
CSC 372, Spring 2015
Assignment 7

Due: Thursday, April 16 at 23:59:59

Use SWI Prolog!

Use SWI Prolog for this assignment. On lectura that's swipl.

Use the tester!

Don't just "eyeball" your output—use the tester! I'll be delighted to help you with using the tester and
understanding its output. However, I won't have any sympathy for those who fail tests during grading
simply because they didn't want to bother with the tester

Make symbolic links for a7 and t in your assignment 7 directory on lectura, for easy access to the tester
and the data files. (And, the tester assumes the a7 symlink is present.) See the assignment 5 write-up for
how-to details.

About the if-then-else structure (->) and disjunction (;)

To encourage thinking in Prolog, you are strictly prohibited from using the if-then-else structure,
which is represented with ->. (Section 4.7 in Covington talks about it.)

Disjunction, represented with a semicolon (;), is occasionally very appropriate but it's easy to misuse and
make a mess. Section 1.10 in Covington talks about it. Here's the rule for us: If you think you've found a
good place to use disjunction, ask me about it; but unless I grant you a specific exemption, you are not
allowed to use disjunction. (My general rule is this: don't use disjunction unless it avoids significant
repetition.)

Easy Money!

Due to the time frame for this assignment and not wanting to underweight problems on assignments 8 and
9, I think you'll find that the time required to do this assignment is relatively small with respect to the points
assigned.

Problem 1. (5 points, ½ point each) queries.pl

For this problem you are to write some simple queries, packaged up as rules.

a7/queries-starter.pl starts like this:

:-[a7/fcl].

% Who likes foods with the same color as foods that Mary likes?
q0(Who) :- likes(mary,F), food(F), color(F, C), food(F2),
color(F2,C), likes(Who,F2).

% Who likes carrots?
q1(Who) :- true.

% Who likes baseball and a food?
q2(Who) :- true.

Page 1

q0 above is a completed example. The comment just prior specifies a question, "Who likes foods with the
same color as foods that Mary likes?" Following that comment is a query that will answer that question.
Let's load up the file and try q0:

$ swipl -l a7/queries-starter.pl
[...lots of singleton warnings due to the uncompleted queries...]

?- q0(Who).
Who = mary ;
Who = joe ;
false.

Your task is to replace the dummy bodies (just true) for rules q1 through q10. The first six use the
facts in a7/fcl.pl; the last four use the facts in a7/things.pl. Begin by copying
a7/queries-starter.pl to queries.pl, and then edit queries.pl.

When your queries.pl is complete you should see behavior like this:

$ swipl -l queries.pl
...

?- q1(Who).
Who = bob.

?- q2(Who).
Who = joe ;
Who = mary ;
Who = jim.

...

?- q10(Food).
Food = apple ;
Food = carrot ;
Food = orange ;
Food = rice ;
Food = bagel.

Leave the sample rule q0 in place—the tester uses it.

Problem 2. (2 points) sequence.pl

Write a predicate sequence/0 that outputs the sequence below.

?- sequence.
10101000
10101001
10101010
10101011
10111000
10111001
10111010
10111011
true.

Page 2

Be sure that sequence produces true when done, as shown above.

Two notes: (1) Don't overthink this one. (2) Don't just "wire-in" the output verbatim, like
writeln(10101000), writeln(10101001), ...

Problem 3. (6 points) rect.pl

In this problem you are to implement several simple predicates that work with rect(width,height)
structures that represent position-less rectangles having only a width and height.

square(+Rect) asks whether a rectangle is a square.

?- square(rect(3,4)).
false.

?- square(rect(5,5)).
true.

landscape(+Rect) is true iff (if and only if) a rectangle is wider than it is high. portrait tests the
opposite—whether a rectangle is higher than wide. A square is neither landscape nor portrait.

?- landscape(rect(16,9)).
true.

?- landscape(rect(3,4)).
false.

?- portrait(rect(3,4)).
true.

?- portrait(rect(10,1)).
false.

