
Prolog

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 1	

CSC	 372,	 Spring	 2014	
The	 University	 of	 Arizona	

William	 H.	 Mitchell	
whm@cs	

	

Replacement Set
This set replaces an earlier handout
with Ruby slides 260-267 followed

by Prolog slides 1-35

The name comes from "programming in logic".

Developed at the University of Marseilles (France) in 1972.

First implementation was in FORTRAN and led by Alain Colmeraurer.

Originally intended as a tool for working with natural languages.

Achieved great popularity in Europe in the late 1970s.

Was picked by Japan in 1981 as a core technology for their "Fifth
Generation Computer Systems" project.

Prolog is a commercially successful language. Many companies have
made a business of supplying Prolog implementations, Prolog consulting,
and/or applications in Prolog.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 2	

A little background on Prolog

There are zero (0) Prolog books on Safari!

Prolog Programming in Depth, by Covington, Nute, and Vellino

Available for free at http://www.covingtoninnovations.com/
books/PPID.pdf. That PDF is scans of pages and is not searchable.
The copy at http://cs.arizona.edu/classes/cs372/spring14/
covington/ppid.pdf has had a searchable text layer added.

The UA bookstore stocks this text:
 Programming in Prolog, 5th edition, by Clocksin and Mellish

A PDF of Dr. Collberg's 372 slides on Prolog is here:
http://cs.arizona.edu/classes/cs372/spring14/CollbergProlog.pdf

There's no Prolog "home page" that I know of.

We'll be using SWI Prolog. More on it soon.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 3	

Prolog resources

Facts and queries

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 4	

A Prolog program is a collection of facts, rules, and queries. We'll talk
about facts first.

Here is a small collection of Prolog facts:

% cat foods.pl
food(apple).
food(broccoli).
food(carrot).
food(lettuce).
food(rice).

These facts enumerate some things that are food. We might read them in
English like this: "An apple is food", "Broccoli is food", etc.

A fact represents a piece of knowledge that the Prolog programmer deems
to be useful. The name food was chosen by the programmer.

We can say that facts.pl holds a Prolog database or knowledgebase—a
collection of facts.
 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 5	

Facts and queries

At hand:
% cat foods.pl
food(apple).
food(broccoli).
...

food, apple, and broccoli are examples of atoms, which can be thought
of as multi-character literals. Atoms should not be thought of as strings!

Here are two more atoms:

 'bell pepper'
 'Whopper'

An atom can be written without single quotes if it starts with a lower-case
letter and contains only letters, digits, and underscores.

Note the use of single quotes. (Double quotes mean something else!)

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 6	

Facts and queries, continued

On lectura, we can start SWI Prolog and load a file of facts like this:

% swipl
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 6.4.1)
...

?- [foods]. % in cs.arizona.edu/classes/cs372/spring14/pl
% foods compiled 0.00 sec, 9 clauses
true.

Once the facts are loaded we can perform queries:

?- food(carrot).
true.

?- food(pickle).
false.

Prolog responds based on the facts it has been given. We know that pickles are
food but Prolog doesn't know that because there's no fact that says so.

A query can consist of one or more goals. The queries above consist of one goal.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 7	

Facts and queries, continued

Here's a fact: food(apple).

Here's a query: food(apple).

Facts and queries have the same syntax. They are distinguished by the
context in which they appear.

If a line is typed at the interactive ?- prompt, it is interpreted as a query.

When a file is loaded with [filename], its contents are interpreted as a
collection of facts.

Loading a file of facts is also known as consulting the file.

We'll see later that files can contain "rules", too. Facts and rules are two
types of clauses.

Simple rule for now: use all-lowercase filenames with the suffix .pl (PL)
for Prolog source files.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 8	

Facts and queries, continued

After a .pl file has been consulted (loaded), we can query make. to cause
any modified files to be reconsulted (reloaded), after editing the file.

?- [foods].
% foods compiled 0.00 sec, 9 clauses
true.

?- food(pickle).
false.
[Edit foods.pl with in a different window, and add food(pickle).]

?- make.
% /Users/whm/372/pl/foods compiled 0.00 sec, 2 clauses
true.

?- food(pickle).
true.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 9	

Sidebar: Reconsulting with make

How might the food information be represented in Haskell?
food "apple" = True
food "broccoli" = True
food "carrot" = True
food "lettuce" = True
food "rice" = True
food _ = False

> food "apple"
True

Maybe a list would be better:

 foods = ["apple", "broccoli", "carrot", "lettuce", "rice"]

> "pickle" `elem` foods
False

How might we represent it in Ruby?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 10	

Sidebar: food in Haskell

An alternative to specifying an atom, like apple, in a query is to specify a
variable. In Prolog an identifier that starts with a capital letter is a variable.

?- food(Edible).
Edible = apple <cursor is here>

A query like food(apple) asks if it is known that apple is a food.

The above query asks, "Tell me something that you know is a food."

Prolog find the first food fact and responds with Edible = apple, using the
variable name specified in the query.

If the user is satisfied with the answer apple, pressing <ENTER> terminates the
query. Prolog responds by printing a period.

?- food(Edible).
Edible = apple . % User hit <ENTER>; Prolog printed the period.

 ?-

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 11	

Facts and queries, continued

If for some reason the user is not satisfied with the response apple, an alternative
can be requested by typing a semicolon, without <ENTER>.

?- food(Edible).
Edible = apple ;
Edible = broccoli ;
Edible = carrot ;
...
Edible = 'Big Mac'.

?-

Facts are searched in the order they appear in the file. Above, the user exhausts
all the facts by repeatedly typing a semicolon.

It is very important to recognize that a simple set of facts lets us perform two
distinct computations: (1) We can ask if something is a food. (2) We can ask
what all the foods are.

How could we make an analog for the above behavior in Java, Haskell, or Ruby?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 12	

Facts and queries, continued

For two points of extra credit:

(1) Create a file foods.pl and try the examples just shown.

(2) Create a small database (a file of facts) about something other than food

and demonstrate some queries with it using swipl. Minimum: 5 facts.

(3) Copy/paste a transcript of your swipl session into a plain text file named

facts.txt.

(4) Turn in facts.txt via the eca1 dropbox before the start of the next

lecture.

Needless to say, feel free to read ahead in the slides and show experimentation
with the following material, too.

Experiment with syntax, too. Where can whitespace appear? What can appear in
a fact other than atoms like apple?

Look ahead a few slides for information about installing SWI Prolog on your
machine.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 13	

Extra credit!

Unlike SWI Prolog, most Prolog implementations use "yes" and "no" to
indicate whether an interactive query succeeds. Here's GNU Prolog:

% gprolog
GNU Prolog 1.4.4 (64 bits)
| ?- [foods].
compiling foods.pl for byte code...

| ?- food(apple).
yes

| ?- food(pickle).
no

Most Prolog texts, including Covington and Clocksin & Mellish use yes/
no, too. Just read "yes" as true. and "no" as false.

Remember: we're using SWI Prolog; GNU Prolog is shown above just for
contrast.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 14	

Yes and no vs. true. and false.

One way to think about a query is that we're asking Prolog if something
can be "proven" using the facts (and rules) it has been given.

The query

?- food(apple).
can be thought of as asking, "Can you prove that apple is a food?"

food(apple). is trivially proven because we've supplied a fact that says
that apple is a food.

The query

?- food(pickle).
produces false. because Prolog can't prove that pickle is a food based on
the database (the facts) we've supplied. (We've given it no rules, either.)

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 15	

"Can you prove it?"

Consider again a query with a variable:

?- food(F). % Remember that an initial capital denotes a variable.
F = apple ;
F = broccoli ;
F = carrot ;
...
F = 'Whopper' ;
F = 'Big Mac'.

?-

The query asks, "For what values of F can you prove that F is a food? By
repeatedly entering a semicolon we see the full set of values for which that can be
proven.

The collection of knowledge at hand, a set of facts about what is a food, is trivial
but Prolog is capable of finding proofs for an arbitrarily complicated body of
knowledge expressed as facts and rules.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 16	

"Can you prove it?", continued

write is one of many built-in predicates. It outputs a value.
?- write('Hello, world!').
Hello, world!
true.

Speculate: Why was "true." output, too?
 Prolog is reporting that it's able to prove write('Hello, world!')!

 A side-effect of "proving" write(X) is outputting the value of X!

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 17	

"Can you prove it?", continued

Getting and running SWI Prolog

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 18	

swi-prolog.org is the home page for SWI Prolog.

On lectura, just run swipl.

Downloads for Windows and OS X:

 swi-prolog.org/download/stable

For Windows, the non-64 bit version will be fine for our purposes:

 SWI-Prolog 6.6.4 for Windows XP/Vista/7/8
 Pick Typical as the Install type, .pl for file extension

For OS X there's only one choice:

 SWI-Prolog 6.6.4 for MacOSX 10.6 (Snow Leopard) and later...
As the install page says, you'll need XQuartz 2.7.5 for the
development tools. The handiest tool is perhaps the graphical
tracer, launched with the gtrace predicate. (We'll see gtrace
later.)

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 19	

Getting and running SWI Prolog

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 20	

Getting and running SWI Prolog, continued
On Windows, assuming you associated .pl files with SWI Prolog, running
foods.pl on the command line or opening foods.pl in Explorer opens a window
running SWI Prolog and consults the file, as if [foods]. had been typed at the
prompt.

On Windows, a numbered query prompt is shown. ("1 ?-" above)

Remember: You can use make. to reconsult (reload) a file.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 21	

Getting and running SWI Prolog, continued
To display help for a predicate, query help(predicate-name). On
Windows and OS X a window will open.

On lectura, help will be text based, but if you login to lectura from a Linux
machine with "ssh -X ...", you'll get window-based help, too. (Ditto for
OS X, assuming you're running XQuartz.)

On all platforms a control-D or querying halt. exits SWI Prolog.
% swipl
...

?- halt.
%

A control-C while a query is executing will produce an Action ... ?
prompt. Then typing h produces a textual menu:

?- food(X).!
X = apple ^C !
Action (h for help) ? h!
Options:!
a: abort !b: break!
c: continue !e: exit!
g: goals !t: trace!
h (?): help!

Use a to return to the prompt; e exits to the shell.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 22	

Getting and running SWI Prolog, continued

Building blocks

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 23	

We've seen that apple, food, and 'Big Mac' are examples of atoms.

Typing an atom as a query doesn't do what we might expect, but we can
output an atom with write.

?- 'just\ntesting'.
ERROR: toplevel: Undefined procedure: 'just\ntesting'/0
(DWIM could not correct goal)

?- write('just\ntesting').
just
testing
true.

Atoms composed of certain non-alphabetic characters do not require
quotes:

?- write(#$&*+-./:<=>?^~\).
#$&*+-./:<=>?^~\
true.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 24	

Atoms

We can use the predicate atom to query whether something is an atom:

?- atom(apple).
true.

?- atom('apple sauce').
true.

?- atom(Apple).
false.

?- atom("apple").
false.

Alternate view: "Can you prove apple is an atom?"

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 25	

Atoms, continued

Integer and floating point literals are numbers.
?- number(10).
true.

?- number(3.4).
true.

?- number(3.4e100).
true.

?- number('100').
false.

Numbers aren't atoms but they are "atomic".
?- atom(100).
false.

?- atomic(100). % Note: atomIC, not just atom.
true.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 26	

Numbers

In Prolog, arithmetic doesn't work as you might expect:

?- 3 + 4.
ERROR: toplevel: Undefined procedure: (+)/2 (DWIM could
not correct goal)

?- Y = 4 + 5.
Y = 4+5.

?- write(3 + 4 * 5).
3+4*5
true.

We'll learn about arithmetic later.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 27	

Numbers, continued

Here are some more examples of facts:

color(sky, blue). color(grass, green).

odd(1). odd(3). odd(5).

number(one, 1, 'English').

number(uno, 1, 'Spanish').

number(dos, 2, 'Spanish').

We can say that the facts above define three predicates: color, odd, and
number.

It's common to refer to predicates using predicate indicators like color/2, odd/1,
and number/3, where the number following the slash is the number of terms.

number/3 above doesn't interfere with number/1 (two slides back).

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 28	

Predicates, terms, and structures

A term is one of the following: atom, number, structure, variable.

Structures consist of a functor (always an atom) followed by one or more terms
enclosed in parentheses.

Here are examples of structures:

color(grass, green)

odd(1)

number(uno, 1, 'Spanish')

+/-(3,4) % functor is symbolic atom

lunch(sandwich(ham), fries, drink(coke))

The structure functors are color, odd, number, +/-, and lunch, respectively.

Two of the terms of the last structure are structures themselves.

A structure can serve as a fact or a goal, depending on the context.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 29	

Predicates, terms, and structures, continued

Here is a predicate x defined by three facts:

x(just(testing,date(5,14,2014))).
x(10).
x(10,20).

The first fact's term is a structure but the second fact's term is a number.
That inconsistency is not considered to be an error.

?- x(V).
V = just(testing, date(5, 14, 2014)) ;
V = 10.

Further, is it x/1 or x/2?
?- x(A,B).
A = 10,
B = 20.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 30	

Predicate/goal mismatches

At hand:
x(just(testing,date(5,14,2014))).
x(10). x(A,B).

Here are some more queries:

?- x(abc).
false.

?- x([1,2,3]). % A list...
false.

?- x(a(b)).
false.

