
Materials for CSC 372, Spring 2016

The University of Arizona

William H. Mitchell (whm)

This PDF is a collection of almost all formal instructional materials for CSC 372, Spring 2016.

Not included:

• Solutions for assignments

• Piazza posts

Class was held TH 14:00-15:15 in BIOW 208. There were 30 class meetings, including the mid-

term, from Thursday, Jan 14 through Tuesday, May 5. Ben Gaska and Patrick Hickey were

undergraduate teaching assistants.

65 students did Assignment 1, a survey. 64 were on the final grade roster. 56 students took the

final exam.

Grade distribution:

A 27

B 13

C 7

D 9

E 3

TCE "Overall rating of the course" was 4.81 out of 5.00. (62.71% Response)

This container comprises these files:

all-materials-cover.pdf This document

syllabus.pdf Syllabus

intro.pdf Introductory slides (~.7 lectures)

haskell.pdf Haskell slides (~9.3 lectures)

ruby.pdf Ruby slides (~9 lectures)

prolog.pdf Prolog slides (~8.5 lectures)

a1.pdf through a10.pdf and av.pdf Assignments

exam-archive/372.s16-quizzes.pdf All quizzes and solutions

exam[12]{,sol}.pdf Exams and solutions

tester.pdf "Using the Tester"

icon.pdf A small set of slides on Icon, used in

conjunction with an "Icon by Observation"

exercise for the last class.

unixstuff.pdf "UNIX Stuff for 372", a recommended

supplementary document but not part of the

course materials.

CSC 372: Comparative Programming Languages

The University of Arizona

Spring 2016

Instructor

William H. Mitchell (whm)

Office hours and contact info: Posted on Piazza

Schedule

Lectures: Tuesdays and Thursdays 14:00-15:15 in BIOW 208

Teaching Assistants

Undergraduate TAs:

Ben Gaska (bengaska)

Patrick Hickey (patrickhickey)

Office hours and contact info: Posted on Piazza

Website and handouts

We'll be using Piazza for announcements, discussions, and more. If you haven't already signed up, do it now! Go to

piazza.com and follow their instructions.

All handouts will be posted on Piazza, on the Resources tab of the Resources page. All materials can also be directly accessed

here: http://cs.arizona.edu/classes/cs372/spring16

Leftover handouts will be placed on the metal bookshelves near the freight elevator at the west end of the eighth floor of

Gould-Simpson.

If you don't make use of paper handouts, let me know, and I'll reduce the copy count accordingly.

Prerequisites

CSC 127B or CSC 227. CSC major status.

Knowledge of Java, as covered in CSC 127A/B (or CSC 227), will be assumed.

The prerequisites are very modest but this is a 300-level computer science class with a lot of diverse content. As an analogy,

imagine a 300-level math class with only high-school algebra as a prerequisite but that will venture into some exotic math

that's not much like algebra at all. My task is to respect the prerequisites but also cover a body of material that's appropriate

for a 300-level CS class.

Course Objectives

The purpose of this course is to explore some alternative ways of specifying computation and to help you understand and

harness the forces that a programming language can exert. We’ll spend a lot of time working with three languages: Haskell,

Ruby, and Prolog. Functional programming will be studied using Haskell. Ruby will be used to explore imperative and object-

oriented programming using a language with dynamic type checking. Prolog will transport us into the very different world of

logic programming. You’ll learn about some interesting elements of other languages.

Upon successfully completing the course you'll be around a "2" on a 1-5 scale (5 high) with Haskell, Ruby, and Prolog. You

will understand the characteristics of the programming paradigms supported by those languages and be able to apply some of

– 1 –

http://www.cs.arizona.edu/classes/cs372/spring16

the techniques in other languages. You’ll have an increased ability to learn new languages. You’ll have some idea about

whether you want to pursue further study of programming languages.

Textbooks

No textbooks are required.

It is my intention that the lectures, handouts, and Piazza postings will provide all the information needed to successfully

complete the course; but it's often good to see things explained in multiple ways. Below are some books that I recommend as

good supplements but it's important to understand that the routes we'll be taking through the languages don't directly

correspond to any book; the handouts you'll be getting are the primary "text".

Haskell:

I consider Learn You a Haskell for Great Good! by Miran Lipovaèa to be an excellent Haskell book and the best

beginner's Haskell book on Safari.

I think of Programming in Haskell, by Hutton and on Safari, to be a good book once you've got the basics down, but I

think it moves too fast to stand alone as a first book on Haskell, unless one has had prior exposure to functional

programming.

Real World Haskell, by O'Sullivan, Stewart, and Goerzen, has some good introductory material as well as some

interesting real-world examples. It's on Safari.

The Haskell School of Expression, by Paul Hudak, was one of the first Haskell books I owned. I didn't find it very

helpful at the time but I've since grown to appreciate it. It's on Safari.

If you don't mind spending some money, then I recommend Haskell: The Craft of Functional Programming, 3 edition,rd

by Simon Thompson. It's very thorough; it doesn't make the sort of leaps that can leave beginners puzzled.

Ruby:

Safari has numerous Ruby books but it doesn't have the Ruby book I currently like the best, which is this:

Programming Ruby 1.9 & 2.0 (4th edition): The Pragmatic Programmers' Guide

http://pragprog.com/book/ruby4/programming-ruby-1-9-2-0

The Ruby book on Safari that I currently like the best is The Ruby Programming Language by David Flannagan and

Yukihiro Matsumoto.

Prolog:

Safari has zero Prolog titles but an excellent text, Programming in Prolog, 5th edition, by Clocksin and Mellish, is

available as a PDF that can be downloaded through the library. Get a copy NOW, in case licensing agreements change

during the semester. Here's a link:

http://ezproxy.library.arizona.edu/login?url=http://dx.doi.org/10.1007/978-3-642-55481-0

Another Prolog book I really like is freely available on the net, albeit as pages scanned as images:

Prolog Programming in Depth, by Covington, Nute, and Vellino

http://www.covingtoninnovations.com/books/PPID.pdf

I'll make available on Piazza an OCR'd version of Covington's book with a hidden text layer added, so it can be

searched.

Note that Safari can be accessed off-campus using the VPN or by using the library's proxy. Here's the proxy-based URL for

Safari: http://proquest.safaribooksonline.com.ezproxy1.library.arizona.edu/ Hit it and then click "Start Using Safari"

under "Academic License & Public Library Users".

– 2 –

http://pragprog.com/book/ruby4/programming-ruby-1-9-2-0
http://ezproxy.library.arizona.edu/login?url=http://dx.doi.org/10.1007/978-3-642-55481-0
http://www.covingtoninnovations.com/books/PPID.pdf
http://proquest.safaribooksonline.com.ezproxy1.library.arizona.edu/

Grading Structure

My goal is for everyone to earn an "A" in this course.

The final grade will comprise the following:

Assignments 60%

Pop quizzes 5%

Mid-term exam 13%

Final exam 22%

Final grades will be based on a ten-point scale: 90 or better is a guaranteed A, 80 or better is a B, and so forth. The lower

bounds may be adjusted downwards to accommodate clustering of grades and/or other factors.

It is my goal that you will need to spend, on average, no more than ten hours per week, counting lectures, to learn the course

material and get an "A" in this course. If you find that you’re needing to spend more time than that, let’s talk about it.

You are strongly encouraged to contest any assigned score that you feel is not fair.

There is no attendance component in the grade—if you find that my lectures aren’t worth your time, feel free to cut class!

The mid-term exam is tentatively scheduled for Thursday, March 10, the last class before Spring Break. It will cover all the

Haskell material and some amount of Ruby.

My reading of http://www.registrar.arizona.edu/schedule2161/exams/tr.htm indicates that the final exam will be

Monday, May 9, 2016, 3:30-5:30 pm, in our regular classroom. The final exam will be comprehensive but with more

emphasis on Ruby and Prolog than Haskell.

My goal is to distribute language-specific points as evenly as possible between the three languages, across both assignments

and exams.

Assignments

Assignments will largely consist of programming problems but other types of problems, such as short answer questions, essay

questions, and diagrams, may appear as well. There will be a video project, too. As I write this I anticipate that there will be

seven major assignments, one every two weeks, and some number of minor assignments but those counts and timings are

subject to change. There will be a total of 600 points worth of assignments. Based on 600 total assignment points, a ten point

homework problem corresponds to one point on your final average.

For programming problems great emphasis will be placed on the ability to deliver code whose output exactly matches the

specification. Failure to achieve that will typically result in large point deductions, sometimes the full value of the problem.

My view is that it's a Bad Thing to give any credit for code that doesn’t work. Programs that don't compile or that mostly

don't work will earn a grade of zero, regardless of how close to working they might be. Additionally, non-general

solutions, which might have the expected output "wired-in", will very likely earn a grade of zero.

Unless specifically requested in an assignment write-up, no comments are required in any code. Use comments as you see fit.

My view is that programming assignments are to help you learn the course material—I don't view an assignment as a

take-home exam. As a rule, you'll learn more if you can get through an assignment without asking for a lot of help; but if you

reach a point where you simply aren't making progress and you're running out of ideas or time, then you surely should ask for

help.

Each assignment will specify a precise due date and time. As a rule, late assignment submissions are not accepted and

result in a grade of zero. There are no late days.

Extensions may be granted to the class as a whole if problems arise with an assignment or with departmental or university

– 3 –

http://www.registrar.arizona.edu/schedule2161/exams/tr.htm

computing facilities.

Extensions for individuals may be granted in certain cases. The key factor that leads to an extension is that due to

circumstances beyond the student's control, the student's work is, was, or will be impeded, and it is impractical for the

student to make up for the lost time.

Accident, illness, friend/family crises, and significantly disruptive failures of technology are examples of circumstances that I

generally consider to be beyond a student's control. On the other hand, for example, an extension due to assignments or

exams in other classes is extremely unlikely. Travel, such as an interviewing trip, may merit an extension, but pre-trip

discussion and approval of the extension is strongly recommended. Unexpected hours at a job, such as needing to fill in for a

sick co-worker, may warrant an extension. Ultimately, however, each situation is unique; you are strongly encouraged to

contact me if you believe an extension may be warranted. If you believe an extension is warranted, DO NOT work on an

assignment (or even think about it) past the deadline; wait for an extension to be granted.

Extensions are granted in the form of an amount of time, such as eight hours. An eight-hour extension can be pictured as a

count-down timer with an initial setting of eight hours. The timer runs whenever you are working on the assignment,

whether that be typing in code or simply thinking about it.

Here's a scenario involving an extension:

Your new laptop catches fire and burns itself into a cinder eight hours before midnight deadline on a Wednesday. I

would likely grant you an eight-hour extension. On Friday, your next chance to get to the store, you get a new laptop

and you're operational by Friday night. You might spend four hours Friday night working on the assignment, take off

all day on Saturday and Sunday, spend two more hours on Monday and get absolutely stuck, and finish it up after a

couple of questions during office hours on Wednesday.

You will be on your honor to keep written track of the time spent during an extension and not exceed the amount granted.

All holidays or special events observed by organized religions will be honored for those students who show affiliation with

that particular religion. Absences pre-approved by the UA Dean of Students (or Dean's designee) will be honored.

Bug Bounties

A "bug bounty" of one assignment point of extra credit will be awarded to the first student to report a particular bug

in an assignment. Bugs might take the form of errors in examples, ambiguous statements, incomplete specifications, etc. As

a rule, simple misspellings and minor typographical errors won't qualify for a bug bounty point; but each situation is

unique—you are encouraged to report any bugs you find. Any number of bug bounty points may be earned for an assignment

and will be added to the grade for that assignment.

Bug bounty points may also awarded for bugs in the slides, my Piazza postings, quizzes, exams, and this syllabus. Such

points are added to the next assignment.

Please report bugs by mail or IM, not via Piazza, to give me a chance to filter any false positives.

Don't interrupt lectures to point out minor bugs on slides but do speak up if an error seems serious. My usual practice is to

only put code and commands onto a slide with copy/paste after testing it first, but if you see an error in code or commands,

speak up.

Quizzes

There will be some number of "pop" quizzes. Quizzes will typically be a handful of questions, be allocated three minutes or

less, and be worth 1-5 quiz points. There will be a total of 50 quiz points, corresponding to 5% of the final grade. Quizzes

may be conducted at any time during the class period. In some cases a quiz may be given simply to see what portion of the

class grasped some just-presented material and be graded on the basis of participation rather than correctness.

Computing Facilities

You're free to develop solutions for programming problems on any machine you wish but your solutions will be graded on the

– 4 –

CS machine named "lectura", so it's important to test your solutions on lectura before you submit them for grading.

By virtue of being enrolled in this class you should already have a CS computing account with the same name as your UA

NetID but a password that's likely different (a good practice). With that account you can login on any of the CS instructional

machines, including lectura. The files in your home directory tree are stored on a server and appear the same no matter

which CS machine you're logged into.

My UNIX slides from 352 in Fall 2015 have details about logging into lectura, resetting your password, and more. Those

slides are here: http://www.cs.arizona.edu/classes/cs352/fall15/unix.pdf. See slides 14-21 for details about logging in.

Slides 74-102 discuss options for editing files on lectura and tools like WinSCP and DropSync, to keep directories on lectura

synchronized with corresponding directories your laptop.

The CS computing facilities are described in http://cs.arizona.edu/computing/facilities. The FAQs at

http://faq.cs.arizona.edu have lots of answers.

Office Hours

I truly enjoy working with students. I believe that interaction with students outside the classroom is a vital aspect of teaching

a course. I will do everything possible to make myself accessible to you.

