Functional Programming with Haskell

CSC 372, Spring 2015
The University of Arizona William H. Mitchell whm@cs

Programming Paradigms

Paradigms

Thomas Kuhn's The Structure of Scientific Revolutions (1962) describes a paradigm as a scientific achievement that is...

- "...sufficiently unprecedented to attract an enduring group of adherents away from competing modes of scientific activity."
- "...sufficiently open-ended to leave all sorts of problems for the redefined group of practitioners to resolve."

Kuhn cites works such as Newton's Principia, Lavoisier's Chemistry, and Lyell's Geology as serving to document paradigms.

Paradigms, continued

A paradigm provides a conceptual framework for understanding and solving problems.

A paradigm has a world view, a vocabulary, and a set of techniques that can be applied to solve a problem.
(Another theme for us.)
A question to keep in mind:
What are the problems that programming paradigms attempt to solve?

The procedural programming paradigm

From the early days of programming into the 1980s the dominant paradigm was procedural programming:

> Programs are composed of bodies of code (procedures) that manipulate individual data elements or structures.

Much study was focused on how best to decompose a large computation into a set of procedures and a sequence of calls.

Languages like FORTRAN, COBOL, Pascal, and C facilitate procedural programming.

Java programs with a single class are typically examples of procedural programming.

The object-oriented programming paradigm

In the 1990s, object-oriented programming became the dominant paradigm. Problems are solved by creating systems of objects that interact.
> "Instead of a bit-grinding processor plundering data structures, we have a universe of well-behaved objects that courteously ask each other to carry out their various desires."-Dan Ingalls

Study shifted from how to decompose computations into procedures to how to model systems as interacting objects.

Languages like C++ and Java facilitate use of an objectoriented paradigm.

The influence of paradigms

The programming paradigm(s) we know affect how we approach problems.

If we use the procedural paradigm, we'll first think about breaking down a computation into a series of steps.

If we use the object-oriented paradigm, we'll first think about modeling the problem with a set of objects and then consider their interactions.

Language support for programming paradigms

If a language makes it easy and efficient to use a particular paradigm, we say that the language supports the paradigm.

What language features are required to support procedural programming?

- The ability to break programs into procedures.

What language features does OO programming require, for OO programming as you know it?

- Ability to define classes that comprise data and methods
- Ability to specify inheritance between classes

Multiple paradigms

Paradigms in a field of science are often incompatible.
Example: geocentric vs. heliocentric model of the universe
Can a programming language support multiple paradigms?
Yes! We can do procedural programming with Java.
The programming language Leda fully supports the procedural, imperative, object-oriented, functional, and logic programming paradigms.

Wikipedia's Programming_paradigm cites 60+ paradigms!
But, are "programming paradigms" really paradigms by Kuhn's definition or are they just characteristics?

The imperative programming paradigm

The imperative paradigm has its roots in programming at the machine level, usually via assembly language.

Machine-level programming:

- Instructions change memory locations or registers
- Instructions alter the flow of control

Programming with an imperative language:

- Expressions compute values based on memory contents
- Assignments alter memory contents
- Control structures guide the flow of control

The imperative programming paradigm

Both the procedural and object-oriented paradigms typically make use of the imperative programming paradigm.

Two fundamental characteristics of languages that support the imperative paradigm:

- "Variables"-data objects whose values typically change as execution proceeds.
- Support for iteration-a "while" control structure, for example.

Imperative programming, continued

Here's an imperative solution in Java to sum the integers in an array:

```
int sum(int a[])
{
    int sum = 0;
    for (int i = 0; i < a.length; i++)
        sum += a[i];
    return sum;
}
```

The for loop causes i to vary over the indices of the array, as the variable sum accumulates the result.

How can the above solution be improved?

Imperative programming, continued

With Java's "enhanced for", also known as a for-each loop, we can avoid array indexing.

```
int sum(int a[])
{
    int sum = 0;
    for (int val:a)
        sum += val;
    return sum;
}
```

Is this an improvement? If so, why?
Can we write sum in a non-imperative way?

Imperative programming, continued

We can use recursion instead of a loop, but...ouch!

```
int sum(int a[]) { return sum(a, 0);}
int sum(int a[], int i)
{
    if (i == a.length)
        return 0;
    else
        return a[i] + sum(a,i+l);
}
```

Wrt. correctness, which of the three versions would you bet your job on?

Sidebar: The level of a paradigm

Programming paradigms can apply at different levels:

- Making a choice between procedural and object-oriented programming fundamentally determines the high-level structure of a program.
- The imperative paradigm is focused more on the small aspects of programming-how code looks at the line-by-line level.

Java combines the object-oriented and imperative paradigms.

The procedural and object-oriented paradigms apply to programming in the large.

The imperative paradigm applies to programming in the small.

Imperative vs. applicative methods in Java

Java methods can be classified as imperative or applicative.

- An imperative method changes an object.
"Change this."
- An applicative method produces a new object.
"Make me something new from this."

In some cases we have an opportunity to choose between the two.

Imperative vs. applicative methods, continued

Consider a Java class representing a 2D point:

```
class Point {
    private int x, y;
}
```

An imperative method to translate by an x and y displacement: public void translate(int dx, int dy) \{ $x+=d x ; y+=d y ;$ \}

An applicative translate: public Point translate(int dx, int dy) \{
return new Point($x+d x, y+d y$; \}

What are the pros and cons?

Imperative vs. applicative methods, continued

Imagine a Line class, whose instances are constructed with two Points. Example: Line $A=$ new Line(pl, p2);

Two blocks of code follow. Left half of class: Look at only the first block. Right half: Look at only the second block. Raise your hand when you understand what Line L represents.

```
Point end = p.clone();
end.translate(10,20);
Line L = new Line(p, end);
```

Line L = new Line(p, p.translate(10,20));

Note: Slide redone after copies!

Side effects

An expression is a sequence of symbols that can be evaluated to produce a value. Here's a Java expression:

$$
\mathrm{i}+\mathrm{j} * \mathrm{k}
$$

If evaluating an expression also causes an observable change somewhere else, we say that expression has a side effect.

Here's a Java expression with a side effect:

$$
\mathrm{i}+\mathrm{j}++* \mathrm{k}
$$

Do these two expressions have the same value?
What's the side effect?

Side effects, continued

Which of these Java expressions have a side effect?
$\mathrm{x}=10$
pl.translate(10, 20) // Consider imp. \& app. cases...
"testing".toUpperCase()
L.add("x"), where L is an ArrayList

System.out.println("Hello!")

Side effects, continued

Side effects are a hallmark of imperative programing.
Programs written in an imperative style are essentially an orchestration of side effects.

Can we program without side effects?

The Functional Paradigm

The functional programming paradigm

A key characteristic of the functional paradigm is writing functions that are like pure mathematical functions.

Pure mathematical functions:

- Always produce the same value for given input(s)
- Have no side effects
- Can be combined brainlessly to produce more powerful functions

Ideally, functions are specified with notation that's similar to what you see in math books-cases and expressions.

Functional programming, continued

Other characteristics of the functional paradigm:

- Values are never changed but lots of new values are created.
- Recursion is used in place of iteration.
- Functions are values. Functions are put into in data structures, passed to functions, and returned from functions. LOTS of temporary functions are created.

Based on the above, how well would Java support functional programming? How about C?

Haskell basics

What is Haskell?

Haskell is a pure functional programming language; it has no imperative features.

Was designed by a committee with the goal of creating a standard language for research into functional programming.

First version appeared in 1990. Latest version is known as Haskell 2010.

Is said to be non-strict-it supports lazy evaluation.
It is not object-oriented in any way.
My current opinion: it has a relatively large mental footprint.

Haskell resources

Website: haskell.org (sluggish as of 1/19/15)
All sorts of resources!
Books: (on Safari, too)
Learn You a Haskell for Great Good!, by Miran Lipovača http://learnyouahaskell.com (Known as LYAH.)

Real World Haskell, by O'Sullivan, Stewart, and Goerzen http://realworldhaskell.org (I'll call it RWH.)

Programming in Haskell, by Hutton
Note: See appendix B for mapping of non-ASCII chars!
Haskell 2010 Report (I'll call it H10.)
http://haskell.org/definition/haskell2010.pdf

Interacting with Haskell

On lectura we can interact with Haskell by running ghci:
\$ ghci
GHCi, version 7.4.1: ...more... :? for help
Loading package ghc-prim ... linking ... done. Loading package integer-gmp ... linking ... done. Loading package base ... linking ... done. $>$

With no arguments, ghci starts a read-eval-print loop (REPL)expressions that we type at the prompt ($>$) are evaluated and the result is printed.

Note: the standard prompt is Prelude> but I've got :set prompt ">"
in my ~/.ghci file.

Interacting with Haskell, continued

Let's try some expressions with ghci:
$>3+4$
7
$>3 * 4.5$
13.5
$>(3>4)| |(5<7)$
True
$>2^{\wedge} 200$
160693804425899027554196209234116260252220299378 2792835301376
> "abc" ++ "xyz"
"abcxyz"

Interacting with Haskell, continued

We can use :help to see available commands:
$>$:help
Commands available from the prompt: <statement> evaluate/run <statement> repeat last command $:\{\backslash \mathrm{n}$..lines.. $\backslash \mathrm{n}:\} \backslash \mathrm{n} \quad$ multiline command ...lots more...

The command :set +t causes types to be shown:
$>$:set tt
$>3+4$
7
it :: Integer
"::" is read as "has type". The value of the expression is "bound" to the name it.

Interacting with Haskell, continued

We can use it in subsequent computations:
$>3+4$
7
it :: Integer
$>$ it + it *it
56
it :: Integer
$>$ it $/=$ it
False
it :: Bool

Extra Credit Assignment 1

For two assignment points of extra credit:

1. Run ghci (or WinGHCi) somewhere and try ten Haskell expressions with some degree of variety. (Not just ten additions, for example!) Do a $:$ set +t at the start.
2. Capture the output and put it in a plain text file, eca1.txt, and turn it in via the eca1 D2L dropbox. (No need for your name, NetID, etc. in the file.)

Due: At the start of the next lecture after we hit this slide.
Needless to say, feel free to read ahead in the slides and show experimentation with the following material, too.

Getting Haskell

Getting Haskell

You can either get Haskell for your machine or use Haskell on lectura.

To work on your own machine, get a copy of the Haskell Platform for your operating system from haskell.org.

On OS X, I'm using Haskell Platform 2014.2.0.0 for Mac OS X, 64bit from www.haskell.org/platform/mac.html

On Windows, use Haskell Platform 2014.2.0.0 for Windows from http://www.haskell.org/platform/windows.html The 32-bit version should be fine but if you have trouble, (1) let me know and (2) go ahead and try the 64-bit version.

You'll need an editor that can create plain text files. Sublime Text is very popular.

Using Haskell on lectura

To work on lectura from a Windows machine, you might login with PuTTY. (See following slide.)

OS X, do ssh YOUR-NETID@lectura.cs.arizona.edu
You might edit Haskell files on lectura with vim, emacs, or nano (ick!), or use something like gedit on a Linux machine in a CS lab.

Alternatively, you might edit on your machine with something like Sublime Text and use a synchronization tool (like WinSCP on Windows) to keep your copy on lectura constantly up to date.

If you go the route of editing on your machine and running on lectura, let me know if you have trouble figuring out how to do automatic synchronization. It's a terrible waste of time to do a manual copy of any sort in the middle of your edit/run cycle.

Getting and running PuTTY

If you Google for "putty", the first hit should be this:
PuTTY Download Page

- Www.chiark.greenend.org.uk/~sgtatham/ putty/download.html

Download putty.exe. It's just an executable-no installer!

```
Binaries
The latest release version (beta 0.63).'
fixed the bug, before reporting it to me
For Windows on Intel x86
PuTTY:
PuTTYtel: puttytel.exe
PSCP: pscp.exe
```


PuTTY, continued

Click on putty.exe to run it. In the dialog that opens, fill in lec.cs.arizona.edu for Host Name and click Open.

ghci on lectura

Login to lectura using your UA NetID. Run ghci, and try some expressions:

```
dg
lectura ~ 5003 $ ghci
GHCi, version 7.4.1: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
> 3+4
7
> "abc" ++ "xyz"
"abcxyz"
> ^ ^ 200
1606938044258990275541962092341162602522202993782792835301376
> (control-D to exit)
Leaving GHCi.
lectura ~ 5004 $
```

Go to http://cs.arizona.edu/computing/services and use "Reset my forgotten Unix password" if needed.

The ~/.ghci file

When ghci starts up on Linux or OS X it looks for the file $\sim /$.ghci - a .ghci file in the user's home directory.

Below are a couple of lines that I find handy in my $\sim /$. ghci file. The first sets the prompt and the second loads a module that allows functions to be printed as values, although just showing <function> for function values.

:set prompt "> "
:m +Text.Show.Functions

~/.ghci, continued

The counterpart path on Windows is this:
\%APPDATA \% \ghc $\backslash g h c i . c o n f$
(Note: file is named ghci.conf, not .ghci!)
\%APPDATA\% represents the location of your Application Data directory. You can find that path by typing set appdata in a command window, like this:

C:\>set appdata APPDATA=C:\Users\whm\Application Data

Combing the two, the full path to the file would be C:\Users\whm\Application Data\ghc\ghci.conf

Details on .ghci and lots more can be found in https://downloads.haskell.org/~ghc/latest/docs/users_guide.pdf

Functions and function types

Calling functions

In Haskell, juxtaposition indicates a function call:
$>$ negate 3
-3
it :: Integer
> even 5
False
it :: Bool
$>$ pred 'C'
'B'
it :: Char
$>$ signum 2
1
it :: Integer

Note: These functions and many more are defined in the Haskell "Prelude", which is loaded by default when ghci starts up.
ghci uses The GNU Readline library.
Use TAB to complete names, ${ }^{\wedge} \mathrm{R}$ to incrementally search backwards, $\wedge^{\wedge} \mathrm{A} / \wedge \mathrm{E}$ for start/end of line, etc.

Lots more: tiswww.case.edu/php/chet/readline/rluserman.html

Calling functions, continued

Function call with juxtaposition is left-associative.
signum negate 2 means (signum negate) 2
> signum negate 2
<interactive>:40:1: -- It's an error!
No instance for (Num (a0 -> a0)) arising from a use of `signum'

We add parentheses to call negate 2 first:
$>$ signum (negate 2)
-1
it :: Integer

Calling functions, continued

Function call with juxtaposition has higher precedence than any operator.
$>$ negate $3+4$
1
it :: Integer
negate $3+4$ means (negate 3$)+4$. Use parens to force + first:
$>$ negate $(3+4)$
-7
it :: Integer
$>$ signum (negate $(3+4)$)
-l
it :: Integer

Function types

Haskell's Data.Char module has a number of functions for working with characters. We'll use it to start learning about function types.
$>$:m Data.Char (:m(odule) loads a module)
> isLower 'b'
True
it :: Bool
> toUpper 'a' 'A'
it :: Char
$>$ ord 'A'
65
it :: Int
We can also reference a function in a module with a qualified name:
\% ghci
GHCi, version 7.6.3: ...
> Data.Char.ord 'G'
71
$>\operatorname{chr} 66$
'B'
it :: Char

Function types, continued

We can use gchi's :type command to see what the type of a function is:
> :type isLower isLower :: Char -> Bool (read -> as "to")

The type Char -> Bool means that the function takes an argument of type Char and produces a result of type Bool.

Using ghci, what are the types of toUpper, ord, and chr?
We can use :browse Data.Char to see everything in the module.

Type consistency

Like most languages, Haskell requires that expressions be typeconsistent (or well-typed).