The goals in the queries have terms that are an atom, a list, and a structure.
There's no indication that those queries are fundamentally mismatched
with respect to the terms in the facts.

Prolog says "false" in each case because nothing it knows about aligns
with anything it's being queried about.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 31	

Predicate/goal mismatches, continued

At hand:
x(just(testing,date(5,14,2014))).
x(10). x(A,B).

It's an error if there's no fact defined that has the same number of terms as
the goal in a query. Alternatives are suggested.

?- x(little,green,apples).
ERROR: Undefined procedure: x/3
ERROR: However, there are definitions for:
ERROR: x/1
ERROR: x/2

What does the following tell us?
?- write(1,2).
ERROR: write/2: Domain error: `stream_or_alias' expected,
found `1'

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 32	

Predicate/goal mismatches, continued

A new knowledgebase is to the right.

A query about green things:

?- color(Thing,green).
Thing = grass ;
Thing = broccoli ;
Thing = lettuce.

How can we state it in terms of "Can you prove...?"
 For what things can you prove their color is green?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 33	

More queries

% foodcolor.pl
...
color(sky, blue).
color(dirt, brown).
color(grass, green).
color(broccoli, green).
color(lettuce, green).
color(apple, red).
color(carrot, orange).
color(rice, white).

How could we query for each thing and its color?
?- color(Thing,Color).
Thing = sky,
Color = blue ;

Thing = dirt,
Color = brown ;

Thing = grass,
Color = green ;

Thing = broccoli,
Color = green ;
...

How can we state it in terms of "Can you prove...?"

 For what pairs of Thing and Color can you prove color?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 34	

More queries

color(sky, blue).
color(dirt, brown).
color(grass, green).
color(broccoli, green).
color(lettuce, green).
color(apple, red).
color(carrot, orange).
color(rice, white).

A query can contain more than one goal.

Here's a query that directs Prolog to find a
food that is green:

?- food(F), color(F,green).
F = broccoli ; % (user entered ;)
F = lettuce ;
false.

The query has two goals separated by a
comma, which indicates conjunction—both
goals must succeed in order for the query to
succeed.

We might state it like this:

"Is there an F for which you can prove
both food(F) and color(F, green)?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 35	

Queries with multiple goals
% foodcolor.pl
food(apple).
food(broccoli).
food(carrot).
food(lettuce).
food(orange).
food(rice).

color(sky, blue).
color(dirt, brown).
color(grass, green).
color(broccoli, green).
color(lettuce, green).
color(apple, red).
color(carrot, orange).
color(orange,orange).
color(rice, white).

Let's see if any foods are blue:

?- color(F,blue), food(F).
false.

Note that the ordering of the goals was
reversed. How might the order make a
difference?

Goals are always executed from left to right.

What's the following query asking?
 ?- food(F), color(F,F).

How about this one?

 ?- food(F), color(F,red), color(F,green).

 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 36	

Queries with multiple goals, continued
food(apple).
food(broccoli).
food(carrot).
food(lettuce).
food(orange).
food(rice).

color(sky, blue).
color(dirt, brown).
color(grass, green).
color(broccoli, green).
color(lettuce, green).
color(apple, red).
color(carrot, orange).
color(orange,orange).
color(rice, white).

Which of the following is meant by color(apple,red)?

 All apples are red.

 Some apples are red.

 Some apples have a red area.

 Some apples have a red area at some point in time.

 A red apple has existed.

Facts (and rules) are abstractions that we create for the purpose(s) at hand.

An abstraction emphasizes the important and suppresses the irrelevant.

Don't get bogged down by trying to perfectly model the real world!

 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 37	

Sidebar: The meaning of a fact

Write these queries:

 Who likes baseball?
 ?- likes(Who, baseball).

 Who likes a food?
 ?- food(F), likes(Who,F).

 Who likes green foods?

?- food(F), color(F,green),
likes(Who,F).

Who likes foods with the same color as
foods that Mary likes?

?- likes(mary,F), food(F),
color(F, C), food(F2), color(F2,C),
likes(Who,F2).

 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 38	

Even more queries
% fcl.pl
food(apple).
...

color(sky, blue).
...

likes(bob, carrot).
likes(bob, apple).
likes(joe, lettuce).
likes(mary, broccoli).
likes(mary, tomato).
likes(bob, mary).
likes(mary, joe).
likes(joe, baseball).
likes(mary, baseball).
likes(jim, baseball).

Are any two foods the same color?
?- food(F1), food(F2), color(F1,C), color(F2,C).
F1 = F2, F2 = apple, % an apple is the same color as an apple(!)
C = red ;

F1 = F2, F2 = broccoli,
C = green ;
...

To avoid foods matching themselves we can specify "not equal" with \==
(symbolizing a struck-through ==).

?- food(F1), food(F2), F1 \== F2, color(F1,C), color(F2,C).
F1 = broccoli,
F2 = lettuce,

C = green ;
F1 = carrot,
F2 = C, C = orange ;

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 39	

Even more queries, continued

Recall that in Haskell, 3 + 4 can be written as (+) 3 4.

In Prolog, these two queries are equivalent:

?- abc \== xyz.
true.

?- \==(abc,xyz).
true.

In fact, the sequence abc \== xyz causes Prolog to create a structure.

display/1 can be used to show the structure:

?- display(abc \== xyz).
\==(abc,xyz)

Ultimately, abc \== xyz means "invoke the predicate named \== and
pass it two terms, abc and xyz".

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 40	

Sidebar: Predicates in operator form

display sheds a little light on the arithmetic oddities we saw earlier.

?- display(1 + 2).
+(1,2)
true.

?- display(1 + 2 * 3 - 5).
-(+(1,*(2,3)),5)
true.

Just FYI: The predicate op/3 is used to create operators.
?- op(200,'xf',--). % precedence 200 postfix operator
true.

?- display(x+y--).
+(x,--(y))
true.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 41	

Sidebar, continued

Query help(op).
to learn more!

A given body of knowledge may be represented in a variety of ways using
Prolog facts. Here is another way to represent the food and color
information.

What are orange foods?

?- thing(Name, orange, yes).
Name = carrot ;
Name = orange.

What things aren't foods?

?- thing(Name, _, no).
Name = dirt ;
Name = grass ;
Name = sky.

The underscore designates an anonymous variable. It indicates that any
value matches and that we don't want to have the value associated with a
variable (and thus displayed).

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 42	

Alternative representations

thing(apple, red, yes).
thing(broccoli, green, yes).
thing(carrot, orange, yes).
thing(dirt, brown, no).
thing(grass, green, no).
thing(lettuce, green, yes).
thing(orange, orange, yes).
thing(rice, white, yes).
thing(sky, blue, no).

What is green that is not a food?

?- thing(N,green,no).
N = grass ;
false.

What color is lettuce?

?- thing(lettuce,C,_).
C = green.

What foods are the same color as lettuce?

?- thing(lettuce,C,_), thing(N,C,yes), N \== lettuce.
C = green,
N = broccoli ;
false.

Is thing/3 a better or worse representation of the knowledge than the
combination of food/1 and color/2?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 43	

Alternate representation, continued
thing(apple, red, yes).
thing(broccoli, green, yes).
thing(carrot, orange, yes).
thing(dirt, brown, no).
thing(grass, green, no).
thing(lettuce, green, yes).
thing(orange, orange, yes).
thing(rice, white, yes).
thing(sky, blue, no).

Unification

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 44	

Prolog has a more complex notion of equality than conventional languages.

The operators == and \== are simple tests for equality and inequality. They are
roughly equivalent to Haskell's == and /=, and Ruby's == and !=.

?- abc == 'abc'.
true.

?- 3 \== 5.
true.

Just like comparing tuples and lists in Haskell, and arrays in Ruby, structure
comparisons in Prolog are "deep". Two structures are equal if they have the same
functor, the same number of terms, and the terms are equal. (Recursive def'n.)

?- 3 + 4 == 4 + 3.
false.

?- abc(3 + 4 * 5) == abc(+(3,4*5)).
true.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 45	

== and \== are simple tests

The = operator, which we'll read as "unify" or "unify with", provides one
way to do unification.

If a variable doesn't have a value it is said to be uninstantiated. At the start
of a query all variables are uninstantiated.

If we unify an uninstantiated variable with a value, the variable is
instantiated and unified with that value.

?- A = 10, write(A).
10
A = 10.

It can be read as "Unify A with 10 and write A."

That might look like assignment but it's not assignment!

Along with the output, "10", the value of A is shown.

 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 46	

Unification

At hand:

?- A = 10, write(A).
10
A = 10.

An instantiated variable can be unified with a value only if the value equals
whatever value the variable is already unified with.

?- A = 10, write(A), A = 20, write(A).
10
false.

The unification of the uninstantiated A with 10 succeeds, and write(A)
succeeds, but unification of A with 20 fails because 10 \== 20.

The query fails because its third goal, A = 20, fails.

In essence the query is saying A must be 10 and A must be 20. Impossible!

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 47	

Unification, continued

The lifetime of a variable is the query in which it is instantiated.

?- A = 10, B = 20, write(A), write(', '), write(B).
10, 20
A = 10,
B = 20.

If we use A, B, and (out of the blue) C in the next query, we find they are
uninstantiated:

?- write(A), write(', '), write(B), write(', '), write(C).
_G1571, _G1575, _G1579
true.

Writing the value of an uninstantiated variable produces _G<NUMBER>.

Some say bound variable and free variable for instantiated and not.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 48	

Unification, continued

Consider the following:
?- A = B, C = 10, C = B, write(A).
10
A = B, B = C, C = 10.

The code above...

 Unifies A with B (but both are still uninstantiated).
 Unifies C (uninstantiated) with 10.
Unifies B with C. Because A and B are already unified and
instantiated with 10, A, B, and C are 10.

How will an initial instantiation for A affect the query?
?- A = 3, A = B, C = 10, C = B, write(A).
false.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 49	

Unification, continued

With uninstantiated (free) variables, unification has a behavior when
unifying with values that resembles conventional assignment.

With instantiated (bound) variables, unification has a behavior when
unifying with values that resembles comparison.

Unification of uninstantiated variables seems like aliasing of some sort.

But don't think of unification as assignment, comparison and alias rolled
into one. Think of unification as a distinct new concept!

Another way to think about things:

Unification is not a question or an action, it is a demand!

 X = 3 is a goal that demands that X must be 3.

Yet another:

 Unifications create constraints that Prolog upholds.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 50	

Unification, continued

Variables can be unified with terms inside a structure.
?- x(A,B) = x(10,20).
A = 10,
B = 20.

?- f(X,Y,Z) = f(just, testing, f(a,b,c)).
X = just,
Y = testing,
Z = f(a, b, c).

?- f(X,20,Z) = f(10,Y,30), New = f(Z,Y,X).
X = 10,
Z = 30,
Y = 20,
New = f(30, 20, 10).

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 51	

Unification with structures

The query ?- color(grass,C). is a search for facts that can be unified with
color(grass,C).

Here's a way to picture how Prolog considers the first fact, which is
color(sky, blue):

?- Query = color(grass, C), Fact = color(sky, blue), Fact=Query.
false.

The demands of the three unifications cannot be satisfied simultaneously.

The same is true for the second fact, color(dirt, brown).

The third fact produces a successful unification:

?- Query = color(grass, C), Fact = color(grass, green),
 Fact=Query.

Query = Fact, Fact = color(grass, green),
C = green.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 52	

Unification with structures, continued

Consider again this interaction:
?- food(F).
F = apple ;
F = broccoli ;
F = carrot ;
F = lettuce ;
...

Prolog is able to unify food(apple) with food(F), and shows that F is unified
with apple.

When the user types semicolon, F is uninstantiated and the search for another fact
to unify with food(F) resumes with the fact following food(apple).

food(broccoli) is unified with food(F), F is unified with broccoli, and the user
is presented with F = broccoli.

The process continues until Prolog has found all the facts that can be unified with
food(F) or the user is presented with a value for F that is satisfactory.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 53	

Unification with structures, continued

Query evaluation mechanics

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 54	

Goals, like food(fries) or color(What, Color) can be thought of as
having four ports:

In the Active Prolog Tutor, Dennis Merritt describes the ports in this way:

call: Using the current variable bindings, begin to search for the
clauses which unify with the goal.

exit: Set a place marker at the clause which satisfied the goal. Update

the variable table to reflect any new variable bindings. Pass
control to the right.

redo: Undo the updates to the variable table [that were made by this

goal]. At the place marker, resume the search for a clause which
unifies with the goal.

fail: No (more) clauses unify, pass control to the left.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 55	

Understanding query execution with the port model

call
fail redo

exit
goal

Example:
?- food(X).
X = apple ;
X = broccoli ;
X = carrot ;
X = lettuce ;
X = rice.

?-

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 56	

The port model, continued

call

fail redo

exit

food(X)

food(apple).
food(broccoli).
food(carrot).
food(lettuce).
food(rice).

trace/0 activates "tracing" for a query.

?- trace, food(X).
 Call: (7) food(_G1571) ? creep
 Exit: (7) food(apple) ? creep
X = apple ;
 Redo: (7) food(_G1571) ? creep
 Exit: (7) food(broccoli) ? creep
X = broccoli ;
 Redo: (7) food(_G1571) ? creep
 Exit: (7) food(carrot) ? creep

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 57	

The port model, continued
call

fail redo

exit

food(X)

food(apple).
food(broccoli).
food(carrot).
food(lettuce).
food(rice).