I prefer to conduct office hours in a group-style, round-robin manner. You needn't wait in the hallway if I'm working with

another student; you may join us and listen in if you so desire. If several persons each have questions, I will handle one

question at a time from each person in turn. I will often give priority to short questions (i.e., questions with short answers)

and to persons having other commitments that constrain their waiting time. (Speak up when you fall in either of these

categories.) If for some reason you would like to speak with me in private, let me know; I will clear the office. Or, make an

appointment to meet with me outside of office hours.

Students who make proactive, not reactive, use of office hours usually achieve the best results. Proactive use of office

hours includes asking questions about material on the slides and in the texts, asking questions about how to better use tools,

discussing how to approach problems, etc. If you're familiar with Covey's The Seven Habits of Highly Effective People you

might recognize those as "Quadrant II" activities—important, but not urgent.

Reactive use of office hours is typically centered around simply getting code to work one way or another (Covey's "Quadrant

I"—important and urgent).

Piazza

As mentioned above, we'll be using Piazza. All students are strongly encouraged to participate freely. I hope you’ll post

questions and comments related to the course material, recommendations for handy tools, URLs for interesting web posts and

videos, and whatever else you think is worth mentioning as long as it relates to the course material in some way. Posts about

CS-related job opportunities, and events like programming contests and hackathons are welcome, too.

The initial post in any discussion thread that I start is considered to be part of the course material—you are

responsible for reading each and every one, and taking action when appropriate. For example, I might ask you to read

an article, or experiment with a web site of interest. You may learn more by reading follow-ups by classmates and by me, but

at exam- or quiz-time I won't expect you to have read each and every follow-up.

When answering questions on Piazza, the TAs and I will give priority to well-focused questions. And, it's often the case that

the task of developing a well-focused question will lead you to an answer on your own.

You can make anonymous posts, but be aware that such posts are only anonymous to classmates, not me or the TAs.

Needless to say, BE CAREFUL that Piazza posts don't give away the solution for a problem. If at all in doubt, send mail

instead. (See Mail below.) A common case for a post that gives away a solution is when a student is very close to the

solution, but doesn't realize it, perhaps because a tiny piece is missing. Haskell and Prolog solutions are often very short,

sometimes just a line or two, so posting any code or describing any elements of a solution is very risky.

– 5 –

http://www.cs.arizona.edu/classes/cs352/fall15/unix.pdf
http://www.cs.arizona.edu/computing/facilities/
http://faq.cs.arizona.edu/

The typical penalty for giving away a problem is that the guilty student will be required to create an equally great problem as

a replacement.

Piazza's "Private posts"—posts seen only by me and the TAs—are disabled because every once in a while somebody forgets to

mark an intended private post as private, and everybody sees their code, or more.

Part of the idea of Piazza is to facilitate students helping each other, so don't hesitate to answer questions when you're so

inclined. If a post is plain wrong, I'll add a correction. If a post is great, I'll endorse it. If I'm silent, then its quality is

probably somewhere in the middle.

If you post a question and later solve it yourself, save everybody some time by posting a follow-up saying the question has

been resolved.

Mail

For private communication with the TAs and me, mail to 372s16@cs.arizona.edu. To ensure quality and accuracy, I

want to see all mail between students and TA's. If you're replying to a TA's response to a question, use your mailer's "Reply

All" to follow the Cc:'s.

If an email message asks a question or raises a point that I think should be shared with the class, I'll share it. If I think the

post deserves kudos, I'll identify the author unless the post specifically requests anonymity, in which case I'll say something

like "A student wrote..."

Instant Messaging

IM can be very effective, especially for short questions. Skype is my IM tool of choice. My id on Skype and other popular IM

services is x77686d. If an IM session starts to run long, I'll often suggest adding in voice and maybe http://join.me, too.

Don't pay much attention to my Skype status—sometimes I'm not available when I'm "Online", and at other times I might be

invisible but happy to answer. I recommend you start with an "ayt" ("Are you there?") and then follow with your question if I

respond.

It's hard to characterize what's best posted on Piazza versus asking on IM so I won't wrestle with that question here.

Original Thoughts

In the movie comedy "Broadcast News" a 14 year-old high-school valedictorian receives a post-commencement beating from

a group of bullies. After picking himself up, one of the things he shouts to wound his departing attackers is, "You'll never

have an original thought!" That notion of an "original thought" has stayed with me. I hope that you'll have some original

thoughts during this semester.

I offer an award of a half-point on your final average for each Original Thought. Observations, analogies, quotable quotes,

and clever uses of tools and language constructs are some examples of things that have qualified as Original Thoughts in my

classes. Note that an Original Thought does not need to be something that's probably never been thought of before; it just

needs to be something that I consider to be reasonably original for you.

Sometimes I'll point out that something you said in class or office hours, or wrote in your observations for an assignment,

strikes me as an Original Thought. If you self-identify a potential Original Thought, let me know. In some cases I'll see a

glimmer of an Original Thought in something, and encourage you to explore the idea a bit more.

Of course, an Original Thought needs to be something you’ve thought up yourself—don’t send in something you found

elsewhere, like a quote, just because it strikes you as being original!

The "bar" rises with each Original Thought for an individual—it's harder to earn a second Original Thought than a first, and

a third is harder still.

– 6 –

http://join.me,

Academic Integrity

It is unfortunate that this section need be included but experience sadly shows that some students are willing to sacrifice

their integrity to obtain a grade they have not earned. For those students who would never cheat, I apologize for the

inclusion of this section.

Capsule summary: Don't cheat in my class. Don't make it possible for anybody else to cheat. One strike and you're

out!

You are responsible for understanding and complying with the University's Code of Academic Integrity. It can be found at

http://deanofstudents.arizona.edu/codeofacademicintegrity. Among other provisions, the Code demands that the work

you submit is your own and that submitted work will not subsequently be tampered with. Copying of another student's

programs or data is prohibited when they are part of an assignment; it is immaterial whether the copying is by computer,

photograph or other means. Allowing such copying, thus facilitating academic dishonesty, is also a Code violation.

In addition to ruining one's grade and damaging one's future, the processing of an academic integrity case requires hours of

work by myself and others. I am happy to spend hours helping a student who is earnestly trying to learn the material, but I

truly loathe every minute spent on academic integrity cases. Even the very simplest of cases often takes 3-4 hours of my time,

not to mention the time of office staff and others.

A violation of the Code of Academic Integrity will typically result in ALL of the following sanctions:

1. Assignment of failing grade for the course

2. A permanent transcript annotation, like "FAILING GRADE ASSIGNED DUE TO CHEATING"

3. Recommendation of a one-semester suspension from the university

When a student is caught cheating and I remind them of the above sanctions they often respond by sending me an email

message that is hundreds of words long. They usually start by saying that a failing grade is surely sufficient punishment and

that they have learned their lesson; they won't cheat again. They go on to say that some employers won't consider hiring a

student whose transcript shows evidence of cheating. (True.) Then they talk about how a suspension from the university will

cause them to lose scholarships, job offers, visas, and more. Some mention ill or aging family members who might not live to

see them graduate if a suspension is imposed.

If you ever find yourself considering whether cheating is worth the risk, first imagine how the three sanctions above would

impact you and your family. I'm willing to go to great lengths to help students learn the course material but if a student

cheats, I'm equally willing to impose great penalties.

It is difficult to concisely and completely describe where reasonable collaboration stops and cheating begins, but here are

some guidelines:

• It is surely cheating to submit code or text that was not written by you. Exception: If I work you through any part of a

solution, either individually or in a group setting, you may freely use any code developed in that process. However, you

may not pass along that code to anyone else.

• It is surely cheating to send another student any portion of a solution.

• I consider it to be reasonable to work together on assignments to get to the point of understanding the problems and the

language or library elements that are required for solutions.

• I consider it to be reasonable to help another student find a bug if (1) you've finished that problem, and (2) your help

consists of asking questions that help the other student to see the problem for themselves. If you find yourself about to

dictate code to a classmate, STOP! (Note that occasionally during office hours you will see me dictate code to a student

but that's because I've decided that's the best way to help them learn given the full situation at hand. You do not have

that prerogative.)

• I consider it to be reasonable to exchange test cases unless test cases are one of the deliverables for a problem.

• If you receive help on a solution but are unable to fully explain how it works, it is surely a mistake to submit it as your

– 7 –

http://deanofstudents.arizona.edu/codeofacademicintegrity

own work.

• If your gut feeling is that you're cheating on an assignment or helping somebody else cheat, you probably are.

• The vast resources of the Internet raise some interesting issues. See the section below on Google, Stack Overflow,

and more.

• If in the heat of the moment you submit a solution that is not fully yours, or give your work away, and you later

reconsider your actions, you and any recipients will at worst lose points for the work involved if you confess before your

act is discovered. Conversely, further dishonesty when confronted, which invariably increases the time expenditure,

raises the likelihood of more extensive penalties, like a recommendation for a multiple-semester suspension or outright

expulsion from the University.

Cheating almost always starts when one student has easy access to the solutions of another. You are expected to take

whatever steps are necessary to guard your solutions from others in the class. For example, you should have an unguessable,

uncommon password and never share it. Hardcopy should not go into a recycling bin—take it home and dump it in a recycle

bin when the course is over. Personal machines, be them laptops or home desktops, should be behind a hardware firewall or

running a software firewall.

Failure to take reasonable precautions to ensure the privacy of your solutions may be construed to be facilitating

dishonesty, a Code violation. For example, having a weak password such as, but not limited to, your first name, your last

name, your phone number, your initials, your sweetie's name, your pet's name, a reversed name, a sequence of consecutive

keys, or a common password could be viewed as facilitation of dishonesty. For one list of common passwords see

http://cs.arizona.edu/~whm/common-passwords.txt (If you know of a bigger, better list, let me know.) Hint: Don't look

for your password by doing grep MY-PASSWORD common-passwords.txt—commands like ps and w show the

arguments for currently-running commands!

For some interesting reading about password choice, see http://wpengine.com/unmasked.

Leaving a logged-in and unlocked machine unattended in the presence of another person, even a friend, is

questionable. Use a screen locker!

Be very careful when typing a password in the presence of others, be them friends or strangers. The single worst cheating

case I've ever handled started when the password of a two-fingered typist was surreptitiously observed. Don't hesitate to ask

someone, even a friend, to turn their head when you're typing your password.

Malware is a Federal Crime

"Malware, short for malicious software, is any software used to disrupt computer operation, gather sensitive information, or

gain access to private computer systems."—Wikipedia

In various situations my TAs and I will be running your code. Do not be tempted to slip some malware into your code, even

for "harmless fun". Introducing malware into a computer system is a federal crime—see

http://fas.org/sgp/crs/misc/97-1025.pdf. I will request permanent expulsion from the university for any student who

submits malware, and recommend that the university notify the FBI for further action.

Google, Stack Overflow, and more

Things like Google and Stack Overflow are incredible resources for working professionals but when used to directly search

for solutions for problems on an academic assignment they can cause learning and/or creative opportunities to be forever lost.

My expectation is that the material presented in class, practice via exercises, suggested readings, resources cited, and any

prior assignments provide everything you need to do every problem on each assignment. I challenge you to limit your

Googling to searches that expand your knowledge of the material, and not try to dig up quick solutions to problems. (And, of

course, using any code found in such searches would be cheating.)

Posts on websites, IRC channels, mailing lists, etc. that solicit the answer for a problem or a significant piece thereof

– 8 –

http://www.openwall.com/passwords/wordlists/password-2011.lst
http://wpengine.com/unmasked/
https://www.fas.org/sgp/crs/misc/97-1025.pdf

will be considered to be cheating! Example:

"I'm learning Haskell and trying to write a function that returns True iff the parentheses in a string are properly

matched. Any suggestions?"

Accessibility and Accommodations

It is the University’s goal that learning experiences be as accessible as possible. If you anticipate or experience physical or

academic barriers based on disability, please let me know immediately so that we can discuss options. You are also welcome

to contact Disability Resources (520-621-3268) to establish reasonable accommodations.

Please be aware that the accessible tables and chairs in the classroom should remain available for students who find that

standard classroom seating is not usable.

– 9 –

Comparative Programming

Languages

CSC 372

Spring 2016

psst...Sign)up)for)

Piazza)while)

you're)wai7ng!)

CSC)372,)Spring)2016,)Introduc7on)slide)1)

Instructor
William Mitchell (whm)

I'm a consultant/contractor doing software development and
training of software developers. Lots with Java, C++, C,
ActionScript, Ruby, Icon, and more. Linux stuff, too.

Occasionally teach a CS course. (337, 352, 372, and others)

Adjunct instructor, not a professor.

Education:

BS CS (North Carolina State University, 1981)

MS CS (University of Arizona, 1984)

Incorrect to say "Dr. Mitchell" or "Professor Mitchell"!

CSC)372,)Spring)2016,)Introduc7on)slide)2)

Topic Sequence

•  Functional programming with Haskell

•  Imperative and object-oriented programming using

dynamic typing with Ruby

•  Logic programming with Prolog

•  Whatever else in the realm of programming languages

that we find interesting and have time for.

Note: We'll cover a selection of elements from the

languages, not everything.

CSC)372,)Spring)2016,)Introduc7on)slide)3)

Themes running through the course

•  Discerning the philosophy of a language and how it's

manifested.

•  Understanding tensions and tradeoffs in language design.

•  Acquiring a critical eye for language design.

•  Assessing the "mental footprint" of a language.

•  Learning how to learn a language. (LHtLaL)

CSC)372,)Spring)2016,)Introduc7on)slide)4)

Syllabus highlights

CSC)372,)Spring)2016,)Introduc7on)slide)5)

Prereqs, Piazza, Mail
Prerequisites

•  CSC 127B or CSC 227; CSC major.

•  But, this is a 300-level class!

•  Post-127B/227 knowledge of Java is assumed.

Piazza

•  Our forum

•  Sign up if you haven't already!