Here is an example of an inconsistency:
$>$ chr ' x '
<interactive>:32:5:
Couldn't match expected type Int with actual type Char In the first argument of 'chr', namely 'x'
$>$:type chr
chr :: Int -> Char
> :type 'x'
'x' :: Char
chr requires its argument to be an Int but we gave it a Char. We can say that chr ' x ' is ill-typed.

Type consistency, continued

State whether each expression is well-typed and if so, its type.

```
'a'
isUpper
isUpper 'a'
not (isUpper 'a')
not not (isUpper 'a')
toUpper (ord 97)
isUpper (toUpper (chr 'a'))
isUpper (intToDigit 100)
```

```
'a':: Char
chr :: Int -> Char
digitToInt :: Char -> Int
intToDigit :: Int -> Char
isUpper :: Char -> Bool
not :: Bool -> Bool
ord :: Char -> Int
toUpper :: Char -> Char
```


Sidebar: Using a REPL to help learn a language

As we've seen, ghci provides a REPL (read-eval-print loop).
What are some other languages that have a REPL available?
How does a REPL help us learn a language?
Is there a REPL for Java?
What characteristics does a language need to support a REPL?
If there's no REPL for a language, how hard is it to write one?

Type classes

What's the type of negate?

Recall the negate function:
$>$ negate 5
-5
it :: Integer
$>$ negate 5.0
-5.0
it :: Double

What is the type of negate? (Is it both Integer -> Integer and Double -> Double??)

Type classes

Bool, Char, and Integer are examples of Haskell types.
Haskell also has type classes. A type class specifies the operations must be supported on a type in order for that type to be a member of that type class.

Num is one of the many type classes defined in the Prelude.
:info Num shows that for a type to be a Num, it must support addition, subtraction, multiplication and four functions: negate, abs, signNum, and fromInteger. (The Num club!)

The Prelude defines four instances of the Num type class: Int (word-size), Integer (unlimited size), Float and Double.

Here's the type of negate:

Type classes, continued

> :type negate negate :: Num a => a -> a

The type of negate is specified using a type variable, a.
The portion a -> a specifies that negate returns a value having the same type as its argument.
"If you give me an Int, I'll give you back an Int."
The portion Num a $=>$ is a class constraint. It specifies that the type a must be an instance of the type class Num.

How can we state the type of negate in English?
negate accepts any value whose type is an instance of Num. It returns a value of the same type.

Type classes, continued

What type do integer literals have?
$>$:type 3
3 :: Num a => a
$>$:type (-27) -- Note: Parens needed!
(-27) :: Num a => a

Literals are typed with a class constraint of Num, so they can be used by any function that accepts Num a => a.

Type classes, continued

Will negate 3.4 work?
$>$:type negate
negate :: Num a => a -> a
> :type 3.4
3.4 : Fractional a => a
> negate 3.4
-3.4

Speculate: Why does it work?

Type classes, continued

Haskell type classes form a hierarchy. The Prelude has these:

Type classes, continued

The arrow from Num to Fractional means that a Fractional can be used as a Num. (What does that remind you of?)

Given
negate :: Num a => a -> a
and
5.0 : Fractional a => a
then
negate 5.0 is valid.

Type classes, continued

What's meant by the type of pz?
pz :: (Bounded a, Fractional b) => a -> b

Would pz 'a' be valid? How about pz 5.5? pz 7?
LYAH pp. 27-33 has a good description of the Prelude's type classes. ("Type Classes 101")

RWH uses the term "typeclasses"-one word!

negate is polymorphic

In essence, negate :: Num a => a -> a describes many functions:
negate :: Integer -> Integer
negate :: Int -> Int
negate :: Float -> Float
negate :: Double -> Double
...and more...
negate is a polymorphic function. It handles values of many forms.

If a function's type has any type variables, it's a polymorphic function.

How does Java handle this problem? How about C? C++?

Take a break?

More on functions

Writing simple functions

A function can be defined in the REPL by using let. Example:
$>$ let double $\mathrm{x}=\mathrm{x} * 2$
double :: Num a => a -> a
> double 5
10
it :: Integer
> double 2.7
5.4
it :: Double
> double (double (double lllllllllllll))
8888888888888
it :: Integer

Simple functions, continued

More examples:
$>$ let neg $\mathrm{x}=-\mathrm{x}$
neg :: Num a => a -> a
$>$ let isPositive $\mathrm{x}=\mathrm{x}>0$ isPositive :: (Num a, Ord a) => a -> Bool
$>$ let toCelsius temp $=($ temp -32$) * 5 / 9$ toCelsius :: Fractional a => a -> a

The determination of types based on the operations performed is known as type inferencing. (More on it later!)

Note: function and parameter names must begin with a lowercase letter or _. (If capitalized they're assumed to be data constructors.)

Simple functions, continued

We can use :: type to constrain the type inferred for a function:

```
> let neg x = -x:: Integer
neg :: Integer -> Integer
> let isPositive x = x > (0::Integer)
isPositive :: Integer -> Bool
> let toCelsius temp = (temp - 32)*5/(9::Double)
toCelsius :: Double -> Double
```

We'll use :: type to simplify some following examples.

Sidebar: loading functions from a file

We can put function definitions in a file. When we do, we leave off the let!

I've got four function definitions in the file simple.hs, as shown with the UNIX cat command:

```
% cat simple.hs
double x = x* 2 :: Integer -- Note: no "let"!
neg x = -x :: Integer
isPositive x = x > (0::Integer)
toCelsius temp = (temp - 32) * 5/(9::Double)
```

The .hs suffix is required.

Sidebar, continued

Assuming simple.hs is in the current directory, we can load it with :load and see what we got with :browse.
\% ghci
> :load simple
[l of l] Compiling Main (simple.hs, interpreted) Ok, modules loaded: Main.
> :browse
double :: Integer -> Integer
neg :: Integer -> Integer
isPositive :: Integer -> Bool
toCelsius :: Double -> Double
Note the colon in :load, and that the suffix .hs is assumed.
We can use a path, like :load $\sim / 372 / \mathrm{hs} /$ simple, too.

Sidebar: Learning a Language

Look for ways to type less, to spend more time learning and less time typing!

Anticipate: How might we type less when loading a file?
> :l simple
[l of l] Compiling Main (simple.hs, interpreted) Ok, modules loaded: Main.

After an initial load, :reload is sufficient:
$>$:reload
[l of l] Compiling Main (simple.hs, interpreted) Ok, modules loaded: Main.

Can we still type less?

Sidebar: My usual edit-run cycle

ghci is clumsy to type! I've got an hs alias in my ~/.bashre: alias hs=ghci

I specify the file I'm working with as an argument to hs.
\% hs simple
GHCi, version 7.6.3 ...
[l of l] Compiling Main (simple.hs, interpreted)
Ok, modules loaded: Main.
> ... experiment ...
After editing in a different window I use : r to reload the file.
$>$:
[l of l] Compiling Main (simple.hs, interpreted)
Ok, modules loaded: Main.
> ...experiment some more...
Lather, rinse, repeat.

Functions with multiple arguments

Here's a function that produces the sum of its two arguments:
$>$ let add $\mathrm{x} y=\mathrm{x}+\mathrm{y}:$: Integer
Here's how we call it: (no commas or parentheses!)
$>$ add 35
8
Here is its type:
> :type add
add :: Integer -> Integer -> Integer
The operator -> is right-associative, so the above means this:
add :: Integer -> (Integer -> Integer)
But what does that mean?

Multiple arguments, continued

Recall our negate function:
$>$ let neg $x=-x$:: Integer
neg :: Integer -> Integer
Here's add again, with parentheses added to show precedence:
$>$ let add $\mathrm{x} y=\mathrm{x}+\mathrm{y}:$: Integer
add :: Integer -> (Integer -> Integer)
add is a function that takes an integer as an argument and produces a function as its result!
add 35 means (add 3) 5
Call add with the value 3 , producing a nameless function. Call that nameless function with the value 5 .

Partial application

When we give a function fewer arguments than it requires, the result is called a partial application. It is a function.

We can bind a name to a partial application like this:
$>$ let plusThree = add 3
plusThree :: Integer -> Integer
The name plusThree now references a function that takes an Integer and returns an Integer.

What will plusThree 5 produce?
$>$ plusThree 5
8
it :: Integer

Partial application, continued

At hand:
$>$ let add $\mathrm{x} y=\mathrm{x}+\mathrm{y}:$: Integer add :: Integer -> (Integer -> Integer) -- parens added
$>$ let plusThree = add 3
plusThree :: Integer -> Integer

Analogy: plusThree is like a calculator where you've clicked 3 , then + , and handed it to somebody.

Partial application, continued

At hand:
$>$ let add $\mathrm{x} \mathrm{y}=\mathrm{x}+\mathrm{y}:$: Integer
add :: Integer -> (Integer -> Integer) -- parens added
Another: (with parentheses added to type to aid understanding)
$>$ let add3 x y z = x + y + z :: Integer add3 :: Integer -> (Integer -> (Integer -> Integer))

These functions are said to be defined in curried form, which allows partial application of arguments.

The idea of a partially applicable function was first described by Moses Schönfinkel. It was further developed by Haskell B. Curry. Both worked wtih David Hilbert in the 1920s.

$$
\log _{2} n
$$

What prior use have you made of partially applied functions?

Note: next set of slides!

Some key points

Key points:

- A function with a type like Integer -> Char -> Char takes two arguments, an Integer and a Char. It produces a Char.
- A function call like
fxyz
means

$$
((f x) y) z
$$

and (conceptually) causes two temporary, unnamed functions to be created.

- Calling a function with fewer arguments that it requires creates a partial application.

Specifying a function's type

It is common practice to specify the type of a function along with its definition in a file.

What's the ramification of the difference in these two type specifications?

```
addl::Num a => a -> a -> a
addl \(\mathrm{x} y=\mathrm{x}+\mathrm{y}\)
```

add2::Integer -> Integer -> Integer
add2 $\mathrm{x} \mathrm{y}=\mathrm{x}+\mathrm{y}$

Sidebar: Continuation with indentation

A Haskell source file is a series of declarations. Here's a file with two declarations:
\% cat indentl.hs
add::Integer -> Integer -> Integer
$\operatorname{add} \mathrm{x} y=\mathrm{x}+\mathrm{y}$
A declaration can be continued across multiple lines by indenting lines more than the first line of the declaration. These weaving declarations are poor style but are valid:
add
Integer-> Integer-> Integer
add x y
=
x
$+\mathrm{y}$

Indentation, continued

A line that starts in the same column as the previous declaration ends that declaration and starts a new one.

```
\% cat indent2.hs
add::Integer -> Integer -> Integer
add \(\mathrm{x} \mathrm{y}=\)
\(x+y\)
```

\% ghci indent2
indent2.hs:3:1:
parse error (possibly incorrect indentation or
mismatched brackets)
Failed, modules loaded: none.
Note that 3:1 indicates line 3, column 1.

Function/operator equivalence

Haskell operators are simply functions that can be invoked with an infix form.

We can use :info to find out about an operator.
$>$:info (^)
(^) :: (Num a, Integral b) => a -> b -> a infixr 8^{\wedge}
(Num a, Integral b) => a -> b -> a shows that the first operand must be a number and the second must be an integer.
infixr 8 shows that it is right-associative, with priority 8.
Explore $==,>,+, *,| |, \wedge \wedge$ and $* *$.

Function/operator equivalence, continued

To use an operator as a function, enclose it in parentheses:
$>(+) 34$
7

Conversely, we can use a function as an operator by enclosing it in backquotes:
> 3 `add` 4
7
> 11 `rem` 3
2

Function/operator equivalence, continued

Haskell lets us define custom operators.
Example: (loading from a file)
$(+\%) x$ percentage $=x+x *$ percentage / 100 infixl $6+\%$

Usage:

$$
\begin{aligned}
& >100+\% \quad 1 \\
& 101.0 \\
& >12+\% 25 \\
& 15.0
\end{aligned}
$$

The characters! \# \$ \% \& * + ./<=>? @ \^|-~: and non-ASCII Unicode symbols can be used in custom operators.

Modules often define custom operators.

Reference: Operators from the Prelude

Precedence	Left associative operators	Non associative operators	Right associative operators	
9	!!			
8			$\wedge, \wedge \wedge$, **	
7	*, /, `div`, ‘mod ‘rem’, ‘quot			
6	+, -			
5			:, ++	
4		$\begin{aligned} & ==, /=,<,<=, \\ & >,>=\text {, 'elem’, } \\ & \text { 'notElem' } \end{aligned}$		
3				
2			\|	
1	>>, >>=			
0			\$, \$!, `seq`	
Note: From page 51 in Haskell 2010 report				

More functions

The general form of a function definition (for now):
let name paraml param2 ... paramN = expression

Problem: Define a function min3 that computes the minimum of three values. The Prelude has a min function.
$>\min 35210$
2
$>$ let min3 a b c $=\min \mathrm{a}(\min \mathrm{b} \mathrm{c})$
min3 :: Ord a => a -> a -> a -> a
Problem: Define a function eq3 that returns True if its three arguments are equal, False otherwise.

Guards

Recall this characteristic of functional programming: "Ideally, functions are specified with notation that's similar to what you see in math books-cases and expressions."

This function definition uses guards to specify three cases: $\operatorname{sign} x \mid x<0=-1$
$x==0=0$
otherwise $=1$
Notes:

- No let-this definition is loaded from a file with :load
- sign x appears just once. First guard might be on next line.
- The guard appears between \| and =, and produces a Bool
- What is otherwise?

Guards, continued

Problem: Using guards, define a function smaller, like min:
$>$ smaller 710
7
> smaller 'z' 'a'
'a'
Solution:
smaller xy
| $\mathrm{x}<=\mathrm{y}=\mathrm{x}$
otherwise = y

Guards, continued

Problem: Write a function weather that classifies a given temperature as hot if $80+$, else nice if $70+$, and cold otherwise.
> weather 95
"Hot!"
> weather 32
"Cold!"
> weather 75
"Nice"

A solution that takes advantage of the fact that guards are tried in turn:
weather temp | temp >= $80=$ "Hot!"
temp >= $70=$ "Nice"
| otherwise = "Cold!"

Haskell's if-else

Here's an example of Haskell's if-else:
$>$ if $1<2$ then 3 else 4
3

How does this compare to the if-else in Java?

Sidebar: Java's if-else

Java's if-else is a statement. It cannot be used where a value is required.

Java's conditional operator is the analog to Haskell's if-else. l<2? 3:4 (Java conditional, a.k.a ternary operator)

It's an expression that can be used when a value is required.
Java's if-else statement has an else-less form but Haskell's ifelse does not. Why doesn't Haskell allow it?

Java's if-else vs. Java's conditional operator provides a good example of a statement vs. an expression.

Pythoners: What's the if-else situation in Python?
3 if $1<2$ else 4

Haskell's if-else, continued

What's the type of these expressions?
$>$:type if $1<2$ then 3 else 4
if $1<2$ then 3 else 4 :: Num a => a
$>$:type if $1<2$ then 3 else 4.0
if $1<2$ then 3 else 4.0 :: Fractional a => a
$>$ if $1<2$ then 3 else ' 4 '
<interactive>:12:15:
No instance for (Num Char) arising from the literal ` 3 '
$>$ if $1<2$ then 3
<interactive>:13:16:
parse error (possibly incorrect indentation or mismatched brackets)

Guards vs. if-else

Which of the versions of sign below is better?
$\operatorname{sign} x$

$$
\left\lvert\, \begin{aligned}
& x<0=-1 \\
& x==0=0 \\
& \text { otherwise }=1
\end{aligned}\right.
$$

```
\(\operatorname{sign} x=\) if \(x<0\) then -1
else if \(x==0\) then 0
else 1
```

We'll later see that patterns add a third possibility for expressing cases.