Tracing shows the transitions through each port. The first transition is a call to
the goal food(X). The value shown, _G1571, stands for the uninstantiated
variable X. We next see that goal being exited, with X instantiated to apple.
The user isn't satisfied with the value and by typing a semicolon forces the redo
port to be entered, which causes X, previously bound to apple, to be
uninstantiated. The next food fact, food(broccoli) is tried, instantiating X to
broccoli, exiting the goal, and presenting X = broccoli to the user. (etc.)

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 58	

The port model, continued

call

fail food(F) redo/fail likes(Who,F)

exit/call

redo/fail color(F,green)

exit/call exit

redo

Who likes green foods?
 ?- food(F), likes(Who,F), color(F,green).

food(apple).
food(broccoli).
food(carrot).
food(lettuce).
food(orange).
food(rice).

color(sky, blue).
color(dirt, brown).
color(grass, green).
color(broccoli, green).
color(lettuce, green).
color(apple, red).
color(carrot, orange).
color(rice, white).

likes(bob, carrot).
likes(bob, apple).
likes(joe, lettuce).
likes(mary, broccoli).
likes(mary, tomato).
likes(bob, mary).
likes(mary, joe).
likes(joe, baseball).
likes(mary, baseball).
likes(jim, baseball).

Next: Trace it!

We've seen that write/1 always succeeds and as a side effect outputs the
term it is called with. writeln/1 is similar, but appends a newline.

?- write(apple), write(' '), write(pie).
apple pie
true.

?- writeln(apple), writeln(pie).
apple
pie
true.

nl/0 outputs a newline:
?- nl, writeln(middle), nl.

middle

true.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 59	

Producing output

The predicate format/2 is much like printf in Ruby, C, and others.
?- format('x = ~w\n', 101).
x = 101
true.

~w is one of many format specifiers. The "w" indicates to output the
value using write/1. Use help(format/2) to see all the specifiers. (Don't
forget the /2!)

If more than one value is to be output, the values must be in a list.

?- format('label = ~w, value = ~w, x = ~w\n', ['abc', 10, 3+4]).
label = abc, value = 10, x = 3+4
true.

We'll see more on lists later but for now note that we make a list by
enclosing zero or more terms in square brackets. Lists are heterogeneous,
like Ruby arrays.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 60	

Producing output, continued

First attempt to print all the foods:

?- food(F), format('~w is a food\n', F).
apple is a food
F = apple ;
broccoli is a food
F = broccoli ;
carrot is a food
F = carrot ;
...

Ick—we have to type semicolons to cycle through the foods!

Any ideas?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 61	

Producing output, continued

Second attempt: Force alternatives by specifying a goal that always fails.
?- food(F), format('~w is a food\n', F), 1 == 2.
apple is a food
broccoli is a food
carrot is a food
...

This query is a loop! food(F) unifies with the first food fact and instantiates F to
its term, the atom apple. Then format is called, printing a string with the value of
F interpolated. 1 == 2 always fails. Control then moves left, into the redo port of
format. format doesn't erase the output but it doesn't have an alternatives either,
so it fails, causing the redo port of food(F) to be entered. F is uninstantiated and
food(F) is unified with the next food fact in turn, instantiating F to broccoli. The
process continues, with control repeatedly moving back and forth until all the
food facts have been tried.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 62	

Producing output, continued

call

fail food(F) redo/fail format(...)

exit/call

redo/fail 1 == 2

exit/call exit

redo

At hand:
?- food(F), format('~w is a food\n', F), 1 == 2.
apple is a food
broccoli is a food
...

The activity of moving leftwards through the goals is known as
backtracking.

We might say, "The query gets a food F, prints it, fails, and then
backtracks to try the next food."

By design, Prolog does not analyze things far enough to recognize that it
will never be able to "prove" what we're asking. Instead it goes through
the motions of trying to prove it and as side-effect, we get the output we
want. This is a key idiom of Prolog programming.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 63	

Backtracking

call

fail food(F) redo/fail format(...)

exit/call

redo/fail 1 == 2

exit/call exit

redo

At hand:
?- food(F), format('~w is a food\n', F), 1 == 2.
apple is a food
broccoli is a food
...
false.

Predicates respond to "redo" in various ways. With only a collection of
facts for food/1, redo amounts to advancing to the next fact, if any. If
there is one, the goal exits (goes to the right). If not, it fails (goes to the
left).

A sequence of redos might cause a predicate to work through a series of
URLs to find a current data source.

A geometry manager might force a collection of predicates representing
windows to produce a configuration that is mutually acceptable.

A predicate might create a file when called and delete it on redo.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 64	

Backtracking, continued

The predicate fail/0 always fails. It's important to understand that an
always-failing goal like 1 == 2 produces exhaustive backtracking but in
practice we'd use fail instead:

?- food(F), format('~w is a food\n', F), fail.
apple is a food
broccoli is a food
...
rice is a food
false.

In terms of the four-port model, think of fail as a box whose call port is
"wired" to its fail port:

 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 65	

The predicate fail

call

fail food(F) redo/fail format(...)

exit/call

redo/fail fail

exit/call

The built-in predicate between/3 can be used to instantiate a variable to
a sequence of integer values:

?- between(1,3,X).
X = 1 ;
X = 2 ;
X = 3.

Problem: Print this sequence:

000
001
010
011
100
101
110
111

?- between(0,1,A),between(0,1,B),between(0,1,C),

 format('~w~w~w\n', [A,B,C]), fail.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 66	

Sidebar: between

How about
this one?

10101000
10101001
10101010
10101011
10111000
10111001
10111010
10111011

Rules

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 67	

Facts are one type of Prolog clause. The other type of clause is a rule.

foods2.pl starts with a rule and is followed by the food facts:

% cat foods2.pl
showfoods :- food(F), format('~w is a food\n', F), fail.

food(apple).
food(broccoli).
...

Even though showfoods/0 uses food/1, it can either precede or follow
the clauses for that predicate.

Remember that listing/0 can be used to show the clauses that are
currently loaded.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 68	

showfoods: a simple rule

At hand:

% cat foods2.pl
showfoods :- food(F), format('~w is a food\n', F), fail.

food(apple).
food(broccoli).

Usage:
% swipl -l foods2 % Another way to consult a file. (small L)

?- showfoods.
apple is a food
broccoli is a food
carrot is a food
lettuce is a food
orange is a food
rice is a food
false.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 69	

showfoods, continued

Prolog borrows from the idea of Horn Clauses in symbolic logic. A
simplified explanation is that a Horn Clause represents logic like this:

 If Q1, Q2, Q3, ..., Qn, are all true, then P is true.

In Prolog we might represent a three-element Horn clause with this rule:

 p :- q1, q2, q3.

The query

 ?- p.

which asks Prolog to "prove" p, causes Prolog to try and prove q1, then
q2, and then q3. If it can prove all three, and can therefore prove p,
Prolog will respond with true. (If not, then false.)

Note that this is an abstract example—we haven't defined the predicates
q1/0 et al.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 70	

Sidebar: Horn Clauses

At hand are the following rules:
p :- q1, q2, q3.

showfoods :- food(F), format('~w is a food\n', F), fail.

We saw that we can print all the foods with this query:

?- showfoods.
apple is a food
broccoli is a food
carrot is a food
...
rice is a food
false.

In its unsuccessful attempt to "prove" showfoods, and thus trying to
prove all three goals in the body of the showfoods rule, Prolog ends up
doing what we want: all the foods are printed.

We send Prolog on a wild goose chase to get our work done!

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 71	

showfoods, continued

Let's print all the foods three times.

?- showfoods, showfoods, showfoods.
apple is a food
broccoli is a food
carrot is a food
lettuce is a food
orange is a food
rice is a food
false.

What's wrong?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 72	

showfoods, continued

At hand:

showfoods :- food(F), format('~w is a food\n', F), fail.

?- showfoods, showfoods, showfoods.
apple is a food
broccoli is a food
...
rice is a food
false.
[Just one listing of the foods]

Why does Prolog say false. after printing the foods?

The showfoods rule above always fails—we can't get past the fail at the
end!

We get the output we want but because the first showfoods goal
ultimately fails Prolog doesn't try the second two goals—it can't get past
the first goal!
 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 73	

showfoods, continued

We've seen Prolog try all facts in turn for predicates like food/1, and
color/2 in order to satisfy a query. Let's add a second clause, a fact, to the
predicate showfoods. What will it be?

showfoods :- food(F), format('~w is a food\n', F), fail.
showfoods.

Result:

?- showfoods.
apple is a food
broccoli is a food
...
rice is a food
true. % Important: Now it says true., not false.

Prolog tried the two clauses for the predicate showfoods in turn. The
first clause, a rule, was ultimately a failure but printed the foods as a side-
effect. Because the first clause failed, Prolog tried the second clause, a
fact which is trivially proven.

 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 74	

showfoods, continued

Here is a one-rule predicate that asks if there is a food with a particular
color:
 food_color(Color) :- food(F), color(F,Color). % in foods2.pl

Usage:

?- food_color(green).
true

To prove the goal food_color(green), Prolog first searches its clauses
for one that can be unified with the goal. It finds a rule (above) whose
head can be unified with the goal. That unification causes Color to be
instantiated to the atom green.

It then attempts to prove food(F), and color(F, green) for some value of
F.

The response true tells us that at least one green food exists, but that's all
we know.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 75	

Rules with arguments

At hand:
 food_color(Color) :- food(F), color(F,Color).

The last slide didn't tell the whole truth. The cursor pauses right after true:

?- food_color(green).
true _ (blink...blink...blink)

If we type semicolons we see this:

?- food_color(green).
true ;
true ;
false.

It reveals that food_color(green) is actually finding two green foods but
we don't know what they are.

A failure:

?- food_color(blue).
false.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 76	

Rules with arguments, continued

At hand:
 food_color(Color) :- food(F), color(F,Color).

Does food_color let us do anything other than asking if there is a food
with a particular color?

 We can ask for all the colors of foods.

?- food_color(C).
C = red ;
C = green ;
C = orange ;
C = green ;
C = white.

We get green twice because there are two green foods. We'll later see
ways to deal with that.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 77	

Rules with arguments, continued

At hand:
 food_color(Color) :- food(F), color(F,Color).

?- food_color(C).
C = red ;
C = green ;

A very important rule:

When a variable is supplied in a query and it matches a fact or the
head of a rule with a variable in the corresponding term, the two
variables are unified. (Instantiating one will instantiate the other.)

In the above case the variable C first has the value red because C in the
query was unified with Color in the head of the rule, AND the goals in the
body of the rule succeeded, AND Color was instantiated to red.

When we type a semicolon in response to C = red, Prolog backtracks and
ultimately comes up with green.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 78	

Rules with arguments, continued

These are unified

At hand:
food_color(Color) :- food(F), color(F,Color).

Prolog has no analog for "return x"! In Prolog there is no way to say
something like this,

?- Color = food_color(), writeln(Color), fail.

or this,

?- writeln(food_color()), fail.

Instead, predicates "return" values by instantiating logical variables.

?- food_color(C), writeln(C), fail.
red
green
...

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 79	

Instantiation as "return"

Some examples of instantiation as "return" with built-in predicates:
?- atom_length(testing, Len).
Len = 7.

?- upcase_atom(testing, Caps).
Caps = 'TESTING'.

?- term_to_atom(date(4,3,2013), A).
A = 'date(4,3,2013)'.

?- term_to_atom(T, 'date(4,3,2013)').
T = date(4, 3, 2013).

?- term_to_atom(date(M,D,Y), 'date(4,3,2013)').
M = 4,
D = 3,
Y = 2013.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 80	

Instantiation as "return", continued

Problem: Using term_to_atom write a predicate with this behavior:
?- swap('ten-four', R).
R = 'four-ten'.

First cut:

swap(A,Result) :-
 term_to_atom(T,A),
 First-Second = T, Swapped = Second-First,
 term_to_atom(Swapped, Result).

Better:

swap2(A, Result) :-
 term_to_atom(First-Second,A),
 term_to_atom(Second-First, Result).

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 81	

Instantiation as "return", continued

Problem: Write a predicate with this behavior:
?- describe_food(apple-X).
X = red.

?- describe_food(X-green).
X = broccoli ;
X = lettuce ;
false.

?- describe_food(X).
X = apple-red ;
X = broccoli-green ;
...
X = orange-orange ;
X = rice-white.

Solution:
 describe_food(Food-Color) :- food(Food), color(Food,Color).

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 82	

Instantiation as "return", continued

Recall between(1,10,X). Here's what help(between) shows:

between(+Low,	 +High,	 ?Value)	
	 	 	 	 Low	 	 and	 High	 are	 	 integers,	 High	 >=	 Low.	 	 	 If	 Value	 is	 an	 	 integer,	
	 	 	 	 Low	 =<	 Value	 =<	 High.	 When	 Value	 is	 a	 variable	 it	 is	 successively	
	 	 	 	 bound	 to	 all	 integers	 between	 Low	 and	 	 High.	 ...	

If an argument has a plus prefix, like +Low and +High, it means that the
argument is an input to the predicate and must be instantiated. A question
mark indicates that the argument can be input or output, and thus may or
may not be instantiated.

The documentation implies that between can (1) generate values and (2)
test for membership in a range.

?- between(1,10,X).
X = 1 ;
...