•  Private posts disabled—use mail

•  See Piazza for up to date office hours

•  If I start a thread, that first post is part of course material

Mail

•  372s16@cs.arizona.edu)goes to whm and TAs

•  For anything more than "Thanks!" use "Reply All" to

follow the Cc:'s

CSC)372,)Spring)2016,)Introduc7on)slide)6)

Teaching Assistants

Undergraduate TAs:

•  Ben Gaska (bengaska)

•  Patrick Hickey (patrickhickey)

Both Ben and Patrick have had 372 with me.

Office location, hours, and exceptions are in a pinned post

on Piazza.

CSC)372,)Spring)2016,)Introduc7on)slide)7)

Textbooks

•  No texts are required.

•  Lectures, handouts, and Piazza postings might be all you

need.

•  Syllabus and slides have recommendations for

supplementary texts, most of which are on Safari.

•  Because we only cover a subset of each language,

suggested supplementary readings are somewhat

problematic.

CSC)372,)Spring)2016,)Introduc7on)slide)8)

Grading

Grading

 ! Assignments 60%

 ! Pop quizzes 5%

 ! Mid-term exam 13%

 ! Final exam 22%

 Ten-point scale: >= 90 is A, etc. Might go lower.

Original Thoughts

 ! Half-point on final average for each

CSC)372,)Spring)2016,)Introduc7on)slide)9)

Assignments

Assignments—things like:

 ! Coding in the various languages

 ! Short answer and essay questions

 ! Diagrams

 ! One video project

Late assignments are not accepted!

No late days!

But, extensions for situations beyond your control.

CSC)372,)Spring)2016,)Introduc7on)slide)10)

We'll be using lectura

You can develop solutions on your own machines but they'll be

graded on the CS machine "lectura", and thus should be tested

there.

turnin on lectura will be used for submitting assignments.

Mail us (372s16@cs.arizona.edu) TODAY if you haven't worked

on lectura or have some gaps in your knowledge; we'll be happy

to help you get up and running there.

If you haven't had 352, I recommend you skim through my UNIX

slides:

 http://cs.arizona.edu/classes/cs352/fall15/unix.pdf

 CSC)372,)Spring)2016,)Introduc7on)slide)11)

Office hours

! I love office hours!

! Guaranteed hours posted on Piazza

! Open-door policy otherwise

! In-person interaction is most effective

! Skype preferred for IM

! http://join.me preferred for screen sharing

! OK to call my mobile but don't leave voice mail! (Send

e-mail instead.)

CSC)372,)Spring)2016,)Introduc7on)slide)12)

Suggestions for success

•  Attend every lecture.

•  Arrive on time for lectures.

•  Try at least one example on every slide. Try some what-ifs,
too.

•  Read the write-up for an assignment the day it's handed out.

•  Start on assignments early. Don't be a regular in the Thursday
Night Club.

•  Don't leave any points on the table.

•  Don't hesitate to ask for help on an assignment.

•  Don't make bad assumptions.

CSC)372,)Spring)2016,)Introduc7on)slide)13)

NO CHEATING!
Capsule summary:

 Don't cheat in my class!

 Don't make it easy for anybody else to cheat!

 One strike and you're out!

For a first offense expect these penalties:

•  Failing grade for course

•  Permanent transcript annotation

•  Recommendation for one semester university suspension

A typical first step on the road to ruin is sharing your solutions

with your best friend, roommate, etc., who swears to just learn

from your work and absolutely not turn it in as their work.

CSC)372,)Spring)2016,)Introduc7on)slide)14)

No asking the world for help!

The material covered in lectures, posted on Piazza, etc.

should be all you need to do the assignments.

I challenge you to not search the web for solutions for

problems on assignments!

Posting problem-specific questions on websites, IRC

channels, mailing lists, etc. will be considered to be

cheating!

Example: I'm learning Haskell and trying to write a

function that returns True iff the parentheses in a string

are properly matched. Any suggestions?

CSC)372,)Spring)2016,)Introduc7on)slide)15)

My Teaching Philosophy

•  I work for you!

•  My goal: everybody earns an "A" and averages less than ten
hours per week on this course, counting lecture time.

•  Effective use of office hours, e-mail, and IM can equalize
differences in learning speed.

•  I should be able to answer every pertinent question about
course material.

•  My goal is zero defects in slides, assignments, etc.
 Bug Bounty: One assignment point

•  Everything I'll expect you to know on exams will be covered
in class, on assignments, or on Piazza.

CSC)372,)Spring)2016,)Introduc7on)slide)16)

READ THE SYLLABUS!
(On the Piazza Resources page)

CSC)372,)Spring)2016,)Introduc7on)slide)17)

Assignment 1

Assignment 1

 ! On Piazza

 ! It's a survey

 ! Due Tuesday, January 19, 2:00pm

 ! Worth 10 points

 ! Maybe 10 minutes to complete

 ! Thanks for doing it!

CSC)372,)Spring)2016,)Introduc7on)slide)18)

Pictures &

Name memorization

CSC)372,)Spring)2016,)Introduc7on)slide)19)

Basic questions about

programming languages

CSC)372,)Spring)2016,)Introduc7on)slide)20)

What is a programming language?

A simple definition:

A system for describing computation.

It is generally agreed that in order for a language to be considered

a programming language it must be Turing Complete.

One way to prove a language is Turing Complete is to use it

to implement a Turing Machine, a theoretical device capable

of performing any algorithmic computation.

 Curio: github.com/elitheeli/stupid-machines

What language is most commonly mis-listed on resumes as a

programming language?

 CSC)372,)Spring)2016,)Introduc7on)slide)21)

Does it matter what language is used?

The two extremes:

•  If you’ve seen one language you’ve seen them all. Just

pick one and get to work.

•  Nothing impacts software development so much as the

language being used. We must choose very carefully!

CSC)372,)Spring)2016,)Introduc7on)slide)22)

Why study programming languages?

•  Learn new ways to think about computation.

•  Learn to see languages from a critical viewpoint.

•  Improve basis for choosing languages for a task.

•  Add some tools to the “toolbox”.

•  Increase ability to design a new language.

It's been said that a programmer should learn a new

language every year.

CSC)372,)Spring)2016,)Introduc7on)slide)23)

How old are programming languages?

Plankalkül 1945

Short Code 1949

FORTRAN 1957

ALGOL 1958

COBOL 1959

LISP 1960

BASIC 1964

PL/I 1965

SNOBOL4 1967

SIMULA 67 1967

Pascal 1971

C 1972

Prolog 1972

Smalltalk 1972

ML 1977

Icon 1979

Ada 1980

C++ 1983

Objective-C 1983

Erlang 1986

Perl 1987

Haskell 1990

Python 1990

Ruby 2/24/93

Java 1995

JavaScript 1995

PHP 3 1998

C# 2000

D 2001

Scala 2003

Clojure 2007

Go 2008

Dart 2011

Rust 2012

Corelet 2013

Hack 2014

Swift 2014

Goaldi 2015
CSC)372,)Spring)2016,)Introduc7on)slide)24)

How are languages related to each other?

Some of the many attempts at a family tree of languages:

digibarn.com/collections/posters/tongues/

levenez.com/lang/

rigaux.org/language-study/diagram.html

www.seas.gwu.edu/~mmburke/courses/csci210-

su10/tester-endo.pdf

 (Seems to be based on hopl.info data.)

CSC)372,)Spring)2016,)Introduc7on)slide)25)

How many languages are there?

en.wikipedia.org/wiki/
Alphabetical_list_of_programming_languages

 (700 +/-)

The Language List

 people.ku.edu/~nkinners/LangList/Extras/langlist.htm
 "about 2,500", but lots of new ones missing

Online Historical Encyclopaedia of Programming Languages

 hopl.info
8,945 but has things like "JAVA BEANS" and minor
variants like both ANSI Pascal and ISO Pascal.

Bottom line: Nobody knows how many programming languages
have been created but it's in the thousands.

CSC)372,)Spring)2016,)Introduc7on)slide)26)

What languages are popular right now?

Measured by job postings:
 indeed.com/jobtrends

The TIOBE index (multiple factors):

www.tiobe.com/index.php/content/paperinfo/tpci/
index.html

Measured by GitHub repositories:
 github.com/blog/2047-language-trends-on-github
adambard.com/blog/top-github-languages-2014/

RedMonk

redmonk.com/sogrady/2015/01/14/language-
rankings-1-15/

What is a good way to measure language popularity?

CSC)372,)Spring)2016,)Introduc7on)slide)27)

How do languages help us?

•  Free the programmer from details

int i = 5;

x = y + z * q;

•  Detect careless errors

int f(String s, char c);

...

int i = f('i', "Testing");

•  Provide constructs to concisely express a computation

for (int i = 1; i <= 10; i++)

 ...

CSC)372,)Spring)2016,)Introduc7on)slide)28)

How languages help, continued

•  Provide portability

 Examples:

•  C provides moderate source-level portability.

•  Java was designed with binary portability in mind.

•  Facilitate using a paradigm, such as functional, object-

oriented, or logic programming.

CSC)372,)Spring)2016,)Introduc7on)slide)29)

How are languages specified?
The specification of a language has two key facets.

•  Syntax:

Specifies the sequences of symbols that are valid

programs in the language.

•  Semantics:

Specifies the meaning of a sequence of symbols.

Some languages have specifications that are approved as

international standards. Others are defined by nothing more

than the behavior of a lone implementation.

CSC)372,)Spring)2016,)Introduc7on)slide)30)

Syntax vs. semantics

Consider this expression:

 a[i] = x

What are some languages in which it is syntactically valid?

In each of those languages, what is the meaning of it?

What are various meanings for these expressions?

 x || y

 x y

 *x

CSC)372,)Spring)2016,)Introduc7on)slide)31)

What are the building blocks of a language?

•  Data types

•  Operators

•  Control structures

•  Support for encapsulation

•  Functions

•  Abstract types / Classes

•  Packages / Modules

•  Error / Exception handling

•  Standard library

Building blocks

CSC)372,)Spring)2016,)Introduc7on)slide)32)

What are qualities a language might have?

•  Simplicity (“mental footprint”)

•  Expressive power

•  Readability of programs

•  Orthogonality

•  Reliability of programs

•  Run-time efficiency

•  Practical development project size

•  Support for a style of programming

What are some tensions between these qualities?

CSC)372,)Spring)2016,)Introduc7on)slide)33)

What factors affect popularity?

•  Available implementations

•  Documentation

•  Community

•  Vectors of “infection”

•  Ability to occupy a niche

•  Availability of supporting tools, like debuggers and IDEs

•  Cost

CSC)372,)Spring)2016,)Introduc7on)slide)34)

The philosophy of a language
What is the philosophy of a language? How is it manifested?

C
•  Close to the machine
•  Few constraints on the programmer
•  High run-time efficiency
•  “What you write is what you get.”

C++
•  Close to both machine and problem being solved
•  Support object-oriented programming
•  “As close to C as possible, but no closer.” — Stroustrup

PostScript
•  Page description
•  Intended for generation by machines, not humans

What is the philosophy of Java?

CSC)372,)Spring)2016,)Introduc7on)slide)35)

A Little U of A CS History

CSC)372,)Spring)2016,)Introduc7on)slide)36)

The Founding of UA CS

The UA CS department was founded by Ralph Griswold in

1971. (Hint: know this! Mnemonic aid: ASCII 'G' is 71.)

Griswold was Head of Programming Research at Bell Labs

before coming to UA.

Griswold and his team at Bell Labs created the SNOBOL

family of languages, culminating with SNOBOL4.

Griswold's interest and prominence in programming

languages naturally influenced the course of research at UA.

CSC)372,)Spring)2016,)Introduc7on)slide)37)

UA CS's language heritage

Cg

EZ

Icon

Leo

MPD

Ratsno

Rebus

Seque

SIL2

SL5

SR

SuccessoR

Y

Goaldi (in progress!)

In the 1970s and 1980s UA Computer Science was recognized

worldwide for its research in programming languages.

These are some of the languages created here:)

Along with language design, lots of work was focused on

language implementation techniques.

CSC)372,)Spring)2016,)Introduc7on)slide)38)

My intersection with Griswold's work

I learned FORTRAN IV and BASIC in a summer school course at
Wake Forest during summer after high school.

In first trip to library at NCSU, took home a stack of books on
programming languages, including SNOBOL4. Was totally mystified.

Learned PL/I in two-course introduction to computer science sequence.

Took a one-unit course on SNOBOL4 during sophomore year. Used
SPITBOL whenever possible in courses thereafter.

Attended a colloquium at NCSU where Ralph Griswold presented a
new programming language, named Icon.

Ported Icon to an IBM mainframe and DEC's VAX/VMS.

Went to graduate school here at UA, and worked on Icon as a graduate
research assistant for Dr. Griswold.

CSC)372,)Spring)2016,)Introduc7on)slide)39)

Functional
Programming with

Haskell
CSC 372, Spring 2016

The University of Arizona

William H. Mitchell

whm@cs

!
CSC!372!Spring!2016,!Haskell!Slide!1!

Programming Paradigms

CSC!372!Spring!2016,!Haskell!Slide!2!

Thomas Kuhn's The Structure of Scientific Revolutions (1962)

describes a paradigm as a scientific achievement that is...

•  "...sufficiently unprecedented to attract an enduring group

of adherents away from competing modes of scientific

activity."

•  "...sufficiently open-ended to leave all sorts of problems

for the redefined group of practitioners to resolve."

Kuhn cites works such as Newton's Principia, Lavoisier's

Chemistry, and Lyell's Geology as serving to document

paradigms.

Paradigms

CSC!372!Spring!2016,!Haskell!Slide!3!

A paradigm provides a conceptual framework for

understanding and solving problems.

A paradigm has a world view, a vocabulary, and a set of

techniques that can be applied to solve a problem.

 (Another theme for us.)

