o TG T T

pm\

15

S S

~#175==8175--#175--4175==#175--8175--#175~-#175--#175-—# 175

JOB 5646-#175 RGX

% 0
e T T TR
* % 0 * % ExEKE
kAR EKR * % * *
* % 0 #kkdokkk % %
0 * % ok ok g
0 %kkkkkkk * *
* * 0 * % * %
* * 2 ¥ % * *
rkkkEERE
* 0 SEPARATE PUNCHED
* o PRINT CARDS
0 0
o)
¥k 0
% ¥ 0 *
% * 0 *
* ¥ 0 % *
% 9 % %
ol *
0
*x kkkk)
* ¥ % Q
% * %
% ® %
¥k *

¥ %k e ek kg ok ok A ek e ok kg kX 3 %33

* * * %* * % * *
* * %* * * ¥ * ¥
ke 3k ko ok * % 3% ok ok % * Ik ok
*x * x * %* % x
%* % % * * * %* %*
* * * % %ok * *
PLOTTED CARDS

OUTPUT IN

0 732 732 LINES 12 PASES ON PRINTER1

* *

TUCC LABOR DAY SCHEDULE :HOL

OLID
UNTIL 08

PROGRAMUER=#RATFOR
JOB TURN-AROUND

DATE M
ENTERED 9/33/80 22: 1535926
EXECUTED 0700700 0:00:00-0
BETUBNED ~ 5/03780 ~22:15:13.9
JOB ENTERED ON WEDNESDAY

AY
00

MODE(DOC.NQ. IM-029-8) FROM MIDNITE SUN AUG 31
TUES SEPT 2.

ACCOUNT=NCS.SAC.A4202

JOB PARAMETERS TIMNE USED INCLUDES
SPECLFIED USED NO. LEN
TIME O 0503-0° 0:33%9 cpo S H R
PAGES 0 12 OR EXCPS 732 0:02.9
CARDS 40Q 0 DISK EXCPS 0 0:0).0
PLOTS 0 0 TAPE READ-WRITE 0:00.0
TAPE FILE SEARCH 0:00.0

MISC. JOB VALUES
LINES 1IN 732
LINES DJ0UT 732
MEMORY TIME 0
PRIORITY 02
APPROX. COST $1

K
-2

% &k * %*
¥ * *
% &
-
* %k * &
% ¥ *
* ik % ¥*

000000000000OOOOOOOOOOOOOOOOOOOOOOOOOOODDOOOOOOOOODDOODO0030000300030000

--#1754-#175--#175-~#175—-#1754-#175——#:75--#175;-#175—-#175;-#175--3175-
PRINTED AT N. C. S. U. COMPUTING CENTER ON pHE ITEL AS/4 AT 04:42:08 ON 09,/04/80

OOODOOOOOOOJ0003000300000000000300000000000000000003000300000

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-SEC

5

~ .

T I T

ANOLTST

9COPY DB

@COPY PDS
APPLY (* DEF' ' INE' ,"RGXSOLVINLT () ")
PARTITION.OPEN('EXPRLIBY)
RGXSOLVINIT ()

itart:

BRead each e&uation in and store it in the array egn
eqn = ARRAY (40)
nd.of.eqns = 0
out = b
out = bl]
out = 'enter options'
optionstring = TRIM(LNPUT)
out = "enter eqn's"
while(eline = TRIM(INPUT)) {

eline 11 3 ech rem $ member
if (1dent(ech,'E"))
. 3 (END
if(ideat ech,'s'{%{
PARTITION. POSITION (member)
#hile(eline = TRIM (PARTITION.READ())) {
no.of.eqns = no.of.eqns + 1
equ<no.0f.egns> = eline

?reak
eline bré' ') ¥ eyno 11 rem $ *egn<egno>
i1f (ident ech,'.')?

break
ho.of.eyns = no.of.egqns + 1

}

The set ot equations if now formed, call RGXSOLV to solve the
set and print the results.
sttime = TIME() .
RGXSOLV(eqnino.of.eqns,optionstrlng)