?- between(1,10,5).
true.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 83	

Sidebar: Describing predicates

Note: This is a documentation convention;
do not use the + and ? symbols in code!

Another:
term_to_atom(?Term,	 ?Atom)	

True	 	 if	 Atom	 describes	 a	 	 term	 that	 unifies	 with	 	 Term.	 	 When	 	
Atom	 is	 	 instanZated,	 	 Atom	 is	 	 converted	 and	 	 then	 	 unified	 with	 	
Term.	 ...	

Here is a successor predicate:

succ(?Int1,	 ?Int2)	
True	 	 if	 Int2=	 Int1+1	 	 and	 Int1>=0.	 	 	 At	 least	 one	 of	 the	 arguments	
must	 	 be	 instanZated	 to	 	 a	 natural	 number.	 ...	
	

?- succ(10,N).
N = 11.

There's no pred (predecessor) predicate. Why?
?- succ(N,10).
N = 9.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 84	

Describing predicates, continued

Here is the synopsis for format/2:
 format(+Format, +Arguments)

Speculate: What does sformat/3 do?

 sformat(-String, +Format, +Arguments)

The minus in -String indicates that the term should be an uninstantiated
variable.

?- sformat(S, 'x = ~w', 1).
S = "x = 1".

?- sformat("x = 1", 'x = ~w', 1).
false.

(Yes, we don't know what "..." is yet!)

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 85	

Describing predicates, continued

Arithmetic

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 86	

We've seen that Prolog builds structures out of expressions with operators.

?- display(1+2*3).
+(1,*(2,3))

?- display(1/2+(3*4)).
+(/(1,2),*(3,4))

?- display(300.0/X*(3+A*0.7**Y)).
(/(300.0,_G204),+(3,(_G212,**(0.7,_G210))))

Unlike == and \== , there are no predicates for the arithmetic operators.

?- \==(3,4).
true.

?- +(3,4).
ERROR: toplevel: Undefined procedure: (+)/2 ...

Question: Why are there no predicates for arithmetic operators?

 X == Y works fine as a goal but what we would do with the result of 3 + 4?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 87	

Arithmetic

The predicate is/2 evaluates a structure representing an arithmetic
expression and unifies the result with a logical variable.

?- is(X, 3+4*5).
X = 23.

is/2 is usually used as an infix operator:

?- X is 3 + 4, Y is 7 * 5, Z is X / Y.
X = 7,
Y = 35,
Z = 0.2.

All variables in the structure being evaluated by is/2 must be instantiated:

?- A is 3 + X.
ERROR: is/2: Arguments are not sufficiently instantiated

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 88	

Arithmetic, continued

It is not possible to directly specify an arithmetic expression as an
argument of most predicates.

?- write(3+4).
3+4
true.

?- 3+4 == 7.
false.

?- between(1, 5+5, 7).
ERROR: between/3: Type error: `integer' expected, found
`5+5'

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 89	

Arithmetic, continued

A full set of arithmetic operations is available. Here are some of them:

-X negation
X+Y addition
X-Y subtraction
X*Y multiplication
X/Y division—produces float quotient
X//Y integer division
X rem Y integer remainder
integer(X) truncation to integer
float(X) conversion to float
sign(X) sign of X: -1, 0, or 1

?- X is 77777777777777777777777*3333333333333333333333333.
X = 259259259259259259259256640740740740740740740741.

?- X is 10 // 3.
X = 3.

?- X is e ** sin(pi).
X = 1.0000000000000002.

 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 90	

Arithmetic, continued

help(rem) is a quick way to open
up the documentation section with
the arithmetic operations.

Here are some predicates that use arithmetic. Remember that we have to "return"
values via instantiation.

around(Prev,X,Next) :- Prev is X - 1, Next is X + 1.

area(rectangle(W,H), A) :- A is W * H.

area(circle(R), A) :- A is pi * R ** 2.

length(point(X1,Y1), point(X2,Y2), Length) :-

 Length is sqrt((X1-X2)**2+(Y1-Y2)**2). % note structure as sqrt arg!

?- around(P ,7, N).
P = 6,
N = 8.

?- area(circle(3),A).
A = 28.274333882308138.

?- area(rectangle(2*3,2+2),Area).
Area = 24.

?- length(point(3,0),point(0,4),Len).
Len = 5.0.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 91	

Arithmetic, continued

There are several numeric comparison operators.

X =:= Y numeric equality
X =\= Y numeric inequality
X < Y numeric less than
X > Y numeric greater than
X =< Y numeric equal or less than (NOTE the order, not <= !)
X >= Y numeric greater than or equal

Just like is/2, they evaluate their operands. Examples of usage:

?- 3 + 5 =:= 2*3+2.
true.

?- X is 3 / 5, X > X*X.
X = 0.6.

?- X is random(10), X > 5.
false.

?- X is random(10), X > 5.
X = 9.

Note that the comparisons produce no value; they simply succeed or fail.
CSC	 372	 Spring	 2014,	 Prolog	 Slide	 92	

Comparisons

Two predicates for grading:
grade(Score,Grade) :- Score >= 90, Grade = 'A'.
grade(Score,Grade) :- Score >= 80, Score < 90, Grade = 'B'.
grade(Score,Grade) :- Score >= 70, Score < 80, Grade = 'C'.
grade(Score,Grade) :- Score < 70, Grade = 'F'.

print_grade(Score) :- grade(Score,Grade),
 format('~w -> ~w\n', [Score, Grade]).

Usage:

?- grade(95,G).
G = 'A'

?- print_grade(80).
80 -> B

?- print_grade(55).
55 -> F

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 93	

Comparisons, continued

More with rules

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 94	

Here is a set of facts for parents and children:

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 95	

Parents and children

male(tom).
male(jim).
male(bob).
male(mike).
male(david).

female(jane).
female(betty).
female(mary).
female(alice).

parent(tom,betty).
parent(tom,bob).
parent(jane,betty).
parent(jane,bob).
parent(jim,mike).
parent(jim,david).
parent(betty,mike).
parent(betty,david).
parent(bob,alice).
parent(mary,alice).

Jim & Betty

Tom & Jane

Bob & Mary

Alice Mike David

? ?

Define a rule for father(F,C).
 father(F,C) :-

 male(F), parent(F,C).

?- father(F,betty).
F = tom ;
false.

?- father(F,C).
F = tom,
C = betty ;
F = tom,
C = bob ;
...
false.

?- father(F,_).
F = tom ;
F = tom ;

Here is a set of facts for parents and children:

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 96	

Parents and children, continued

male(tom).
male(jim).
male(bob).
male(mike).
male(david).

female(jane).
female(betty).
female(mary).
female(alice).

parent(tom,betty).
parent(tom,bob).
parent(jane,betty).
parent(jane,bob).
parent(jim,mike).
parent(jim,david).
parent(betty,mike).
parent(betty,david).
parent(bob,alice).
parent(mary,alice).

Jim & Betty

Tom & Jane

Bob & Mary

Alice Mike David

? ?

Define grandmother(GM,C).
grandmother(GM,C) :-
 female(GM), parent(GM, P),
 parent(P, C).

?- grandmother(GM,C).
GM = jane,
C = mike ;
GM = jane,
C = david ;
GM = jane,
C = alice ;
false.

Or, we could have defined
mother(M,C) and written
grandmother using mother.

For who is Tom the father?
?- father(tom,C).
C = betty ;
C = bob.

What are all the father/daughter
relationships?

?- father(F,D), female(D).
F = tom,
D = betty ;
F = bob,
D = alice ;
false.

Who is the father of Jim?

?- father(F,jim).
false.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 97	

Parents and children, continued

Jim & Betty

Tom & Jane

Bob & Mary

Alice Mike David

? ?

Consider an abstract set of parent/child relationships:

parent(a,b). parent(c,d).
parent(a,c). parent(b,f).
parent(c,e). parent(f,g).

Here is a recursive predicate for the relationship that X is an ancestor of A.

ancestor(A,X) :- parent(A, X).
ancestor(A,X) :- parent(P, X), ancestor(A,P).

In English:

"A is an ancestor of X if A is the parent of X or P is the parent of X and A is
an ancestor of P."

Usage:

?- ancestor(a,f). % Is a an ancestor of f?
true

?- ancestor(c,b). % Is c an ancestor of b?
false.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 98	

Recursive predicates
a

c b

e
g

f d

At hand:

ancestor(A,X) :- parent(A, X).
ancestor(A,X) :- parent(P, X), ancestor(A,P).

More examples:

?- ancestor(c,Descendant). % What are the descendants of c?
Descendant = e ;
Descendant = d ;
false.

What's the following query asking?

?- ancestor(A, e), ancestor(A,g).
A = a ;
false.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 99	

Recursive predicates
a

c b

e
g

f d

A recursive rule can be used to perform an iterative computation.

Here is a predicate that prints the integers from 1 through N:

printN(0).
printN(N) :- N > 0, M is N - 1, printN(M), writeln(N).

Usage:

?- printN(3).
1
2
3
true .

Note that we're asking if printN(3) can be proven. The side effect of Prolog
proving it is that the numbers 1, 2, and 3 are printed.

Is printN(0). needed?

Which is better—the above or using between/3?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 100	

Iteration with recursion

A predicate to sum the integers from 0 to N: (ignoring Gauss...)
sumN(0,0).
sumN(N,Sum) :-

 N > 0, M is N - 1, sumN(M, Temp), Sum is Temp + N.

Usage:

?- sumN(4,X).
X = 10 .

Note that this predicate can't be used to determine N for a given sum:

?- sumN(N, 10).
ERROR: >/2: Arguments are not sufficiently instantiated

Could we write sumN using between?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 101	

More recursion

Here's the correct definition for sumN:

sumN(0,0).
sumN(N,Sum) :-

 N > 0, M is N - 1, sumN(M, Temp), Sum is Temp + N.

Here is a common mistake:

sumN(0,0).
sumN(N,Sum) :-
 N > 0, M is N - 1, sumN(M, Sum), Sum is Sum + N.

Unless N is zero, Sum is Sum + N fails every time!

Remember that is/2 unifies its left operand with the result of
arithmetically evaluating its right operand. Further remember that
unification is neither assignment or comparison.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 102	

Sidebar: A common mistake with arithmetic

Here's the common example of recursion—factorial computation:

factorial(0,1).

factorial(N,F) :-
 N > 0,
 N1 is N - 1,
 factorial(N1,F1),
 F is N * F1.

The above example comes from
 http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/2_2.html

Near the bottom the page is an excellent animation of the computation
factorial(3,X). Try it if you don't mind dealing with a Java applet.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 103	

Recursion, continued

gtrace is the graphical counterpart of trace. Start it like this:
?- gtrace, sumN(4,Sum).
% The graphical front-end will be used for subsequent tracing

Type space to through step goals one at a time. Click on call stack elements to
show bindings in that call. The ancestor predicate makes a good demo, too.

gtrace should work immediately on Windows and Macs. On a Linux machine in
the labs use "ssh –X ..." to login to lectura, and it should work there, too.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 104	

Sidebar: graphical tracing with gtrace

Here is a predicate that tests whether a number is odd:

odd(N) :- N mod 2 =:= 1.

Note that N mod 2 works because =:= evaluates its operands.

An alternative:

odd(1).
odd(N) :- odd(M), N is M + 2.

How do the behavior of the two differ?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 105	

Generating alternatives with recursion

For reference:

odd(1).
odd(N) :- odd(M), N is M + 2.

Usage:

?- odd(5).
true .

?- odd(X).
X = 1 ;
X = 3 ;
X = 5 ;
...

What does odd(2) do?

How does odd(X) work?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 106	

Generating alternatives, continued

Query: ?- odd(X).

 odd(1).
 odd(N) :- odd(M), N is M + 2.

 odd(1).
 odd(N) :- odd(M), N is M + 2.

 odd(1).
 odd(N) :- odd(M), N is M + 2.

 odd(1).
 odd(N) :- odd(M), N is M + 2.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 107	

Generating alternatives, cont.
odd(X)

exit call
fail redo

odd(M)
exit/call call

fail N is M+2
exit
redo redo/fail

odd(M)
exit/call call

fail N is M+2
exit
redo redo/fail

odd(M)
exit/call call

fail N is M+2
exit
redo redo/fail

odd(M)
exit/call call

fail N is M+2
exit
redo redo/fail

Corrections:
 odd(M)
 "fail" on lower left port

For reference:

odd(1).
odd(N) :- odd(M), N is M + 2.

The key point with generative predicates:

If an alternative is requested, another activation of the predicate is
created.

As a contrast, think about how execution differs with this set of clauses:

odd(1).
odd(3).
odd(5).
odd(N) :- odd(M), N is M + 2.

Try gtrace with both the two-clause version at the top and the four-clause
version just above.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 108	

Generating alternatives, continued

Lists

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 109	

A Prolog list can be literally specified by enclosing a comma-separated series of
terms in square brackets:

[1, 2, 3]

[just, a, test, here]

[1, [one], 1.0, [a,[b,['c this']]]]

Common mistake: Entering a list literal as a query is taken as a request to consult
files!

?- [abc, 123].
ERROR: source_sink `abc' does not exist ...

One way to "see" a list is to write it; another way is to unify it with a variable:

?- write([1,2,3,4]).
[1, 2, 3, 4]

?- X = [a,1,b,2].
X = [a, 1, b, 2]

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 110	

List basics

Here are some unifications with lists:

?- [1,2,3] = [X,Y,Z].
X = 1,
Y = 2,
Z = 3.

