
Comparative Programming
Languages

CSC 372
Spring 2015

psst...Sign	 up	 for	
Piazza	 while	

you're	 wai7ng!	
CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 1	

Instructor
William Mitchell (whm)

Consultant/contractor doing software development and
training of software developers. Lots with Java, C++, C,
ActionScript, Ruby, Icon, and more. Linux stuff, too.

Occasionally teach a CS course. (337, 352, 372, and others)

Adjunct lecturer, not a professor.

Education:

BS CS (North Carolina State University, 1981)
MS CS (University of Arizona, 1984)

Incorrect to say "Dr. Mitchell" or "Professor Mitchell"!

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 2	

Topic Sequence
•  Functional programming with Haskell

•  Imperative and object-oriented programming using
dynamic typing with Ruby

•  Logic programming with Prolog

•  Whatever else in the realm of programming
languages that we find interesting and have time for.

Note: We'll cover a selection of elements from the
languages, not everything.

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 3	

Themes running through the course
Discerning the philosophy of a language and how it's
manifested.

Assessing the "mental footprint" of a language.

Acquiring a critical eye for language design.

Learning techniques for teaching ourselves a language.

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 4	

Syllabus Highlights
Prerequisites

 � CSC 127B or CSC 227
 � But, this is a 300-level class!

Piazza

 � Our forum
 � Sign up if you haven't already!

No Teaching Assistants

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 5	

Syllabus, continued
Textbooks...

•  No texts are required!

•  Lectures, handouts, and Piazza postings might be all
you need.

•  Syllabus has recommendations for supplementary
texts, most of which are on Safari.

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 6	

Syllabus, continued
Grading

 � Assignments 60%
 � Pop quizzes 5%
 � One mid-term 13%
 � Final 22%

 Ten-point scale: >= 90 is A, etc. Might go lower.

Original Thoughts

 � Half-point on final average for each

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 7	

Syllabus, continued
Assignments—things like:
 � Coding in the various languages

 � Short answer and essay questions
 � Diagrams
 � One video project

Late assignments are not accepted!

No late days!

But, extensions for situations beyond your control.

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 8	

Syllabus, continued
Office Hours:
� I love office hours!
� Open-door policy except before class
� Guaranteed hours posted on Piazza
� In-person is most efficient
� Skype preferred for IM
� http://join.me preferred for screen sharing
� OK to call my mobile but don't leave voice mail!

(Send e-mail instead.)

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 9	

NO CHEATING!
Capsule summary:

 Don't cheat in my class!
 Don't make it easy for anybody else to cheat!
 One strike and you're out!

For a first offense expect this:

 Failing grade for course
 Permanent transcript annotation
 Disallowance of GRO for failing grade
 Recommendation for one semester suspension

A typical first step on the road to ruin is sharing your solutions
with your best friend, roommate, etc., who swears to just learn
from your work and absolutely not turn it in as their work.

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 10	

No asking the world for help!
The material covered in lectures, posted on Piazza, etc.
should be all you need to do the assignments.

I challenge you to not search the web for solutions for
problems on assignments!

Posting problem-specific questions on websites, IRC
channels, mailing lists, etc. will be considered to be
cheating!

Example: I'm learning Haskell and trying to write a
function that returns True iff the parentheses in a string
are properly matched. Any suggestions?

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 11	

My Teaching Philosophy
•  I work for you!

•  My goal: everybody earns an "A" and averages less than
ten hours per week on this course, counting lecture time.

•  Effective use of office hours, e-mail, IM, and the
telephone can equalize differences in learning speed.

•  I should be able to answer every pertinent question about
course material.

•  My goal is zero defects in slides, assignments, etc.
 Bug Bounty: One assignment point

•  Everything I'll expect you to know on exams will be
covered in class, on assignments, or on Piazza.

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 12	

READ THE SYLLABUS!

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 13	

Assignment 0
Assignment 0

 � On Piazza
 � It's a survey
 � Due Tuesday, January 20, 9:30am
 � Worth 10 points
 � Maybe 10 minutes to complete
 � Thanks for doing it!

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 14	

Pictures &
Name memorization

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 15	

Basic questions about
programming languages

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 16	

What is a programming language?

A simple definition:
A system for describing computation.

It is generally agreed that in order for a language to be considered
a programming language it must be Turing Complete.

One way to prove a language is Turing Complete is to use it
to implement a Turing Machine, a theoretical device capable
of performing any algorithmic computation.
 Curio: https://github.com/elitheeli/stupid-machines

What language is most commonly mis-listed on resumes as a
programming language?
 CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 17	

Does it matter what language is used?
The two extremes:

•  If you’ve seen one language you’ve seen them all.

Just pick one and get to work.

•  Nothing impacts software development so much as
the language being used. We must choose very
carefully!

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 18	

Why study programming languages?
•  Learn new ways to think about computation.

•  Learn to see languages from a critical viewpoint.

•  Improve basis for choosing languages for a task.

•  Add some tools to the “toolbox”.

•  Increase ability to design a new language.

Speculate: How many programming languages does the
average software developer know?