H o

HEGURUBG BB RA B S S RSB RO RSB S HL S U B HO BB R R R U BaBaa R AR BRRB AR H LS

Stoptime = TIME()] '
out = *'Soiution time ' (stoptime - sttime) / 1000. ' secs.!
:(start)
#-h-intro :
g#####################9##
This is the subsystem of the REGS System that _ controls the solution of
a set ot equations for a given machihea Rgxsolv 1s composed of several
ﬁ functions:
RGXSOLVINIT Initialization of rgxsolv system .
RGXSOLV Control program that does initial reduction of system
of equations passed to it, and then calls solve to
actuadlly produce the solution. . .
solve Subroutine that actuallg does solution of equatjon systenm
options Processes options passed to RGXSQLV i S, .
wait Causes program to wait if desired at points in processing
arden,comsym,
distrib, parens, ;
rfmt Functions used to manipulate equations during the solution
§ pProcessa.
#
#
#
#

General Tnformation ’

o TS T T T

N

SIS

.......)

RGXSOLV is called b{ the REGS mainline program to produce a set|of
regular expressions that denote the language accepted by a partigular
machine. he mainline program passes RGXSOLV a set of equations and
RGXSOLV cranks out the regular expressions. More information on the
actual operation of RGXSOLV can be found in its header.

If the reader desires a complete description of the solution process

the header section for "solve" explains the solution process 1i detail.

The key concept to the Erogram's operation is the concept of
Standard Forme. During the Solution Erocess, the equations are .
maintained in Standard Form. Severa thlngs characCterize an equation
in standarcd form. An equation is assumed to be of the form:

{state varlaplei=coettlclent[st. var.}+coef {ste Var}

The state variable on the left of the equals sign can be any string
éxcept LAHBDA or EMPTY, which have special meanings, and it must

be enclosed in brackets. The right half of the equation is composed
of one or more coefficient-state’variable pair tefms, or the value

{EMPTY} standing alone. The coefficient part of a term can coatain
any symbols except brackets and it is assumed to be well formed. The
coefricient 1is always maintained in a form so that for coefficients
A and B, the operatlons A*, and A+B produce no ambiguities. This
form is maintained b{ addlng parentheses when the order of symbols
1in an expression evaluated from left to right would produce a value
other thin the one desired. Coefficients are also always enclosed
b% an all-surrounding set of parentheses.

he state variable gart of a term is composed of one state nanme
surrounded by Farent eses. 1f an operation causes a coefficient
to pe left with out a state, as often occurs in substitution in
solve, a term of coefficient {LAMBDA} is used to make processing more
unirorm. 1If the equation refresents a final state, a +{LAMBDA?
term is used which has a null coefficient. Note tﬁat the user has
the oftlon to dispiay the lambda's in a term if desired, but by

default they do not appear.
g#%###g################9#############4###
-%=-intro
g-h-RGXSOLVINIT
RGXSOLVINIT is a function that will perform the necessary initiliazatioas
for RGXSOLV and the fumctions it calls. This function muSt be called
¥ before RGXSOLV.
gGXSOLVINIT:
First, some handz OPSYIN's, and also some handy constant and
Battern ass;gnmeu Se

PSYN(.L,«LE ; OPSYN -BR,.BREAKg

OPSYN(.l,« LEN) OPSYN{abr,.BREAK

rem = REM; 11 = LEN&

OPSYN‘]g.def,'DEF' YINEY)

OUIPU (.QUI,.OUT{)

OPSYN(.differ,.DLFFEK) OPSYN(.ident,.IDENT)

no:!nl; {es:lyl

OUTPUT (.0ut,.0QUT)

ginsp%1§ = 5r('='} $ 1lh 11 rem ¥ rh

symbsize = 1

3=t

The ogtab table is used to define the various options that are
available. It is used by %options"

optab = TABLE(IO{

optab<{*SA'> = null;
optab<{'SHL?*> = fgsh.lan
optab<'LA*> = r]listall

Function definitions
def ("arden (exprynexpr.lh.ch™)

Optab<'WAIT*> = !'set.wait!?
s optab<*'SHP'> = 'sh.parens?
's optab'LI'> = 'l.input!