?- landscape(rect(3,3)).
false.

?- portrait(rect(3,3)).
false.

classify(+Rect,-Which) instantiates Which to portrait, landscape or square,
depending on the width and height. If Rect is not a two-term rect structure, then Which is instantiated
to wat.

?- classify(rect(3,4),T).
T = portrait.

?- classify(rect(10,1),T).
T = landscape.

?- classify(rect(3,3),T).
T = square.

?- classify(rect(3),T).
T = wat.

Page 3

?- classify(10,T).
T = wat.

You may need to use some cuts (slide 112+) to prevent classify from producing bogus alternatives.
Here is an example of BUGGY behavior:

?- classify(rect(5,7),T).
T = portrait ; First answer is correct but there should be no alternatives!
T = square ;
T = wat.

Needless to say, use your portrait/1, landscape/1, and square/1 predicates to write
classify/2.

rotate(?R1,?R2) has three distinct behaviors:
(1) If R1 is instantiated and R2 is not, rotate instantiates R2 to the rotation of R1.
(2) If R2 is instantiated and R1 is not, rotate instantiates R1 to the rotation of R2.
(3) If both are instantiated, rotate succeeds iff R1 is the rotation of R2.

Examples:

?- rotate(rect(3,4),R).
R = rect(4, 3).

?- rotate(R,rect(3,4)).
R = rect(4, 3).

?- rotate(rect(5,7),rect(7,5)).
true.

?- rotate(rect(3,3),R).
R = rect(3, 3).

rotate should also handle cases like these:

?- rotate(rect(3,4),rect(W,H)).
W = 4,
H = 3.

?- rotate(rect(3,X),rect(Y,4)).
false.

smaller(+R1,+R2) succeeds iff both the width and height of R1 are respectively less than the width
and height of R2. Rotations are not considered.

?- smaller(rect(3,5), rect(5,7)).
true.

?- smaller(rect(3,5), rect(7,5)).
false.

add(+R1, +R2, ?RSum) follows the idea of "adding" rectangles that was shown on Ruby slide 257.

?- add(rect(3,4),rect(5,6),R).
R = rect(8, 10).

Page 4

?- add(rect(3,4),rect(5,6),rect(W,H)).
W = 8,
H = 10.

?- add(rect(3,4),rect(5,6),rect(10,10)).
false.

?- X = 10, add(rect(3,4),rect(5,6),rect(X,X)).
false.

Assume both terms of rect structures are non-negative integers.

If you need more than ten mostly short lines of Prolog to implement all the above, you're probably
not making good use of unification.

Problem 4. (3 points) bases.pl

Write a predicate bases/2 such that bases(+Start,+End) prints the integers from Start
through End in decimal, hex, and binary. Assume that Start is non-negative and that End is greater
than Start. Examples:

$ swipl -l bases
...

?- bases(0,5).
 Decimal Hex Binary
 0 0 0
 1 1 1
 2 2 10
 3 3 11
 4 4 100
 5 5 101
true.

?- bases(1022,1027).
 Decimal Hex Binary
 1022 3FE 1111111110
 1023 3FF 1111111111
 1024 400 10000000000
 1025 401 10000000001
 1026 402 10000000010
 1027 403 10000000011
true.

Be sure that your predicate succeeds, showing true, not false.

Below is a predicate fmttest/0 that shows almost exactly the specifications to use with format/2.
However, you'll need to do help(format/2) and figure out how to output numbers in hex and binary.

?- listing(fmttest).
fmttest :-
 format('~tDecimal~t~10|~tHex~t~20|~tBinary~t~35|\n'),
 format('~t~d~6|~t~d~16|~t~d~30|\n', [10, 20, 30]).

true.

Page 5

?- fmttest.
 Decimal Hex Binary
 10 20 30
true.

Problem 5. (13 points) grid.pl

Write a predicate grid(+Rows,+Cols) that prints an ASCII representation of a grid based on a
specification of rows and columns in English.