A question to keep in mind:

What are the problems that programming paradigms

attempt to solve?

Paradigms, continued

CSC!372!Spring!2016,!Haskell!Slide!4!

From the early days of programming into the 1980s the

dominant paradigm was procedural programming:

Programs are composed of bodies of code (procedures) that

manipulate individual data elements or structures.

Much study was focused on how best to decompose a large

computation into a set of procedures and a sequence of calls.

Languages like FORTRAN, COBOL, Pascal, and C facilitate

procedural programming.

Java programs with a single class are typically examples of

procedural programming.

The procedural programming paradigm

CSC!372!Spring!2016,!Haskell!Slide!5!

In the 1990s, object-oriented programming became the

dominant paradigm. Problems are solved by creating systems

of objects that interact.

"Instead of a bit-grinding processor plundering data

structures, we have a universe of well-behaved objects that

courteously ask each other to carry out their various

desires."—Dan Ingalls

Study shifted from how to decompose computations into

procedures to how to model systems as interacting objects.

Languages like C++ and Java facilitate use of an object-

oriented paradigm.

The object-oriented programming paradigm

CSC!372!Spring!2016,!Haskell!Slide!6!

The programming paradigm(s) we know affect how we

approach problems.

If we use the procedural paradigm, we'll first think about

breaking down a computation into a series of steps.

If we use the object-oriented paradigm, we'll first think about

modeling the problem with a set of objects and then consider

their interactions.

The influence of paradigms

CSC!372!Spring!2016,!Haskell!Slide!7!

If a language makes it easy and efficient to use a particular

paradigm, we say that the language supports the paradigm.

What language features are required to support procedural

programming?

•  The ability to break programs into procedures.

What language features does OO programming require, for OO

programming as you know it?

•  Ability to define classes that comprise data and methods

•  Ability to specify inheritance between classes

Language support for programming paradigms

CSC!372!Spring!2016,!Haskell!Slide!8!

Paradigms in a field of science are often incompatible.

 Example: geocentric vs. heliocentric model of the universe

Can a programming language support multiple paradigms?

 Yes! We can do procedural programming with Java.

The programming language Leda fully supports the procedural,

imperative, object-oriented, functional, and logic programming

paradigms.

Wikipedia's Programming_paradigm cites 60+ paradigms!

But, are "programming paradigms" really paradigms by Kuhn's

definition or are they just characteristics?

Multiple paradigms

CSC!372!Spring!2016,!Haskell!Slide!9!

The imperative paradigm has its roots in programming at the

machine level.

Machine-level programming:

•  Instructions change memory locations or registers

•  Instructions alter the flow of control

Programming with an imperative language:

•  Expressions compute values based on memory contents

•  Assignments alter memory contents

•  Control structures guide the flow of control, perhaps

iterating to accumulate a result.

The imperative programming paradigm

CSC!372!Spring!2016,!Haskell!Slide!10!

Solutions using the procedural or object-oriented paradigms

typically make use of the imperative programming paradigm, too.

Two fundamental characteristics of languages that support the

imperative paradigm:

•  "Variables"—data objects whose values typically change as

execution proceeds.

•  Support for iteration—a “while” control structure, for

example.

The imperative programming paradigm

CSC!372!Spring!2016,!Haskell!Slide!11!

Here's an imperative solution in Java to sum the integers in an
array:

 int sum(int a[])
 {
 int sum = 0;
 for (int i = 0; i < a.length; i++)
 sum += a[i];

 return sum;
 }

The for loop causes i to vary over the indices of the array, as
the variable sum accumulates the result.

How can the above solution be improved?

Imperative programming, continued

CSC!372!Spring!2016,!Haskell!Slide!12!

With Java's "enhanced for", also known as a for-each loop, we
can avoid array indexing.

 int sum(int a[])
 {
 int sum = 0;
 for (int val: a)
 sum += val;

 return sum;
 }

Is this an improvement? If so, why?

Can we write sum in a non-imperative way?

Imperative programming, continued

CSC!372!Spring!2016,!Haskell!Slide!13!

We can use recursion to get rid of loops and assignments,
but...ouch!

 int sum(int a[]) { return sum(a, 0); }

 int sum(int a[], int i)
 {
 if (i == a.length)
 return 0;
 else
 return a[i] + sum(a, i+1);
 }

Wrt. correctness, which of the three versions would you bet
your job on?

Imperative programming, continued

CSC!372!Spring!2016,!Haskell!Slide!14!

Programming paradigms can apply at different levels:

•  Making a choice between procedural and object-oriented
programming fundamentally determines the high-level structure
of a program.

•  The imperative paradigm is focused more on the small aspects

of programming—how code looks at the line-by-line level.

Java combines the object-oriented and imperative paradigms.

The procedural and object-oriented paradigms apply to

programming in the large.

The imperative paradigm applies to programming in the small.

The level of a paradigm

CSC!372!Spring!2016,!Haskell!Slide!15!

Background:

Value, type, side effect

CSC!372!Spring!2016,!Haskell!Slide!16!

An expression is a sequence of symbols that can be evaluated to produce a
value.

Here are some Java expressions:

 'x'
 i + j * k
 f(args.length * 2) + n

There are three questions that are commonly considered when looking at
an expression in conventional languages like Java and C:

•  What value does the expression produce?

•  What's the type of that value?

•  Does the expression have any side effects?

Mnemonic aid: Imagine you're wearing a vest that's reversed.
 "vest" reversed is "t-se-v": type/side-effect/value.

Value, type, and side effect

CSC!372!Spring!2016,!Haskell!Slide!17!

What is the value of the following Java expressions?
3 + 4
 7

1 < 2
 true

"abc".charAt(1)
 'b'

s = "3" + 4
 "34"

"a,bb,c3".split(",")
 An array with three elements: "a", "bb" and "c3"

"a,bb,c3".split(",")[2]
 "c3"

"a,bb,c3".split(",")[2].charAt(0) == 'X'
 false

Value, type, and side effect, continued

CSC!372!Spring!2016,!Haskell!Slide!18!

What is the type of each of the following Java expressions?
3 + 4
 int

1 < 2
 boolean

"abc".charAt(1)
 char

s = "3" + 4
 String

"a,bb,c3".split(",")
 String []

"a,bb,c3".split(",")[2]
 String

"a,bb,c3".split(",")[2].charAt(0) == 'X'
 boolean

Value, type, and side effect, continued

When we ask,

"What's the type of this expression?"

we're actually asking this:

"What's the type of the value produced by this

expression?"

CSC!372!Spring!2016,!Haskell!Slide!19!

A "side effect" is a change to the program's observable data or

to the state of the environment in which the program runs.

Which of these Java expressions have a side effect?

x + 3 * y

 No side effect. A computation was done but no

evidence of it remains.

x += 3 * y

 Side effect: 3 * y is added to x.

s.length() > 2 || s.charAt(1) == '#'

 No side effect. A computation was done but no evidence

of it remains.

Value, type, and side effect, continued

CSC!372!Spring!2016,!Haskell!Slide!20!

More expressions to consider wrt. side effects:

"testing".toUpperCase()

 A string "TESTING" was created somewhere but we

can't get to it. No side effect.

L.add("x"), where L is an ArrayList

 An element was added to L. Definitely a side-effect!

System.out.println("Hello!")

 Side effect: "Hello!" went somewhere.

window.checkSize()

 We can't tell without looking at window.checkSize()!

Value, type, and side effect, continued

CSC!372!Spring!2016,!Haskell!Slide!21!

Side effects are the hallmark of imperative programing.

Programs written in an imperative style are essentially an

orchestration of side effects.

Recall:

 int sum = 0;

 for (int i = 0; i < a.length; i++)

 sum += a[i];

Can we program without side effects?

The hallmark of imperative programming

CSC!372!Spring!2016,!Haskell!Slide!22!

The Functional Paradigm

CSC!372!Spring!2016,!Haskell!Slide!23!

A key characteristic of the functional paradigm is writing

functions that are like pure mathematical functions.

Pure mathematical functions:

•  Always produce the same value for given input(s)

•  Have no side effects

•  Can be easily combined to produce more powerful

functions

Ideally, functions are specified with notation that's similar to

what you see in math books—cases and expressions.

The functional programming paradigm

CSC!372!Spring!2016,!Haskell!Slide!24!

Other characteristics of the functional paradigm:

•  Values are never changed but lots of new values are

created.

•  Recursion is used in place of iteration.

•  Functions are values. Functions are put into data

structures, passed to functions, and returned from

functions. Lots of temporary functions are created.

Based on the above, how well would Java support functional

programming? How about C?

Functional programming, continued

CSC!372!Spring!2016,!Haskell!Slide!25!

Haskell basics

CSC!372!Spring!2016,!Haskell!Slide!26!

Haskell is a pure functional programming language; it has no

imperative features.

Was designed by a committee with the goal of creating a

standard language for research into functional programming.

First version appeared in 1990. Latest version is known as

Haskell 2010.

Is said to be non-strict—it supports lazy evaluation.

It is not object-oriented in any way.

What is Haskell?

CSC!372!Spring!2016,!Haskell!Slide!27!

Website: haskell.org
 All sorts of resources!

Books: (on Safari, too)
 Learn You a Haskell for Great Good!, by Miran Lipovača
 http://learnyouahaskell.com (Known as LYAH.)

Programming in Haskell, by Hutton

 Note: See appendix B for mapping of non-ASCII chars!

Real World Haskell, by O'Sullivan, Stewart, and Goerzen
 http://realworldhaskell.org (I'll call it RWH.)

Haskell 2010 Report (I'll call it H10.)

 http://haskell.org/definition/haskell2010.pdf

Haskell resources

CSC!372!Spring!2016,!Haskell!Slide!28!

On lectura we can interact with Haskell by running ghci:

% ghci
GHCi, version 7.4.1: ...more... :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
>

With no arguments, ghci starts a read-eval-print loop (REPL)—
expressions that we type at the prompt (>) are evaluated and the
result is printed.

Note: the standard prompt is Prelude> but I've got

 :set prompt "> "
in my ~/.ghci file.

Interacting with Haskell

CSC!372!Spring!2016,!Haskell!Slide!29!

Let's try some expressions with ghci:

 > 3+4
7

> 3 * 4.5
13.5

> (3 > 4) || (5 < 7)
True

> 2 ^ 200
160693804425899027554196209234116260252220299378
2792835301376

> "abc" ++ "xyz"
"abcxyz"

Interacting with Haskell, continued

CSC!372!Spring!2016,!Haskell!Slide!30!

Go live!

We can use :help to see available commands:

> :help

 Commands available from the prompt:

 <statement> evaluate/run <statement>

 : repeat last command

 :{\n ..lines.. \n:}\n multiline command

 ...lots more...

Interacting with Haskell, continued

CSC!372!Spring!2016,!Haskell!Slide!31!

The command :set +t causes types to be shown:
> :set +t
> 3+4
7
it :: Integer

> 3 == 4
False
it :: Bool

"::" is read as "has type". The value of the expression is
"bound" to the name it.

Note that :set +t is not a Haskell expression––it's a command
recognized by ghci.

Interacting with Haskell, continued

CSC!372!Spring!2016,!Haskell!Slide!32!

We can use it in subsequent computations:

> 3+4

7

it :: Integer

> it + it * it

56

it :: Integer

> it /= it

False

it :: Bool

Interacting with Haskell, continued

CSC!372!Spring!2016,!Haskell!Slide!33!

For two assignment points of extra credit:

1.  Run ghci (or WinGHCi) somewhere and try ten Haskell

expressions with some degree of variety. (Not just ten
additions, for example!) Do a :set +t at the start.

2.  Capture the output and put it in a plain text file, eca1.txt. No
need for your name, NetID, etc. in the file. No need to edit out
errors.

3.  On lectura, turn in eca1.txt with the following command:

%!turnin!372Aeca1!eca1.txt!

Due: At the start of the next lecture after we hit this slide.

Needless to say, feel free to read ahead in the slides and show
experimentation with the following material, too.

Extra Credit Assignment 1

CSC!372!Spring!2016,!Haskell!Slide!34!

lectura has version 2012.1.0.0 of the Haskell Platform, which

has version 7.4.1 of ghci but the latest version is 7.10.3.

In 7.10.x a number of functions that operate on lists were

switched to operating on "Foldable"s instead. IMO, this extra

level of abstraction makes the language harder to learn, so I

plan to avoid 7.10.x this semester.

If you want to install Haskell on your own machine, I

recommend that you get the Haskell Platform 2014.2.0.0,

which has version 7.8.3 of ghci. (URLs on next slide.)

As far as I know, there are no significant compatibility issues

between 7.8.3 and lectura's 7.4.1 that will impact our usage.

CSC!372!Spring!2016,!Haskell!Slide!35!

Haskell version issues

https://www.haskell.org/platform/prior.html has prior

versions of the Haskell Platform.

Under 2014, on the line 2014.2.0.0, August 2014 ⟹ ...

 For OS X, get "Mac OS X, 64bit".

For Windows, "Windows, 32bit" should be fine, but if

you have trouble, (1) let us know and (2) go ahead and try

the 64-bit version.

CSC!372!Spring!2016,!Haskell!Slide!36!

Haskell downloads

When ghci starts up on Linux or OS X it looks for the file
~/.ghci – a .ghci file in the user's home directory.

I have these two lines in my ~/.ghci file on both my Mac and
on lectura:

 :set prompt "> "
 :m +Text.Show.Functions

The first line simply sets the prompt to something I like.

The second line is very important:

It loads a module that allows functions to be printed as
values, although just showing <function> for function
values. Without it, lots of examples in these slides won't
work!

The ~/.ghci file

CSC!372!Spring!2016,!Haskell!Slide!37!

Goofy fact: ~/.ghci must not be group- or world-writable!