fm

e

S T T

e e e

det ("comsym(expr) nexpr,1lh rh“z b
def ("distfib (expr ngxprﬁlﬁ,rh')

def ("options(optstring) ")

def ("parens(yesno) ")

def("rfmt (expr)"®

def("solve (negns) nexpr,lh,ch"

def "RGXSOLV{egn,eqcount,optstqg) ")

def ("wait ())

retarn
#=%—=RGXSOLVINIT
g-h-RGXSOLV
RGXSOLV is the driving subroutine called from the maipline progrtam
g th%t coatrols the procéss of solving the set of equations.

se:

RGXSOLV(eqn,egcount,optstg)) .)
Where "eqa" isS an array o équations, of size "egcount", Optstyg is
a string Comsisting of procesSing options, With 2ach option sepaCated
bg a comma. The ogtlons are not assumed fo be valid. . .
GXSOLV assumes that the equations being passed to it are well-formed
and are of the form:
{State}=5£mbol State}+symbol {State} . - = .
with no embedded blanks. "s*mhql{s ate}"_ma¥ be replaced with (LAMBDA}
to indicate a final state. t 1s not advisable to include more than
ﬁ one {LAMBDA} in an equation.
%GXSOLV:
Call options to process the options passed to RGXSOLV
options(optstq)
#
% Print the initial éi.e. passed set of equations if the LI or LA

a4t 3 g H

Lo]

ogt;on ¥as specifie
1r {ident (L.inhput SL)(
of e

e
out = 'Inlgiaiyse %uations:'

for (eyno = 1;DIFFER (eqnieqgno) :eqno = eqno + 1
.éu = '["egno ‘5 ¢ rf%t(e&ﬁ(gqno>) B)
falt()

NoWw, do an initial reduction of the equations to standard form by
successively calling comsym, arden and distrib for each of the
egquations in "e?n".
for{eqno = 1,DIFFER {equ<egno>) ;eqno = egno + 1) {

ine = egqn<eqno>
comsym ="com3Syn(line
arden = arden{(comsym

grden br('=') $ lh 11 rem $ expr

Before calling distrib, get rid of the left side of the
equation momentarily

distrib distrib (expr)

glstrlb lh '=v distrib

Replace the new equation in standard form in the array
eqn<egno> = distrib

The 2quations have now all been reduced to standard fornm,
if the user so specified, print resulting equations before solve
goes to worke.
if (ident (l.all {es))[) . \
out = *Resul ing equations after reduction to standard fornm _
for(en = 1;LE(eh,eqcount);en = en + 1) i

- A

e

~ e e e

¢

t = tf* én ¥]7' rfat(egn<end) f
)bl

3t gk

Now we acre ready to call solve, the routine that plug-n-chuys the
solution for the set out. (i.e. The regular expression) .
out = '*Ready to solve equations . . .!
solve(egcount)
out = 'gone « - o'
out = bl; out = bl

#
g The set of equations has been solved, print the final set of
#

e%uations, shOowing the regular expression that starting in each of
the states represents.

out = 'Final set of equations:?
for(egno = 1;LE(egno,eqcount);e%no = eqno + 1)
out = *[' eqno '] ' rfmt(eqnleqno>)
returca
-%-RGXSOLV
-h-arden

This subroutine tries to apply Arden's lemma to the {assed e xpression
ang returns a resulting expressSion as the function value.

ses

arden(expr) . .

Where "expr" 1is an exgre531on to attempt to apply Arden's Lempa on.
The function examines the QXEEGSSlOR to see if 1t can be modified to
produce the general form of X=EX+G. The G term might be null in which
case the identity X=EX ==> X={ENMNPTY} is applied. he EX tera does not
need to be the first term in the expression. When the EX term is
located, the term is removed from the bodg of the expression and the
remainder of the expression is taken as the G ternm. If X=EX 1is
determined to be the form of the exgre351on, then the .
expression is assigned a value of.é_MPTz}. The G term is enclosed in
brackets to facilifate easy identification bé distrib which is always
called immediately after atden in case X=E*[G] is an equation that
1s not in standard form. . L]

Arden assumes that the expression passed to it is in standard fornm,
which in this case essentlally implies that X can only occur once on
the right hand side of the equals sign.