Recursion

A recursive function is a function that calls itself either directly or indirectly.

Computing the factorial of a integer (N !) is a classic example of recursion. Write it in Haskell (and don't peek below!) What is its type?
factorial n
$\mid \mathrm{n}==0=1 \quad-$ Base case, $0!$ is 1
| otherwise $=n *$ factorial ($n-1$)
> :type factorial
factorial :: (Eq a, Num a) => a -> a
$>$ factorial 40
815915283247897734345611269596115894272000000000

Recursion, continued

One way to manually trace through a recursive computation is to underline a call, then rewrite the call with a textual expansion:
factorial 4
$4 *$ factorial 3
$4 * 3$ * factorial 2
$4 * 3 * 2 *$ factorial 1
$4 * 3 * 2 * 1 *$ factorial 0
$4 * 3 * 2 * 1 * 1$
factorial n
| $\mathrm{n}=\mathrm{=} 0=1$
| otherwise = n * factorial ($\mathrm{n}-\mathrm{l}$)

Recursion, continued

Consider repeatedly dividing a number until the quotient is 1 :
>28 `quot` 3 (Note backquotes to use quot as infix op.)
9
$>$ it `quot` 3 (Remember that it is previous result.)
3
$>$ it `quot` 3
1

Problem: Write a recursive function numDivs divisor x that computes the number of times \mathbf{x} must be divided by divisor to reach a quotient of 1 .
$>$ numDivs 328
3
> numDivs 27
2

Recursion, continued

A solution:
numDivs divisor x
| (x `quot` divisor) $<1=0$

Example:
> numDivs 328
3 otherwise =
l + numDivs divisor (x `quot` divisor)

What is its type?
numDivs :: (Integral a, Num al) => a -> a -> al
Will numDivs 23.4 work?
> numDivs 23.4
<interactive>:93:1:
No instance for (Integral a0) arising from a use of `numDivs'

Sidebar: Fun with partial applications

Let's compute two partial applications of numDivs, using let to bind them to identifiers:
$>$ let $\mathrm{f}=$ numDivs 2
$>$ let $\mathrm{g}=$ numDivs 10
$>\mathrm{f} 9$
3
$>$ g 1001
3
What are more descriptive names than f and g ?
$>$ let floor_log2 = numDivs 2
> floor_log2 1000
9
$>$ let floor_log10 = numDivs 10
> floor_logl0 1000
3

Lists

List basics

In Haskell, a list is a sequence of values of the same type.
Here's one way to make a list. Note the type of it for each.
$>[7,3,8]$
[7,3,8]
it :: [Integer]
$>[1.3,10,4,9.7]$
[1.3,10.0,4.0,9.7]
it :: [Double]
> ['x', 10]
<interactive>:20:7:
No instance for (Num Char) arising from the literal
` 10 '

List basics, continued

The function length returns the number of elements in a list:
$>$ length $[3,4,5]$
3
> length []
0

What's the type of length?
$>$:type length
length :: [a] -> Int

With no class constraint specified, [a] indicates that length operates on lists containing elements of any type.

List basics, continued

The head function returns the first element of a list.
$>$ head [3,4,5]
3
What's the type of head?
head :: [a] -> a
Here's what tail does. How would you describe it?
$>$ tail [3,4,5]
[4,5]
What's the type of tail?
tail :: [a] -> [a]

List basics, continued

The ++ operator concatenates two lists, producing a new list.

$$
\begin{aligned}
& >[3,4]++[10,20,30] \\
& {[3,4,10,20,30]} \\
& >\text { it }++ \text { it } \\
& {[3,4,10,20,30,3,4,10,20,30]} \\
& >\text { let } \mathrm{f}=(++)[1,2,3] \\
& >\mathrm{f}[4,5] \\
& {[1,2,3,4,5]} \\
& >\mathrm{f}[4,5]++ \text { reverse }(\mathrm{f}[4,5]) \\
& {[1,2,3,4,5,5,4,3,2,1]}
\end{aligned}
$$

What are the types of ++ and reverse?

$$
\begin{aligned}
& >\text { :type }(++) \\
& (++)::[\mathrm{a}]->[\mathrm{a}]->[\mathrm{a}] \\
& >\text { :type reverse } \\
& \text { reverse :: [a] -> [a] }
\end{aligned}
$$

List basics, continued

A range of values can be specified with a dot-dot notation:
> [1..20]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20] it :: [Integer]
$>[-5,-3 . .20]$
[-5,-3,-1,1,3,5,7,9,11,13,15, 17,19]
> length [-1000..1000] 2001
> [10..5]
[]
it :: [Integer]

List basics, continued

The !! operator produces a list's Nth element, zero-based:
$>$:type (!!)
(!!) :: [a] -> Int -> a
> [10,20..100] !! 3
40

Sadly, we can't use a negative value to index from the right.
> [10,20..100] !! (-2)
*** Exception: Prelude.(!!): negative index

Should that be allowed?

Comparing lists

Haskell lists are values and can be compared as values:

$$
>[3,4]==[\overline{1+2,2} * 2]
$$

True
$>[3]++[]++[4]==[3,4]$
True
$>$ tail $($ tail $[3,4,5,6])==[$ last $[4,5]]++[6]$ True

Conceptually, how many lists are created by each of the above?
A programmer using a functional language writes complex expressions using lists (and more!) as freely as a Java programmer might write $f(x) * a==g(a, b)+c$.

Comparing lists, continued

Lists are compared lexicographically: Corresponding elements are compared until an inequality is found. The inequality determines the result of the comparison.

Example:
$>[1,2,3]<[1,2,4]$
True
Why: The first two elements are equal, and $3<4$.
More examples:
$>[1,2,3]<[1,1,1,1]$
False
$>[1,2,3]>[1,2]$
True
$>[1 .]<.[1,3 .$.$] \quad LfPrifaring infinite lists!$
True

Lists of Lists

We can make lists of lists.
$>$ let $\mathrm{x}=[[1],[2,3,4],[5,6]]$
x:: [[Integer]]

Note the type: x is a list of Integer lists.
length counts elements at the top level.
$>$ length x
3

Recall that length :: [a] -> Int Given that, what's the type of a for length x ?

What's the value of length ($\mathrm{x}++\mathrm{x}++[3]$)?

Lists of lists, continued

$>$ let $\mathrm{x}=[[1],[2,3,4],[5,6]]$
$>$ head x
[1]
$>$ tail x
[[2,3,4],[5,6]]
$>x!!1!!2$
4

Strings are [Char]

Strings in Haskell are simply lists of characters.
> "testing"
"testing"
it :: [Char]
> ['a'..'z']
"abcdefghijklmnopqrstuvwxyz"
it :: [Char]
> ["just", "a", "test"]
["just","a","test"]
it :: [[Char]]
What's the beauty of this?

Strings, continued

All list functions work on strings, too!
> let asciiLets = ['A'..'Z'] ++ ['a'..'z'] asciiLets :: [Char]
$>$ length asciiLets
52
> reverse (drop 26 asciiLets)
"zyxwvutsrqponmlkjihgfedcba"
> :type elem
elem :: Eq a => a -> [a] -> Bool
$>$ let isAsciiLet c = c `elem` asciiLets
isAsciiLet :: Char -> Bool

Strings, continued

The Prelude defines String as [Char] (a type synonym).
$>$:info String
type String = [Char]
A number of functions operate on Strings. Here are two:
> :type words
words :: String -> [String]
$>$:type putStr putStr :: String -> IO () -- an "action" (more later!)

What's the following doing?
> putStr (unwords (tail (words "Just some words!"))) some words!it :: ()

Strings, continued

"cons" lists

Like most functional languages, Haskell's lists are "cons" lists.
A "cons" list has two parts:
head: a value
tail: a list of values (possibly empty)
The : ("cons") operator creates a list from a value and a list of values that same type (or an empty list).
$>5:[10,20,30]$
[5,10,20,30]
What's the type of the cons operator?
$>$:type (:)
(:) :: a -> [a] -> [a]

The cons (:) operation forms a new list from a value and a list.

$>$ let $\mathrm{a}=5$
$>$ let b = [10,20,30]
$>$ let $\mathrm{c}=\mathrm{a}: \mathrm{b}$
[5,10,20,30]
$>$ head c
5
$>$ tail c
[10,20,30]
$>$ let $\mathrm{d}=$ tail (tail c)
$>d$
[20,30]

"cons" lists, continued

A cons node can be referenced by multiple cons nodes.

"cons" lists, continued

What are the values of the following expressions?
> 1 :[2,3]
[1,2,3]
> 1:2
...error...
> chr 97:chr 98:chr 99:[] "abc"
cons is right associative chr 97:(chr 98:(chr 99:[]))
$>$ []:[]
[[]]
$>[1,2]:[]$
[[1,2]]
> []:[1]
...error...

Note: next set of slides!

head and tail visually

It's important to understand that tail does not create a new list. Instead it simply returns an existing cons node.

A little on performance

What operations are likely fast with cons lists?
Get the head of a list
Get the tail of a list
Making a new list from a head and tail

What operations are likely slower?
Get Nth element of a list
Get length of a list
With cons lists, what does list concatenation involve?
$>$ let $\mathrm{m}=[1 . .10000000]$
$>$ length (m++[0])
10000001

True or false?

The head of a list is a one-element list.
False, unless...
...it's the head of a list of lists that starts with a one-element list
The tail of a list is a list.
True
The tail of an empty list is an empty list.
It's an error!
length $($ tail $($ tail $x))==($ length $x)-2$
True (assuming what?)
A cons list is essentially a singly-linked list.
True
A doubly-linked list might help performance in some cases.
Hmm...what's the backlink for a multiply-referenced node?
Changing an element in a list might affect the value of many lists.
Trick question! We can't change a list element. We can only
"cons-up" new lists and reference existing lists.

fromTo

Here's a function that produces a list with a range of integers:
> let fromTo first last $=$ [first..last]
> fromTo 1015
[10,11,12,13,14,15]

Problem: Write a recursive version of fromTo that uses the cons operator to build up its result.

fromTo, continued

One solution: fromTo first last
| first > last = []
| otherwise = first : fromTo (first+1) last
Evaluation of fromTo 13 via substitution and rewriting: fromTo 13
1 : fromTo $(1+1) 3$
1 :fromTo 23
$1: 2$: fromTo $(2+1) 3$
$1: 2$:fromTo 33
$1: 2: 3$: fromTo (3+1) 3
$1: 2: 3$: fromTo 43
1:2:3:[]

fromTo, continued

Do :set + s to get timing and memory information, and make some lists. Try these:

fromTo 10
let $\mathrm{f}=$ fromTo $\quad--$ So we can type f instead of fromTo
fl 1000
let $\mathrm{f}=$ fromTo l -- Note partial application f 1000
let $\mathrm{x}=\mathrm{f} 1000000$
length x
take 5 (f 1000000)

Excursion:
 A little bit with infinite lists and lazy evaluation

Infinite lists

We can make an infinite list in Haskell! Here's one way:

$$
\begin{aligned}
& >[1 . .] \\
& {[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,2} \\
& 1,22,23,24,25,26,27,28,29,30,31,32, \wedge \mathrm{C}
\end{aligned}
$$

Any ideas on how to make use of an infinite list?
What does the following let create?
$>$ let nthOdd = (!!) [1,3..] nthOdd :: Int -> Integer

A function that produces the Nth odd number, zero-based.
Yes, we could say let n thOdd $n=(n * 2)+1$ but that wouldn't be nearly as much fun! (This is functional programming!)

Infinite lists, continued

Consider the following let. Why does it complete?
$>$ let fives=[5,10..]
fives :: [Integer]
A simplistic answer: Haskell uses lazy evaluation. It only computes as much of a value as it needs to.
(The deeper answer: Haskell uses non-strict evaluation. Conventional languages use strict evaluation.)

The function take produces the first N elements of a list.
$>$ take 3 fives
[5,10,15]
Haskell computes only enough elements of fives to produce a result for take 5 .

Lazy evaluation

Here is an expression that is said to be non-terminating:
$>$ length fives
...when tired of waiting...^C Interrupted.
But, we can bind a name to length fives:
$>$ let numFives = length fives numFives : Int

That completes because Haskell hasn't yet needed to compute a value for length fives.

We can get another coffee break by asking Haskell to print the value of numFives:
$>$ numFives
...after a while...^CInterrupted.

Lazy evaluation, continued

We can use :print to explore lazy evaluation:
$>$ let fives $=[5,10 .$.
$>$:print fives
fives $=\left(_t 2::[\right.$ Integer] $)$
$>$ take 3 fives
[5,10,15]
What do you think :print fives will now show?
$>$:print fives
fives $=5: 10: 15:\left(_\right.$t3::[Integer])

Lazy evaluation, continued

Speculate: Can infinite lists be concatenated?
$>$ let values $=[1 .]+.+[5,10 .]+.+[1,2,3]$
$>$:t values
values :: [Integer]
How about this one?
$>[1 .]>.[1,2,3,5]$
False
False due to lexicographic comparison-4<5
Another one to consider:
$>$ let fives = [5,10..]
$>$ fives!! 100000000
500000005

Experiment: How many Char values are there?

Here's one way to see how many distinct Char values exist:
> length ([minBound..maxBound]::[Char]) 1114112

What does it mean?
:info Char shows Char is an instance of the Bounded type class.

Types that are instances of Bounded have minBound and maxBound defined.

Could we do it another way?
> length [(minBound::Char)..]
1114112

Patterns

(redone!) Motivation: Summing list elements

Imagine a function that computes the sum of a list's elements.
> sumElems [1..10]
55
> :type sumElems
sumElems :: Num a => [a] -> a

Implementation:
sumElems list
| null list = 0 -- null is function to test for empty list otherwise $=$ head list + sumElems (tail list)

It works but it's not idiomatic Haskell. We should use patterns instead!

Patterns

In Haskell we can use patterns to bind names to elements of data structures.
$>\operatorname{let}[\mathrm{x}, \mathrm{y}]=[10,20]$
$>x$
10
$>y$
20
$>$ let [inner] $=[[2,3]]$
$>$ inner
[2,3]

Speculate: Given a list like $[10,20,30$] how could we use a pattern to bind names to the head and tail of the list?

Patterns, continued

We can use the cons operator in a pattern.
$>$ let h:t = [10,20,30]
$>\mathrm{h}$
10
$>\mathrm{t}$
$[20,30]$

(diagram added)

What values get bound by the following pattern?
$>$ let a:b:c:d = [10,20,30]
$>[\mathrm{c}, \mathrm{b}, \mathrm{a}] \quad--$ in a list so I could show them as a one-liner
[30,20,10]
$>d$
-- Why didn't I do [d,c,b, a] above?
[]

Patterns, continued

If some part of a structure is not of interest, we indicate that with an underscore, known as the wildcard pattern.
$>$ let _:(a:[b]):c = [[1],[2,3],[4]]
$>\mathrm{a}$
2
$>$ b
3
$>\mathrm{C}$
[[4]]

No binding is done for the wildcard pattern.

The pattern mechanism is completely general-patterns can be arbitrarily complex.

Patterns, continued

A name can only appear once in a pattern. This is invalid:
$>$ let a:a:[] = [3,3]
<interactive>:25:5:
Conflicting definitions for `a'
When using let as we are here, a failed pattern isn't manifested until we try to see what's bound to a name.
$>$ let a:b:[] = [1]
$>$ a
*** Exception: <interactive>:26:5-16: Irrefutable pattern failed for pattern $\mathrm{a}: \mathrm{b}:[]$

Patterns in function definitions

Recall our non-idiomatic sumElems: sumElems list | null list = 0 otherwise $=$ head list + sumElems (tail list)

How could we redo it using patterns? sumElems [] $=0$ sumElems (h:t) $=\mathrm{h}+$ sumElems t

Note that sumElems appears on both lines and that there are no guards. sumElems has two clauses. (H10 4.4.3.1)

The parentheses in (h:t) are required!!