?- [X,Y] = [1,[2,[3,4]]].
X = 1,
Y = [2, [3, 4]].

?- [X,Y] = [1].
false.

?- Z = [X,Y,X], X = 1, Y = [2,3].
Z = [1, [2, 3], 1],
X = 1,
Y = [2, 3].

Note the similarity to Haskell patterns.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 111	

List basics, continued

What is produced by the following queries?

?- [A, B] = [X, A], X = a.
A = B, B = X, X = a.

?- [A, B, C] = [C, C, A].
A = B, B = C.

Write a predicate empty(L) that succeeds iff L is an empty list. Be sure it
succeeds only on lists and no other types!

empty([]).

Write a predicate f(X) that succeeds iff X is a list with one or three
elements or X is an odd number.

f([_]).
f([_,_,_]).
f(N) :- number(N), N mod 2 =:= 1.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 112	

List basics, continued

SWI Prolog has a number of built-in predicates that operate on lists. One of them
is length/2:

What do you think length(?List, ?Len) does?

Get the length of a list:
?- length([10,20,30],Len).
Len = 3

And?

 Make a list of uninstantiated variables:
?- length(L,3).
L = [_G907, _G910, _G913].

Speculate—what will length(L,N) do?

?- length(L,N).
L = [],
N = 0 ;
L = [_G919],
N = 1 ;
L = [_G919, _G922],
N = 2 ...

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 113	

Built-in list-related predicates

What does reverse(?List, ?Reversed) do?

 Unifies a list with a reversed copy of itself.
?- reverse([1,2,3],R).
R = [3, 2, 1].

?- reverse([1,2,3],[1,2,3]).
false.

Write palindrome(L).

palindrome(L) :- reverse(L,L).

Speculate—what's the result of reverse(X,Y).?

?- reverse(X,Y).
X = Y, Y = [] ;
X = Y, Y = [_G913] ;
X = [_G913, _G916],
Y = [_G916, _G913] ;
X = [_G913, _G922, _G916],
Y = [_G916, _G922, _G913] ;

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 114	

Built-ins for lists, continued

How about numlist(+Low, +High, -List)?
?- numlist(5,10,L).
L = [5, 6, 7, 8, 9, 10].

How can we make [7, 6, ..., 1]?

?- numlist(1,7,L), reverse(L,R).
L = [1, 2, 3, 4, 5, 6, 7],
R = [7, 6, 5, 4, 3, 2, 1].

sumlist(+List, -Sum) unifies Sum with the sum of the values in List,
which must all be numbers or structures that can be evaluated with is/2.

?- numlist(1,5,L), sumlist(L,Sum).
L = [1, 2, 3, 4, 5],
Sum = 15.

?- sumlist([1+2, 3*4, 5-6/7],X).
X = 19.142857142857142.

 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 115	

Built-ins for lists, continued

REPLACEMENTS!
"X" out 116-119 in the previous set

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 116	

Write a predicate sumGreater(+Target, -N, -Sum) that finds the
smallest N for which the sum of 1..N is greater than Target.

?- sumGreater(50,N,Sum).
N = 10,
Sum = 55 .

?- sumGreater(1000000,N,Sum).
N = 1414,
Sum = 1000405 .

Let's ignore Gauss and have some fun with lists!

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 117	

Sidebar: Developing a list-based predicate goal-by-goal

Step one: Have a goal that instantiates N to 1, 2, ...
?- between(1, inf, N).
N = 1 ;
N = 2 ;
N = 3 ;
...

Step two: instantiate L to lists [1], [1,2], ...

?- between(1, inf, N), numlist(1,N,L).
N = 1,
L = [1] ;
N = 2,
L = [1, 2] ;
N = 3,
L = [1, 2, 3] ;
...

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 118	

Sidebar, continued

Step three: Compute sum of 1..N.
?- between(1, inf, N), numlist(1,N,L), sumlist(L,Sum).
N = Sum, Sum = 1,
L = [1] ;
N = 2,
L = [1, 2],
Sum = 3 ;
...

Step four: Test sum against target value.

?- between(1, inf, N), numlist(1,N,L), sumlist(L,Sum), Sum > 20.
N = 6,
L = [1, 2, 3, 4, 5, 6],
Sum = 21 .

Note the incremental process followed, adding goals one-by-one and being
sure the results for each step are what we expect.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 119	

Sidebar, continued

Step four, for reference:
?- between(1, inf, N), numlist(1,N,L), sumlist(L,Sum), Sum > 20.
N = 6,
L = [1, 2, 3, 4, 5, 6],
Sum = 21 .

Step five: Package as a predicate.
% cat sg.pl
sumGreater(Target,N,Sum) :-

 between(1,inf,N), numlist(1,N,L), sumlist(L,Sum), Sum > Target.

% pl -l sg
...
?- sumGreater(1000,N,Sum).
N = 45,
Sum = 1035 ;
N = 46,
Sum = 1081 ;

Is it good or bad that it produces alternatives?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 120	

Sidebar, continued

Here's atom_chars(?Atom, ?Charlist):

?- atom_chars('abc',L).
L = [a, b, c].

?- atom_chars(A, [a, b, c]).
A = abc.

Note that atom_chars is the analog of both explode and implode in ML.

Problem: write rev_atom/2.

?- rev_atom(testing,R).
R = gnitset.

?- rev_atom(testing,gnitset).
true.

 rev_atom(A,RA) :- % warning: a rule shown in the middle of queries!
 atom_chars(A,AL), reverse(AL,RL), atom_chars(RA,RL).

?- rev_atom(X,gnitset).
ERROR: atom_chars/2: Arguments are not sufficiently instantiated

 How should rev_atom's arguments be described with +, ?, and -?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 121	

Built-ins for lists, continued

msort(+List, -Sorted) unifies Sorted with a sorted copy of List:
?- msort([3,1,7], L).
L = [1, 3, 7].

?- atom_chars(prolog, L), msort(L,S), atom_chars(A,S).
L = [p, r, o, l, o, g],
S = [g, l, o, o, p, r],
A = gloopr.

If the list is heterogeneous, elements are sorted in "standard order":
?- msort([xyz, 5, [1,2], abc, 1, 5, x(a)], Sorted).
Sorted = [1, 5, 5, abc, xyz, x(a), [1, 2]].

sort/2 is like msort/2 but also removes duplicates.

?- sort([xyz, 5, [1,2], abc, 1, 5, x(a)], Sorted).
Sorted = [1, 5, abc, xyz, x(a), [1, 2]].

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 122	

Built-ins for lists, continued

member(?Elem, ?List) succeeds when Elem can be unified with a
member of List.

member can be used to check for membership:

?- member(30, [10, twenty, 30]).
true.

member can be used to generate the members of a list:

?- member(X, [10, twenty, 30]).
X = 10 ;
X = twenty ;
X = 30.

Problem: Print the numbers from 100 through 1.

?- numlist(1,100,L), reverse(L,R), member(E,R), writeln(E), fail.
100
99
...

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 123	

The member predicate

Problem: Write a predicate has_vowel(+Atom) that succeeds iff Atom
has a lowercase vowel.

?- has_vowel(ack).
true

?- has_vowel(pfft).
false.

Solution:

has_vowel(Atom) :-
 atom_chars(Atom,Chars),
 member(Char,Chars),
 member(Char,[a,e,i,o,u]).

Explain it!

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 124	

member, continued

Here's how the documentation describes append/3:
?- help(append/3).
append(?List1, ?List2, ?List1AndList2)
 List1AndList2 is the concatenation of List1 and List2

Usage:

?- append([1,2], [3,4,5], R).
R = [1, 2, 3, 4, 5].

?- numlist(1,4,L1), reverse(L1,L2), append(L1,L2,R).
L1 = [1, 2, 3, 4],
L2 = [4, 3, 2, 1],
R = [1, 2, 3, 4, 4, 3, 2, 1].

What else can we do with append?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 125	

The append predicate

What will the following do?
?- append(A, B, [1,2,3]).
A = [],
B = [1, 2, 3] ;
A = [1],
B = [2, 3] ;
A = [1, 2],
B = [3] ;
A = [1, 2, 3],
B = [] ;
false.

The query can be thought of as asking, "For what values of A and B is their
concatenation [1,2,3]?

Think of append as demanding a relationship between the three lists: List3 must
consist of the elements of List1 followed by the elements of List2. If List1 and
List2 are instantiated, List3 must be their concatenation. If only List3 is
instantiated then List1 and List2 represent (in turn) all possible the ways to divide
List3.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 126	

append, continued

Let's write some more predicates using append.
 starts_with(L, Prefix) :-
 append(Prefix, _, L).

Usage:

?- starts_with([1,2,3,4], [1,2]).
true.

?- starts_with([1,2,3,4], L).
L = [] ;
L = [1] ;
L = [1, 2] ;
L = [1, 2, 3] ;
L = [1, 2, 3, 4] ;
false.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 127	

append, continued

Haskell meets Prolog:
take(L, N, Result) :-

 length(Result,N), append(Result, _, L).

?- take([1,2,3,4,5], 3, L).
L = [1, 2, 3].

?- take([1,2,3,4,5], N, L).
N = 0,
L = [] ;
N = 1,
L = [1] ;
N = 2,
L = [1, 2] ;
...

drop(L, N, Result) :-
 append(Dropped, Result, L), length(Dropped, N).

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 128	

append, continued

Here is a predicate that generates successive N-long chunks of a list:
chunk(L,N,Chunk) :-
 length(Chunk,N), append(Chunk,_,L).

chunk(L,N,Chunk) :-
 length(Junk, N), append(Junk,Rest,L), chunk(Rest,N,Chunk).

Usage:
?- chunk([1,2,3,4,5],2,L).
L = [1, 2] ;
L = [3, 4] ;
false.

?- numlist(1,100,L), chunk(L,5,C), sumlist(C,Sum), between(300,350,Sum).
L = [1, 2, 3, 4, 5, 6, 7, 8, 9|...],
C = [61, 62, 63, 64, 65],
Sum = 315 ;

L = [1, 2, 3, 4, 5, 6, 7, 8, 9|...],
C = [66, 67, 68, 69, 70],
Sum = 340 ;
false.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 129	

append, continued

findall can be used to create a list of values that satisfy a goal. A simple
example:

?- findall(F, food(F), Foods).
Foods = [apple, broccoli, carrot, lettuce, orange, rice].

SWI's documentation:

findall(+Template,	 :Goal,	 -‐Bag)	
Create	 a	 list	 of	 the	 instanZaZons	 Template	 gets	 successively	 	 on	
backtracking	 	 over	 Goal	 	 and	 unify	 the	 result	 with	 Bag.	 	 	 Succeeds	
with	 	 an	 	 empty	 list	 if	 Goal	 has	 no	 soluZons.	
	

Template is not limited to being a single variable. It might be a structure.

The second argument can be a single goal, or several goals joined with
conjunction.

The third argument is instantiated to a list of terms whose structure is
determined by the template. Above, each term is just an atom.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 130	

The findall predicate

?

For reference:
 findall(+Template, :Goal, -Bag) (The colon in :Goal means"meta-argument")

?- findall(F, food(F), Foods).
Foods = [apple, broccoli, carrot, lettuce, orange, rice].

Examples to show the relationship of the template and the resulting list:

?- findall(x, food(F), Foods).
Foods = [x, x, x, x, x, x].

?- findall(x(F), food(F), Foods).
Foods = [x(apple), x(broccoli), x(carrot), x(lettuce), x(orange), x(rice)].

?- findall(1-F, food(F), Foods).
Foods = [1-apple, 1-broccoli, 1-carrot, 1-lettuce, 1-orange, 1-rice].

What does findall remind you of?

findall is said to be a higher-order predicate. It's a predicate that takes a predicate,
food(F) in this case.

 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 131	

findall, continued

Here's a case where the :Goal is a conjunction of two goals.

?- findall(F-C, (food(F),color(F,C)), FoodsAndColors).
FoodsAndColors = [apple-red, broccoli-green, carrot-orange,
lettuce-green, orange-orange, rice-white].

display sheds some light on that conjunction:

?- display((food(F),color(F,C))).
,(food(_G835),color(_G835,_G838))
true.

It's a two-term structure whose functor is ',' (just a comma).

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 132	

findall, continued

For reference:
findall(+Template,	 :Goal,	 -‐Bag)	

Describe the following computation.

?- numlist(1,9,L),
 findall(
 sum(Pfx,Sum),
 (append(Pfx,_,L), sumlist(Pfx,Sum), Sum<10),
 Sums).
L = [1, 2, 3, 4, 5, 6, 7, 8, 9],
Sums = [sum([], 0), sum([1], 1), sum([1, 2], 3), sum([1, 2, 3], 6)].

Find all prefixes of the list [1, 2, 3, 4, 5, 6, 7, 8, 9] whose sum is less than
10. Instantiate Sums to a list of sum structures whose terms are the list
and the sum of its elements.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 133	

findall, continued

What you need for
a7 ends here!

Low-level list processing

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 134	

The list [1,2,3] can be specified in terms of a head and a tail, like this:

[1 | [2, 3]]

More generally, a list can be specified as a sequence of initial elements and
a tail.