A possible problem arises concerning when and when to mnot eaclose
the E term in parentheses. Obviously, if the E term is only one symbol
there is no need to surround it with parentheses. However, if the g
term i1s longer than one symbol, it may or may not need enclosure to
ensure the Correctness of the resulting expréssion. The key to this

roblem is remembering that the equations are maintained in standard
orm. As a rule, ardémn is called immediately after comsym. Because
of this, we can assume that the E term is sultable for concatenation
with an arbitrary term since it was concatenated with the X terpm.
However, when the Kleene star operator is added, the E term must be.
surround=2d by an all—enc1051ni set of parentheses. This condition is
indicated by the presence of left and right parentheses as the first
and last characters of the E term. If parentheses are not Etesent
in those positions, the E term must be enclosed before the Kleene star
can be applied.

[VETE TR LB R R R R Tt R R R S Y

rden:
#

The equation is broken into a left and a right half, 1h and ch

respectively. A '+1' is added on rh to avoid a special case for the
last term in the_expression

expr br("=%") $ 1lh 11 rem $ rh

rh = rch "+

S T TS

A e e

ot 3

sEgt Stk ok of AL UEH g AT g e e o Sk dE

1

(o)

rh = rh # rh is saved for later use) Rl
The following loop extracts each each term from the expressiong
Lf the term iS5 found to _be of the form EX, control passes out Of
the loop to "xfound". If the loop falls through, iE indicates that
the equation can't be modified to produce a x:%x+c form and the
original gassed e&uatlon is returned as the functiomn value.
while(rh {(br{'}?*) 11) $ trans 11 g)
trans br('{') 3% val (br('}') 11) $ st
if (1dent{st,1lh))

2 (xfound)

T Y

}

EX term not found, return original expression
arden = expr
return

An EX term has been found, take the original right half of the
nd extract the EX term, leaving the G térm. If the G term is null,
e have X=EX, so return a value of (EMPTY} for the expression.

= null .
~remove trallin% 14!
L=EX ==> X={EMPTY}
{EMPTY}*

Il =%

[]
return}

#
Tf val (E term) has a length of one symbol, or if it has a totall
enclosing set o arenthesés, don't enclose it with parentheses be%ore
dpplYlng Kieene star. Othervise, enclose it.
if (val PO (O; Y{* RTAB(1) "))
parens (no
else o
i1f (EQ(S1ZE(vai) ,symbsize))
parens {no)
else
" parens(yes)
Rebuild the new expression X=E*G, enclosing G in square brackets
to facilitate operation b¥ distrib.
nexpr = lparen val rparen **[' g ']!

arden = lh '=' nexpr # stick thé left hand side back on the eguation

retucn
-%-arden
-h-comsyn

The function "comsym" is used to identify terms that have common state

variables, and comblne the coefficients for all such terms to produce a
new coefficient for each common state.
For example, an_input of X=AX+BY+CX+DY+EY would produce:
x=dA+c3 + (B+D+E) Y
se:
consyn (expr))] o
Comsym 1s a conceptually very simple routine. Each term, CX, in the
expression is broken off in tucrn. A table, sttab, based on t he
in each term holds all the coefficients, C that occur with state X.
If a state X appears more than once in an exXxpression, and occurs ¥ith
coefficieants A, B, and C for example, an entrg of A#B+C would be
recorded in the X entr¥ of sttab. Another table, modtab, is usej to
denote whether or not the expression in sttab for the corresponding
state needs to be enclosed in parentheses before further ggeratlo;S
can be done on it. Modtab<X> will have a value of 'yest if sttapKX>
has a value that is the union of more than one coefficlient. .
The entire eXgreSSLQR is broken into terms_and each term into stk
e

te
variable and coefficient pairs. Each palr is entered in sttab wjith

state X

60

I T

[oR- 2 - o

the values in modtab possiblg being changed. o
When th2 entire expression has beén procCessed, the table sttab jis
coaverted into an.a;ra¥. The elementsS of the array are sequentiglly
produced in coefficient-state variable pairs. 1If modtab for a partlicular
state is 'yes!, the coefficient will be enclosed in parentheses. The
coefficient is then concatenated onto the state variable and the new
term is added to the expression. (The exgre5510n is rebuilt from null.)
as soon as _all of the pairs have been produced, the resulting expression
is returned as the function value.
One important thing to note is that the sequence of state variaples
roduced in the nevw expression may not be the same as the seguence
hey originally nad. :
omsyms: A
gt ab = TABLE (eqcount)