Patterns in functions, continued

Here's a buggy version of sumElems:
buggySum $[\mathrm{x}]=\mathrm{x}$
buggySum (h:t) $=\mathrm{h}+$ buggySum t
What's the bug?
> buggySum [1..100]
5050
> buggySum []
*** Exception: slides.hs:(62,1)-(63,31): Non-exhaustive patterns in function buggySum

If we use ghci -fwarn-incomplete-patterns, we'll get a warning when :loading.
slides.hs:82:1:Warning:
Pattern match(es) are non-exhaustive In an equation for `buggySum': Patterns not matched: []

Practice

Describe in English what must be on the right hand side for a successful match.
let $(\mathrm{a}: \mathrm{b}: \mathrm{c})=\ldots$
A list containing at least two elements.
Does [[1,2]] match?
[2,3] ?
"abc"?
let $[\mathrm{x}: \mathrm{xs}]=.$.
A list whose first element is a non-empty list.
Does words "a test" match?
[words "a test"]?
[[]] ?
[[[]]] ?

Recursive functions on lists

Simple recursive list processing functions

Problem: Write len \mathbf{x}, which returns the length of list \mathbf{x}.
$>$ len []
0
> len "testing"
7
Solution:
len [] $=0$
len (_:t) $=1+$ len $\mathrm{t}-$ - since head isn't needed, use _

Simple list functions, continued

Problem: Write odds x , which returns a list having only the odd numbers from the list \mathbf{x}.
> odds [1..10]
[1,3,5,7,9]
$>$ take 10 (odds [1,4..])
[1,7,13,19,25,31,37,43,49,55]
Handy: odd :: Integral a => a -> Bool
Solution:
odds [] = []
odds (h:t)
| odd h = h:odds t
| otherwise = odds t

Simple list functions, continued

Problem: write isElem x vals, like elem in the Prelude.
$>$ isElem $5[4,3,7]$
False
> isElem 'n' "Bingo!"
True
> "quiz" `isElem` words "No quiz today!" True

Solution:
isElem _ [] = False -- Why a wildcard?
isElem x (h:t)
| $\mathrm{x}=\mathrm{=} \mathrm{~h}=$ True
| otherwise = x `isElem` t

Simple list functions, continued

Problem: write a function that returns a list's maximum value.
$>$ maxVal "maximum"
'x'
> maxVal [3,7,2]
7
> maxVal (words "i luv this stuff")
"this"
Solution:
$\operatorname{maxVal}[]=$ undefined
maxVal [x] = x
maxVal (xl:x2:xs)
| xl >= x2 = maxVal (xl:xs)
| otherwise = maxVal (x2:xs)

Sidebar: C and Python challenges

C programmers: Write strlen in C in a functional style. Do stremp and strchr, too!

Python programmers: In a functional style write size(x), which returns the number of elements in the string or list \mathbf{x}. Restriction: You may not use type().

Take a break?

Tuples

Tuples

A Haskell tuple is an ordered aggregation of two or more values of possibly differing types.

```
> (1, "two", 3.0)
(l,"two",3.0)
it :: (Integer, [Char], Double)
\(>(3<4\), it \()\)
(True,(1,"two",3.0))
it :: (Bool, (Integer, [Char], Double))
```

What's something we can represent with a tuple that we can't represent with a list?

A function can return a tuple:
$>$ let pair $\mathrm{x} \mathrm{y}=(\mathrm{x}, \mathrm{y})$
What's the type of pair?
pair :: t-> tl -> (t, tl)
-- why not a -> b -> (a,b)?
Let's play...
> pair 34
$(3,4)$
$>$ pair $(3,4)$
<function>
$>$ it 5
$((3,4), 5)$

Tuples, continued

The Prelude has two functions that operate on 2-tuples.
$>$ let $\mathrm{p}=$ pair 30 "forty"
p :: (Integer, [Char])
$>p$
(30,"forty")
$>$ fst p
30
$>$ snd p
"forty"

Tuples, continued

Recall: patterns used to bind names to list elements have the same syntax as expressions to create lists.

Patterns for tuples are like that, too.
Problem: Write middle, to extract a 3-tuple's second element.
> middle ("372", "CHVEZ 405", "Mitchell")
"CHVEZ 405"
$>$ middle (1, [2], True)
[2]

Tuples, continued

At hand:
$>$ middle (1, [2], True)
[2]

Solution:
middle $\left.(\underline{,}, \mathrm{m},)_{-}\right)=\mathrm{m}$

What's the type of middle?
middle :: $(\mathrm{t}, \mathrm{t} 1, \mathrm{t} 2)$-> tl

Does the following call work?
$>$ middle(l,[(2,3)],4)
[(2,3)]

Tuples, continued

Here's the type of zip from the Prelude:

$$
\operatorname{zip}::[\mathrm{a}]->[\mathrm{b}]->[(\mathrm{a}, \mathrm{~b})]
$$

Speculate: What does zip do?

```
> zip ["one","two","three"] [10,20,30]
[("one",10),("two",20),("three",30)]
> zip ['a'..'z'] [l..]
[('a',l),('b',2),('c',3),('d',4),('e',5),('f',6),('g',7),('h',8),('i',
9),('j',10),...lots more... ('x',24),('y',25),('z',26)]
```

What's especially interesting about the second example?

Tuples, continued

Problem: Write elemPos, which returns the zero-based position of a value in a list, or -1 if not found.
> elemPos 'm' ['a'..'z']

12

Hint: Have a helper function do most of the work.
Solution:
elemPos x vals $=$ elemPos' x (zip vals [0..])
elemPos' _ [] = -1
elemPos' x ((val,pos):vps)
| $\mathrm{x}==\mathrm{val}=\mathrm{pos}$
| otherwise = elemPos' x vps

Note: next set of slides!

Sidebar: To curry or not to curry?

Consider these two functions:
$>$ let add_c $x y=x+y \quad--\quad$ c for curried arguments add_c ::Num a => a -> a -> a
$>$ let add_t $(\mathrm{x}, \mathrm{y})=\mathrm{x}+\mathrm{y} \quad-\quad \mathrm{t}$ for tuple argument add_t ::Num a => (a, a) -> a

Usage:
> add_c 34
7

Important: Note the

 difference in types!$>$ add_t $(3,4)$
7
Which is better, add_c or add_t?

The Eq type class and tuples

:info Eq shows many lines like this:

```
instance (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e)
instance (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d)
instance (Eq a, Eq b, Eq c) => Eq (a, b, c)
instance (Eq a, Eq b) => Eq (a, b)
```

We haven't talked about instance declarations but let's speculate: What's being specified by the above?
instance (Eq a, Eq b, Eq c) => Eq (a, b, c)
If values of each of the three types a, b, and c can be tested for equality then 3-tuples of type (a, b, c) can be tested for equality.

The Ord and Bounded type classes have similar instance declarations.

Lists vs. tuples

Type-wise, lists are homogeneous; tuples are heterogeneous.
We can write a function that handles a list of any length but a function that operates on a tuple specifies the arity of that tuple. Example: we can't write an analog for head, to return the first element of an arbitrary tuple.

Even if values are homogeneous, using a tuple lets static typechecking ensure that an exact number of values is being aggregated.

Example: A 3D point could be represented with a 3-element list but using a 3-tuple guarantees points have three coordinates.

If there were Head First Haskell it would no doubt have an interview with List and Tuple, each arguing their own merit.

More on patterns and functions

Function bindings, refined

Earlier in the slides the general form of a function definition was shown as this: name argl arg2 ... argN = expression

This is more accurate:

```
name patternl pattern2 ... patternN
    guardl = expressionl
    guardN = expression N
```

For a given name, any number of clauses like the above may be specified. The set of clauses for a given name is the binding for that name. (See 4.4.3 in H10.)

If values in a call match the pattern(s) for a clause and a guard is true, the corresponding expression is evaluated.

Literals in patterns

Literal values can be part or all of a pattern. Here's a 3-clause binding for f :
$\mathrm{f} 1=10$
$\mathrm{f} 2=20$
$\mathrm{f} \mathrm{n}=\mathrm{n}$

Usage:
$>\mathrm{f} 1$
10
$>\mathrm{f} 3$
3

Remember: Patterns are tried in the order specified.

Literals in patterns, continued

Here's factorial with guards:
factorial n

$$
\left\lvert\, \begin{aligned}
& n==0=1 \\
& \text { otherwise }=n * \text { factorial }(n-1)
\end{aligned}\right.
$$

factorial $0=1$
factorial $n=n *$ factorial (n-1)
Which is better?

$$
\begin{array}{|l}
\hline \text { REPLACE! } \\
\text { parens1 c } \\
\mid \text { c }==\text { '(' = "left" } \\
\mid \text { c }==\text { ' ') }=\text { "right" } \\
\mid \text { otherwise = "neither' }
\end{array}
$$

parens2 '(' = "left"
parens2 ')' = "right"
parens2 _ = "neither"

Literals in patterns, continued

not is a function:
$>$:type not
not :: Bool -> Bool
$>$ not True
False

Problem: Using literals in patterns, define not.

Solution:
not True = False
not _ = True -- Using wildcard avoids comparison

Pattern construction

A pattern can be:

- A literal value such as 1 , ' x ', or True
- An identifier (bound to a value if there's a match)
- An underscore (the wildcard pattern)
- A tuple composed of patterns
- A list of patterns in square brackets (fixed size list)
- A list of patterns constructed with : operators
- Other things we haven't seen yet

Note the recursion.
Patterns can be arbitrarily complicated.
3.17.1 in H 10 shows the full syntax for patterns.

The where clause for functions

Intermediate values and/or helper functions can be defined using an optional where clause for a function.

Here's an example to show the syntax; the computation is not meaningful.
f x

$$
\lg x<0=g a+g b
$$

$$
a>b=g b
$$

otherwise $=g a * g b$
where \{
$\mathrm{a}=\mathrm{x} * 5$;
b $=\mathrm{a}$ * $2+\mathrm{x}$;
$g t=\log t+a$
\}

The names a and b are bound to expressions; g is a function binding.

The bindings in the where clause are done first (!), then the guards are evaluated in turn.

Like variables defined in a method or block in Java, a, b, and g are not visible outside the declaration.

where, continued

Imagine a function that counts occurrences of even and odd numbers in a list.
$>$ countEO $[3,4,5]$
$(1,2)$
-- one even, two odds
Code:
countEO [] $=(0,0) \quad--$ no odds or evens in [] countEO (x:xs)
| odd $\mathrm{x}=$ (evens, odds+l)
| otherwise = (evens+l, odds)
where \{
(evens, odds) $=$ countEO xs -- count tail first! \}

Would it be awkward to write it without using where?

where, continued

Imagine a function that returns every Nth value in a list:
$>$ everyNth 2 [10,20,30,40,50]
[20,40]
> everyNth 3 ['a'..'z'] -- abçcdefghijklmnopqrstuvwxyz
"cfilorux"

Can we write this without a helper function?
We could use zip to pair elements with positions to know that 30 is the third element, for example.
$>$ let everyNth n xs $=$ helper n (zip xs [1..])

$$
[(10,1),(20,2),(30,3),(40,4),(50,5)]
$$

To learn a different technique, let's not use zip.

where, continued

Let's write a version everyNth that has an extra parameter: the original one-based position of the head of the list:
helper _ [] pos = []

161,163s/everyNthWithPos/helper/g

 helper n ($\mathrm{x}: \mathrm{xs}$) pos(pos `rem` $n=0$) = x: helper n xs (pos+l) otherwise = helper n xs (pos+l)

We then write everyNth: everyNth n xs $=$ helper nxs l
everyNth 2 [10,20,30,40,50] would lead to these calls:
helper 2 [10,20,30,40,50] 1
helper $2[20,30,40,50](2)-2$ rem $2==0$
helper $2[30,40,50] 3$
helper $2[40,50] 4--4$ rem $2==0$
helper 2 [50] 5

where, continued

Let's rewrite using where to conceal helper:
everyNth n xs = helper n xs l where \{ helper _ [] pos = [];
helper n (x:xs) pos
| pos `rem`n == $0=x$:helper n xs (pos+l)
otherwise $=$ helper $\mathrm{n} x \mathrm{~s}\left(\right.$ pos $\left.^{4} \mathrm{l}\right)$
\}
Just like a Java private method, everyNth can't be accessed outside the body of helper.

The code works, but it's repetitious! How can we improve it?

Repetitious version:

where, continued

everyNth n xs $=$ helper n xs l
where \{
helper _ [] pos = [];
helper $n(x: x s)$ pos
| pos `rem` $n==0=x$:helper $n x s$ (pos+l)
otherwise $=$ helper $\mathrm{nxs}($ pos+l) $\}$
Let's use another where to bind rest to the recursive call's result. everyNth n xs $=$ helper n xs 1
where \{
helper _ [] pos = [];
helper n (x:xs) pos
| pos `rem` $\mathrm{n}==0=\mathrm{x}$: rest
| otherwise = rest where $\{$ rest $=$ helper n xs (pos+1) $\}$
\}

The layout rule for where (and more)

This is a valid declaration with a where clause:

$$
f x=a+b+g \text { a where }\{a=1 ; b=2 ; g x=-x\}
$$

The where clause has three declarations enclosed in braces and separated by semicolons.

We can take advantage of the layout rule and write it like this instead:

$$
\begin{gathered}
f x=a+b+g a \\
\text { where } \\
a=1 \\
b=2 \\
g x=-x
\end{gathered}
$$

Besides whitespace what's different about the second version?

The layout rule, continued

At hand:

$$
\begin{aligned}
& \mathrm{fx}=\mathrm{x}+\mathrm{b}+\mathrm{g} \mathrm{a} \\
& \text { where }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a}=1 \\
& \mathrm{~b}=2 \\
& \mathrm{~g} x= \\
& -\mathrm{x}
\end{aligned}
$$

The absence of a brace after where activates the layout rule.
The column position of the first token after where establishes the column in which declarations of the where must start.

Note that the declaration of g is continued onto a second line; if the minus sign were at or left of the line, it would be an error.

The layout rule, continued

Don't confuse the layout rule with indentation-based continuation of declarations! (See slides 75-76.)

The layout rule allows omission of braces and semicolons in where, do, let, and of blocks. (We'll see do and let later.)

Indentation-based continuation applies

1. outside of where/do/let/of blocks
2. inside where/do/let/of blocks when the layout rule is triggered by the absence of an opening brace.

The layout rule is also called the "off-side rule".
TAB characters are assumed to have a width of 8.
What other languages have rules of a similar nature?

Larger examples

travel

Imagine a robot that travels on an infinite grid of cells. Movement is directed by a series of one character commands: n, e, s, and w.

Let's write a function travel that moves the robot about the grid and determines if the robot ends up where it started (i.e., it got home) or elsewhere (it got lost).

If the robot starts in square R the command string nnnn leaves the robot in the square marked 1.

The string nenene leaves the robot in the square marked 2.
nnessw and news move the robot in a round-trip that returns it to square R.

travel, continued

Usage:
> travel "nnnn" -- ends at 1 "Got lost"
> travel "nenene" -- ends at 2 "Got lost"
> travel "nnessw"
"Got home"

How can we approach this problem?

travel, continued

One approach:

1. Map letters into integer 2-tuples representing X and Y displacements on a Cartesian plane.
2. Sum the X and Y displacements to yield a net displacement.

