data constructors are just functions—we can use all our
function-fu with them!

> :t Circle
Circle :: Double -> Shape

> :t Rect
Rect :: Double -> Double -> Shape

> map Circle [2,3] ++ map (Rect 3) [10,20]
[Circle 2.0,Circle 3.0,Rect 3.0 10.0,Rect 3.0 20.0]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 284	

Shape, continued

data Shape =
 Circle Double |
 Rect Double Double

 deriving Show

Functions that operate on algebraic types use patterns based on their data
constructors.

area (Circle r) = r ** 2 * pi
area (Rect w h) = w * h

Usage:

> r1
Rect 3.0 4.0

> area r1
12.0

> shapes
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0]

> map area shapes
[12.0,15.0,12.566370614359172]

> sum $ map area shapes
39.56637061435917

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 285	

Shape, continued

data Shape =
 Circle Double |
 Rect Double Double

 deriving Show

Let's make the Shape type an instance of the Eq type class.

What does Eq require?

> :info Eq
class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

Let's say that two shapes are equal if their areas are equal. (Iffy!)

instance Eq Shape where
 (==) r1 r2 = area r1 == area r2

Usage:

> Rect 3 4 == Rect 6 2
True

> Rect 3 4 == Circle 2
False

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 286	

Shape, continued

Default definitions from Eq:
(==) a b = not $ a /= b
(/=) a b = not $ a == b

Let's see if we can find the biggest shape:
> maximum shapes
 No instance for (Ord Shape) arising from a use of
`maximum'
 Possible fix: add an instance declaration for (Ord
Shape)

What's in Ord?

> :info Ord
class Eq a => Ord a where
 compare :: a -> a -> Ordering
 (<) :: a -> a -> Bool
 (>=) :: a -> a -> Bool
 (>) :: a -> a -> Bool
 (<=) :: a -> a -> Bool
 max :: a -> a -> a
 min :: a -> a -> a

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 287	

Shape, continued

Eq a => Ord a requires
would-be Ord classes to be
instances of Eq. (Done!)

Like == and /= with Eq, the
operators are implemented in
terms of each other.

Let's make Shape an instance of the Ord type class:
instance Ord Shape where
 (<) r1 r2 = area r1 < area r2 -- < and <= are sufficient
 (<=) r1 r2 = area r1 <= area r2

Usage:

> shapes
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0]

> map area shapes
[12.0,15.0,12.566370614359172]

> maximum shapes
Rect 5.0 3.0

> Data.List.sort shapes
[Rect 3.0 4.0,Circle 2.0,Rect 5.0 3.0]

Note that we didn't need to write functions like sumOfAreas or
largestShape—we can express those in terms of existing operations

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 288	

Shape, continued

Here's all the Shape code: (in shape.hs)
data Shape =
 Circle Double |
 Rect Double Double
 deriving Show

area (Circle r) = r ** 2 * pi
area (Rect w h) = w * h

instance Eq Shape where
 (==) r1 r2 = area r1 == area r2

instance Ord Shape where
 (<) r1 r2 = area r1 < area r2
 (<=) r1 r2 = area r1 <= area r2

What would be needed to add a Figure8 shape and a perimeter
function?

How does this compare to a Shape/Circle/Rect hierarchy in Java?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 289	

Shape all in one place

Let's look at the compare function:
> :t compare
compare :: Ord a => a -> a -> Ordering

Ordering is a simple algebraic type, with only three values:
> :info Ordering
data Ordering = LT | EQ | GT

> [r1,r2]
[Rect 3.0 4.0,Rect 5.0 3.0]

> compare r1 r2
LT

> compare r2 r1
GT

What do you suppose Bool really is?
> :info Bool
data Bool = False | True

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 290	

Two simple algebraic types

Here's an algebraic type for a binary tree:
data Tree a = Node a (Tree a) (Tree a) -- tree.hs
 | Empty

 deriving Show

The a is a type variable. Our Shape type used Double values but Tree
can hold values of any type!

> let t1 = Node 9 (Node 6 Empty Empty) Empty
> t1
Node 9 (Node 6 Empty Empty) Empty

> let t2 = Node 4 Empty t1
> t2
Node 4 Empty (Node 9 (Node 6 Empty Empty) Empty)

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 291	

A binary tree

4

9

6

t1

t2

Here's a function that inserts values, maintaining an ordered tree:
insert Empty v = Node v Empty Empty
insert (Node x left right) value
 | value <= x = (Node x (insert left value) right)
 | otherwise = (Node x left (insert right value))

Let's insert some values...
> let t = Empty
> insert t 5
Node 5 Empty Empty

> insert it 10
Node 5 Empty (Node 10 Empty Empty)

> insert it 3
Node 5 (Node 3 Empty Empty) (Node 10 Empty Empty)

How many Nodes are constructed by each of the insertions?

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 292	

Tree, continued

Here's an in-order traversal that produces a list of values:
inOrder Empty = []
inOrder (Node val left right) =

 inOrder left ++ [val] ++ inOrder right

What's an easy way to insert a bunch of values?
> let t = foldl insert Empty [3,1,9,5,20,17,4,12]
> inOrder t
[1,3,4,5,9,12,17,20]

> inOrder $ foldl insert Empty "tim korb"
" bikmort"

> inOrder $ foldl insert Empty [Rect 3 4, Circle 1, Rect 1 2]
[Rect 1.0 2.0,Circle 1.0,Rect 3.0 4.0]

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 293	

Tree, continued

Here's an interesting type:
> :info Maybe
data Maybe a = Nothing | Just a

Speculate: What's the point of it?

Here's a function that uses it:

> :t Data.List.find
Data.List.find :: (a -> Bool) -> [a] -> Maybe a

How could we use it?

> find even [3,5,6,8,9]
Just 6

> find even [3,5,9]
Nothing

> case (find even [3,5,9]) of { Just _ -> "got one"; _ -> "oops!"}
"oops!"

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 294	

Maybe

In conclusion...

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 295	

If we had a whole semester to study functional programming, here's what
might be next:

•  Infinite data structures (see slides 125-126 for a tiny bit).

•  How lazy evaluation works

•  Implications and benefits of referential transparency (which means
that the value of a given expression is always the same).

•  Functors (structures that can be mapped over)

•  Monoids (a set of things with a binary operation over them)

•  Monads (for representing sequential computations)

•  Zippers (a structure for traversing and updating another structure)

•  And more!

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 296	

If we had a whole semester...

Recursion and techniques with higher-order functions can be used in
most languages. Some examples:

JavaScript, Python, PHP, all flavors of Lisp, and lots of others:

Functions are "first-class" values; anonymous functions are
supported.

C

Pass a function pointer to a recursive function that traverses a
data structure.

C#

Excellent support for functional programming with the language
itself and LINQ, too.

Lambda expressions are slated for Java 8 (2015?)

CSC	 372	 Spring	 2014,	 Haskell	 Slide	 297	

Even if you never use Haskell again...