The list [1,2,3,4] can be specified in any of these ways:

[1 | [2,3,4]]

[1,2 | [3,4]]

[1,2,3 | [4]]

[1,2,3,4 | []]

 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 135	

Heads and tails

Haskell equivalents:
1:[2,3,4]

1:2:[3,4]

1:2:3:[4]

1:2:3:4:[]

Consider this unification:

?- [H|T] = [1,2,3,4].
H = 1,
T = [2, 3, 4].

What instantiations are produced by these unifications?

?- [X, Y | T] = [1, 2, 3].
X = 1,
Y = 2,
T = [3].

?- [X, Y | T] = [1, 2].
X = 1,
Y = 2,
T = [].

?- [1, 2 | [3,4]] = [H | T].
H = 1,
T = [2, 3, 4].

?- A = [1], B = [A|A].
A = [1],
B = [[1], 1].

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 136	

Unifications with lists

A rule that describes the relationship between a list and and its head:

head(L, H) :- L = [H|_].

The head of L is H if L unifies with a list whose head is H.

Usage:

?- head([1,2,3],H).
H = 1.

?- head([2],H).
H = 2.

?- head([],H).
false.

?- L = [X,X,b,c], head(L, a).
L = [a, a, b, c],
X = a.

Problem: Define head/2 more concisely.

 head([H|_], H).

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 137	

Simple list predicates

Here is one way to implement the standard member/2 predicate:

member(X,L) :- L = [X|_].
member(X,L) :- L = [_|T], member(X, T).

Usage:

?- member(1, [2,1,4,5]).
true ;
false.

?- member(a, [2,1,4,5]).
false.

How does generation of list elements with member work?

?- member(X, [a,b,c]).
X = a ;
X = b ;
...

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 138	

Implementing member

For reference:
member(X,L) :- L = [X|_].
member(X,L) :- L = [_|T], member(X, T).

Problem: Define member more concisely.

member(X,[X|_]).
 X is a member of the list having X as its head

member(X,[_|T]) :- member(X,T).

 X is a member of the list having T as its tail if X is a member of T

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 139	

member, continued

Problem: Define a predicate last(L,X) that describes the relationship
between a list L and its last element, X.

?- last([a,b,c],X).
X = c.

?- last([],X).
false.

?- last(L,last), head(L,first), length(L,2).
L = [first, last] .

last is a built-in predicate but here's how we'd write it.

last([X],X).
last([_|T],X) :- last(T,X).

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 140	

Implementing last

Problem: Write a predicate len/2 that behaves like the built-in length/2

?- len([],N).
N = 0.

?- len([a,b,c,d], N).
N = 4.

?- len(L,1).
L = [_G901] .

?- len(L,N).
L = [],
N = 0 ;
L = [_G913],
N = 1 ;
L = [_G913, _G916],
N = 2 ;
...

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 141	

Implementing length

len([], 0).
len([_|T],Len) :- len(T,TLen), Len is TLen + 1.

Problem: Define a predicate allsame(L) that describes lists in which all elements
have the same value.

?- allsame([a,a,a]).
true

?- allsame([a,b,a]).
false.

?- L = [A,B,C], allsame(L), B = 7, write(L).
[7,7,7]
L = [7, 7, 7],
A = B, B = C, C = 7 .

?- length(L,5), allsame(L), head(L,x).
L = [x, x, x, x, x] .

Solution:
allsame([_]).
allsame([X,X|T]) :- allsame([X|T]).

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 142	

allsame

Here's another way to test it:
?- allsame(L).
L = [_G1635] ;
L = [_G1635, _G1635] ;
L = [_G1635, _G1635, _G1635] ;
...

Recall the description of the built-in append predicate:
?-‐	 help(append/3).	
append(?List1,	 ?List2,	 ?List1AndList2)	
	 	 	 	 List1AndList2	 is	 the	 concatenaZon	 of	 List1	 and	 List2	

The usual definition of append:

append([], X, X).
append([X|L1], L2, [X|L3]) :- append(L1, L2, L3).

How does it work?

Try tracing it. To avoid getting the built-in version, define the above as
myapp instead of append. Then try these:

?- gtrace, myapp([1,2,3,4],[a,b,c,d],X).

?- gtrace, myapp([a,b,c,d,e,f,g],[],X).

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 143	

Implementing append

In fact, lists are structures:

?- display([1,2,3]).
.(1,.(2,.(3,[])))

Essentially, ./2 is the "cons" operation in Prolog.

By default, lists are shown using the [...] notation:

?- X = .(a, .(b,[])).
X = [a, b].

We can write member/2 like this:

member(X, .(X,_)).
member(X, .(_,T)) :- member(X,T).

What does the following produce?

?- X='.'(3,4).
X = [3|4].

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 144	

Lists are structures

% Lisp programmers would call this a "dotted-pair".

"Can't prove"

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 145	

The query \+goal succeeds if goal fails.

?- food(computer).
false.

?- \+food(computer).
true.

An incomplete set of facts can produce oddities.

?- \+food(cake).
true.

\+ is sometimes read as "can't prove" or "fail if".

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 146	

"can't prove"

Example: What foods are not green?

?- food(F), \+color(F,green).
F = apple ;
F = carrot ;
F = orange ;
F = rice ;
F = 'Big Mac'.

If there's no color fact for a food, will the query above list that food?

How can we see if there are any foods don't have a color fact?

?- food(F), \+color(F,_).
F = 'Big Mac'.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 147	

"can't prove", continued

The predicate inedible(X) succeeds if something is not a food.

inedible(X) :- \+food(X).

?- inedible(rock).
true.

What will the query ?- inedible(X). do?

?- inedible(X).
false.

What's this query asking?
?- color(X,_), \+food(X).
X = sky ;
X = dirt ;
X = grass ;
false.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 148	

"can't prove", continued

Cut

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 149	

Backtracking can be limited with the "cut" operator, represented by an
exclamation mark.

A cut always succeeds when evaluated, but inhibits backtracking.

?- food(F), writeln(F), fail.
apple
broccoli
carrot
...
false.

?- food(F), writeln(F), !, fail.
apple
false.

One way to picture a cut is like a one-way gate: control can pass through a
cut from left to right, but not from right to left.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 150	

Cut

Consider these facts:

Queries and cuts:

?- f(F), write(F), g(G), write(G), fail.
 f1 g1 g2 g3 f2 g1 g2 g3 f3 g1 g2 g3

?- f(F), write(F), !, g(G), write(G), fail.
 f1 g1 g2 g3

?- f(F), write(F), g(G), write(G), !, fail.
 f1 g1

?- !, f(F), !, write(F), !, g(G), !, write(G), !, fail.
 f1 g1

Another analogy: A cut is like a door that locks behind you.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 151	

Cut, continued
f(' f1 '). g(' g1 ').
f(' f2 '). g(' g2 ').
f(' f3 '). g(' g3 ').

In a rule, a cut still acts as a one-way gate in the rule itself but it also prevents
consideration of subsequent clauses for the current call of that predicate. It's "do-
or-die" (succeed or fail) with the rule at hand.

Here's an example from Clause and Effect by Clocksin.

drink(milk) :- true. % Equivalent to drink(milk).
drink(beer) :- true, !.
drink(gin) :- true.

?- drink(gin).
true.

?- drink(D), writeln(D), fail.
milk
beer
false.

Because of the cut in drink(beer)'s body, further alternatives are not considered.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 152	

Cut, continued

At hand:
drink(milk) :- true.
drink(beer) :- true, !.
drink(gin) :- true.

Queries:
?- drink(X), drink(Y).
X = Y, Y = milk ;
X = milk,
Y = beer ;
X = beer,
Y = milk ;
X = Y, Y = beer.

?- drink(X), !, drink(Y).
X = Y, Y = milk ;
X = milk,
Y = beer.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 153	

Cut, continued
Remember:

A cut in a rule prevents
subsequent clauses from
being considered in that call.

Control never backtracks through a cut but backtracking can occur
between goals on each side of a cut.

Consider this abstract rule,

 x :- a, b, c, !, d, e, f, !, g, h, i.
 x :- j.

and a query:

 ?- x, y.

Control may circulate between a, b, and c but once c is proven, and the
cut passed through, a, b, and c will be not be considered again during a
particular call of x. Similarly, once f succeeds, we are further committed.

However, if x succeeds and y fails, control will backtrack into g, h, and i
if they contain unexplored alternatives.

Experiment with www/pl/cut1.pl, where www is

 http://www.cs.arizona.edu/classes/cs372/spring14

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 154	

Cut, continued

Below is a faulty "improvement" for grade (original version in the box).

grade2(Score, 'A') :- Score >= 90.
grade2(Score, 'B') :- Score >= 80.
grade2(Score, 'C') :- Score >= 70.
grade2(_, 'F').

Usage:

?- grade2(85,G).
G = 'B' ;
G = 'C' ;
G = 'F'.

Can we fix grade2 with a cut?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 155	

Cut, continued

grade(S,'A') :- S >= 90.
grade(S,'B') :- S >= 80, S < 90.
grade(S,'C') :- S >= 70, S < 80.
grade(S,'F') :- S < 70.

Recall:
A cut in a rule prevents consideration of subsequent clauses for the
current call of that predicate. It's "do-or-die" (succeed or fail) with the
rule at hand.

A version of grade with cuts:

grade3(Score, 'A') :- Score >= 90, !.
grade3(Score, 'B') :- Score >= 80, !.
grade3(Score, 'C') :- Score >= 70, !.
grade3(_, 'F').

Usage:

?- grade3(85,G).
G = 'B'.

?- do_grades([bob-87, mary-92]).
bob: B
mary: A

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 156	

Cut, continued

do_grades(Students) :-
 member(Who-Avg, Students),
 grade3(Avg,Grade),
 format('~w: ~w~n', [Who, Grade]), fail.

Here's one way to write max:
max(X, Y, X) :- X >= Y.
max(X, Y, Y) :- X < Y.

Usage:

?- max(10,3,Max).
Max = 10 ;
false.

Can we shorten it with a cut?

max(X, Y, X) :- X >= Y, !.
max(_, Y, Y).

(Adapted from Clause and Effect.)

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 157	

Cut, continued

Also from Clause and Effect, here's a variant of member:

xmember(X, [X|_]) :- !.
xmember(X, [_|T]) :- xmember(X,T).

How does its behavior differ from the standard version? (below)

member(X, [X|_]).
member(X, [_|T]) :- member(X,T).

There's a built-in predicate, memberchk/2, that has the same behavior as
xmember. When might it be appropriate to use it instead of member?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 158	

Cut, continued

Predicates naturally fail when a desired condition is absent but sometimes
we want a predicate to fail when a particular condition is present.

Here is a recursive predicate that succeeds iff all numbers in a list are
positive:

allpos([X]) :- X > 0.
allpos([X|T]) :- X > 0, allpos(T).

Another way to write it is with a "cut-fail":

allpos(L) :- member(X, L), X =< 0, !, fail.
allpos(_).

Remember that a cut effectively eliminates all subsequent clauses for the
active predicate. If a non-positive value is found, the cut eliminates
allpos(_). and then the rule fails.

Another way to think about cut-fail: "My final answer is No!"

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 159	

The "cut-fail" idiom

average_taxpayer(X) :-
 foreigner(X), !, fail.

average_taxpayer(X) :-
 spouse(X,Spouse),
 gross_income(Spouse, SpouseIncome),
 SpouseIncome > 3000, !, fail.

average_taxpayer(X) :-
 gross_income(X, Inc),
 Inc > 2000, Inc =< 20_000.

gross_income(X,GrossIncome) :-
 receives_pension(X, GrossIncome),
 GrossIncome < 5000, !, fail.

gross_income(X, GrossIncome) :-
 gross_salary(X, GrossSalary),
 investment_income(X,InvestmentIncome),
 GrossIncome is GrossSalary + InvestmentIncome.

investment_income(X, InvestmentIncome) :- ...

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 160	

"cut-fail", continued

Straight from Clocksin and Mellish, p.91

A person is not an average taxpayer if
they are a foreigner.

A person is not an average taxpayer
if they've got a spouse and the
spouse makes over 3000.

A person is an average taxpayer if
their income is between 2000 and 20,000.

A person is not considered to have a
gross income if they receive a pension
of less than 5000.

A cut says, "If you get this
far, you've picked the right
rule for this goal." – C&M

Here's how we could implement \+ (can't prove) using the higher-order
predicate call/1 and a cut-fail:

cant_prove(G) :- call(G), !, fail.
cant_prove(_).

Usage:

?- cant_prove(food(apple)).
false.

?- cant_prove(food(computer)).
true.

?- cant_prove(color(_,purple)).
true.

Is cant_prove a higher-order predicate?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 161	

"cut-fail", continued

A cut is said to be a "green cut" if it simply makes a predicate more
efficient. By definition, adding or removing a green cut does not effect the
set of results for any call of a predicate.

A "red cut" affects the set of results produced by a predicate.

Which of the preceding examples of cuts are red cuts and which are green
cuts?

There are also blue and "grue" cuts.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 162	

A rainbow of cuts!

Database (knowledgebase)
manipulation

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 163	

A Prolog program is a database of facts and rules.

The database can be changed dynamically by adding facts with assert/1
and deleting facts with retract/1.

A predicate to establish that certain things are foods:

makefoods :-
 assert(food(apple)),
 assert(food(broccoli)), assert(food(carrot)),
 assert(food(lettuce)), assert(food(rice)).

Evaluating makefoods adds facts to the database:

?- food(F).
ERROR: toplevel: Undefined procedure: food/1

?- makefoods.
true.