If you see something like this,

*** WARNING: /p1/hw/whm/.ghci is writable by

someone else, IGNORING!

Fix it at the shell prompt with this:

 % chmod og-w ~/.ghci

Details on .ghci and lots more can be found in

 downloads.haskell.org/~ghc/latest/docs/users_guide.pdf

CSC!372!Spring!2016,!Haskell!Slide!38!

~/.ghci, continued

On Windows, ghci and WinGHCi use a different initialization

file:

 %APPDATA%\ghc\ghci.conf

 (Note: the file is named ghci.conf, not .ghci!)

%APPDATA% represents the location of your Application

Data directory. You can find that path by typing set appdata

in a command window, like this:

C:\>set appdata

APPDATA=C:\Users\whm\Application Data

Combing the two, the full path to the file for me would be

 C:\Users\whm\Application Data\ghc\ghci.conf

~/.ghci, continued

CSC!372!Spring!2016,!Haskell!Slide!39!

Functions and function types

CSC!372!Spring!2016,!Haskell!Slide!40!

In Haskell, juxtaposition indicates a function call:

> negate 3
-3
it :: Integer

> even 5
False
it :: Bool

> pred 'C'
'B'
it :: Char

> signum 2
1
it :: Integer

Calling functions

Note: These functions and many

more are defined in the Haskell

"Prelude", which is loaded by

default when ghci starts up.

CSC!372!Spring!2016,!Haskell!Slide!41!

Function call with juxtaposition is left-associative.

signum negate 2 means (signum negate) 2

> signum negate 2

<interactive>:40:1: -- It's an error!

 No instance for (Num (a0 -> a0)) arising from a

use of `signum'

...

We add parentheses to call negate 2 first:

> signum (negate 2)

-1

it :: Integer

Calling functions, continued

CSC!372!Spring!2016,!Haskell!Slide!42!

Function call with juxtaposition has higher precedence than any
operator.

> negate 3+4
1
it :: Integer

negate 3 + 4 means (negate 3) + 4. Use parens to force + first:

> negate (3 + 4)
-7
it :: Integer

> signum (negate (3 + 4))
-1
it :: Integer

Calling functions, continued

CSC!372!Spring!2016,!Haskell!Slide!43!

Haskell's Data.Char module has a number of functions for working

with characters. We'll use it to start learning about function types.

> :m +Data.Char (:m(odule) loads a module)

> isLower 'b'
True
it :: Bool

> toUpper 'a'
'A'
it :: Char

> ord 'A'
65
it :: Int

> chr 66
'B'
it :: Char

Function types

We can also reference a function in a

module with a qualified name:

% ghci

...

> Data.Char.ord 'G'
71

CSC!372!Spring!2016,!Haskell!Slide!44!

We can use ghci's :type command to see what the type of a

function is:

> :type isLower

isLower :: Char -> Bool (read -> as "to")

The type Char -> Bool means that isLower is a function that

takes an argument of type Char and produces a result of type

Bool.

Using ghci, what are the types of toUpper, ord, and chr?

We can use :browse Data.Char to see everything in the

module.

Function types, continued

CSC!372!Spring!2016,!Haskell!Slide!45!

Like most languages, Haskell requires that expressions be type-
consistent (or well-typed).

Here is an example of an inconsistency:

> chr 'x'
<interactive>:32:5:
 Couldn't match expected type Int with actual type Char
 In the first argument of `chr', namely 'x'

> :type chr
chr :: Int -> Char

> :type 'x'
'x' :: Char

chr requires its argument to be an Int but we gave it a Char. We
can say that chr 'x' is ill-typed.

Type consistency

CSC!372!Spring!2016,!Haskell!Slide!46!

State whether each expression is well-typed and if so, its type.

'a'

isUpper

isUpper 'a'

not (isUpper 'a')

not not (isUpper 'a')

toUpper (ord 97)

isUpper (toUpper (chr 'a'))

isUpper (intToDigit 100)

Type consistency, continued

'a' :: Char

chr :: Int -> Char

digitToInt :: Char -> Int

intToDigit :: Int -> Char

isUpper :: Char -> Bool

not :: Bool -> Bool

ord :: Char -> Int

toUpper :: Char -> Char

CSC!372!Spring!2016,!Haskell!Slide!47!

ghci uses the haskeline package to provide line-editing.

A few handy bindings:

 TAB completes identifiers

 ^A Start of line

 ^E End of line

 ^R Incremental search backwards

More:

 http://trac.haskell.org/haskeline/wiki/KeyBindings

CSC!372!Spring!2016,!Haskell!Slide!48!

Sidebar: Key bindings in ghci

As we've seen, ghci provides a REPL (read-eval-print loop)

for Haskell.

What are some other languages that have a REPL available?

How does a REPL help us learn a language?

Is there a REPL for Java?

 javarepl.com

What characteristics does a language need to support a REPL?

If there's no REPL for a language, how hard is it to write one?

Sidebar: Using a REPL to help learn a language

CSC!372!Spring!2016,!Haskell!Slide!49!

Type classes

CSC!372!Spring!2016,!Haskell!Slide!50!

Recall the negate function:

> negate 5

-5

it :: Integer

> negate 5.0

-5.0

it :: Double

What's the type of negate? (Is it both Integer -> Integer

and Double -> Double??)

What's the type of negate?

CSC!372!Spring!2016,!Haskell!Slide!51!

Bool, Char, and Integer are examples of Haskell types.

Haskell also has type classes. A type class specifies the

operations must be supported on a type in order for that type to

be a member of that type class.

Num is one of the many type classes defined in the Prelude.

:info Num shows that for a type to be a Num, it must support

addition, subtraction, multiplication and four functions:

negate, abs, signNum, and fromInteger. (The Num club!)

The Prelude defines four instances of the Num type class: Int

(word-size), Integer (unlimited size), Float and Double.

Type classes

CSC!372!Spring!2016,!Haskell!Slide!52!

Here's the type of negate:

> :type negate

negate :: Num a => a -> a

The type of negate is specified using a type variable, a.

The portion a -> a specifies that negate returns a value having

the same type as its argument.

 "If you give me an Int, I'll give you back an Int."

The portion Num a => is a class constraint. It specifies that the

type a must be an instance of the type class Num.

How can we state the type of negate in English?

negate accepts any value whose type is an instance of Num.

It returns a value of the same type.

Type classes, continued

CSC!372!Spring!2016,!Haskell!Slide!53!

What type do integer literals have?

> :type 3

3 :: Num a => a

> :type (-27) -- Note: Parens needed!

(-27) :: Num a => a

Literals are typed with a class constraint of Num, so they can

be used by any function that accepts Num a => a.

Type classes, continued

CSC!372!Spring!2016,!Haskell!Slide!54!

Let's check the type of a decimal fraction:

> :type 3.4

3.4 :: Fractional a => a

Will negate 3.4 work?

> :type negate

negate :: Num a => a -> a

> negate 3.4

-3.4

Speculate: Why does it work?

Type classes, continued

CSC!372!Spring!2016,!Haskell!Slide!55!

Type classes, continued

Adapted!from!hGp://en.wikibooks.org/wiki/Haskell/Classes_and_types!

Haskell type classes form a hierarchy. The Prelude has these:

X

CSC!372!Spring!2016,!Haskell!Slide!56!

Type classes, continued

Num$

Int,!Integer,!

Float,!Double!

Frac)onal$

Float,!

Double!

The arrow from Num to Fractional means that a Fractional can

be used as a Num. (What does that remind you of?)

Given

 negate :: Num a => a -> a

and

 5.0 :: Fractional a => a

then

 negate 5.0 is valid.

Note that the bubbles also show the types that are instances of the

type class. (Do :info Num again, and :info Fractional, too.)

Excerpt:

CSC!372!Spring!2016,!Haskell!Slide!57!

What's meant by the type of truncate?

truncate :: (Integral b, RealFrac a) => a -> b

truncate accepts a type whose type class is an instance

of RealFrac but produces a type whose type class is an

instance of Integral.

LYAH pp. 27-33 has a good description of the Prelude's

type classes. ("Type Classes 101")

Note that type classes are not required for functional

programming but because Haskell makes extensive use of

them, we must learn about them.

CSC!372!Spring!2016,!Haskell!Slide!58!

Type classes, continued

In essence, negate :: Num a => a -> a describes many
functions:

 negate :: Integer -> Integer
 negate :: Int -> Int
 negate :: Float -> Float
 negate :: Double -> Double
 ...and more...

negate is a polymorphic function. It handles values of many
forms.

If a function's type has any type variables, it's a polymorphic
function.

How does Java handle this problem? How about C? C++?

negate is polymorphic

CSC!372!Spring!2016,!Haskell!Slide!59!

:set +t, :type and :info are three introspective tools that we can use
to help learn Haskell.

When learning a language, look for such tools early on.

Some type-related tools in other languages:

 Python: type(expr) and repr(expr)

 JavaScript: typeof(expr)

 PHP: var_dump(expr1, expr2, ...)

 C: sizeof(expr)

 Java: getClass()

What's a difference between ghci's :type and Java's getClass()?

CSC!372!Spring!2016,!Haskell!Slide!60!

Sidebar: LHtLaL––introspective tools

Here's a Java program that makes use of the "boxing" mechanism to show

the type of values, albeit with wrapper types for primitives.
public class exprtype {

 public static void main(String args[]) {

 int n = 1;

 showtype(n++, 3 + 'a');

 showtype(n++, 3 + 4.0);

 showtype(n++, "a,b,c".split(","));

 showtype(n++, new HashMap<String,Integer>());

 }

 private static void showtype(int num, Object o) {

 System.out.format("%d: %s\n", num, o.getClass());

 }

}

Output:

1: class java.lang.Integer

2: class java.lang.Double

3: class [Ljava.lang.String;

4: class java.util.HashMap (Note: no String or Integer––type erasure!)

Sidebar, continued

CSC!372!Spring!2016,!Haskell!Slide!61!

More on functions

CSC!372!Spring!2016,!Haskell!Slide!62!

A function can be defined in the REPL by using let. Example:

> let double x = x * 2
double :: Num a => a -> a

> double 5
10
it :: Integer

> double 2.7
5.4
it :: Double

> double (double (double 1111111111111))
8888888888888
it :: Integer

Writing simple functions

CSC!372!Spring!2016,!Haskell!Slide!63!

More examples:

> let neg x = -x
neg :: Num a => a -> a

> let isPositive x = x > 0
isPositive :: (Num a, Ord a) => a -> Bool

> let toCelsius temp = (temp - 32) * 5/9
toCelsius :: Fractional a => a -> a

The determination of types based on the operations performed is
known as type inferencing. (More on it later!)

Note: function and parameter names must begin with a lowercase
letter or _. (If capitalized they're assumed to be data constructors.)

Simple functions, continued

CSC!372!Spring!2016,!Haskell!Slide!64!

We can use :: type to constrain a function's type:

> let neg x = -x :: Integer
neg :: Integer -> Integer

> let toCelsius temp = (temp - 32) * 5/9 :: Double
toCelsius :: Double -> Double

:: type has low precedence; parentheses are required for this:
> let isPositive x = x > (0::Integer)
isPositive :: Integer -> Bool

Note that :: type applies to an expression, not a function.

We'll use :: type to simplify some following examples.

Simple functions, continued

CSC!372!Spring!2016,!Haskell!Slide!65!

We can put function definitions in a file. When we do, we

leave off the let!

I've got four function definitions in the file simple.hs, as

shown with the UNIX cat command:

% cat simple.hs

double x = x * 2 :: Integer -- Note: no "let"!

neg x = -x :: Integer

isPositive x = x > (0::Integer)

toCelsius temp = (temp - 32) * 5/(9::Double)

The .hs suffix is required.

Sidebar: loading functions from a file

CSC!372!Spring!2016,!Haskell!Slide!66!

Assuming simple.hs is in the current directory, we can load it
with :load and see what we got with :browse.

% ghci
> :load simple
[1 of 1] Compiling Main (simple.hs, interpreted)
Ok, modules loaded: Main.

> :browse
double :: Integer -> Integer
neg :: Integer -> Integer
isPositive :: Integer -> Bool
toCelsius :: Double -> Double

Note the colon in :load, and that the suffix .hs is assumed.

We can use a path, like :load ~/372/hs/simple, too.

Sidebar, continued

CSC!372!Spring!2016,!Haskell!Slide!67!

ghci is clumsy to type! I've got an hs alias in my ~/.bashrc:
alias hs=ghci

I specify the file I'm working with as an argument to hs.

% hs simple
GHCi, version 7.8.3 ...
[1 of 1] Compiling Main (simple.hs, interpreted)
Ok, modules loaded: Main.
> ... experiment ...

After editing in a different window, I use :r to reload the file.

> :r
[1 of 1] Compiling Main (simple.hs, interpreted)
Ok, modules loaded: Main.
> ...experiment some more...

Lather, rinse, repeat.

Sidebar: My usual edit-run cycle

CSC!372!Spring!2016,!Haskell!Slide!68!

Here's a function that produces the sum of its two arguments:
 > let add x y = x + y :: Integer

Here's how we call it: (no commas or parentheses!)

> add 3 5
8

Here is its type:

> :type add
add :: Integer -> Integer -> Integer

The operator -> is right-associative, so the above means this:

 add :: Integer -> (Integer -> Integer)

But what does that mean?

Functions with multiple arguments

CSC!372!Spring!2016,!Haskell!Slide!69!

Recall our negate function:

> let neg x = -x :: Integer

neg :: Integer -> Integer

Here's add again, with parentheses added to show precedence:

> let add x y = x + y :: Integer

add :: Integer -> (Integer -> Integer)

add is a function that takes an integer as an argument and

produces a function as its result!

add 3 5 means (add 3) 5

Call add with the value 3, producing a nameless function.