The expression is broken into_a left and right half based on
the equals siyn. The '"+! i1s added to avoid a special case.

modtab = TABLE(eEcount)
expr br{(*'=') $ 1h 11 rem $ rh
rh = ch *+!?

Break off the next coefficient-variable gair placing_ the

coefficient in symb and the variable in st. The coefficient
and variable are then entered in sttab and modtab.

th%e(rh (br(*{*) $ symb br(*+") $ st 11) =) {

Treat a {LAMBDA% term standing by itself as a special case.
if (ident (st,?' {LAMB Ai') ident (symb,null)) {
symb = '.'; st = YLAMBDA'}

#
Make entry in sttap for state variable. TIf this is not
the first ent;g for this state variable, union the new
coefficient with the previous one(s).
1f(1dentésttab<st>£)
Sttab<st> = sym
else{
sttab<st> = sttab<st> '+' symb
~ modtab<st> = yes}
#
1f we get an empty state, assume that {EMPTY} is the value
¢ of the entire exg[eSSlOD, and just return the eantire expression.
if (ident(st,' {EMPTY} ")) {
colsSym = expr
returnj}

All the states have been processed, convert the sttab table to
an arra% for easg seguentlal recall.
ttab = CONVERT(sttab,"ARRAY"')

Recall each state-coefficient pair _in turn to rebuild the expr.
oréi = 1; DIFFER (sttab<i,1>);i =1 + 1) {

HhaE Sl SaedE

¢ If a complex coefficient was formed, turn on the parentheses.
if(ident (modtab<sttab<i,1>>,yes))

parens (yes) .
else

parens (no)

If we have do not have a free-standing lambda term, rebuild

the next term of the expression and add it to the_ new expresSsion.
4 If we do have a lambda term, just add it by itself.

if (differ (sttao<i, 1>, *LAMBDAY) | ,

1 comsym = '+! iparen sttab<i,2> rparen sttab<i,1> comsynm
else

o T T

N T

ce e e

comsym = '+ {LAMEDA} ' comsym

}

comsym 11 = anull # remove leading '+' from new expr ion

gggigg = 1h '=% comsym # put lefg—hand side back gneggd return
#-%—-comsym
%oh-dlstrib -
Distrib 1s used to distribute a_coefficient with a up of v ri -
The passed expression should be in the form: * Jroup rariables
Coefficient{termi+term2+term3 « « .] and distrib will return:
z UCoefflclent term1 + Coef. term2 + Cdef. term3 o« . « {

se:

_distrib(exgr) .
Distrib i1s the conceptually easiest of the three reducing functions.
The expression is broken into coefficient and terms. Each term is
broken off in turn and concatenated to the coefficient until all
the terms have been processed. 1Tf the passed expression was of
the form: coeff.term, 1e. no [}'s, the argument will be returned as
g.tge.gunctlon value. -

istrib:

put coeff. in comval, and { term+term. . -] in cfactor
if{exprc br('["') $ conval rem cfactor)

[

else { # no [J's, return the passed expression
distrib = expr
return .

remove []' surroundaing cfactor

cfactor 1 5RTAB(1),$ ciactor) _

append '+!' for uniform processing

cfactor = cfactor '#+!

gexpr = null

Break out each term in turn and append it to the
common coefficiente
while(cfactor (bt('z') 11) $ factr 11 =)

nexpr = nexpr '+' comval factr

#

4 Hemove the ieading *'+' and return the new expression.
nexpr 11 = null _

distrib = nexpr

ceturn

#-%-distrib
#-h~options

#

The options function is used to set the options taken by the program
while processing the eguations. The table optab is used to establish
an indiract braach location for each specifiable optioR. The coantrol
variables are all null by default. (Option pot_tagen if null)