?- findall(F,food(F),L).
L = [apple, broccoli, carrot, lettuce, rice].

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 164	

assert and retract

A fact can be "removed" with retract:
?- retract(food(carrot)).
true.

?- food(carrot).
false.

retractall removes all matching facts.
?- retractall(food(_)).
true.

?- food(X).
false.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 165	

assert and retract, continued

If we query makefoods multiple times, it makes multiple sets of food facts.
?- makefoods.
true.

?- makefoods.
true.

?- findall(F,food(F),Foods).
Foods = [apple, broccoli, carrot, lettuce, rice, apple, broccoli, carrot,
lettuce|...].

That behavior might be useful in some cases but if not, start the rule with a
retractall to get a clean slate:

makefoods :-
 retractall(food(_)),
 assert(food(apple)),
 assert(food(broccoli)), assert(food(carrot)),
 assert(food(lettuce)), assert(food(rice)).

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 166	

assert and retract, continued

Asserts and retracts are not undone with backtracking.

?- assert(f(1)), assert(f(2)), fail.
false.

?- f(X).
X = 1 ;
X = 2.

?- retract(f(1)), fail.
false.

?- f(X). % A redo of retract(f(1)) did not restore f(1).
X = 2.

There is no ability to directly change a fact. Instead, a fact is changed by
retracting it and then asserting it with different terms.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 167	

assert and retract, continued

A rule to remove foods of a given color (assuming the color/2 facts are
present):

rmfood(C) :- food(F), color(F,C),
 retract(food(F)),
 write('Removed '), write(F), nl, fail.

Usage:

?- rmfood(green).
Removed broccoli
Removed lettuce
false.

?- findall(F, food(F), L).
L = [apple, carrot, rice].

The color facts are not affected—color(broccoli, green) and
color(lettuce,green) still exist.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 168	

assert and retract, continued

Imagine a simple interpreter to manipulate an integer value:

?- run.
> print.
0
> add(20).
> sub(7).
> print.
13
> set(40).
> print.
40
> exit.
true.

Note that the commands themselves are Prolog terms.

Code is in www/pl/interp.pl

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 169	

A simple command interpreter

A loop that reads and prints terms:
run0 :- prompt(_, '> '),
 repeat, read(T), format('Read ~w~n', T), T = exit, !.

Interaction:

?- run0.
> a.
Read a
> ab(c,d,e).
Read ab(c,d,e)
> exit.
Read exit
true.

How does the loop work?

prompt/2 sets the prompt that's printed when read/1 is called.

repeat/0 always succeeds. If repeat is backtracked into, it simply sends control
back to the right. (Think of its redo port being wired to its exit port.)

The predicate read(-X) reads a Prolog term and unifies it with X.

 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 170	

Simple interpreter, continued

Partial implementation:
init :-

 retractall(value(_)),
 assert(value(0)).

do(set(V)) :-

 retract(value(_)),
 assert(value(V)).

do(print) :- value(V), writeln(V).

do(exit).

run :-

 init, prompt(_, '> '),
 repeat, read(T), do(T), T = exit, !.

How can add(N) and sub(N) be implemented? (No repetitious code,
please!)

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 171	

Simple interpreter, continued

?- run.
> print.
0
> add(20).
> sub(7).
> print.
13
> set(40).
> print.
40
> exit.
true.

add and subtract:

do(add(X)) :-
 value(V0),
 V is V0 + X,
 do(set(V)).

do(sub(X0)) :-

 X is -X0,
 do(add(X)).

Tangent: Could sub be shortened to the following?

 do(sub(X)) :- do(add(-X)).

Try add(3+4*5), too.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 172	

Simple interpreter, continued

Is this a nested call to set(V)?!

We can use facts like we might use a Java map or a Ruby hash.

Imagine a word tallying program in Prolog:

?- tally.
|: to be or
|: not to be ought not
|: to be the question
|: (Empty line ends the input.)

-- Results --
be 3
not 2
or 1
ought 1
question 1
the 1
to 3
true.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 173	

Word tally

read_line_to_codes produces a list of ASCII character codes for a line of input.

?- read_line_to_codes(user_input,Codes).
|: ab CD 12
Codes = [97, 98, 32, 67, 68, 32, 49, 50].

?- read_line_to_codes(user_input,Codes).
|: (hit ENTER)
Codes = [].

atom_codes can be used to form an atom from a list of codes.

?- atom_codes(Atom, [97, 98, 10, 49, 50]).
Atom = 'ab\n12'.

readline reads a line and produces an atom.

readline(Line) :-
 read_line_to_codes(user_input, Codes),
 atom_codes(Line, Codes).

?- readline(Line).
|: a test of this
Line = 'a test of this'.

 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 174	

Input handling for tally

We'll use word(Word, Count) facts to maintain counts. We'll write a
count(Word) predicate to create and update word/2 facts.

?- retractall(word(_,_)).
true.

?- count(test).
true.

?- word(W,C).
W = test,
C = 1.

?- count(this), count(test), count(now).
true.

?- findall(W-C, word(W,C), L).
L = [this-1, test-2, now-1].

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 175	

Counting words

For reference:
?- retractall(word(_,_)).

?- count(test), count(this), count(test), count(now).

?- findall(W-C, word(W,C), L).
L = [this-1, test-2, now-1].

How can we implement count?

count(Word) :-
 word(Word,Count0),
 retract(word(Word,_)),
 Count is Count0+1,
 assert(word(Word,Count)), !.

count(Word) :- assert(word(Word,1)).

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 176	

count implementation

tally clears the counts then loops, reading a line and then processing it.
tally :-
 retractall(word(_,_)),
 repeat,
 readline(Line),
 do_line(Line),
 Line == '', !,
 show_counts.

How does tally terminate?

do_line breaks up a line into words and calls count on each word.

do_line('').
do_line(Line) :-
 concat_atom(Words, ' ', Line), % splits Line on blanks
 member(Word, Words),
 count(Word), fail.
do_line(_).

 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 177	

Top-level and a helper

keysort/2 sorts a list of A-B structures on the value of the A terms.

?- keysort([zoo-3, apple-1, noon-4],L).
L = [apple-1, noon-4, zoo-3].

With keysort in hand we're ready to write
show_counts.

show_counts :-

 writeln('\n-- Results --'),
 findall(W-C, word(W,C), Pairs),
 keysort(Pairs, Sorted),
 member(W-C, Sorted),
 format('~w~t~12|~w~n', [W,C]), fail.

show_counts.

Full source is in www/pl/tally.pl

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 178	

Showing the counts

-- Results --
be 3
not 2
or 1
ought 1
question 1
the 1
to 3

What's a key difference between using Prolog facts and maps/hashes/etc.
to maintain word counts?

A hash or map can be passed around as a value, but Prolog facts are
fundamentally objects with global scope. The collection of word/2 facts
can be likened to a Ruby global, like $words = {}

If we wanted to maintain multiple tallies simultaneously we could add an
id of some sort to word facts.

Example: We might tally word counts for quotations in a document
separately from word counts for body content. Calls to count might look
like this,

 count(Type, Word)

and create facts like these:

word(quotes, testing, 3)
word(body, testing, 10)

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 179	

Facts vs. Java maps, Ruby hashes, etc.

Consider a stack of blocks, each of which is uniquely labeled with a letter:

This arrangement could be represented with these facts:

Problem: Define a predicate clean that will print a sequence of blocks to remove
from the floor such that no block is removed until nothing is on it.

A suitable sequence of removals for the above diagram is: a, c, e, b, d, f, g.
Another is a, b, c, d, e, f, g.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 180	

Example: Unstacking blocks

a b

c d

g f e

floor

on(a,c). on(c,e). on(e,floor).
on(a,d). on(c,f). on(f,floor).
on(b,d). on(d,f). on(g,floor).

 on(d,g).

Here's one solution: (blocks.pl)

removable(B) :- \+on(_,B).

remove(B) :-

 removable(B),
 retractall(on(B,_)),
 format('Remove ~w\n', B).

remove(B) :-
 on(Above,B),
 remove(Above),
 remove(B).

clean :- on(B,floor), remove(B), clean, !.
clean :- \+on(_,_).

How long would in be in Java or Ruby?

Can we tighten it up?

 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 181	

Unstacking blocks, continued

a b

c d

g f e

floor

?- clean.
Remove a
Remove c
Remove e
Remove b
Remove d
Remove f
Remove g
true.

on(a,c). on(a,d). on(b,d). ...

A more concise solution:

clean :-
 on(Block,_), \+on(_,Block),
 format('Remove ~w\n', Block),
 retractall(on(Block,_)), clean, !.

clean :- \+on(_,_).

Output:
?- clean.
Remove a
Remove b
Remove c
Remove d
Remove e
Remove f
Remove g
true.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 182	

Unstacking blocks, continued

a b

c d

g f e

floor

Previous sequence:
?- clean.
Remove a
Remove c
Remove e
Remove b
Remove d
Remove f
Remove g
true.

on(a,c). on(a,d). on(b,d). ...

Find a block that's on something
and that has nothing on it, and
remove it.

Recurse, continuing as long as
there's a block that's on
something.

Brick laying puzzle

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 183	

Consider six bricks of lengths 7, 5, 6, 4, 3, and 5. One way they can be laid into
three rows of length 10 is like this:

Problem: Write a predicate laybricks that produces a suitable sequence of bricks
for three rows of a given length:

?- laybricks([7,5,6,4,3,5],10,Rows).
Rows = [[7, 3], [5, 5], [6, 4]] ;
Rows = [[7, 3], [5, 5], [4, 6]] ;
Rows = [[7, 3], [6, 4], [5, 5]] .

?- laybricks([7,5,6,4,3,5],12,Rows).
false.

In broad terms, how can we approach this problem?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 184	

Brick laying

7 3

5 5

6 4

Here is a helper predicate getone(X, List, Remaining) that produces in
Remaining a copy of List with X removed:

getone(X, [X|T], T).
getone(X, [H|T], [H|N]) :- getone(X, T, N).

Usage:

?- getone(X,[a,b,a,d],R).
X = a,
R = [b, a, d] ;

X = b,
R = [a, a, d] ;

X = a,
R = [a, b, d] ;

X = d,
R = [a, b, a] ;
false.
 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 185	

Helper getone

?- getone(a,[a,b,a],R).
R = [b, a] ;
R = [a, b] ;
false.

?- getone(a,[a,b,c,a],R).
R = [b, c, a] ;
R = [a, b, c] ;
false.

layrow produces a sequence of bricks for a row of a given length:

?- layrow([3,2,7,4], 7, BricksLeft, Row).
BricksLeft = [2, 7],
Row = [3, 4] ;

BricksLeft = [3, 2, 4],
Row = [7] ;

BricksLeft = [2, 7],
Row = [4, 3] ;
false.

Implementation:
layrow(Bricks, 0, Bricks, []). % A row of length zero consists of no

 % bricks and doesn't touch the supply.

layrow(Bricks, RowLen, Left, [Brick|MoreBricksForRow]) :-

 getone(Brick, Bricks, Left0),
 RemLen is RowLen - Brick, RemLen >= 0,
 layrow(Left0, RemLen, Left, MoreBricksForRow).

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 186	

Helper layrow

Let's write lay3rows, which is hardwired for three rows:

lay3rows(Bricks, RowLen, [Row1,Row2,Row3]) :-
 layrow(Bricks, RowLen, LeftAfter1, Row1),

 layrow(LeftAfter1, RowLen, LeftAfter2, Row2),
 layrow(LeftAfter2, RowLen, LeftAfter3, Row3),
 LeftAfter3 = [].

Usage:
?- lay3rows([2,1,3,1,2], 3, Rows).
Rows = [[2, 1], [3], [1, 2]] ;
...
Rows = [[2, 1], [1, 2], [3]] ;
...

What is the purpose of LeftAfter3 = []?

How can we generalize it to N rows?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 187	

Three rows of bricks

laybricks(+Bricks, +NRows, +RowLen, ?Rows) works like this:
?- laybricks([5,1,6,2,3,4,3], 3, 8, Rows).
Rows = [[5, 3], [1, 4, 3], [6, 2]] .

?- laybricks([5,1,6,2,3,4,3], 8, 3, Rows).
false.

?- laybricks([5,1,6,2,3,4,3], 2, 12, Rows).
Rows = [[5, 1, 6], [2, 3, 4, 3]] .

?- laybricks([5,1,6,2,3,4,3], 4, 6, Rows).
Rows = [[5, 1], [6], [2, 4], [3, 3]] .

Implementation:

laybricks([], 0, _, []).

laybricks(Bricks, Nrows, RowLen, [Row|Rows]) :-
 layrow(Bricks, RowLen, BricksLeft, Row),
 RowsLeft is Nrows - 1,
 laybricks(BricksLeft, RowsLeft, RowLen, Rows).

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 188	

N rows of bricks

At hand:

laybricks([], 0, _, []).

laybricks(Bricks, Nrows, RowLen, [Row|Rows]) :-
 layrow(Bricks, RowLen, BricksLeft, Row),
 RowsLeft is Nrows - 1,
 laybricks(BricksLeft, RowsLeft, RowLen, Rows).

laybricks requires that all bricks be used. How can we remove that
requirement?

 laybricks2(_, 0, _, []).
 ...second rule the same, but with a call to laybricks2...

 ?- laybricks2([4,3,2,1], 2, 3, Rows).
 Rows = [[3], [2, 1]] .