Example:
Argument value: "nnee"
Mapped to tuples: $(0,1)(0,1)(1,0)(1,0)$
Sum of tuples: $(2,2)$

Another:
Argument value: "nnessw"
Mapped to tuples: $(0,1)(0,1)(1,0)(0,-1)(0,-1)(-1,0)$
Sum of tuples: $(0,0)$

travel, continued

Two helpers:
mapMove :: Char -> (Int, Int)
mapMove 'n' $=(0,1)$ mapMove 's' $=(0,-1)$
mapMove 'e' = $(1,0)$
Missing case found with
ghci -fwarn-incomplete-patterns
mapMove 'w' = $(-1,0)$
mapMove c = error ("Unknown direction: " ++ [c])
sumTuples :: [(Int,Int)] -> (Int,Int)
sumTuples [] $=(0,0)$
sumTuples ((x, y):ts) $=(\mathrm{x}+\operatorname{sumX}, \mathrm{y}+\operatorname{sum} \mathrm{Y})$
where
(sumX, sumY) = sumTuples ts

travel, continued

travel itself:

```
travel s
    | disp == (0,0) = "Got home"
        otherwise = "Got lost"
    where
        makeTuples [] = []
        makeTuples (c:cs) = mapMove c : makeTuples cs
        tuples = makeTuples s
        disp = sumTuples tuples
```

As is, mapMove and sumTuples (previous slide) are at the top level but makeTuples is hidden inside travel. How should they be arranged?

Sidebar: top-level vs. hidden functions

Real world problem: Planning a course

Here's an early question when planning a course: "How many lectures will there be?"

How should we answer that question?
Write a Haskell program!

But maybe that's what only a maniac would do!

Should we Google for a course planning app instead?

classdays

One approach:
> classdays ...arguments...
\#l H l/l5
\#2 T l/20
\#3 H l/22
\#4 T l/27
\#5 H l/29

What information do the arguments need to specify?
First and last day
Pattern, like M-W-F or T-H
How about holidays?

Arguments for classdays

Let's start with something simple:
> classdays (1,15) (5,6) [('H',5),('T',2)]
\#1 H l/l5
\#2 T l/20
\#3 H l/22
\#4 T l/27
\#5 H l/29

The first and last days are represented with (month,day) tuples.

The third argument shows the pattern of class days: the first is a Thursday, and it's five days to the next class.

Date handling

There's a Data.Time.Calendar module but writing two minimal date handling functions provides good practice.
$>$ toOrdinal (12,31)
$365-$ 12/31 is the last day of the year
> fromOrdinal 32
$(2,1)$-- The $32^{\text {nd }}$ day of the year is February 1.
What's a minimal data structure that could help us?

$$
\begin{aligned}
& {[(0,0),(1,31),(2,59),(3,90),(4,120),(5,151),(6,181)} \\
& (7,212),(8,243),(9,273),(10,304),(11,334),(12,365)]
\end{aligned}
$$

$(1,31)$ The last day in January is the $31^{\text {st }}$ day of the year
$(7,212)$ The last day in July is the $212^{\text {th }}$ day of the year

toOrdinal and fromOrdinal

offsets $=[(0,0),(1,31),(2,59),(3,90),(4,120),(5,151),(6,181)$, (7,212),(8,243),(9,273),(10,304),(11,334),(12,365)]
toOrdinal $($ month, day $)=$ days + day where
(_,days) $=$ offsets!!(month-l)
fromOrdinal ordDay $=$
> toOrdinal $(12,31)$ 365
> fromOrdinal 32 $(2,1)$
fromOrdinal' (reverse offsets) ordDay where
fromOrdinal' ((month,lastDay):t) ordDay
| ordDay > lastDay = (month + l, ordDay - lastDay)
| otherwise = fromOrdinal' t ordDay

Recall:
> classdays (1,15) (5,6) [('H',5),('T",2)]
\#l H l/l5
\#2 T 1/20

Ordinals for $(1,15)$ and $(5,6)$ are 15 and 126 , respectively.

With the Thursday-Tuesday pattern we'd see the dates progressing like this:
$15,20,22,27,29,34,36,41, \ldots$
$+5+2+5+2+5+2+5 \ldots$

Imagine this series of calls to a helper, classdays':
classdays' 115126 [('H',5),('T',2)] classdays' 220126 [('T',2),('H',5)] classdays' 322126 [('H',5),('T",2)] classdays' 427 l26[('T',2),('H',5)]
classdays' 32125126 [('T',2),('H',5)] classdays' 33127126 [('H',5),('T',2)]

Desired output: \#1 H l/l5 \#2 T 1/20 \#3 H l/22 \#4 T l/27
\#32 T 5/5
(none!)

What computations do we need to transform
classdays' l 15126 [('H',5),("T',2)] into
"\#l H l/l5"?

We have: classdays' l 15126 [('H',5),('T",2)]
We want: "\#l H l/l5"

A handy function: show :: Show a => a -> String
> show 123
"123"

Let's write showOrdinal :: Integer -> [Char]
> showOrdinal 15
"l/l5"
showOrdinal ordDay = show month ++ "/" ++ show day where
(month,day) $=$ fromOrdinal ordDay

We have: classdays' l 15126 [('H',5),('T',2)]
We want: "\#l H l/l5"
We wrote:
> showOrdinal 15
"l/l5"

Now we're ready for a first version of classdays': classdays'
lecNum first last ((dayOfWeek, daysToNext):_) = "\#" ++ show lecNum ++ " " ++ [dayOfWeek] ++ " " ++ showOrdinal first ++ "\n"
Usage:
> classdays' 115126 [('H',5),('T",2)]
"\#l H l/l5\n"
> classdays' 32125126 [('T",2),('H',5)]
"\#32 T 5/5\n"

Recall:
classdays' l 15126 [('H',5),("T',2)] classdays' 220126 [('T",2),('H',5)] classdays' 32125126 [('T",2),('H',5)] classdays' 33127126 [('H',5),('T",2)]

Desired output: \#l H l/l5 \#2 T l/20
\#32 T 5/5
(none!)

Let's "cons up" list out of the results of those calls...
> classdays' 115126 [('H',5),("T",2)] :
classdays' 220126 [('T",2),('H',2)]:
"...MORE..." : -- I literally typed "...MORE..."
classdays' 32125126 [('T",2),('H',5)] :
classdays' 33127 l26 [('H',5),('T",2)] : []
["\#l H l/l5\n","\#2 T l/20\n","...MORE...","\#32 T 5/5\n","\#33 H 5/7\n"]

How close are the contents of that list to what we need?

At hand:
> classdays' l 15126 [('H',5),('T',2)]: classdays' 220 l26 [(T',2),('H',5)]:
"...MORE..." : -- I literally typed "...MORE..."
classdays' 32125126 [('T",2),('H',5)]: classdays' 33127126 [('H',5),('T',2)] : []
["\#1 H l/15\n","\#2 T l/20\n","...MORE...","\#32 T 5/5\n","\#33 H 5/7\n"]

Now we're ready to write a recursive classdays': classdays'
lecNum first last ((dayOfWeek, daysToNext):pairs)
| first > last = []
| otherwise = ("\#" ++ show lecNum ++ " " ++
[dayOfWeek] ++ " " ++ showOrdinal first ++ "\n")
: classdays' (lecNum+l) (first+daysToNext) last pairs

At hand:
classdays' lecNum first last
((dayOfWeek, daysToNext):pairs)
| first > last = []
| otherwise =
("\#" ++ show lecNum ++ " " ++ [dayOfWeek]
++ " " ++ showOrdinal first ++ "\n")

classdays'

(lecNum+1) (first+daysToNext) last pairs
Let's try it:
> classdays' 115126 [('H',5),('T",2)]
["\#l H l/l5\n","\#2 T l/20\n"
*** Exception: Non-exhaustive patterns in function classdays'

What's the problem?
> classdays' 115126 [('H',5),('T",2)]
["\#1 H l/l5\n","\#2 T l/20\n"
*** Exception: Non-exhaustive patterns ...
classdays' lecNum first last
((dayOfWeek, daysToNext):pairs)
| first $>$ last $=[]$
otherwise $=$
(...format an entry like "\#1 H l/l5"...)
: classdays'
(lecNum+1) (first+daysToNext) last pairs
We ran out of pairs in [('H',5),(" T ",2)]! Ideas?
Just reverse [('H',5),('T",2)] each time instead of consuming it?
What about a MWF schedule? [('M',2),('W',2),('F',3)]

How about supplying more pairs?
> classdays' l 15126 [('H',5),("T',2),('H',5),("T',2)]
["\#l H l/l5\n","\#2 T l/20\n","\#3 H l/22\n",
"\#4 T l/27\n"
*** Exception: Non-exhaustive patterns
Would work if given enough pairs, but silly! Ideas?
> :t cycle
cycle :: [a] -> [a]
> cycle [('H',5),("T',2)]
[('H',5),("T",2),('H',5),("T",2),('H',5),("T",2),('H',5),("T",2),('H', 5),('T",2),('H',5),('T",2),('H',5),('T",2),('H',5),('T",2), ('H',5),("T", 2), ('H',5),("T",2),('H',5),("T",2),('H',5),("T",2),('H',5), ('T",2),('H', 5),("T",2),('H',5),...check Words with Friends...^C
cycle produces a supply of pairs that will never run out!

Let's replace the finite two-tuple list with a list of tuples that infinitely repeats!
> classdays' 115126 (cycle [('H',5),("T',2)]) ["\#l H l/l5\n","\#2 T l/20\n","\#3 H l/22\n",
...MORE...,
"\#30 T 4/28\n","\#31 H 4/30\n","\#32 T 5/5\n"]

Look! A very practical use of an infinite list!

How would we handle it in Java?

classdays-Final answer

classdays first last pattern = putStr (concat result) where
result = classdays'
l (toOrdinal first) (toOrdinal last) (cycle pattern)
> classdays (1,15) (5,6) [('H',5),('T',2)]
\#1 H l/l5
\#2 T l/20
\#3 H l/22
\#31 H 4/30
\#32 T 5/5
(last line removed after copies)

tally

Consider a function tally that counts character occurrences in a string:

```
> tally "a bean bag"
a 3
b 2
    2
g 1
n 1
e 1
```

Note that the characters are shown in order of decreasing frequency.

How can this problem be approached?
In a nutshell: [('a',3),('b',2),(' ',2),('g', 1),('n', 1),('e', 1)]
tups is a list of (Char, Int) tuples that indicate how many times a character has been seen.
incEntry produces a copy of tups with the count in the tuple containing the character c incremented by one.

If no tuple with cexists, one is created with a count of 1 . -\}
incEntry::Char -> [(Char,Int)] -> [(Char,Int)] incEntry c [] = [(c, l)]
incEntry c ((char, count):entries)
| c == char = (char, count+1) : entries
| otherwise $=($ char, count $)$: incEntry c entries

tally, continued

Calls to incEntry with 't', 'o', 'o':
$>$ incEntry ' t ' []
[('t', l)]
$>$ incEntry 'o' it
[('t',l),('o',l)]
$>$ incEntry ' o ' it
[('t', 1),'('o',2)]
-- mkentries s calls incEntry for each character
-- in the string s
mkentries :: [Char] -> [(Char, Int)]
mkentries s = mkentries' s []
where
mkentries' [] entries = entries mkentries' (c:cs) entries = mkentries' cs (incEntry c entries)
> mkentries "tupple"
[('t',l),('u',l),('p',2),('l',l),('e', l)]
> mkentries "cocoon"
[('c',2),('o',3),('n',l)]
\{- insert, isOrdered, and sort provide an insertion sort - \}
insert v [] = [v]
insert v (x:xs)
| isOrdered (v, x) = v:x:xs
| otherwise = x:insert v xs
isOrdered ((_, vl), (_, v2)) = vl > v2
sort [] = []
sort (x:xs) = insert x (sort xs)
> mkentries "cocoon"
[('c',2),('o',3),('n',1)]
> sort it
[('o',3),('c',2),('n',l)]

tally, continued

\{- fmt_entries prints (Char, Int) tuples one per line - \} fmt_entries [] = ""
fmt_entries ((c, count):es) =
[c] ++ " " ++ (show count) ++ "\n" ++ fmt_entries es
\{- grand finale - $\}$
tally s = putStr (fmt_entries (sort (mkentries s)))
> tally "cocoon"

- 3
c 2
n 1
- How does this solution exemplify functional programming? (slide 23)
- How is it like imperative programming?
- How is it like procedural programming (s. 5)

Running tally from the command line

Let's run it on lectura...
\% code=/cs/www/classes/cs372/spring15/haskell
\% cat \$code/tally.hs
... everything we've seen before and now a main:
main $=$ do
bytes <- getContents -- reads all of standard input tally bytes
\% echo -n cocoon | runghc \$code/tally.hs

- 3
c 2
n 1

tally from the command line, continued

\$code/genchars N generates N random letters:
\% \$code/genchars 20
KVQaVPEmClHRbgdkmMsQ

Lets tally a million characters:
\% \$code/genchars 1000000 | time runghc \$code/tally.hs >out
21.79user 0.24system 0:22.06elapsed
\% head -3 out
s 19553
V 19448
J 19437

tally from the command line, continued

Let's try a compiled executable.
\% ghc --make -rtsopts tally.hs
\% ls -l tally
-rwxrwxr-x l whm whm 1118828 Feb $122: 41$ tally
\% \$code/genchars 1000000 | time ./tally +RTS -K40000000 -RTS >out
7.44user 0.29system 0:07.82elapsed 98\%CPU

Speculate: How fast would a Java version of tally run? C?
Python? Ruby?

Errors

Syntax errors

What syntax errors do you see in the following file?
\% cat synerrors.hs
let $\mathrm{fx}=$
$x<0==y+10$
$x!=0=y+20$
otherwise $=y+30$
where
g x:xs = x

$$
\mathrm{y}=
$$

$$
g[x]+5
$$

$$
g 2 \mathrm{x}=10
$$

Syntax errors, continued

What syntax errors do you see in the following file?

Syntax errors, continued

Line and column information is included in syntax errors.
\% cat synerror2.hs
weather temp | temp >= $80=$ "Hot!" temp >= 70 "Nice" otherwise = "Cold!"
\% ghci synerror2.hs
[l of l] Compiling Main (synerror2.hs, interpreted)
synerror2.hs:3:14: parse error on input ' |'
3:14 indicates an error has been detected at line 3, column 14 .
What's the error?

Type errors

If only concrete types are involved, type errors are typically easy to understand.
> chr ' x '
<interactive>:9:5:
Couldn't match expected type 'Int' with actual type `Char'
In the first argument of 'chr', namely ' x '
In the expression: chr ' x '
In an equation for 'it': it = chr ' x '
$>$:type chr
chr :: Int -> Char

Type errors, continued

Code:
countEO (x:xs)
| odd $x=$ (evens, odds+1)
| otherwise = (evens+l, odds)
where (evens,odds) $=$ countEO
What's the error?
Couldn't match expected type `(t3, t4)' with actual type `[t0] -> (tl, t2)'
In the expression: countEO
In a pattern binding: (evens, odds) = countEO

What's the problem?
It's expecting a tuple, ($\mathrm{t} 3, \mathrm{t} 4)$ but it's getting a function, [t0] -> (tl, t2)

Type errors, continued

How about this one?
$>$ lensth
Disregard! Fixed by Text.Show.Functions!
No instance for (Show ([a0] -> Int)) arising from a use of 'print'
Possible fix: add an instance declaration for (Show ([a0] -> Int))
In a stmt of an interactive GHCi command: print it
$>$:type print print :: Show a $=>$ a -> IO ()

Typing an expression at the ghci prompt causes it tobe evaluged and print called with the result. The (trivial) result here is a function, and functions aren't in the Show type class.