The following control variable-option associations are used:

LA-l.all . Li-l.input SHL-sh.lam

WAIT-set.wait SHP-sh.parens,

The options in the option string passed as an ariument should be

separated by commas. " If the option string is null, all options are

g turned off and the function returas.

gptions:

Set default tracing values

sh.lam = nuli; wait.fl = null; sh.parens = null;
S.all = null; 1l.all = null; l.input = null;

#
See it we have any oitions
if (ident (optstring,null)) :

return j.

o T TR B

£

o o @

Break off each option specified and process using indirect branche
If a option is ungnown, ell the userpand ignore gt. ¢

LT

SRESTAS L TENnita) ot
W ing br =
if{dlffer(ogtahéoét ,nulf)) {

elsébraHCh = optab<opt>; :($branch)}

out = *'ue ppt ' is invalid and also ignored.'
nextopt: 3

recurn

#
#¢ 1Indirect branch table to set options

solveall: s.all = yes 2 (nextopt)
iistall: l.all = Yyes

l.input: l.input = yes : (nextopt
she.lam: sh.lam = yes : (nextopt
set.wait: wait.fl ="yes 1 (nexto

t
sh.parens: sh.parens = yes :(nexgopt)
#-%-options
#-h-parens

The function parens is used to set lparen _and rparemn to ' (',')"?
or null depending on the value of yesno. If sh.parens is set, always
set the parens.
parenss:

if(ident(sh.?arens,yes)){
lparen = !
rparen_ = ')!
~_ return}
lt(ldent(yesno‘yes)){
lparen = !
~ rparen = 1)1}
else
lparen = null
rparen = null}
return
#-%-parens
g—h-rfmt
Rfmt is used to remove unnecessary f{lambda}'s from a term for
printing. A lambda is deemed unnecessary if it occurs in the form;
coefflclentﬁLAMBDA}, or anotherwords not is the form . . «~+{LAMNBDA}
or = » -={LAMBDA}
gfmt:
If shelam is set, don't remove the lambda''s

if (ident(sh.lam,yes)) {
rfmt = expr
return}

gfmt = expr

loop in while stmt. until all unnecessary lambda's are gone.
while(rfmt NOTANY (*+=') 3 lpfx * {LAMBDA}' = 1pfx)

»
return

%-cfnt
h-solve

acutal work of solving the equations using the functions: arden,
comsym, distrib, and rCimt.

#—
g—
z This is solve, the heart of the program. This subroutine does the
#
Use:

S T

coe e

L L T R S e e T

Nt gry R W Ittt ge g S e e g I A

solve(neyns) _ ,

Solve is called b¥ RGXSOLV. When solve is called, the acrray ega
contains the set of eyuations_ to solve. There are "neqns" ejuatiops

in the array, and they are all in standard form. '

Solve starts with the Nth (last) equation in the list, and
substitutes the value for the regular expression represented by,
the equation in each place the state variable for tge Nth equa¥1on
appears tarouygyhout the set of equations. The replacement i35 made
in the set of equations in ordef from the first go the last.

Each equation is broken up into terms of the standard CX variety
where C'is the coefficient and X is the state variable for the
particular term. 1If X happens to be the same state variable as the
one whose value is represented by the expression in the last equation,
X 1s replaced with the value of the last expression, i.e., a .
Substitution of two equivalent things has been made. The resulting
term 1s in_ the form CEV], where V can be anything that can occur on
the right hand side of an e%ugtlon in standard form. TIn order to
keep things orderly, distrib is called with C{V] as an argument and
the resulfing distributed expression is substitited in the eguation
where CX originally was. Because we know that a particular State
cal only occur once in amn equation in standard form, if and_ when
this substitution is made, Wwe can move on to the next equation.

If the value for X had been {EMPTY} in the Nth equation, the CX
tern would have been removed from the equation being rocessed.