Call that nameless function with the value 5.

Multiple arguments, continued

CSC!372!Spring!2016,!Haskell!Slide!70!

When we give a function fewer arguments than it requires, the

resulting value is called a partial application. It is a function.

We can bind a name to a partial application like this:

> let plusThree = add 3

plusThree :: Integer -> Integer

The name plusThree now references a function that takes an

Integer and returns an Integer.

What will plusThree 5 produce?

> plusThree 5

8

it :: Integer

Partial application

CSC!372!Spring!2016,!Haskell!Slide!71!

At hand:

> let add x y = x + y :: Integer

add :: Integer -> (Integer -> Integer) -- parens added

> let plusThree = add 3

plusThree :: Integer -> Integer

Let's picture add and plusThree as boxes with inputs and outputs:

An analogy: plusThree is like a calculator where you've clicked 3,

then +, and handed it to somebody.

Partial application, continued

plusThree

3
add

CSC!372!Spring!2016,!Haskell!Slide!72!

At hand:

> let add x y = x + y :: Integer

add :: Integer -> (Integer -> Integer) -- parens added

Another: (with parentheses added to type to aid understanding)

> let add3 x y z = x + y + z :: Integer
add3 :: Integer -> (Integer -> (Integer -> Integer))

These functions are said to be defined in curried form, which allows

partial application of arguments.

The idea of a partially applicable function was first described by

Moses Schönfinkel. It was further developed by Haskell B. Curry.

Both worked wtih David Hilbert in the 1920s.

What prior use have you made of partially applied functions?

Partial application, continued

log2 n

CSC!372!Spring!2016,!Haskell!Slide!73!

REPLACEMENTS

Put a big "X" on slides 74-76 in

the 1-76 set and continue with

this set.

CSC!372!Spring!2016,!Haskell!Slide!74!

Note: Next set of slides!

•  The general form of a function definition (for now):
name param1 param2 ... paramN = expression
––At the ghci prompt, use let ...

•  A function with a type like Integer -> Char -> Char takes two
arguments, an Integer and a Char. It produces a Char.

•  Remember that -> is a right-associative type operator.
Integer -> Char -> Char means Integer -> (Char -> Char)

•  A function call like

 f x y z
means
 ((f x) y) z
and (conceptually) causes two temporary, unnamed functions to
be created.

Some key points

CSC!372!Spring!2016,!Haskell!Slide!75!

• Calling a function with fewer arguments than it requires

creates a partial application, a function value.

•  There's really nothing special about a partial application––

it's just another function.

Some key points, continued

CSC!372!Spring!2016,!Haskell!Slide!76!

Consider this function:

 let!f!x!y!z!=!x!+!y!+!y!*!z!

 let!f1!=!f!3!

is equivalent to

 let!f1!y!z!=!3!+!y!+!y!*!z!

 let!f2!=!f1!5!

is equivalent to

 let!f2!z!=!3!+!5!+!5!*!z!

!

!let!val!=!f2!7!

is equivalent to

!let!val!=!f!3!5!7!

and

!let!val!=!f1!5!7!

 CSC!372!Spring!2016,!Haskell!Slide!77!

Another view of partial application

One way to think of partial

application is that as each argument is

provided, a parameter is dropped and

the argument's value is "wired" into

the expression for the function,

producing a new function with one

less parameter.

Add parentheses to show the order of operations for the

following expression:

 f g 3 4 + x f 3 g(5*x)

Note that the expression is function calls and an addition.

Recall that function call is the highest precedence operation

and is left-associative.

Let's first note that the addition is lowest precedence, and last:

(f g 3 4) + (x f 3 g (5*x))

Let's now reflect the left-associativity of function call:

(((f g) 3) 4) + ((((x f) 3) g) (5*x))

CSC!372!Spring!2016,!Haskell!Slide!78!

Exercise

Problem: Define a function min3 that computes the minimum

of three values. The Prelude has a min function.

> min3 5 2 10

2

Solution:

> let min3 a b c = min a (min b c)

min3 :: Ord a => a -> a -> a -> a

What are some types that min3 can be used with?

Exercise

CSC!372!Spring!2016,!Haskell!Slide!79!

A fundamental characteristic of a functional language: functions are

values that can be used as flexibly as values of other types.

This let creates a function value and binds the name add to it.

 > let add x y = x + y

This let binds the name plus to the value of add, whatever it is.

 > let plus = add

Either name can be used to reference the function value:

> add 3 4

7

> plus 5 6
11

Functions are values

...code...

add , plus

CSC!372!Spring!2016,!Haskell!Slide!80!

(Diagram here

merged w/ above)

What does the following suggest to you?
> :info add
add :: Num a => a -> a -> a

> :info +
class Num a where
 (+) :: a -> a -> a
 ...
infixl 6 +

Operators in Haskell are simply functions that have a symbolic
name bound to them.

infixl 6 + shows that the symbol + can be used as a infix operator
that is left associative and has precedence level 6.

Use :info to explore these operators: ==, >, +, *,||, ^, ^^ and **.

CSC!372!Spring!2016,!Haskell!Slide!81!

Functions as values, continued

To use an operator like a function, enclose it in parentheses:

> (+) 3 4

7

Conversely, we can use a function like an operator by

enclosing it in backquotes:

> 3 `add` 4

7

> 11 `rem` 3

2

Speculate: do `add` and `rem` have precedence and

associativity?

Function/operator equivalence

CSC!372!Spring!2016,!Haskell!Slide!82!

Haskell lets us define custom operators.

Example: (loaded from a file)

(+%) x percentage = x + x * percentage / 100
infixl 6 +%

Usage:

> 100 +% 1
101.0
> 12 +% 25
15.0

The characters ! # $ % & * + . / < = > ? @ \ ^ | - ~ : and
non-ASCII Unicode symbols can be used in custom operators.

Modules often define custom operators.

Sidebar: Custom operators

CSC!372!Spring!2016,!Haskell!Slide!83!

Precedence Left associative

operators

Non associative

operators

Right associative

operators

9 !! .

8 ^, ^^, **

7 *, /, `div`, `mod`,
`rem`, `quot`

6 +, -

5 :, ++

4 ==, /=, <, <=,
>, >=, `elem`,

`notElem`

3 &&

2 ||

1 >>, >>=

0 $, $!, `seq`

Reference: Operators from the Prelude

Note: From page 51 in Haskell 2010 report

CSC!372!Spring!2016,!Haskell!Slide!84!

Type Inferencing

CSC!372!Spring!2016,!Haskell!Slide!85!

It was briefly mentioned that Haskell performs type

infererencing: the types of values are inferred based on the

operations performed.

Example:

> let isCapital c = c >= 'A' && c <= 'Z'

isCapital :: Char -> Bool

Because c is being compared to 'A' and 'Z', both of which are

type Char, c is inferred to be a Char.

CSC!372!Spring!2016,!Haskell!Slide!86!

Type inferencing

Recall ord in the Data.Char module:
> :t ord
ord :: Char -> Int

What type will be inferred for the following function?

 f x y = ord x == y

1.  The argument of ord is a Char, so x must be a Char.

2.  The result of ord, an Int, is compared to y, so y must be
an Int.

Let's try it:

> let f x y = ord x == y
f :: Char -> Int -> Bool

CSC!372!Spring!2016,!Haskell!Slide!87!

Type inferencing, continued

Recall this example:

> let isPositive x = x > 0

isPositive :: (Num a, Ord a) => a -> Bool

:info shows that > operates on types that are instances of Ord:

> :info >

class Eq a => Ord a where

 (>) :: a -> a -> Bool

 ...

Because x is an operand of >, Haskell infers that the type of x must be

a member of the Ord type class.

Because x is being compared to 0, Haskell also infers that the type of x

must be a member of the Num type class.

CSC!372!Spring!2016,!Haskell!Slide!88!

Type inferencing, continued

If a contradiction is reached during type inferencing, it's an error.

The function below uses x as both a Num and a Char.

> let g x y = x > 0 && x > '0'

<interactive>:20:17:
 No instance for (Num Char) arising from the literal `0'

 Possible fix: add an instance declaration for (Num Char)

 In the second argument of `(>)', namely `0'

 In the first argument of `(&&)', namely `x > 0'

 In the expression: x > 0 && x > '0'

Note that Haskell's suggested fix, making Char be an instance of

the Num type class, isn't very good.

CSC!372!Spring!2016,!Haskell!Slide!89!

Type inferencing, continued

Type Specifications

CSC!372!Spring!2016,!Haskell!Slide!90!

It's a good practice to specify the type of a function along with

its definition in a file.

Examples, using cat to make it clear that they're in a file:

% cat typespecs.hs

min3::Ord a => a -> a -> a -> a

min3 x y z = min x (min y z)

isCapital :: Char -> Bool

isCapital c = c >= 'A' && c <= 'Z'

isPositive :: (Num a, Ord a) => a -> Bool

isPositive x = x > 0

Type specifications for functions

CSC!372!Spring!2016,!Haskell!Slide!91!

Sometimes type specifications can backfire. What's the

ramification of the difference in these two type specifications?

add1::Num a => a -> a -> a

add1 x y = x + y

add2::Integer -> Integer -> Integer

add2 x y = x + y

add1 can operate on Nums but a2 requires Integers.

Challenge: Without using ::type, show an expression that

works with add1 but fails with add2.

CSC!372!Spring!2016,!Haskell!Slide!92!

Type specifications, continued

There are two pitfalls for Haskell novices related to type specifications for

functions:

1.  Specifying a type, such as Integer, rather than a type class, such as

Num, may make a function's type needlessly specific, like add2 on

the previous slide.

2.  In some cases the type can be plain wrong without the mistake being

obvious, leading to a baffling problem. (An "Ishihara".)

Recommendation:

Try writing functions without a type specification and see what type

gets inferred. If the type looks reasonable, and the function works as

expected, add a specification for that type.

Type specifications can prevent Haskell's type inferencing mechanism

from making a series of bad inferences that lead one far away from the

actual source of an error.

CSC!372!Spring!2016,!Haskell!Slide!93!

Type specification for functions, continued

A Haskell source file is a series of declarations. Here's a file with two

declarations:

% cat indent1.hs

add::Integer -> Integer -> Integer

add x y = x + y

A declaration can be continued across multiple lines by indenting

subsequent lines more than the first line of the declaration. These

weaving declarations are poor style but are valid:

add

 ::

 Integer-> Integer-> Integer

add x y

 =

 x

 + y

Continuation with indentation

CSC!372!Spring!2016,!Haskell!Slide!94!

A line that starts in the same column as the previous declaration
ends that previous declaration and starts a new one.

% cat indent2.hs
add::Integer -> Integer -> Integer
add x y =
x + y

% ghci indent2
...
indent2.hs:3:1:
 parse error (possibly incorrect indentation or
mismatched brackets)
Failed, modules loaded: none.

Note that 3:1 indicates line 3, column 1.

Indentation, continued

CSC!372!Spring!2016,!Haskell!Slide!95!

Guards

CSC!372!Spring!2016,!Haskell!Slide!96!

Recall this characteristic of functional programming:

"Ideally, functions are specified with notation that's similar

to what you see in math books—cases and expressions."

This function definition uses guards to specify three cases:

sign x | x < 0 = -1

 | x == 0 = 0

 | otherwise = 1

Notes:

• No let—this definition is loaded from a file with :load

•  sign x appears just once. First guard might be on next line.

•  The guard appears between | and =, and produces a Bool

• What is otherwise?

Guards

CSC!372!Spring!2016,!Haskell!Slide!97!

Problem: Using guards, define a function smaller, like min:

> smaller 7 10

7

> smaller 'z' 'a'

'a'

Solution:

smaller x y

 | x <= y = x

 | otherwise = y

Guards, continued

CSC!372!Spring!2016,!Haskell!Slide!98!

Problem: Write a function weather that classifies a given

temperature as hot if 80+, else nice if 70+, and cold otherwise.

> weather 95

"Hot!"

> weather 32

"Cold!"

> weather 75

"Nice"

A solution that takes advantage of the fact that guards are tried

in turn:

weather temp | temp >= 80 = "Hot!"

 | temp >= 70 = "Nice"

 | otherwise = "Cold!"

Guards, continued

CSC!372!Spring!2016,!Haskell!Slide!99!

if-else

CSC!372!Spring!2016,!Haskell!Slide!100!

Here's an example of Haskell's if-else:

> if 1 < 2 then 3 else 4

3

How does this compare to the if-else in Java?

Haskell's if-else

CSC!372!Spring!2016,!Haskell!Slide!101!

Java's if-else is a statement. It cannot be used where a value is

required.

Java's conditional operator is the analog to Haskell's if-else.

 1 < 2 ? 3 : 4 (Java conditional, a.k.a ternary operator)

It's an expression that can be used when a value is required.

Java's if-else statement has an else-less form but Haskell's if-else

does not. Why doesn't Haskell allow it?

Java's if-else vs. Java's conditional operator provides a good

example of a statement vs. an expression.

Pythoners: Is there an if-else expression in Python?

 3 if 1 < 2 else 4

Sidebar: Java's if-else

CSC!372!Spring!2016,!Haskell!Slide!102!

What's the type of these expressions?

> :type if 1 < 2 then 3 else 4
if 1 < 2 then 3 else 4 :: Num a => a

> :type if 1 < 2 then '3' else '4'
if 1 < 2 then '3' else '4' :: Char

> if 1 < 2 then 3 else '4'
 <interactive>:12:15:
 No instance for (Num Char) arising from the literal `3'

> if 1 < 2 then 3

<interactive>:13:16:
parse error (possibly incorrect indentation or
mismatched brackets)

Haskell's if-else, continued

CSC!372!Spring!2016,!Haskell!Slide!103!