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 19	

How old are programming languages?
Plankalkül 1945
Short Code 1949
FORTRAN 1957
ALGOL 1958
COBOL 1959
LISP 1960
BASIC 1964
PL/I 1965
SNOBOL4 1967
SIMULA 67 1967
Pascal 1971
C 1972

Prolog 1972
Smalltalk 1972
ML 1977
Icon 1979
Ada 1980
C++ 1983
Objective-C 1983
Perl 1987
Haskell 1990
Python 1990
Ruby 2/24/93
Java 1995

JavaScript 1995
C# 2000
Scala 2003
F# 2005
Clojure 2007
Go 2008
Dart 2011
Rust 2012
Corelet 2013
Hack 2014
Swift 2014

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 20	

How are languages related to each other?
Some of the many attempts at a family tree of languages:

http://www.digibarn.com/collections/posters/tongues/

http://www.levenez.com/lang/

http://rigaux.org/language-study/diagram.html

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 21	

How many languages are there?
http://en.wikipedia.org/wiki/
Alphabetical_list_of_programming_languages

 (650+/-)

The Language List

 http://people.ku.edu/~nkinners/LangList/Extras/langlist.htm
 "about 2,500", but lots of new ones missing

 HOPL, the History of Programming Languages

http://hopl.murdoch.edu.au/ (seems dead...)
http://web.archive.org/web/20111205165034/http://
hopl.murdoch.edu.au/ (Internet Archive Wayback Machine)
Over 8,000 but has things like "JAVA BEANS" and variants like
both ANSI Pascal and ISO Pascal.

Bottom line: Nobody knows how many programming languages have
been created!

 CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 22	

What languages are popular right now?
Measured by GitHub repositories:

adambard.com/blog/top-github-
languages-2014/

Measured by job postings:

 indeed.com/jobtrends

The TIOBE index (multiple factors):

www.tiobe.com/index.php/content/
paperinfo/tpci/index.html

What is a good way to measure language popularity?

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 23	

How do languages help us?

Free the programmer from details
int i = 5;
x = y + z * q;

Detect careless errors
int f(String s, char c);
...
int i = f('i', "Testing");

Provide constructs to succinctly express a computation
 for (int i = 1; i <= 10; i++)
 ...

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 24	

How languages help, continued
•  Provide portability

 Examples:
•  C provides moderate source-level portability.
•  Java was designed with binary portability in

mind.

•  Facilitate using a paradigm, such as functional,

object-oriented, or logic programming.

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 25	

How are languages specified?
The specification of a language has two key facets:
•  Syntax:

Specifies the sequences of symbols that are valid
programs in the language.

•  Semantics:

Specify the meaning of a sequence of symbols.

Some languages have specifications that are approved
as international standards. Others are defined by nothing
more than the behavior of a lone implementation.

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 26	

Syntax vs. semantics
Consider this expression:

 a[i] = x

What are some languages in which it is syntactically
valid?

In each of those languages, what is the meaning of it?

What are various meanings for these expressions?

 x || y
 x y
 *x

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 27	

What are the building blocks of a language?
•  Data types
•  Operators
•  Control structures
•  Support for encapsulation

•  Functions
•  Abstract types / Classes
•  Packages / Modules

•  Error / Exception handling
•  Standard library

Building blocks

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 28	

What are qualities a language might have?
•  Simplicity (“mental footprint”)
•  Expressive power

•  Readability of programs
•  Orthogonality

•  Reliability of programs

•  Run-time efficiency
•  Practical development project size

•  Support for a style of programming
What are some tensions between these qualities?

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 29	

What factors affect popularity?
•  Available implementations

•  Documentation

•  Community

•  Vectors of “infection”

•  Ability to occupy a niche

•  Availability of supporting tools, like debuggers and
IDEs

•  Cost

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 30	

The philosophy of a language
What is the philosophy of a language? How is it manifested?

C
•  Close to the machine
•  Few constraints on the programmer
•  High run-time efficiency
•  “What you write is what you get.”

C++
•  Close to both machine and problem being solved
•  Support object-oriented programming
•  “As close to C as possible, but no closer.” — Stroustrup

PostScript
•  Page description
•  Intended for generation by machines, not humans

What is the philosophy of Java?

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 31	

A Little UA CS History

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 32	

UA's language heritage
The UA CS department was founded by Ralph Griswold
in 1971. (Hint: know this!)

Griswold was Head of Programming Research at Bell
Labs before coming to UA.

Griswold and his team at Bell Labs created the
SNOBOL family, culminating with SNOBOL4.

Griswold's interest and prominence in programming
languages naturally influenced the course of research at
UA.

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 33	

UA's heritage, continued

Cg
EZ
Icon
Leo
MPD
Ratsno
Rebus

Seque
SIL2
SL5
SR
SuccessoR
Y
Goaldi (in progress!)

In the 1970s and 1980s UA Computer Science was recognized
worldwide for its research in programming languages.

These are some of the languages created here:	

Along with language design, lots of work was focused on
language implementation techniques.

CSC	 372,	 Spring	 2015,	 Introduc7on	 slide	 34	