Type errors, continued

Code and error:
fxy

$$
\begin{aligned}
& \mid x==0=[] \\
& \mid \text { otherwise }=f x
\end{aligned}
$$

Couldn't match expected type `[al]' with actual type 't0 -> [al]'
In the return type of a call of f^{\prime} Probable cause: ${ }^{\prime} f$ ' is applied to too few arguments In the expression: fx

The error message is perfect in this case but in general note that an unexpected actual type that's a function suggests too few arguments are being supplied for some function.

Type errors, continued

Is there an error in the following?
$\mathrm{f}[\mathrm{]}=[]$
$\mathrm{f}[\mathrm{x}]=\mathrm{x}$
$f(x: x s)=x: f x$
Occurs check: cannot construct the infinite type: $\mathrm{aO}=[\mathrm{aO}] \quad\left(" \mathrm{aO}\right.$ is a list of $\mathrm{a} 0 s^{\prime \prime}--$ whm $)$
In the first argument of `(:)', namely 'x'
In the expression: $x: f x s$
In an equation for ${ }^{\prime} f$: $f(x: x s)=x: f x$
Without the second pattern, it turns into an identity function on lists: $\mathrm{f}[1,2,3]==[1,2,3]$

What's the problem?
Technique: Comment out cases to find the troublemaker.

Type errors, continued

What's happening here?
$>$:type ord
ord :: Char -> Int
$>$ ord 5
<interactive>:2:5:
No instance for (Num Char) arising from the literal `5'
Possible fix: add an instance declaration for (Num Char)

Why does that error cite (Num Char)? It seems to be saying that if Char were in the Num type class the expression would be valid.

Note: next set of slides!

Take a break?

Higher-order functions

Functions as values

A fundamental characteristic of a functional language: functions are values that can be used as flexibly as values of other types.

This let creates a function value and binds the name add to it.
$>$ let add $\mathrm{x} \mathrm{y}=\mathrm{x}+\mathrm{y}$

$$
\begin{aligned}
& \text { add } \\
& \hline . . . \text { code... }
\end{aligned}
$$

This let binds the name plus to the value of add, whatever it is.
$>$ let plus = add
add, plus

$$
\ldots \text {..code... }
$$

Either of the names can be used to reference the function value:
> add 34
7
> plus 56
11

Functions as values, continued

Can functions be compared?
$>$ add $==$ plus
<interactive>:25:5:
No instance for (Eq (Integer -> Integer -> Integer)) arising from a use of `=='
In the expression: add == plus

Functions as values, continued

Line by line, what are the following expressions doing?
$>$ let fs $=$ [head, last]
$>$ fs
[<function>, <function>]
$>$ let ints $=[1 . .10]$
$>$ head fs ints
1
$>$ (fs!!l) ints
10

Functions as values, continued

Is the following valid?
$>$ [take, tail, init]
Couldn't match type `[a2]' with `Int'
Expected type: Int -> [a0] -> [a0]
Actual type: [a2] -> [a2]
In the expression: init

What's the problem? take does not have the same type as tail and init.

Puzzle: Make [take, tail, init] valid by adding two characters.
$>$ [take 5, tail, init]
[<function>,<function>,<function>]

A simple higher-order function

Definition: A higher-order function is a function that has one or more arguments that are functions.
twice is a higher-order function with two arguments: f and x twice $\mathrm{fx}=\mathrm{f}(\mathrm{fx})$

What does it do?
$>$ twice tail [1,2,3,4,5]
[3,4,5]
$>$ tail (tail [1,2,3,4,5])
[3,4,5]

twice, continued

At hand:
$>$ let twice $\mathrm{fx}=\mathrm{f}(\mathrm{fx})$
$>$ twice tail [1,2,3,4,5]
[3,4,5]

Let's make the precedence explicit:
$>$ ((twice tail) [1,2,3,4,5])
[3,4,5]
Consider a partial application...
$>$ let $\mathrm{t} 2=$ twice tail - like let $\mathrm{t} 2 \mathrm{x}=$ tail (tail x$)$
$>$ t2
<function>
it :: [a] -> [a]

twice, continued

At hand:
$>$ let twice $\mathrm{fx}=\mathrm{f}(\mathrm{f} \mathrm{x})$
$>$ twice tail [1,2,3,4,5]
[3,4,5]

Let's give twice a partial application!
$>$ twice (drop 2) [1..5]
[5]

Let's make a partial application with a partial application!
$>$ twice (drop 5)
<function>
> it ['a'..'z']
"klmnopqrstuvwxyz"

```
Try these!
    twice (twice (drop 3)) [1..20]
    twice (twice (take 3)) [l..20]
```


twice, continued

At hand: twice $\mathrm{f} x=\mathrm{f}(\mathrm{fx})$

What's the the type of twice?
A higher-order function is a function that has one or more arguments that are functions.
$>$:t twice
twice :: ($\mathrm{t}->\mathrm{t}$) -> t -> t

Parentheses added to show precedence:
twice : $(\mathrm{t}->\mathrm{t})->(\mathrm{t}->\mathrm{t})$
twice $\mathrm{f} x=\underline{\mathrm{f}(\mathrm{fx})}$

What's the correspondence between the elements of the clause and the elements of the type?

The Prelude's map function

Recall double $x=x * 2$
map is a Prelude function that applies a function to each element of a list, producing a new list:

```
> map double [1..5]
[2,4,6,8,10]
> map length (words "a few words")
[1,3,5]
> map head (words "a few words")
"afw"
```

Is map a higher order function?

map, continued

At hand:
$>$ map double [1..5]
[2,4,6,8,10]

Write it!

$$
\begin{aligned}
& \operatorname{map}_{-}[]=[] \\
& \operatorname{map}_{\mathrm{f}}(\mathrm{x}: \mathrm{xs})=\mathrm{fx}: \operatorname{map} \mathrm{fxs}
\end{aligned}
$$

What is its type?

$$
\operatorname{map}::(t->a)->[t]->[a]
$$

What's the relationship between the length of the input and output lists?

map, continued

Mapping (via map) is applying a transformation (a function) to each of the values in a list, producing a new list of the same length.
> map chr [97,32,98,105,103,32,99,97,116]
"a big cat"
> map isLetter it
[True,False,True,True,True,False,True,True,True]
$>$ map not it
[False,True,False,False,False,True,False,False,False]
> map head (map show it) -- Note: show True is "True" "FTFFFTFFF"

Sidebar: map can go parallel

Here's another map:
> map weather [85,55,75]
["Hot!","Cold!","Nice"]

This is equivalent:
> [weather 85, weather 55, weather 75]
["Hot!","Cold!","Nice"]

Because functions have no side effects, we can immediately turn a mapping into a parallel computation. We might start each function call on a separate processor and combine the values when all are done.

map and partial applications

What's the result of these?
$>\operatorname{map}$ (add 5) [1..10]
[6,7,8,9,10,11,12,13,14,15]
$>$ map (drop l) (words "the knot was cold")
["he","not","as","old"]
> map (replicate 5) "abc"
["aaaaa","bbbbb","ccccc"]

map and partial applications, cont.

What's going on here?
$>$ let $\mathrm{f}=$ map double
$>\mathrm{f}$ [1..5]
[2,4,6,8,10]
> map f [[1..3],[10..15]]
[[2,4,6],[20,22,24,26,28,30]]

Here's the above in one step:
$>$ map (map double) [[1..3],[10..15]]
[[2,4,6],[20,22,24,26,28,30]]

Here's one way to think about it:
[(map double) [1..3], (map double) [10..15]]

Now that we're good at recursion...

Some of the problems on the next assignment will encourage working with higher-order functions by prohibiting recursion!

Think of it as isolating muscle groups when weight training.
Here's a simple way to avoid what's prohibited:
Pretend that you no longer understand recursion! What's a base case? Is it related to baseball? Why would a function call itself? How's it stop? Is a recursive plunge refreshing?

If you were UNIX machines, I'd do chmod 0 on an appropriate section of your brains.

travel revisited

Recall our traveling robot: (slide 168)
$>$ travel "nnee"
"Got lost"
> travel "nnss"
"Got home"

Recall our approach:
Argument value: "nnee"
Mapped to tuples: $(0,1)(0,1)(1,0)(1,0)$
Sum of tuples: $(2,2)$
How can we solve it non-recursively?

travel, continued

Recall:
$>$:t mapMove
mapMove :: Char -> (Int, Int)
$>$ mapMove ' n '
$(0,1)$

Now what?
> map mapMove "nneen"
$[(0,1),(0,1),(1,0),(1,0),(0,1)]$

Can we sum them with map?

travel, continued

We have:
> let disps= map mapMove "nneen"
[(0,1),(0,1),(1,0),(1,0),(0,1)]
We want: $(2,3)$
Any ideas?
$>$:t fst
fst :: (a, b) -> a
$>$ map fst disps
[0,0,1,1,0]
$>$ map snd disps
[l,1,0,0,1]

travel, revisited

We have:
> let disps= map mapMove "nneen"
$[(0,1),(0,1),(1,0),(1,0),(0,1)]$
$>$ map fst disps
[$0,0,1,1,0$]
$>$ map snd disps
[1,1,0,0,1]
We want: $(2,3)$
Ideas?
$>$:t sum
sum :: Num a => [a] -> a
> (sum (map fst disps), sum (map snd disps))
$(2,3)$

travel-Final answer

```
travel :: [Char] -> [Char]
travel s
    | totalDisp == (0,0) = "Got home"
    otherwise = "Got lost"
    where
        disps = map mapMove s
        totalDisp = (sum (map fst disps),
        sum (map snd disps))
```

Did we have to understand recursion to write this?

A peek ahead:
> disps
[(0,1),(0,1),(1,0),(1,0),(0,1)]
$>$ foldr ($\backslash(x, y)(a x, a y)->(x+a x, y+a y))(0,0)$ disps
$(2,3)$

Sidebar: "sections"

Instead of using map (add 5) to add 5 to the values in a list, we should use a section instead: (it's the idiomatic way!)
$>$ map (5+) [1,2,3]
$[6,7,8] \quad--[5+1,5+2,5+3]$
More sections:
$>\operatorname{map}(10 *)[1,2,3]$
[10,20,30]
> map (++"*") (words "a few words")
["a*","few*","words*"]
> map ("*"++) (words "a few words")
["*a","*few","*words"]

"sections", continued

Sections have one of two forms:
(infix-operator value) Examples: (+5), (/10)
(value infix-operator) Examples: (5*), ("x"++)
Iff the operator is commutative, the two forms are equivalent.
$>\operatorname{map}(3<=)[1 . .4] \quad 3<=1,3<=2,3<=3,3<=4]$
[False,False,True,True]
$>\operatorname{map}(<=3)$ [l..4] $\quad[1<=3,2<=3,3<=3,4<=4]$
[True,True,True,False]
Sections aren't just for map; they're a general mechanism.
$>$ twice (+5) 3
13

Filtering

Another higher order function in the Prelude is filter:
$>$ filter odd [1..10]
[1,3,5,7,9]
> filter isDigit "(800) 555-1212" "8005551212"

What's filter doing?
What is the type of filter? filter :: (a -> Bool) -> [a] -> [a]

filter, continued

More...
$>$ filter (<=5) (filter odd [1..10])
[1,3,5]
> map (filter isDigit) ["br549", "24/7"]
["549","247"]
> filter (`elem` "aeiou") "some words here"
"oeoee"

$$
\begin{aligned}
& \text { Note that (elem`...) is a section! } \\
& \quad \text { elem :: Eq a => a -> [a] -> Bool }
\end{aligned}
$$

filter, continued

At hand:
$>$ filter odd [1..10]
[1,3,5,7,9]
> :t filter
filter :: (a -> Bool) -> [a] -> [a]

Let's write filter!
myfilter _ [] = []
myfilter f (x:xs)
| $\mathrm{fx}=\mathrm{x}$: filteredTail
| otherwise = filteredTail
where
filteredTail = myfilter f xs

filter uses a predicate

filter's first argument (a function) is called a predicate because inclusion of each value is predicated on the result of calling that function with that value.

Several Prelude functions use predicates. Here are two:
all :: (a -> Bool) -> [a] -> Bool
$>$ all even [2,4,6,8]
True
$>$ all even [2,4,6,7]
False
dropWhile :: (a -> Bool) -> [a] -> [a]
> dropWhile isSpace " testing "
"testing "
> dropWhile isLetter it
1111

map vs. filter

For reference:
> map double [1..10]
[2,4,6,8,10,12,14,16,18,20]
$>$ filter odd [1..10]
[1,3,5,7,9]
map:
transforms values
length input $==$ length output
filter:
selects values
$0<=$ length output <= length input

Anonymous functions

We can map a section to double the numbers in a list:
$>\operatorname{map}(* 2)$ [1..5]
[2,4,6,8,10]
Alternatively we could use an anonymous function:
$>\operatorname{map}(\backslash x->x * 2)$ [1..5]
[2,4,6,8,10]
What are things we can do with an anonymous function that we can't do with a section?
$>\operatorname{map}(\backslash \mathrm{n}->\mathrm{n} * 3+7)$ [1..5]
[10,13,16,19,22]
> filter ($\backslash \mathrm{x}->$ head $\mathrm{x}==$ last x) (words "pop top suds")
["pop","suds"]

Anonymous functions, continued

The general form:
\pattern1 ... patternN -> expression
Simple syntax suggestion: enclose the whole works in parentheses.

```
map (\x -> x * 2) [1..5]
```

The typical use case for an anonymous function is a single instance of supplying a higher order function with a computation that can't be expressed with a section or partial application.

Anonymous functions are also called lambdas, lambda expressions, and lambda abstractions.

The \backslash character was chosen due to its similarity to λ, used in Lambda calculus, another system for expressing computation.

Take a break?

Example: longest line(s) in a file

Imagine a program to print the longest line(s) in a file, along with their line numbers:
\% runghc longest.hs /usr/share/dict/web2
72632 : formaldehydesulphoxylate
140339:pathologicopsychological
175108:scientificophilosophical
200796 :tetraiodophenolphthalein
203042 :thyroparathyroidectomize

What are some ways in which we could approach it?

longest, continued

Let's work with a shorter file for development testing:
\% cat longest. 1
data
to
test
readFile in the Prelude returns the full contents of a file as a string:
> readFile "longest.1"
"data\nto\ntest\n"
To avoid wading into I/O yet, let's focus on a function that operates on a string of characters (the full contents of a file):
> longest "data $\backslash n t o \backslash n t e s t \backslash n "$
"l:data\n3:test\n"

longest, continued

Let's work through a series of transformations of the data:
$>$ let bytes $=$ "data $\backslash n t o \backslash n t e s t \backslash n "$
$>$ let lns = lines bytes
["data","to","test"]

Note: To save space, values of let bindings are being shown immediately after each let. E.g., > lns is not shown above.

Let's use zip3 and map length to create (length, line-number, line) triples:
$>$ let triples $=$ zip3 $($ map length $\operatorname{lns})[1 ..] \operatorname{lns}$
[(4,1,"data"),(2,2,"to"),(4,3,"test")]

longest, continued

We have (length, line-number, line) triples at hand:
$>$ triples
[(4,1,"data"),(2,2,"to"),(4,3,"test")]
Let's use sort :: Ord a => [a] -> [a] on them:
$>$ let sortedTriples $=$ reverse (sort triples)
[(4,3,"test"),(4,1,"data"),(2,2,"to")]
Note that by having the line length first, triples are sorted first by line length, with ties resolved by line number.