Which of the versions of sign below is better?

sign x

 | x < 0 = -1

 | x == 0 = 0

 | otherwise = 1

sign x = if x < 0 then -1

 else if x == 0 then 0

 else 1

We'll later see that patterns add a third possibility for

expressing cases.

Guards vs. if-else

CSC!372!Spring!2016,!Haskell!Slide!104!

A Little Recursion

CSC!372!Spring!2016,!Haskell!Slide!105!

A recursive function is a function that calls itself either directly or
indirectly.

Computing the factorial of a integer (N!) is a classic example of
recursion. Write it in Haskell (and don't peek below!) What is its
type?

factorial n
 | n == 0 = 1 -- Base case, 0! is 1
 | otherwise = n * factorial (n - 1)

> :type factorial
factorial :: (Eq a, Num a) => a -> a

> factorial 40
815915283247897734345611269596115894272000000000

Recursion

CSC!372!Spring!2016,!Haskell!Slide!106!

One way to manually trace through a recursive computation is
to underline a call, then rewrite the call with a textual
expansion.

factorial 4

4 * factorial 3

4 * 3 * factorial 2

4 * 3 * 2 * factorial 1

4 * 3 * 2 * 1 * factorial 0

4 * 3 * 2 * 1 * 1

Recursion, continued

factorial n
 | n == 0 = 1

 | otherwise = n * factorial (n – 1)

CSC!372!Spring!2016,!Haskell!Slide!107!

Consider repeatedly dividing a number until the quotient is 1:

> 28 `quot` 3 (Note backquotes to use quot as infix op.)

9

> it `quot` 3 (Remember that it is previous result.)

3

> it `quot` 3
1

Problem: Write a recursive function numDivs divisor x that

computes the number of times x must be divided by divisor to

reach a quotient of 1.

> numDivs 3 28

3

> numDivs 2 7

2

Recursion, continued

CSC!372!Spring!2016,!Haskell!Slide!108!

A solution:

numDivs divisor x

 | (x `quot` divisor) < 1 = 0

 | otherwise =

 1 + numDivs divisor (x `quot` divisor)

What is its type?

 numDivs :: (Integral a, Num a1) => a -> a -> a1

Will numDivs 2 3.4 work?

> numDivs 2 3.4

<interactive>:93:1:

 No instance for (Integral a0) arising from a use of

`numDivs'

Recursion, continued

Example:

> numDivs 3 28

3

CSC!372!Spring!2016,!Haskell!Slide!109!

Let's compute two partial applications of numDivs, using let to
bind them to identifiers:

> let f = numDivs 2
> let g = numDivs 10
> f 9
3
> g 1001
3

What are more descriptive names than f and g?

> let floor_log2 = numDivs 2
> floor_log2 1000
9

> let floor_log10 = numDivs 10
> floor_log10 1000
3

Sidebar: Fun with partial applications

CSC!372!Spring!2016,!Haskell!Slide!110!

Lists

CSC!372!Spring!2016,!Haskell!Slide!111!

In Haskell, a list is a sequence of values of the same type.

Here's one way to make a list. Note the type of it for each.

> [7, 3, 8]
[7,3,8]
it :: [Integer]

> [1.3, 10, 4, 9.7] -- note mix of literals
[1.3,10.0,4.0,9.7]
it :: [Double]

> ['x', 10]
<interactive>:20:7:
 No instance for (Num Char) arising from the literal `10'

It is said that lists in Haskell are homogeneous.

List basics

CSC!372!Spring!2016,!Haskell!Slide!112!

The function length returns the number of elements in a list:

> length [3,4,5]

3

> length []

0

What's the type of length?

> :type length

length :: [a] -> Int

With no class constraint specified, [a] indicates that length

operates on lists containing elements of any type.

List basics, continued

CSC!372!Spring!2016,!Haskell!Slide!113!

The head function returns the first element of a list.
> head [3,4,5]
3

What's the type of head?

head :: [a] -> a

Here's what tail does. How would you describe it?

> tail [3,4,5]
[4,5]

What's the type of tail?

tail :: [a] -> [a]

Important: head and tail are good for learning about lists but we'll
almost always use patterns to access list elements!

List basics, continued

CSC!372!Spring!2016,!Haskell!Slide!114!

The ++ operator concatenates two lists, producing a new list.

> [3,4] ++ [10,20,30]

[3,4,10,20,30]

> it ++ it

[3,4,10,20,30,3,4,10,20,30]

> let f = (++) [1,2,3]

> f [4,5]

[1,2,3,4,5]

> f [4,5] ++ reverse (f [4,5])

[1,2,3,4,5,5,4,3,2,1]

List basics, continued

What are the types of ++ and

reverse?!

> :type (++)

(++) :: [a] -> [a] -> [a]

> :type reverse

reverse :: [a] -> [a]

CSC!372!Spring!2016,!Haskell!Slide!115!

A range of values can be specified with a dot-dot notation:

> [1..20]

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

it :: [Integer]

> [-5,-3..20]

[-5,-3,-1,1,3,5,7,9,11,13,15,17,19]

> length [-1000..1000]

2001

> [10..5]

[]

it :: [Integer]

List basics, continued

CSC!372!Spring!2016,!Haskell!Slide!116!

This is known as the arithmetic sequence

notation, described in H10 3.10.

The !! operator produces a list's Nth element, zero-based:

> :type (!!)
(!!) :: [a] -> Int -> a

> [10,20..100] !! 3
40

Sadly, we can't use a negative value to index from the right.

> [10,20..100] !! (-2)
*** Exception: Prelude.(!!): negative index

Should that be allowed?

Important: Extensive use of !! might indicate you're writing a Java
program in Haskell!

List basics, continued

CSC!372!Spring!2016,!Haskell!Slide!117!

Haskell lists are values and can be compared as values:

> [3,4] == [1+2, 2*2]

True

> [3] ++ [] ++ [4] == [3,4]

True

> tail (tail [3,4,5,6]) == [last [4,5]] ++ [6]

True

Conceptually, how many lists are created by each of the above?

A programmer using a functional language writes complex

expressions using lists (and more!) as freely as a Java

programmer might write f(x) * a == g(a,b) + c.

Comparing lists

CSC!372!Spring!2016,!Haskell!Slide!118!

Lists are compared lexicographically: Corresponding elements

are compared until an inequality is found. The inequality

determines the result of the comparison.

Example:

> [1,2,3] < [1,2,4]

True

 Why: The first two elements are equal, and 3 < 4.

More examples:

> [1,2,3] < [1,1,1,1]

False

> [1,2,3] > [1,2]

True

Comparing lists, continued

CSC!372!Spring!2016,!Haskell!Slide!119!

We can make lists of lists.

> let x = [[1], [2,3,4], [5,6]]

x :: [[Integer]]

Note the type: x is a list of Integer lists.

length counts elements at the top level.

> length x

3

Recall that length :: [a] -> Int Given that, what's the type of

a for length x?

What's the value of length (x ++ x ++ [3])?

Lists of Lists

CSC!372!Spring!2016,!Haskell!Slide!120!

More examples:

> let x = [[1], [2,3,4], [5,6]]

> head x

[1]

 > tail x

[[2,3,4],[5,6]]

> x !! 1 !! 2

4

> head (head (tail (tail x)))

5

Lists of lists, continued

CSC!372!Spring!2016,!Haskell!Slide!121!

Strings in Haskell are simply lists of characters.

> "testing"
"testing"
it :: [Char]

> ['a'..'z']
"abcdefghijklmnopqrstuvwxyz"
it :: [Char]

> ["just", "a", "test"]
["just","a","test"]
it :: [[Char]]

What's the beauty of this?

Strings are [Char]

CSC!372!Spring!2016,!Haskell!Slide!122!

All list functions work on strings, too!

> let asciiLets = ['A'..'Z'] ++ ['a'..'z']
asciiLets :: [Char]

> length asciiLets
52

> reverse (drop 26 asciiLets)
"zyxwvutsrqponmlkjihgfedcba"

> :type elem
elem :: Eq a => a -> [a] -> Bool

> let isAsciiLet c = c `elem` asciiLets
isAsciiLet :: Char -> Bool

Strings, continued

CSC!372!Spring!2016,!Haskell!Slide!123!

The Prelude defines String as [Char] (a type synonym).

> :info String

type String = [Char]

A number of functions operate on Strings. Here are two:

> :type words

words :: String -> [String]

> :type unwords

unwords :: [String] -> String

What's the following doing?

> unwords (tail (words "Just some words!"))

"some words!"

Strings, continued

CSC!372!Spring!2016,!Haskell!Slide!124!

Like most functional languages, Haskell's lists are "cons" lists.

A "cons" list has two parts:

 head: a value

 tail: a list of values (possibly empty)

The : ("cons") operator creates a list from a value and a list of

values of that same type (or an empty list).

> 5 : [10, 20,30]

[5,10,20,30]

What's the type of the cons operator?

> :type (:)

(:) :: a -> [a] -> [a]

"cons" lists

CSC!372!Spring!2016,!Haskell!Slide!125!

The cons (:) operation forms a new list from a value and a list.

> let a = 5
> let b = [10,20,30]
> let c = a:b
[5,10,20,30]

> head c
5

> tail c
[10,20,30]

> let d = tail (tail c)
> d
[20,30]

"cons" lists, continued

10

20

30

a
5

b

5

c

d

CSC!372!Spring!2016,!Haskell!Slide!126!

A cons node can be referenced by multiple cons nodes.

> let a = 5

> let b = [10,20,30]

> let c = a:b

> let d = tail (tail c)

[20,30]

> let e=2:d

[2,20,30]

> let f=1:c

[1,5,10,20,30]

"cons" lists, continued

10

20

30

a
5

b

5

c

d

2

e

1

f

CSC!372!Spring!2016,!Haskell!Slide!127!

What are the values of the following expressions?
> 1:[2,3]
[1,2,3]

> 1:2
...error...

> chr 97:chr 98:chr 99:[]
"abc"

> []:[]
[[]]

> [1,2]:[]
[[1,2]]

> []:[1]
...error...

"cons" lists, continued

cons is right associative

 chr 97:(chr 98:(chr 99:[]))

CSC!372!Spring!2016,!Haskell!Slide!128!

It's important to understand that tail does not create a new list.
Instead it simply returns an existing cons node.

> let a = [5,10,20,30]

> let h = head a
> h
5

> let t = tail a
> t
[10,20,30]

> let t2 = tail (tail t)
> t2
[30]

head and tail visually

10

20

30

5

a

t h
5

t2

CSC!372!Spring!2016,!Haskell!Slide!129!

What operations are likely fast with cons lists?

•  Get the head of a list

•  Get the tail of a list

•  Make a new list from a head and tail ("cons up a list")

What operations are likely slower?

•  Get the Nth element of a list

•  Get the length of a list

With cons lists, what does list concatenation involve?

> let m=[1..10000000]

> length (m++[0])

10000001

A little on performance

CSC!372!Spring!2016,!Haskell!Slide!130!

The head of a list is a one-element list.

 False, unless...

 ...it's the head of a list of lists that starts with a one-element list

The tail of a list is a list.

 True

The tail of an empty list is an empty list.

 It's an error!

length (tail (tail x)) == (length x) – 2

 True (assuming what?)

A cons list is essentially a singly-linked list.

 True

A doubly-linked list might help performance in some cases.

 Hmm...what's the backlink for a multiply-referenced node?

Changing an element in a list might affect the value of many lists.

Trick question! We can't change a list element. We can only

"cons up" new lists and reference existing lists.

True or false?

CSC!372!Spring!2016,!Haskell!Slide!131!

Here's a function that produces a list with a range of integers:

> let fromTo first last = [first..last]

> fromTo 10 15

[10,11,12,13,14,15]

Problem: Write a recursive version of fromTo that uses the

cons operator to build up its result.

fromTo

CSC!372!Spring!2016,!Haskell!Slide!132!

One solution:

fromTo first last

 | first > last = []

 | otherwise = first : fromTo (first+1) last

Evaluation of fromTo 1 3 via substitution and rewriting:

fromTo 1 3

1 : fromTo (1+1) 3

1 : fromTo 2 3

1 : 2 : fromTo (2+1) 3

1 : 2 : fromTo 3 3

1 : 2 : 3 : fromTo (3+1) 3

1 : 2 : 3 : fromTo 4 3

1 : 2 : 3 : []

fromTo, continued

CSC!372!Spring!2016,!Haskell!Slide!133!

The Enum type class has

enumFromTo and more.

Do :set +s to get timing and memory information, and make

some lists. Try these:

fromTo 1 10

let f = fromTo -- So we can type f instead of fromTo

f 1 1000

let f = fromTo 1 -- Note partial application

f 1000

let x = f 1000000

length x

take 5 (f 1000000)

fromTo, continued

CSC!372!Spring!2016,!Haskell!Slide!134!

Here's a simple example of a list comprehension:

> [x^2 | x <- [1..10]]

[1,4,9,16,25,36,49,64,81,100]

This describes a list of the squares of x where x takes on each

of the values from 1 through 10.

List comprehensions are very powerful but in the interest of

time and staying focused on the core concepts of functional

programming, we're not going to cover them.

Chapter 5 in Hutton has some very interesting examples of

practical computations with list comprehensions.

List comprehensions

CSC!372!Spring!2016,!Haskell!Slide!135!

A little output

CSC!372!Spring!2016,!Haskell!Slide!136!

The putStr function outputs a string:

> putStr "just\ntesting\n"

just

testing

Here's the type of putStr:

> :t putStr

putStr :: String -> IO ()

The return type of putStr, IO (), is known as an action. It

represents an interaction with the outside world, which is a side

effect.

The construction () is read as "unit". The unit type has a single

value, unit. Both the type and the value are written as ().

CSC!372!Spring!2016,!Haskell!Slide!137!