A problem arises at this gOLnt, becausé after the Substitution has
been made and distrib has been Called, the resulting equation might
not be in standard form. So, after each equation iS processed for
a possible substitution, comsym and arden are called to reduce the

new equation to standard form.

The substition process continues for each equation in the array.
when the Nth egquation has been processed, thé state variable value
for the exgreSSLQn represented by the Nth equation no longer exists,
but instead its value in terms of a regular expression in all of the
equations where 1t used to be.

The same process will be repeated with the N-1th equation. {Note that
at this time, the state variable for the Nth equation no longer is
gresent anywﬁere in the set of equations.) Thé global substitution for

he value of state variable représented by the N>1th equation is done
just as it was for the Nth‘eguatlon. After the substifution process
1s complete, the state variable for the N-1th equation is no longer
present in the set of egquations, but instead itsS value.

The process repeats until all of the state variables have had their
values substituted throughout the set of N equations. AND at this
time, there will be NO sftate variables left in the equations, but
only their correspondlng.values.)

In this manner, a solution is been obtained for each state of the

input machine, i1.e. for each state as a hypothetical start state.

lve:

. .

Use reqno to index the Nth -1th, - « - equations until all
of the éguations have been done.

foréreqno = negns - 1;GE(regno,0) ;reqno = reqno - 1) {

Separate the equation whose state variable we are going
to fook for intd left and right side parts. Rvalue’is
the value we will substitute for rstate if we find it.
egqn<reqno_#+ 1> egasplit i
rState = lh; rvalue = rh . 4
gnymatch = no # Turns to yes if we get a match for rstate

Egno is used to Eoint to each equation in the list in turfn
Each equation Wwill be checked for rstate and a substitution
made 1if it is found.

G B T T

™

T S e

tor (eqno = 1;LE {eqno,neqns) : = eyno + 1
ég%(egno> igésglié ghgéifggoand £h)
’ = r + .

gexpr = nu
#
#

ch

Break out each state in the equation and see if it matehes
cstate. Continue this process until a match is found or

we run out of equation.
repeat{ # break Off each term in equation

R T e

any occurance of rsta

term that contained rcstate i
found, it will be null. 1In either case, append the leftOver
part of the expression in rh to the new expression in neXpr,

if(rh br(*{') 3% value br ('+') $ State 11 = null)

els% # false if stat. indicates all of eguation is done
rea n
gullst = no; # non-null state by default E
See 1f the just extracted state matches
1f(#dent(state,rstate)){

Got a match, set match and anymatch to indicate it.
match = yes

anymatch = yes
1t(g1ffer(rvalue,'{EMPTY}'}){

We have a non-null state to reglace, construct a ternm

ﬁ to place in the equation which has rstate replaced by
rval ue.

ntrans = value *[' rvalue *']?

ntrans = distrib(ntrans); nullst = no}
elsi
We have a null value for a state variable, use .
nullst to indicate later removale of term from equation.
nillst = yes
3
else

matca = no # gives definite match or lack of it

It a match was made, part of eqn<egno> has to be modified.
If the value for rstate is not null, the previous coeff.-states
pair is replaced by the old coeff and the value for rstate,
namely, rvalue. i

If rvalue is {EMPTY{ the coeff-state term being processed
can be removed from fe equationa.

If no match was found forf the particular state, the ternm
currently being worked on is replaced in the equation.

Note that if a match was made, control will pass out of the
-repeat—until, however if a match was not made, the next tern
in eyn<eqno> will be examined for an occurance of rstate.

f (ident match,Ies)) # ot a match

if(differ (nullst, yes) # see if null value

nexpr = nexpr ntrans '+! # not a null
else have a null state

Ll B X T e T R

else ¥ no match, replace involved part
nexpr = nexpr value state '+!

until (ident(match, yes))
eqn<eqno> has been updated to reflect the value of rstate
Foca fe has been replaced by rvalue. !

rh contains the part of the eguation to the left of the
f there was one. Tf pone wasS

nexpr = nexpr rch .
nexpr RTAB{(1l) % nexpr # zap trailing *=*°*

SIS T

c o~ -

I I S Co. C »

If nexpr doesn't coatain anythin ha enpt tate

if(ldent(gexpr‘null%Q b4 g, we ve an Pty s _
nexpr = ¥ {EMPTY}!?