Here's an example of a grid with three rows and four columns:

?- grid(three,four).
+--+--+--+--+
| | | | |
+--+--+--+--+
| | | | |
+--+--+--+--+
| | | | |
+--+--+--+--+
true.

The grid is built with plus signs, minus signs, vertical-bars ("or" bars), and spaces. Lines have no trailing
whitespace.

Unless a specification is invalid, grid always succeeds, producing the true that follows the output.

Here are two more examples:

?- grid(three,twenty-one).
+--+
| |
+--+
| |
+--+
| |
+--+
true.

?- grid(one,one).
+--+
| |
+--+
true.

Widths and heights, in English, from one through ninety-nine are recognized; numbers are one or
two hyphen-separated words.

If a number is used for either dimension instead of an English specification, the user is reminded to use
English:

?- grid(3,four).
Use English, please!
true.

Page 6

Hint: Use number/1 to see if a value is a number rather than a structure.

Invalid specifications produce Huh?:

?- grid(testing,this).
Huh?
true.

?- grid(one-hundred,twenty-five). one-hundred is out of range
Huh?
true.

?- grid(---,+++).
Huh?
true.

Be careful not to accept invalid combinations of words representing numbers, like ten-four, twenty-
twenty, and one-fifty; they, too, should produce the Huh? diagnostic. Example:

?- grid(ten-four,twenty-twenty).
Huh?
true.

a7/grid-hint.html shows a solution for a simplified version of this problem, a predicate box that
simply prints a rectangle of asterisks. To provide a little extra challenge for those who want it, I'm not
showing that code here but please don't hesitate to take a look if you're stumped by grid.

Note that terms like ninety-nine, thirty-seven, fifty-two are simply two-atom structures
with the functor '-'. Here's a predicate that simply prints the terms of such a structure:

parts(First-Second) :-
format('First word: ~w; second word: ~w\n', [First,Second]).

?- parts(twenty-one).
First word: twenty; second word: one
true.

Problem 6. (6 points) rsg.pl

In this problem you are to write two predicates, rsg/0 and rsg/1. rsg/0 generates a simple random
sentence in SVO (subject-verb-object) form. Examples:

?- rsg.
Rush Limbaugh cooks pizzas.
true.

?- rsg.
President Obama faxes memos.
true.

?- rsg.
Jim eats memos.
true.

A set of facts for subject, verb, and object specify the possibilities:

Page 7

subject(0,'Jim').
subject(1,'Rush Limbaugh').
subject(2,'President Obama').

verb(0,eats).
verb(1,faxes).
verb(2,cooks).

object(0,pizzas).
object(1,memos).
object(2,burgers).

You may choose to create a different set of subject, verb, and object facts, hopefully far more creative than
mine. If you wish, you can go further than SVO form. Perhaps add an adjective, or maybe even do
something in a Mad Libs style (http://en.wikipedia.org/wiki/Mad_Libs). Anything with
three or more fields whose contents vary is fine.

The second predicate, rsg(+N), generates N random sentences using rsg/0. N is assumed to be an
integer greater than zero.

?- rsg(5).
Jim cooks burgers.
Jim cooks burgers.
Jim faxes pizzas.
President Obama cooks memos.
Jim faxes burgers.
true.

?- rsg(5).
President Obama cooks burgers.
Jim cooks pizzas.
President Obama cooks pizzas.
Jim eats burgers.
Rush Limbaugh cooks pizzas.
true.

Implementation notes

Use random to generate three random numbers that are used to select a random subject, verb, and object,
or, for the creative, whatever building blocks you pick.

random(N) is a structure evaluated by is/2. If N is an integer, 0 <= random(N) < N.
Examples:

?- X is random(5).
X = 4.

?- X is random(5).
X = 1.

?- X is random(5).
X = 3.

Picking an appropriate value for N in random(N) requires you to know how many facts there are for
subjects, verbs, and objects. There are ways to compute that with Prolog code but the techniques are

Page 8

beyond what we've covered as of press time; just count the facts yourself and use a numeric literal. The
example above has the same number of subjects, verbs, and objects but that is not required.