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 189	

N rows of bricks, continued

Some facts for testing:

b(1, [7,5,6,4,3,5]).
b(2, [5,1,6,2,3,4,3]).
b(3, [8,5,1,4,6,6,2,3,4,3,3,6,3,8,6,4]). % 6x12
b(4, [8,5,1,4,6,6,2,3,4,3,3,6,3,8,6,4,1]). % 6x12 with extra 1

We can query b(N, Bricks) to set Bricks to a particular list.

?- b(1,Bricks), laybricks(Bricks, 2, 10, Rows).
false.

?- b(1,Bricks), laybricks2(Bricks, 2, 10, Rows). % laybricks2
Bricks = [7, 5, 6, 4, 3, 5],
Rows = [[7, 3], [5, 5]] .

?- b(3,Bricks), laybricks(Bricks,6,12,Rows).
Bricks = [8, 5, 1, 4, 6, 6, 2, 3, 4|...],
Rows = [[8, 1, 3], [5, 4, 3], [6, 6], [2, 4, 3, 3], [6, 6], [8, 4]] .

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 190	

Testing

Let's try a set of bricks that can't be laid into six rows of twelve:

?- b(4,Bricks), laybricks(Bricks,6,12,Rows).
...[the sound of a combinatorial explosion]...
^CAction (h for help) ? abort
% Execution Aborted

?- statistics.
8.240 seconds cpu time for 74,996,337 inferences
...
true.

The speed of a Prolog implementation is sometimes quoted in LIPS—
logical inferences per second.

2006 numbers, for contrast:

?- statistics.
8.05 seconds cpu time for 25,594,610 inferences

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 191	

Testing, continued

The "Zebra Puzzle"

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 192	

The Wikipedia entry for "Zebra Puzzle" presents a puzzle said to have been first
published in the magazine Life International on December 17, 1962. The facts:

•  There are five houses.
•  The Englishman lives in the red house.
•  The Spaniard owns the dog.
•  Coffee is drunk in the green house.
•  The Ukrainian drinks tea.
•  The green house is immediately to the right of the ivory house.
•  The Old Gold smoker owns snails.
•  Kools are smoked in the yellow house.
•  Milk is drunk in the middle house.
•  The Norwegian lives in the first house.
•  The man who smokes Chesterfields lives in the house next to the man

with the fox.
•  Kools are smoked in the house next to the house where the horse is kept.
•  The Lucky Strike smoker drinks orange juice.
•  The Japanese smokes Parliaments.
•  The Norwegian lives next to the blue house.

The article asked readers, "Who drinks water? Who owns the zebra?"

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 193	

The "Zebra Puzzle"

We can solve this problem creating a set of goals and asking Prolog to find the
condition under which all the goals are true.

A good starting point is these three facts:

•  There are five houses.
•  The Norwegian lives in the first house.
•  Milk is drunk in the middle house.

Those facts can be represented as this goal:

 Houses = [house(norwegian, _, _, _, _), % First house
 _, % Second house
 house(_, _, _, milk, _), % Middle house
 _, _] % 4th and 5th houses

house structures have five terms: nationality, pet, smoking preference (remember,
it was 1962!), beverage of choice and house color. Instances of house structures
represent knowledge about a house. Anonymous variables are used to represent
"don't-knows".

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 194	

The "Zebra Puzzle", continued

Some facts can be represented with goals that specify structures as
members of the list Houses, but with unknown position:

 The Englishman lives in the red house.
 member(house(englishman, _, _, _, red), Houses)

 The Spaniard owns the dog.
 member(house(spaniard, dog, _, _, _), Houses)

 Coffee is drunk in the green house.
 member(house(_, _, _, coffee, green), Houses)

How can we represent The green house is immediately to the right of the
ivory house.?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 195	

The "Zebra Puzzle", continued

At hand:
 The green house is immediately to the right of the ivory house.

Here's a predicate that expresses left/right positioning:

left_right(L, R, [L, R | _]).
left_right(L, R, [_ | Rest]) :- left_right(L, R, Rest).

Testing:

?- left_right(Left,Right, [1,2,3,4]).
Left = 1,
Right = 2 ;

Left = 2,
Right = 3 ;
...

Goal: left_right(house(_, _, _, _, ivory),

 house(_, _, _, _, green), Houses)

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 196	

The "Zebra Puzzle", continued

Some "next to" facts:
•  The man who smokes Chesterfields lives in the house next to the

man with the fox.
•  Kools are smoked in the house next to the house where the horse is

kept.
•  The Norwegian lives next to the blue house.

How can we represent these?

We can say that two houses are next to each other if one is immediately
left or right of the other:

next_to(X, Y, List) :- left_right(X, Y, List).
next_to(X, Y, List) :- left_right(Y, X, List).

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 197	

The "Zebra Puzzle", continued

At hand:
•  The man who smokes Chesterfields lives in the house next to the

man with the fox.
•  Kools are smoked in the house next to the house where the horse is

kept.
•  The Norwegian lives next to the blue house.

The facts above expressed as goals:
next_to(house(_, _, chesterfield, _, _),
 house(_, fox, _, _, _), Houses)

next_to(house(_, _, kool, _, _),
 house(_, horse, _, _, _), Houses)

next_to(house(norwegian, _, _, _, _),
 house(_, _, _, _, blue), Houses)

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 198	

The "Zebra Puzzle", continued

A few more simple house & member goals complete the encoding:

•  The Ukrainian drinks tea.
 member(house(ukrainian, _, _, tea, _), Houses)

•  The Old Gold smoker owns snails.
 member(house(_, snails, old_gold, _, _), Houses)

•  Kools are smoked in the yellow house.
 member(house(_, _, kool, _, yellow), Houses)

•  The Lucky Strike smoker drinks orange juice.
 member(house(_, _, lucky_strike, orange_juice, _),
 Houses)

•  The Japanese smokes Parliaments.
 member(house(japanese, _, parliment, _, _), Houses)

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 199	

The "Zebra Puzzle", continued

A rule that comprises all the goals:

zebra(Zebra_Owner, Water_Drinker) :-
 Houses = [house(norwegian, _, _, _, _), _,
 house(_, _, _, milk, _), _, _],
 member(house(englishman, _, _, _, red), Houses),
 member(house(spaniard, dog, _, _, _), Houses),
 member(house(_, _, _, coffee, green), Houses),
 member(house(ukrainian, _, _, tea, _), Houses),
 left_right(house(_,_,_,_,ivory), house(_,_,_,_,green), Houses),
 member(house(_, snails, old_gold, _, _), Houses),
 member(house(_, _, kool, _, yellow), Houses),
 next_to(house(_,_,chesterfield,_,_),house(_, fox,_,_,_), Houses),
 next_to(house(_,_,kool,_,_), house(_, horse, _, _, _), Houses),
 member(house(_, _, lucky_strike, orange_juice, _), Houses),
 member(house(japanese, _, parliment, _, _), Houses),
 next_to(house(norwegian,_,_,_,_), house(_,_,_,_, blue), Houses),
 member(house(Zebra_Owner, zebra, _, _, _), Houses),
 member(house(Water_Drinker, _, _, water, _), Houses).

Note that the last two goals ask the questions of interest.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 200	

The "Zebra Puzzle", continued

The moment of truth:
?- zebra(_, Zebra_Owner, Water_Drinker).
Zebra_Owner = japanese,
Water_Drinker = norwegian ;
false.

The whole neighborhood:
?- zebra(Houses,_,_), member(H,Houses), writeln(H), fail.
house(norwegian,fox,kool,water,yellow)
house(ukrainian,horse,chesterfield,tea,blue)
house(englishman,snails,old_gold,milk,red)
house(spaniard,dog,lucky_strike,orange_juice,ivory)
house(japanese,zebra,parliment,coffee,green)
false.

Credit: The code above was adapted from sandbox.rulemaker.net/
ngps/119, by Ng Pheng Siong, who in turn apparently adapted it from
work by Bill Clementson in Allegro Prolog.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 201	

The "Zebra Puzzle", continued

Parsing and grammars

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 202	

Credit:	 The	 first	 part	 of	 this	 sec2on	 borrows	 heavily	 from	 chapter	
12	 in	 Covington.

Here is a grammar for a very simple language:

Sentence => Article Noun Verb

Article => the | a

Noun => dog | cat | girl | boy

Verb => ran | talked | slept

Here are some sentences in the language:

the dog ran
a boy slept
the cat talked

the, dog, cat, etc. are terminal symbols—they can't be expanded into
anything else. Generation terminates with them.

Sentence, Article, Noun and Verb are non-terminal symbols—they can
be expanded into something more.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 203	

A very simple grammar

Here is a simple parser for the grammar, expressed as clauses: (parser0.pl)

sentence(Words) :-
 article(Words, Left0), noun(Left0, Left1), verb(Left1, []).

article([the| Left], Left).
article([a| Left], Left).
noun([Noun| Left], Left) :- member(Noun, [dog,cat,girl,boy]).
verb([Verb|Left], Left) :- member(Verb, [ran,talked,slept]).

Usage:

?- sentence([the,dog,ran]).
true .

?- sentence([the,dog,boy]).
false.

?- sentence(S). % Generates all valid sentences
S = [the, dog, ran] ;
S = [the, dog, talked] ;
S = [the, dog, slept] ;
...

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 204	

A very simple parser

Sentence => Article Noun Verb
Article => the | a
Noun => dog | cat | girl | boy
Verb => ran | talked | slept

For reference:
sentence(Words) :-

 article(Words, Left1), noun(Left1, Left2), verb(Left2, []).

article([the|Left], Left).
article([a| Left], Left).
noun([Noun|Left], Left) :- member(Noun, [dog,cat,girl,boy]).
verb([Verb|Left], Left) :- member(Verb, [ran,talked,slept]).

Note that the heads for article, noun, and verb all have the same form.

Let's look at a clause for article and a unification:

article([the|Left], Left).

?- article([the,dog,ran], Remaining).
Remaining = [dog, ran] .

If Words begins with the or a, then article(Words, Remaining) succeeds and
unifies Remaining with the rest of the list. The key idea: article, noun, and
verb each consume an expected word and produce the remaining words.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 205	

A very simple parser, continued

sentence(Words) :-
 article(Words, Left1), noun(Left1, Left2), verb(Left2, []).

A query sheds light on how sentence operates:

?- article(Words, Left1), noun(Left1, Left2),
 verb(Left2, Left3), Left3 = [].

Words = [the, dog, ran],
Left1 = [dog, ran],
Left2 = [ran],
Left3 = [] .
?- sentence([the,dog,ran]).
true .

Each goal consumes one word. The remainder is then the input for the
next goal.

Why is verb's result, Left3, unified with the empty list?

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 206	

A very simple parser, continued

Here's a convenience predicate that splits up a string and calls sentence.
s(String) :-

 concat_atom(Words, ' ', String), sentence(Words).

sentence(Words) :-

 article(Words, Left1), noun(Left1, Left2), verb(Left2, []).

Usage:

?- s('the dog ran').
true .

?- s('ran the dog').
false.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 207	

A very simple parser, continued

Prolog's grammar rule notation provides a convenient way to express these
stylized rules. Instead of this,

sentence(Words) :-
 article(Words, Left0), noun(Left0, Left1), verb(Left1, []).

article([the| Left], Left).
article([a| Left], Left).
noun([Noun| Left], Left) :- member(Noun, [dog,cat,girl,boy]).
verb([Verb|Left], Left) :- member(Verb, [ran,talked,slept]).

we can take advantage of grammar rule notation and say this,

sentence --> article, noun, verb.
article --> [a]; [the].
noun --> [dog]; [cat]; [girl]; [boy].
verb --> [ran]; [talked]; [slept].

Note that the literals (terminals) are specified as singleton lists.

The semicolon is an "or". Alternative: noun --> [dog]. noun --> [cat]. ...
 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 208	

Grammar rule notation

% cat parser1.pl
sentence --> article, noun, verb.
article --> [a]; [the].
noun --> [dog]; [cat]; [girl]; [boy].
verb --> [ran]; [talked]; [slept].

listing can be used to see the clauses generated for that grammar.

?- [parser1].
...

?- listing(sentence).
sentence(A, D) :- article(A, B), noun(B, C), verb(C, D).

?- listing(article).
article(A, B) :-
 (A=[a|B]
 ; A=[the|B]
).

Note that the predicates generated for sentence, article and others have an
arity of 2.
 CSC	 372	 Spring	 2014,	 Prolog	 Slide	 209	

Grammar rule notation, continued

A slight variation: (parser1a.pl)
s(String) :- concat_atom(Words, ' ', String), sentence(Words,[]).

sentence --> article, noun, verb.
article --> [a]; [the].
noun --> [dog]; [cat]; [girl]; [boy].

verb --> [ran]; [talked]; [slept].
verb([Verb|Left], Left) :- verb0(Verb).

verb0(jumped). verb0(ate). verb0(computed).

Points to note:

•  sentence, article, verb, and noun are non-terminals. dog, cat, ran,
talked, are terminals, represented with singleton lists.

•  The call to sentence in s now has two terms, to match the rule generated
for sentence.

•  verb has both a grammar rule and an ordinary rule, demonstrating they
can be mixed. The ordinary rule makes use of verb0 facts.

CSC	 372	 Spring	 2014,	 Prolog	 Slide	 210	

Grammar rule notation, continued