We use reverse to get a descending order.
If line length weren't first, we'd instead use
Data.List.sortBy :: (a -> a -> Ordering) -> [a] -> [a] and supply a function that returns an Ordering.

longest, continued

At hand:
> sortedTriples
[(4,3,"test"),(4, 1,"data"),(2,2,"to")]
We'll handle ties by using takeWhile to get all the triples with lines of the maximum length.

Let's use a helper function to get the first element of a 3-tuple:
$>$ let first (len, _, _) = len
$>$ let maxLength = first (head sortedTriples)
4
first will be used in another place but were it not for that we might have used a pattern:
let (maxLength,_,_) = head sortedTriples

longest, continued

At hand:
> sortedTriples
[(4,3,"test"),(4,1,"data"),(2,2,"to")]
> maxLength
4

Let's use takeWhile :: (a -> Bool) -> [a] -> [a] to get the triples having the maximum length:
$>$ let maxTriples $=$ takeWhile
(\triple -> first triple == maxLength) sortedTriples
[(4,3,"test"),(4,l,"data")]

longest, continued

At hand:
> maxTriples
[(4,3,"test"),(4,1,"data")]
Let's map an anonymous function to turn the triples into lines prefixed with their line number:
> let linesWithNums = map ($\backslash($ _,num,line) -> show num ++ ":" ++ line) maxTriples
["3:test","l:data"]
We can now produce a ready-to-print result:
> let result = unlines (reverse linesWithNums)
> result
" l:data $\backslash n 3$:test $\backslash n$ "

longest, continued

Let's package up our work into a function:
longest bytes $=$ result
where
lns = lines bytes
triples $=$ zip3 (map length lns) [l..] lns
sortedTriples $=$ reverse (sort triples)
maxLength = first (head sortedTriples)
maxTriples $=$ takeWhile
(\triple -> first triple == maxLength) sortedTriples
linesWithNums =
map (
(_,num,line) -> show num ++ ":" ++ line) maxTriples
result $=$ unlines (reverse linesWithNums)
first $\left(x,,_{-}\right)=x$

At hand:
> longest "data $\backslash n t o \backslash n t e s t \backslash n "$
"l:data\n3:test\n"

Let's add a main that handles command-line args and does I/O:
\% cat longest.hs
import System.Environment (getArgs) import Data.List (sort)
longest bytes = ...from previous slide...
main $=$ do
args <- getArgs -- Get command line args as list bytes <- readFile (head args)
putStr (longest bytes)
Execution:
\$ runghc longest.hs /usr/share/dict/words
39886:electroencephalograph's

Function composition

Given two functions f and g, the composition of f and g is a function c that for all values of x , ($\mathrm{c} x$) equals ($\mathrm{f}(\mathrm{gx})$)

Here is a primitive compose function that applies two functions in turn:
$>$ let compose $\mathrm{fgx}=\mathrm{f}(\mathrm{gx})$
Its type: (How many arguments?)
(b -> c) -> (a -> b) -> a -> c
> compose init tail [1..5]
[2,3,4]
> compose signum negate 3
-l

Composition, continued

Haskell has a function composition operator. It is a dot (.)
$>$:t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c

Its two operands are functions, and its result is a function.
$>$ let numwords $=$ length. words
> numwords "just testing this"
3

Composition, continued

Problem: Using composition create a function that returns the next-to-last element in a list:
$>$ ntl [1..5]
4

> > ntl "abc"
> 'b'

Solution:
$>$ let ntl = head . tail . reverse
Another?

> > let ntl = head . reverse . init

Composition, continued

Problem: Create a function to remove the digits from a string:
> rmdigits "Thu Feb 6 19:13:34 MST 2014"
"Thu Feb :: MST"

Solution:
$>$ let rmdigits $=$ filter (not. isDigit)

Given the following, describe f :
$>$ let $\mathrm{f}=(* 2) .(+3)$
$>\operatorname{map} \mathrm{f}[1.5]$
[8,10,12,14,16]
Would an anonymous function be a better choice?

Composition, continued

Given the following, what's the type of numwords?
> :type words
words :: String -> [String]
$>$:type length
length :: [a] -> Int
> let numwords $=$ length. words
Type:
numwords :: String -> Int
Assuming a composition is valid, the type is based only on the input of the rightmost function and the output of the leftmost function.
(.) :: (b -> c) -> (a -> b) -> a -> c

Point-free style

Recall rmdigits:
> rmdigits "Thu Feb 6 19:13:34 MST 2014"
"Thu Feb ::MST"
What the difference between these two bindings for rmdigits? rmdigits $s=$ filter (not . isDigit) s rmdigits $=$ filter (not. isDigit)

The latter declaration is in point-free style. (Look, no ss!)
A point-free binding of a function f has NO parameters!
Is the following a point-free function binding or a partial application?
t5 = take 5

Point-free style, continued

Problem: Using point-free style, bind len to a function that works like the Prelude's length.

Hint:
> :t const
const :: a -> b -> a
> const 1020
10
> const [1] "foo"
[1]
Solution:

$$
\text { len }=\text { sum } . \operatorname{map}(\text { const l) }
$$

See also: Tacit programming on Wikipedia

Hocus pocus with higher-order functions

Mystery function

```
What's this function doing?
    f \(\mathrm{a}=\mathrm{g}\)
        where
\[
g \quad b=a+b
\]
```

Type?
f::Num a => a -> a -> a
Interaction:
$>$ let $\mathrm{f}=\mathrm{f} 10$
$>$ f $^{\prime} 20$
30
>f 34
7

DIY Currying

Consider this claim:
A function definition in curried form, which is idiomatic in Haskell, is really just syntactic sugar.

Compare these two completely equivalent declarations for add:
$\operatorname{add} \mathrm{xy}=\mathrm{x}+\mathrm{y}$
add $\mathrm{x}=$ add' $^{\prime}$ where add' $\mathrm{y}=\mathrm{x}+\mathrm{y}$

A language construct that makes something easier to express but doesn't add a new capability is called syntactic sugar.

The result of the call add 5 is essentially this function: add' $\mathrm{y}=5+\mathrm{y}$

The combination of the code for add' and the binding for \mathbf{x} is known as a closure. It contains what's needed for execution.

DIY currying in JavaScript

JavaScript doesn't provide the syntactic sugar of curried function definitions but we can do this:
function add(x) \{
return function (y) $\{$ return $x+y\}$
\}

DIY currying in Python

\ggg def $\operatorname{add}(x)$:
... return lambda $\mathrm{y}: \mathrm{x}+\mathrm{y}$
$\ggg f=\operatorname{add}(5)$
>>> type(f)
<type 'function'>
>>> map(f, [10,20,30])
[15, 25, 35]

Another mystery function

Here's another mystery function:
$>\operatorname{let} \mathrm{mfxy}=\mathrm{fyx}$
$>$:type m
m :: (tl -> t2 -> t) -> t2 -> tl -> t

Can you devise a call to m ?
$>$ m add 34
7
> m (++) "a" "b"
"ba"

What is m doing? What could m be useful for?

flip

At hand: $m f x y=f y x$
m is actually a Prelude function named flip:
$>$:t flip
flip :: (a -> b -> c) -> b -> a -> c
> flip take [l..10] 3
[1,2,3]
$>$ let ftake = flip take
> ftake [l..10] 3
[1,2,3]
Any ideas on how to use it?

flip, continued

At hand: flip $\mathrm{fx}=\mathrm{f} \mathrm{y} \mathrm{x}$
> map (flip take "Haskell") [1..7] ["H","Ha","Has","Hask","Haske","Haskel","Haskell"]

Problem: write a function that behaves like this:
$>f^{\prime} a^{\prime}$
["a","aa","aaa","aaaa","aaaaa",...
Solution:
$>\operatorname{let} \mathrm{f}=\operatorname{map}($ flip replicate x$)$ [1..]

flip, continued

From assignment 1:
$>$ splits "abcd"
[("a","bcd"),("ab","cd"),("abc","d")]
Many students have noticed the Prelude's splitAt:
> splitAt 2 [10,20,30,40]
([10,20],[30,40])
Problem: Write splits using higher order functions but no explicit recursion.

Solution:

$$
\text { splits list }=\text { map (flip splitAt list) [l..(length list }-1)]
$$

The \$ operator

\$ is the "application operator". Note what :info shows:
$>$:info (\$)
(\$) :: (a -> b) -> a -> b
infixr 0 \$ -- right associative infix operator with very
-- low precedence
The following declaration of $\$$ uses an infix syntax:
$\mathrm{f} \$ \mathrm{x}=\mathrm{fx} \quad-$ Equivalent: $(\$) \mathrm{fx}=\mathrm{fx}$

Usage:
$>$ negate $\$ 3+4$
-7
What's the point of it?

The \$ operator, continued

$\$$ is a low precedence, right associative operator that applies a function to a value:
$\mathrm{f} \$ \mathrm{x}=\mathrm{f} \mathrm{x}$
Because + has higher precedence than $\$$ the expression
negate \$ $3+4$
groups like this:
negate \$ (3+4)
How does the following expression group?
filter (>3) \$ map length \$ words "up and down"
filter (>3) (map length (words "up and down"))

Currying the uncurried

Problem: We're given a function whose argument is a two-tuple but we wish it were curried so we could use a partial application of it.

```
    g :: (Int, Int) -> Int
    g(x,y) = x^2 + 3* ***y + 2* *}\mp@subsup{y}{}{\wedge}
```

$>\mathrm{g}(3,4)$
77
Solution: Curry it with curry from the Prelude!
$>$ map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]
Your problem: Write curry!

Currying the uncurried, continued

At hand:
$>\mathrm{g}(3,4)$
77
> map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]
Here's curry, and use of it:
curry :: ((a, b) -> c) -> (a -> b -> c) (latter parens added to help) curry fxy=f(x,y)
$>$ let cg = curry g
$>$:type cg
cg :: Int -> Int -> Int
> cg 34
77

Currying the uncurried, continued

At hand:
curry :: ((a, b) -> c) -> (a -> b -> c) (parentheses added) curry $f x y=f(x, y)$
> map (curry g 3) [l..10] [20,35,54,77,104,135,170,209,252,299]

The key: (curry g 3) is a partial application of curry!

Call: curry g 3

Currying the uncurried, continued

At hand:
curry :: ((a, b) -> c) -> (a -> b -> c) (parentheses added) curry $f x y=f(x, y)$
> map (curry g 3) [1..10] [20,35,54,77,104,135,170,209,252,299]

Let's get flip into the game!
> map (flip (curry g) 4) [1..10]
[45,60,77,96,117,140,165,192,221,252]
The counterpart of curry is uncurry:
$>$ uncurry (+) \$(3,4) uncurry (+) $(3,4)$
7
function curry(f) \{

A curry function for JavaScript

return function(x) \{

 return function (y) $\{$ return $\mathrm{f}(\mathrm{x}, \mathrm{y})\}$ \} \}Q Elements Network Sources Timeline Profiles Resourc
Q \square <top frame>
> function add (x, y) \{return $\mathrm{x}+\mathrm{y}$ \}
undefined
> c_add = curry(add)
function (x) \{ return function (y) \{ return $\mathrm{f}(\mathrm{x}, \mathrm{y})$ \} \}
> add_5 = c_add(5)
function (y) \{ return $f(x, y)$ \}
> $[10,20,30]$.map(add_5)
[15, 25, 35]

Note: next set of slides!

Reduction

We can reduce a list by a binary operator by inserting that operator between the elements in the list:
$[1,2,3,4]$ reduced by + is $1+2+3+4$
["a","bc", "def"] reduced by ++ is "a" ++ "bc" ++ "def"
Imagine a function reduce that does reduction by an operator.
$>$ reduce (+) [1,2,3,4]
10
> reduce (++) ["a","bc","def"]
"abcdef"
$>$ reduce max [10,2,4] -- think of 10 `max` 2 `max` 4 10
$>\operatorname{map}$ (reduce max) (permutations [10,2,4])
[10,10,10,10,10,10] -- permutations is from Data.List

Reduction, continued

At hand:
$>$ reduce $(+)[1,2,3,4]$
10
An implementation of reduce: reduce _ [] = undefined
reduce $[\mathrm{x}]=\mathrm{x}$
reduce op (x:xs) = x `op` reduce op xs
Does reduce + [1,2,3,4] do $((1+2)+3)+4$
or

$$
1+(2+(3+4))
$$

?
In general, when would the grouping matter?

foldl1 and foldr1

In the Prelude there's no reduce but there is foldl1 and foldr1.
> foldl1 (/) [1,2,3]
0.16666666666666666 -- left associative: (1 / 2) / 3
$>$ foldr1 (/) [1,2,3] -- right associative: $1 /(2 / 3)$
1.5

Here's the type of foldr1:
foldr1 :: (a -> a -> a) -> [a] -> a

Here's the type of a related function, foldr (no "1"):
foldr :: (a -> b -> b) -> b -> [a] -> b

What are the differences between the two?

foldr1 vs. foldr

For reference:
foldr1 :: (a -> a -> a) -> [a] -> a
foldr :: (a -> b -> b) -> b -> [a] ->b

Use:
> foldr1 (+) [1..4]
10
> foldr (+) 0 [1..4]
10
> foldr (+) 0 [] -- Empty list is exception with foldr1 0

foldr1 vs. foldr, continued

For reference: foldr1 :: (a -> a -> a) -> [a] -> a -- reduction, like $1+2+3+4$ foldr :: (a -> b -> b) -> b -> [a] -> b -- something different...

To aid understanding, here's a folding function written with the names elem (element) and acm (accumulated value).
> foldr (\elem acm -> acm + elem) 0 [1..4]
10
initial value for acm
Here's the BIG DEAL with foldr: it can fold a list of values into a different type!
> foldr (\elem acm -> show elem ++ "." ++ acm) "<" [1..4]
"1.2.3.4.<" -- IMPORTANT: Numbers in; [Char] out!

Folding

Fill in the blank, creating a folding function that can be used to compute the length of a list:
$>$ foldr (\} \qquad) 0 [10,20,30] 3

Solution:
$>$ let len = foldr ((elem acm -> acm +1) 0
> len ['a'..'z']
26

Problem: Define map in terms of foldr.
$>$ let $\mathrm{mp} \mathrm{f}=$ foldr (\elem acm -> f elem : acm) []
> mp toUpper "test"
"TEST"

Folding, continued

Recall our even/odd counter
$>$ countEO $[3,4,7,9]$
$(1,3)$
Define it terms of foldr!
> let eo = foldr (\val (e,o) ->
if even val then $(e+1, o)$ else $(e, o+1))(0,0)$
> eo $[3,4,7,9]$
$(1,3)$
> eo []
initial value for acm
$(0,0)$
Strictly FYI: Instead of if/else we could have used Haskell's case:
$>$ let eo = myfoldr (\val (e,o) -> case even val of $\{$ True -> $(e+1,0) ;$ False $->(e, 0+1)\})(0,0)$

Folding, continued

Here's a definition for foldr. We're using a type specification with multicharacter type variables to help know which is which:

```
foldr :: (val -> acm -> acm) -> acm -> [val] -> acm
foldr facm [] = acm
foldr facm (val:vals) = f val (foldr facm vals )
```

When loaded, we see this:
$>$:t foldr
foldr :: (val -> acm -> acm) -> acm -> [val] -> acm
> foldr (\val acm -> acm ++ val) "?" (words "a test here")
"?heretesta"
IMPORTANT: There's NO connection between the type variable names and the names in functions. We might have done this instead: foldr (\va -> a ++ v) ...

Folding, continued

Problem: Write reverse in terms of a foldr.
A solution, but with an issue:
rv1 = foldr (\val acm -> acm ++ [val]) []

The issue: ++ is relatively expensive wrt. cons.
By definition, foldr operates like this:
foldr f zero [x1, x2, ..., xn] == x1 ' f ' (x2 `f' ... (xn `f' zero)...)
The first application of f is with the last element and the "zero" value, but the first cons would need to be with the first element of the list.