Random numbers are random, of course! N consecutive rsg queries might produce the same verb N times
but as N grows, so should the distribution of results.

Your rsg.pl should contain whatever set of facts your rsg/0 uses.

Because you're free to vary the facts and/or sentence structure there's no simple way to test rsg/0 in an
automated fashion. For this problem the tester only confirms that rsg/1 produces the right number of
lines of output.

Problem 7. Extra Credit observations.txt

Submit a plain text file named observations.txt with...

(a) (1 point extra credit) An estimate of how long it took you to complete this assignment. To facilitate
programmatic extraction of the hours from all submissions have an estimate of hours on a line by itself,
more or less like one of the following three examples:

Hours: 6
Hours: 3-4.5
Hours: ~8

If you want the one-point bonus, be sure to report your hours on a line that starts with "Hours:". Some
students are including per-problems times, too. That's useful and interesting data—keep it coming!—but
observations.txt should have only one line that starts with Hours:. If you care to report per-
problem times, impress me with a good way to show that data.

Other comments about the assignment are welcome, too. Was it too long, too hard, too detailed? Speak up!
I appreciate all feedback, favorable or not.

(b) (1-3 points extra credit) Cite an interesting course-related observation (or observations) that you made
while working on the assignment. The observation should have at least a little bit of depth. Think of me
saying "Good!" as one point, "Excellent!" as two points, and "Wow!" as three points. I'm looking for
quality, not quantity.

Turning in your work

Use the D2L Dropbox named a7 to submit a single zip file named a7.zip that contains all your work.
If you submit more than one a7.zip, your final submission will be graded. Here's the full list of
deliverables:

queries.pl
rect.pl
sequence.pl
bases.pl
grid.pl
rsg.pl
observations.txt (for extra credit)

 Note that all characters in the file names are lowercase.

Page 9

Miscellaneous

Here's what wc shows for my current solutions:

$ wc rect.pl sequence.pl bases.pl grid.pl rsg.pl
 10 40 378 rect.pl
 2 7 108 sequence.pl
 17 29 540 bases.pl
 49 103 1283 grid.pl (over half the lines are simple facts)
 21 44 406 rsg.pl
 99 223 2715 total

You can use any elements of Prolog that you desire other than if-then-else (->) and disjunction (;), but the
assignment is written with the intention that it can be completed easily using only the material presented on
Prolog slides 1-119. Note that lists are not required! If you think you need you need lists to do any of the
problems on this assignment, you're overlooking the simpler, intended solution.

Point values of problems correspond directly to assignment points in the syllabus. For example, a 10-point
problem on this assignment corresponds to 1% of your final grade in the course.

Feel free to use comments to document your code as you see fit, but note that no comments are required,
and no points will be awarded for documentation itself. (In other words, no part of your score will be based
on documentation.) In Prolog, a % is comment to end of line. /* ... */ can be used for block
comments, just like in Java.

Remember that late assignments are not accepted and that there are no late days; but if circumstances
beyond your control interfere with your work on this assignment, there may be grounds for an extension.
See the syllabus for details.

My estimate is that it will take a typical CS junior from 3 to 4 hours to complete this assignment.

Keep in mind the point value of each problem; don't invest an inordinate amount of time in a problem
or become incredibly frustrated before you ask for a hint or help. Remember that the purpose of the
assignments is to build understanding of the course material by applying it to solve problems. If you reach
the three-hour mark, regardless of whether you have specific questions, it's probably time to touch base
with me. Give me a chance to speed you up! My goal is that everybody gets 100% on this assignment
AND gets it done in an amount of time that is reasonable for them.

I hate to have to mention it but keep in mind that cheaters don't get a second chance. If you give your code
to somebody else and they turn it in, you'll both likely fail the class, and more. (See the syllabus for the
details.)

Page 10