#
Put left—hand side of eqn back on to give new equation
nexpr = 1h '=' gnexpr

.

The equation from egn<eqno> has had rstate laced with

;value% (1f possible bgt the new _equation ﬁight not bpe

in standard form. Calil comsym, ardefn and distrib to make -
sure ve replace eqn<eqno> with an equation in standard fornp.
Ce.2XprL = comSym (nexpr

d.expr = ardei (C.expr

a.eXpr egasplit .

%.exgr = 1lh '=' distrib (rh)

stick sparkling new equation back in 1list
eqa<egno> = de.expr

} #for({eqno=1. . .

- . — - .

§ If the user specified the LA optionf print the resulting set of

equations after global replacement of rstate with rvalue.
1f(1d§nt(%iall,yes ident (anymatch, yes) NE{regno,0)) {
out =

out = 'After replacing ' rstate ' with * rfmt (cvalue) ¢,
out = ' the resulting set is:!
for (en T;LE(en‘negns);en = en + 1)
.out '{* en 1] rfmt{eyn<en>)
wait ()

} #for(regno . -

nn

return
#-%-solve
g—h-walt

& If the WAIT option was specified, this Ffuaction will print a line of
three dots and wait for a carriage-return before continuing execution,
thus allowing the user to have time to observe each operation. .
_{f the WAIT option was not specified, the function returns immediately.
wait:
if (ident(wait.fl,yes)) {
out = '. ., !
junk = INPUT
return
else
return
#-%-wait : |
ead .

#175-#175_-#175--#175-—#175_-#175_-#175--#175--#175--#175—-#1754;#175-4#175--#175—-#175--#175—-#175—-#175——#175-~#175--#175——#175~

JOB 5646-#175 RGX PRINTED AT N. C. S. U. COMPUTING CENTER ON THE ITEL AS/4 AT 04:33:23 ON 09/04/8)
ooooooooooooooocooo00000000@000000000006 20

00000 0900003 3000000300000000 200000000890 00099995 3053955 553539999 99999
000060000000 00000000600000000000 0000000000 0000000 00000000000000 Q0 o \ 00200000
000000000000888000000000000000000008000000000888000880000OOOOOO00980000000000000003000300033OODOOOOOO0000000000000000000003000300000
OOOOOOOOOOO000000000000000000000OOO000000000000000000000000000300@O0000000000000003000300030000000000OD00000000000000000000000000000
RGX #175 12 PAGES : RGX #175 12 PAGES
RGX #175 12 PAGES ' R3 X #175 12 PAGES
RG X #1375 12 PAGES RGX #1175 12 PAGES
RGX #1175 12 PAGES RGX #175 12 PAGES
RGX #175 12 PAGES ' R3X #175 12 PAGES
RGX #175 12 PAGES RGX #175 12 PAGES
RGX #175 12 PAGES RGX 8175 12 PAGES
RGX #175 12 PAGES R3X #175 12 PAGES

-#175-—#175--#175--#175—-#175—-#175-~#175-—#175‘-#175‘-#175--#175‘-#175--#175--#175-—#175--#175——#175-—#175-—#175--#175—-#175--#175-

b646-4#175 RG PRINTED AT No C. S. U. COMPUTING CENTER ON I HE ITEL AS/4 AT 04:43:23 ON 09/04/80
gggoggogogooooooéooéooooooooo00000000006006

RGX #175 12 PAGE R3X #175 12 PAGES
RG X #175 12 PAGES RGX #175 12 PAGES
RGX #1775 12 PAGES RGX #175 12 PAGES
RGX #175 12 PAGES R3X #175 12 PAGES
RGX #175 12 PAGES RG X #175 12 PAGES
RGX #1175 12 PAGES RGX #175 12 PAGES
RGX #175 12 PAGES R3X #175 12 PAGES
RGX #175 12 PAGES RGX #175 12 PAGES