Folding, continued

The counterpart of foldr is foldl. Compare their meanings:

foldl f zero $[x 1, x 2, \ldots, x n]=\left(\ldots\left(\left(z e r o \quad f^{\prime} x 1\right)^{\prime} f^{\prime} x 2\right)^{\prime} f f^{\prime} . . .\right)^{\prime} f{ }^{\prime} x n$
Their types, with long type variables:
Note the "zeros"
foldr :: (val -> acm -> acm) -> acm -> [val] -> acm
fold :: (acm -> val -> acm) -> acm -> [val] -> acm
Problem: Write reverse in terms of foldl.
$>$ let rev = foldl (\backslash acm val -> val:acm) []
> rev "testing"
"gnitset"

Folding, continued

Recall paired from assignment 2:
> paired "(())())"
True
Can we implement paired with a fold?
counter (-1)_=-1
counter total '(' = total + 1
counter total ')' = total - 1 counter total $\quad=$ total
paired $\mathrm{s}=$ foldl counter $0 \mathrm{~s}==0$
Point-free:
paired $=(0==)$. foldl counter 0

Folding, continued

Data.List.partition partitions a list based on a predicate:
> partition isLetter "Thu Feb 13 16:59:03 MST 2014" ("ThuFebMST"," 13 16:59:03 2014")
> partition odd [1..10]
([1,3,5,7,9],[2,4,6,8,10])
Write it using a fold!
sorter f val (pass, fail) $=$
if f val then (val:pass, fail) -- ML escapee from 2006!
else (pass, val:fail)
partition $\mathrm{f}=$ foldr (sorter f) ([],[])

map vs. filter vs. folding

map:
transforms values
length input $==$ length output
filter:
selects values
$0<=$ length output <= length input
folding
Input: A list of values and an initial value for accumulator
Output: A value of any type and complexity
True or false?
Any operation that processes a list can be expressed in a terms of a fold, perhaps with a simple wrapper.

We can fold a list of anythings into anything!

Far-fetched folding:
Refrigerators in Gould-Simpson to
((grams fat, grams protein, grams carbs), calories)
Keyboards in Gould-Simpson to
[("a", \#), ("b", \#), ..., ("@2", \#), ("CMD", \#)]
[Backpack] to
(\# pens, pounds of paper,
[(title, author, [page \#s with the word "computer")])
[Furniture]
to a structure of 3D vertices representing a convex hull that could hold any single piece of furniture.

Replacement for slide "Scans"!
 The challenge of folding

The challenge: Write a function such that f val acm can do the work for you. Think about the "zero" value. Imagine a series of calls.
foldr does the rest! (For foldl, it's facm val.)
> foldr (\val acm ->
if val `elem` "aeiou" then acm+l else acm) 0 "ate" 2
> foldr (\val acm@(n, vows) ->
if val `elem` "aeiou" then (n+l, val:vows) else acm) (0,[]) "ate" (2,"ae")
vowelPositions s = reverse result
where (_,result,_) =
foldl (\acm@(n, vows,pos) val -> -- NOTE: now foldl!
if val `elem" "aeiou" then (n, (val,pos):vows,pos+l) else (n,vows,pos+l)) (0,[],0) s
> vowelPositions "Down to Rubyville!"
[('o',1),('o',6),('u',9),('i', 13),('e',16)]

User-defined types

A Shape type

A new type can be created with a data declaration.
Here's a simple Shape type whose instances represent circles or rectangles:

```
data Shape =
    Circle Double | -- just a radius
    Rect Double Double -- width and height deriving Show
```

The shapes have dimensions but no position.
Circle and Rect are data constructors.
"deriving Show" declares Shape to be an instance of the Show type class, so that values can be shown using some simple, default rules.

Shape is called an algebraic type because instances of Shape are built using other types.

Shape, continued

Instances of Shape are created by calling the data constructors:
$>$ let $\mathrm{rl}=$ Rect 34
$>\mathrm{rl}$
Rect 3.04 .0
$>$ let $\mathrm{r} 2=\operatorname{Rect} 53$
> let cl = Circle 2
$>$ let shapes $=[\mathrm{rl}, \mathrm{r} 2, \mathrm{cl}]$
> shapes
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0]
Lists must be homogeneous-why are both Rects and Circles allowed in the same list?

Shape, continued

The data constructors are just functions-we can use all our function-fu with them!
$>$:t Circle
Circle :: Double -> Shape
data Shape =
Circle Double |
Rect Double Double deriving Show
$>$:t Rect
Rect :: Double -> Double -> Shape
> map Circle [2,3] ++ map (Rect 3) [10,20]
[Circle 2.0,Circle 3.0,Rect 3.0 10.0,Rect 3.0 20.0]

Shape, continued

Functions that operate on algebraic types use patterns based on their data constructors.

```
area (Circle r) = r ** 2 * pi
area (Rect wh) = w * h
```

Usage:
$>\mathrm{rl}$
data Shape =
Circle Double |
Rect Double Double deriving Show

Rect 3.04 .0
> area rl
12.0
> shapes
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0]
$>$ map area shapes
[12.0,15.0,12.566370614359172]
$>$ sum \$ map area shapes 39.56637061435917

Shape, continued

Let's make the Shape type an instance of the Eq type class.
What does Eq require?
$>$:info Eq class Eq a where

$$
\begin{aligned}
& \text { (==) :: a -> a -> Bool } \\
& (/=):: \text { a -> a -> Bool }
\end{aligned}
$$

Default definitions from Eq: (==) $\mathrm{ab}=\operatorname{not} \$ \mathrm{a} /=\mathrm{b}$ (/=) $\mathrm{ab}=\operatorname{not} \$ \mathrm{a}==\mathrm{b}$

Let's say that two shapes are equal if their areas are equal. (Iffy!) instance Eq Shape where
(==) rl r2 = area rl == area r 2
Usage:
> Rect 34 == Rect 62
True
$>$ Rect 34 == Circle 2
False

Shape, continued

Let's see if we can find the biggest shape:
$>$ maximum shapes
No instance for (Ord Shape) arising from a use of `maximum'
Possible fix: add an instance declaration for (Ord Shape)

What's in Ord?
$>$:info Ord
class Eq a => Ord a where compare :: a -> a -> Ordering (<) :: a -> a -> Bool
(>=) :: a -> a -> Bool
(>) :: a -> a -> Bool
(<=) :: a -> a -> Bool
max::a -> a -> a
$\min :: a->a->a$

Shape, continued

Let's make Shape an instance of the Ord type class:
instance Ord Shape where

```
(<) rl r2 = area rl < area r2 -- < and <= are sufficient
(<=) rl r2 = area rl <= area r2
```

Usage:
$>$ shapes
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0]
> map area shapes
[12.0,15.0,12.566370614359172]
$>$ maximum shapes
Rect 5.0 3.0
> Data.List.sort shapes
[Rect 3.0 4.0,Circle 2.0,Rect 5.0 3.0]
Note that we didn't need to write functions like sumOfAreas or largestShape - we can express those in terms of existing operations

Shape all in one place

Here's all the Shape code: (in shape.hs)
data Shape $=$
Circle Double |
Rect Double Double deriving Show
area (Circle r) $=\mathrm{r} * * 2 * \mathrm{pi}$
area (Rect wh) $=\mathrm{w} * \mathrm{~h}$
instance Eq Shape where

$$
\text { (==) } \mathrm{rlr} \mathrm{r} 2=\text { area } \mathrm{rl}==\text { area } \mathrm{r} 2
$$

instance Ord Shape where
(<) rl r2 = area rl < area r2
(<=) rl r2 = area rl <= area r 2
What would be needed to add a Figure8 shape and a perimeter function?

How does this compare to a Shape/Circle/Rect hierarchy in Java?

Two simple algebraic types

Let's look at the compare function:
> :t compare
compare :: Ord a => a -> a -> Ordering
Ordering is a simple algebraic type, with only three values:
$>$:info Ordering
data Ordering $=$ LT $|E Q| G T$
$>[\mathrm{rl}, \mathrm{r} 2]$
[Rect 3.0 4.0,Rect 5.0 3.0]
> compare rl r2
LT
> compare r2 rl
GT
What do you suppose Bool really is?
$>$:info Bool
data Bool = False | True

A binary tree

Here's an algebraic type for a binary tree:

$$
\begin{aligned}
\text { data Tree a }= & \text { Node a }(\text { Tree a) }(\text { Tree a) }-- \text { tree.hs } \\
& \left\lvert\, \begin{array}{ll}
\text { Empty } \\
& \text { deriving Show }
\end{array}\right.
\end{aligned}
$$

The a is a type variable. Our Shape type used Double values but Tree can hold values of any type!

Tree, continued

Here's a function that inserts values, maintaining an ordered tree:
insert Empty v = Node v Empty Empty insert (Node x left right) value
| value $<=\mathrm{x}=$ (Node x (insert left value) right)
| otherwise = (Node x left (insert right value))
Let's insert some values...
$>$ let $\mathrm{t}=$ Empty
$>$ insert t 5
Node 5 Empty Empty
$>$ insert it 10
Node 5 Empty (Node 10 Empty Empty)
$>$ insert it 3
Node 5 (Node 3 Empty Empty) (Node 10 Empty Empty)
How many Nodes are constructed by each of the insertions?

Tree, continued

Here's an in-order traversal that produces a list of values:
inOrder Empty = []
inOrder $($ Node val left right $)=$
inOrder left ++ [val] ++ inOrder right
What's an easy way to insert a bunch of values?
$>$ let $\mathrm{t}=$ foldl insert Empty [3, 1,9,5,20,17,4,12]
$>$ inOrder t
[1,3,4,5,9,12,17,20]
> inOrder \$ foldl insert Empty "tim korb"
" bikmort"
> inOrder \$ foldl insert Empty [Rect 3 4, Circle 1, Rect 1 2]
[Rect l. 0 2.0,Circle 1.0,Rect 3.0 4.0]

Maybe

Here's an interesting type:
> :info Maybe
data Maybe a = Nothing | Just a
Speculate: What's the point of it?
Here's a function that uses it:
$>$:t Data.List.find
Data.List.find :: (a -> Bool) -> [a] -> Maybe a
How could we use it?
$>$ find even [3,5,6,8,9]
Just 6
$>$ find even $[3,5,9]$
Nothing
> case (find even $[3,5,9]$) of \{ Just _ -> "got one"; _ -> "oops!"\} "oops!"

A little I/O

Sequencing

Consider this function declaration
$\mathrm{f} 2 \mathrm{x}=\mathrm{a}+\mathrm{b}+\mathrm{c}$ where

$$
\begin{array}{ll}
\text { a }=\mathrm{fx} \\
\mathrm{~b}=\mathrm{gx} \\
\mathrm{c}=\mathrm{h} \mathrm{x}
\end{array} \quad \begin{aligned}
& \mathrm{a}=\mathrm{fx} \\
& \mathrm{c}=\mathrm{hx} \\
& \mathrm{~b}=\mathrm{gx}
\end{aligned} \quad \begin{aligned}
& \mathrm{c}=\mathrm{hx} \\
& \mathrm{~b}=\mathrm{g} \mathrm{x} \\
& \mathrm{a}=\mathrm{fx}
\end{aligned}
$$

Haskell guarantees that the order of the where clause bindings is inconsequential-those three lines can be in any order.

What enables that guarantee?
(Pure) Haskell functions depend only on the argument value. For a given value of $\mathbf{x}, \mathrm{f} \mathbf{x}$ always produces the same result.

You can shuffle the bindings of any function's where clause without changing the function's behavior! (Try it with longest, slide 233.)

I/O and sequencing

Imagine a getInt function, which reads an integer from standard input (e.g., the keyboard).

Can the where clause bindings in the following function be done in any order?
$\mathrm{fx}=\mathrm{r}$
where

$$
\begin{aligned}
& \mathrm{a}=\text { getInt } \\
& \mathrm{b}=\mathrm{getInt} \\
& \mathrm{r}=\mathrm{a} * 2+\mathrm{b}+\mathrm{x}
\end{aligned}
$$

The following is not valid syntax but ignoring that, is it reorderable? greet name = ""
where
putStr "Hello, "
putStr name
putStr "!\n"

I/O and sequencing, continued

One way we can specify that operations are to be performed in a specific sequence is to use a do:
$\%$ cat io2.hs
main $=$ do
putStrLn "Who goes there?"
name <- getLine
let greeting = "Hello, " ++ name ++ "!"
putStrLn greeting
Interaction:
\% runghc io2.hs
Who goes there?
whm (typed)
Hello, whm!

Actions

Here's the type of putStrLn:
putStrLn :: String -> IO () ("unit", (), is the no-value value)

The type IO x represents an interaction with the outside world that produces a value of type x . Instances of IO x are called actions.

When an action is evaluated the corresponding outside-world activity is performed.
> let hello = putStrLn "hello!" (Note: no output here!)
hello :: IO () (Type of hello is an action.)
> hello
hello! (Evaluating hello, an action, caused output.)
it :: ()

Actions, continued

The value of getLine is an action that reads a line: getLine :: IO String

We can evaluate the action, causing the line to be read, and bind a name to the string produced:
$>$ s <- getLine
testing
$>$ s
"testing"

Note that getLine is not a function!

Actions, continued

Recall io2.hs:
main $=$ do
putStrLn "Who goes there?"
name <- getLine
let greeting = "Hello, " ++ name ++ "!"
putStrLn greeting

Note the type: main :: IO (). We can say that main is an action. Evaluating main causes interaction with the outside world.
$>$ main
Who goes there?
hello?
Hello, hello?!

Is it pure?

A pure function (1) always produces the same result for a given argument value, and (2) has no side effects.

Is this a pure function?
twice :: String -> IO ()
twice $\mathrm{s}=\mathrm{do}$
putStr s
putStr s
twice "abc" will always produce the same value, an action that if evaluated will cause "abcabc" to be output.

The Haskell solution for I/O

We want to use pure functions whenever possible but we want to be able to do I/O, too.

In general, evaluating an action produces side effects.
Here's the Haskell solution for I/O in a nutshell:
Actions can evaluate other actions and pure functions but pure functions don't evaluate actions.

Recall longest.hs from 233-234:
longest bytes $=$ result where ...lots...
main $=$ do
args <- getArgs -- gets command line arguments bytes <- readFile (head args)
putStr (longest bytes)

In conclusion...

If we had a whole semester...

If we had a whole semester to study functional programming, here's what might be next:

- Infinite data structures (like let $\mathrm{x}=\mathrm{l}: \mathrm{x}$)
- How lazy/non-strict evaluation works
- Implications and benefits of referential transparency (which means that the value of a given expression is always the same).
- Functors (structures that can be mapped over)
- Monoids (a set of things with a binary operation over them)
- Monads (for representing sequential computations)
- Zippers (a structure for traversing and updating another structure)
- And more!

Jeremiah Nelson and Matt Gautreau are great local resources for Haskell!

Even if you never use Haskell again...

Recursion and techniques with higher-order functions can be used in most languages. Some examples:

JavaScript, Python, PHP, all flavors of Lisp, and lots of others:
Functions are "first-class" values; anonymous functions are supported.
C
Pass a function pointer to a recursive function that traverses a data structure.

C\#
Excellent support for functional programming with the language itself, and LINQ, too.

Java 8
Lambda expressions are in!
OCaml
"an industrial strength programming language supporting functional, imperative and object-oriented styles" - OCaml.org http://www.ffconsultancy.com/languages/ray_tracer/comparison.html

Killer Quiz!