A little output

For the time being, we'll use this approach for functions that

produce output:

•  A helper function will produce a ready-to-print string that

contains newline characters as needed.

•  The top-level function will call the helper function and

then call putStr with the helper function's result.

CSC!372!Spring!2016,!Haskell!Slide!138!

A little output, continued

We can use show to produce a string representation of any

value whose type is a member of the Show type class.

> :t show

show :: Show a => a -> String

> show 10

"10"

> show [10,20]

"[10,20]"

> show show

"<function>"

CSC!372!Spring!2016,!Haskell!Slide!139!

A little output, continued

Let's write a function to print the integers from 1 to N:

> printN 3

1

2

3

First, let's write a helper, printN':

> printN' 3

"1\n2\n3\n"

Solution:

printN' n

 | n == 0 = ""

 | otherwise = printN' (n-1) ++ show n ++ "\n"

CSC!372!Spring!2016,!Haskell!Slide!140!

printN

At hand:

printN'::Integer -> String

printN' n

 | n == 0 = ""

 | otherwise = printN' (n-1) ++ show n ++ "\n"

Usage:

> printN' 10

"1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n"

Let's write the top-level function:

printN::Integer -> IO ()

printN n = putStr (printN' n)

CSC!372!Spring!2016,!Haskell!Slide!141!

printN, continued

All together, as a file:

% cat printN.hs

printN::Integer -> IO ()

printN n = putStr (printN' n)

printN'::Integer -> String

printN' n

 | n == 0 = ""

 | otherwise = printN' (n-1) ++ show n ++ "\n"

% ghci printN

...

> printN 3

1

2

3

CSC!372!Spring!2016,!Haskell!Slide!142!

printN, continued

At hand:

printN::Integer -> IO ()

printN n = putStr (printN' n)

printN'::Integer -> String

printN' n

 | n == 0 = ""

 | otherwise = printN' (n-1) ++ show n ++ "\n"

Let's modify printN to print lines of characters:

> printN 3 '|'

|

||

|||

We can view it as printing unary numbers with a specified "digit", so

we'll call the new version printNunary.

 CSC!372!Spring!2016,!Haskell!Slide!143!

printNunary

Useful: The Prelude has replicate :: Int -> a -> [a]

> replicate 3 7

[7,7,7]

> replicate 3 'a'

"aaa"

Let's add a parameter for the character to print and call replicate

instead of show:

printNunary::Int -> Char -> IO ()

printNunary n c = putStr (printNunary' n c)

printNunary'::Int -> Char -> String

printNunary' n c

 | n == 0 = ""

 | otherwise = printNunary' (n-1) c ++

 (replicate n c) ++ "\n"

CSC!372!Spring!2016,!Haskell!Slide!144!

printNunary, continued

Let's write charbox:

> charbox 5 3 '*'

> :t charbox

charbox :: Int -> Int -> Char -> IO ()

How can we approach it?

CSC!372!Spring!2016,!Haskell!Slide!145!

charbox

Let's work out a sequence of computations with ghci:
> replicate 5 '*'
"*****"

> it ++ "\n"
"*****\n"

> replicate 2 it
["*****\n","*****\n"] -- the type of it is [[Char]]

> :t concat
concat :: [[a]] -> [a]

> concat it
"*****\n*****\n"

> putStr it

CSC!372!Spring!2016,!Haskell!Slide!146!

charbox, continued

Let's write charbox':

charbox'::Int -> Int -> Char -> String

charbox' w h c = concat (replicate h (replicate w c ++ "\n"))

Test:

> charbox' 3 2 '*'

"***\n***\n"

Now we're ready for the top-level function:

charbox::Int -> Int -> Char -> IO ()

charbox w h c = putStr (charbox' w h c)

How does this approach contrast with how we'd write it in Java?

CSC!372!Spring!2016,!Haskell!Slide!147!

charbox, continued

On the CS machines, selected Haskell code is in this directory:

!/cs/www/classes/cs372/spring16/haskell

!

In these slides I'll refer to that directory as spring16.

spring16/slides.hs has the smaller functions, in rough chronological

order. For functions that evolve, there may be multiple versions, with

all but one version commented out.

 Note: {- ... -} is a multi-line comment in Haskell.

Larger examples are in their own files, like spring16/printN.hs and

spring16/charbox.hs.

spring16 is also accessible on the web:

 http://cs.arizona.edu/classes/cs372/spring16

Sidebar: Where's the code?

CSC!372!Spring!2016,!Haskell!Slide!148!

Patterns

CSC!372!Spring!2016,!Haskell!Slide!149!

Imagine a function that computes the sum of a list's elements.

> sumElems [1..10]

55

> :type sumElems

sumElems :: Num a => [a] -> a

Implementation:

sumElems list

 | list == [] = 0

 | otherwise = head list + sumElems (tail list)

It works but it's not idiomatic Haskell. We should use patterns

instead!

Motivation: Summing list elements

CSC!372!Spring!2016,!Haskell!Slide!150!

In Haskell we can use patterns to bind names to elements of

data structures.

> let [x,y] = [10,20]

> x

10

> y

20

> let [inner] = [[2,3]]

> inner

[2,3]

Speculate: Given a list like [10,20,30] how could we use a

pattern to bind names to the head and tail of the list?

Patterns

10

20

2

3

inner

x
10

y
20

CSC!372!Spring!2016,!Haskell!Slide!151!

We can use the cons operator in a pattern.

> let h:t = [10,20,30]

> h

10

> t

[20,30]

What values get bound by the following pattern?

> let a:b:c:d = [10,20,30]
> [c,b,a] -- in a list so I could show them w/ a one-liner

[30,20,10]

> d
[] -- Why didn't I do [d,c,b,a] above?

Patterns, continued

10

20

30

h
10

t

CSC!372!Spring!2016,!Haskell!Slide!152!

If some part of a structure is not of interest, we indicate that with

an underscore, known as the wildcard pattern.

> let _:(a:[b]):c = [[1],[2,3],[4]]

> a

2

> b

3

> c

[[4]]

No binding is done for the wildcard pattern.

The pattern mechanism is completely general—patterns can be

arbitrarily complex.

Patterns, continued

CSC!372!Spring!2016,!Haskell!Slide!153!

A name can only appear once in a pattern. This is invalid:

> let a:a:[] = [3,3]

<interactive>:25:5:

 Conflicting definitions for `a'

When using let as we are here, a failed pattern isn't manifested

until we try to see what's bound to a name.

> let a:b:[] = [1]

> a

*** Exception: <interactive>:26:5-16: Irrefutable

pattern failed for pattern a : b : []

Patterns, continued

CSC!372!Spring!2016,!Haskell!Slide!154!

Describe in English what must be on the right hand side for a

successful match.

let (a:b:c) = ...

A list containing at least two elements.

Does [[1,2]] match?

[2,3] ?

"abc" ?

let [x:xs] = ...

 A list whose only element is a non-empty list.

 Does words "a test" match?

 [words "a test"] ?

 [[]] ?

 [[[]]] ?

Practice

CSC!372!Spring!2016,!Haskell!Slide!155!

Recall our non-idiomatic sumElems:

sumElems list

 | list == [] = 0

 | otherwise = head list + sumElems (tail list)

How could we redo it using patterns?

sumElems [] = 0

sumElems (h:t) = h + sumElems t

Note that sumElems appears on both lines and that there are no

guards. sumElems has two clauses. (H10 4.4.3.1)

The parentheses in (h:t) are required!!

Do the types of the two versions differ?

 (Eq a, Num a) => [a] -> a

 Num a => [a] -> a

Patterns in function definitions

CSC!372!Spring!2016,!Haskell!Slide!156!

Here's a buggy version of sumElems:

buggySum [x] = x

buggySum (h:t) = h + buggySum t

What's the bug?

> buggySum [1..100]

5050

> buggySum []

*** Exception: slides.hs:(62,1)-(63,31): Non-

exhaustive patterns in function buggySum

Patterns in functions, continued

CSC!372!Spring!2016,!Haskell!Slide!157!

At hand:

buggySum [x] = x

buggySum (h:t) = h + buggySum t

If we use the -fwarn-incomplete-patterns option of ghci, we'll

get a warning when loading:

% ghci -fwarn-incomplete-patterns buggySum.hs

buggySum.hs:1:1: Warning:

 Pattern match(es) are non-exhaustive

 In an equation for ‘buggySum’: Patterns not matched: []

 >

Suggestion: add a bash alias! (See us if you don't know how to.)

 alias ghci="ghci -fwarn-incomplete-patterns"

CSC!372!Spring!2016,!Haskell!Slide!158!

Patterns in functions, continued

What's a little silly about the following list-summing function?

sillySum [] = 0

sillySum [x] = x

sillySum (h:t) = h + sillySum t

The second clause isn't needed.

CSC!372!Spring!2016,!Haskell!Slide!159!

Patterns in functions, continued

Consider a function that duplicates the head of a list:

> duphead [10,20,30]

[10,10,20,30]

Here's one way to write it, but it's repetitious:

duphead (x:xs) = x:x:xs

We can use an "as pattern" to bind a name to the list as a whole:

duphead all@(x:xs) = x:all

Can it be improved?

duphead all@(x:_) = x:all

The term "as pattern" perhaps comes from Standard ML, which uses

an "as" keyword for the same purpose.

CSC!372!Spring!2016,!Haskell!Slide!160!

An "as pattern"

Good coding style in Haskell:
 Prefer patterns over guards
 Prefer guards over if-else

Patterns––first choice!

sumElems [] = 0
sumElems (h:t) = h + sumElems t

Guards––second choice...

sumElems list
 | list == [] = 0
 | otherwise = head list + sumElems (tail list)

if-else––third choice...

sumElems list =
 if list == [] then 0
 else head list + sumElems (tail list)

CSC!372!Spring!2016,!Haskell!Slide!161!

Patterns, then guards, then if-else

And, these comparisons imply

that list's type must in Eq!

Recall this example of guards:

weather temp | temp >= 80 = "Hot!"

 | temp >= 70 = "Nice"

 | otherwise = "Cold!"

Can we rewrite weather to have three clauses with patterns?

No.

The pattern mechanism doesn't provide a way to test ranges.

Design question: should patterns and guards be unified?

CSC!372!Spring!2016,!Haskell!Slide!162!

Patterns, then guards, then if-else

We first saw this general form of a function definition:
 name param1 param2 ... paramN = expression

Revision: A function may have one or more clauses, of this form:

function-name pattern1 pattern2 ... patternN

 { | guard-expression1 } = result-expression1

 ...

 { | guard-expressionN } = result-expressionN

The set of clauses for a given name is the binding for that name.

(See 4.4.3 in H10.)

If values in a call match the pattern(s) for a clause and a guard is

true, the corresponding expression is evaluated.

CSC!372!Spring!2016,!Haskell!Slide!163!

Revision: the general form of a function

At hand, a more general form for functions:

function-name pattern1 pattern2 ... patternN

 { | guard-expression1 } = result-expression1

 ...

 { | guard-expressionN } = result-expressionN

How does

 add x y = x + y

conform to the above specification?

•  x and y are trivial patterns

•  add has one clause, which has no guard

CSC!372!Spring!2016,!Haskell!Slide!164!

Revision, continued

If the patterns of a clause match but all guards fail, the next clause is

tried. Here's a contrived example:

f (h:_) | h < 0 = "negative head"

f list | length list > 3 = "too long"

f (_:_) = "ok"

f [] = "empty"

Usage:

> f [-1,2,3]

"negative head"

> f []

"empty"

> f [1..10]

"too long"

CSC!372!Spring!2016,!Haskell!Slide!165!

Pattern/guard interaction

How many clauses does f have?

 4

What if 2nd and 3rd clauses swapped?

 3rd clause would never be matched!

What if 4th clause is removed?

Warning with -fwarn-incomplete-

patterns; "non-exhaustive

patterns" exception on f [].

Recursive functions on lists

CSC!372!Spring!2016,!Haskell!Slide!166!

Problem: Write len x, which returns the length of list x.

> len []

0

> len "testing"

7

Solution:

len [] = 0

len (_:t) = 1 + len t -- since head isn't needed, use _

Simple recursive list processing functions

CSC!372!Spring!2016,!Haskell!Slide!167!

Problem: Write odds x, which returns a list having only the odd

numbers from the list x.

> odds [1..10]

[1,3,5,7,9]

> take 10 (odds [1,4..100])

[1,7,13,19,25,31,37,43,49,55]

Handy: odd :: Integral a => a -> Bool

Solution:

odds [] = []

odds (h:t)

 | odd h = h:odds t

 | otherwise = odds t

Simple list functions, continued

CSC!372!Spring!2016,!Haskell!Slide!168!

Problem: write isElem x vals, like elem in the Prelude.
> isElem 5 [4,3,7]
False

> isElem 'n' "Bingo!"
True

> "quiz" `isElem` words "No quiz today!"
True

Solution:
isElem _ [] = False -- Why a wildcard?
isElem x (h:t)
 | x == h = True
 | otherwise = x `isElem` t

Simple list functions, continued

CSC!372!Spring!2016,!Haskell!Slide!169!

Problem: write a function that returns a list's maximum value.

> maxVal "maximum"

'x'

> maxVal [3,7,2]

7

> maxVal (words "i luv this stuff")

"this"

Note that the Prelude has max :: Ord a => a -> a -> a

One solution:

maxVal [x] = x

maxVal (x:xs) = max x (maxVal xs)

maxVal [] = error "empty list"

Simple list functions, continued

CSC!372!Spring!2016,!Haskell!Slide!170!

C programmers: Write strlen in C in a functional style. Do

strcmp and strchr, too!

Python programmers: In a functional style write size(x),

which returns the number of elements in the string or list x.

Restriction: You may not use type().

Sidebar: C and Python challenges

CSC!372!Spring!2016,!Haskell!Slide!171!

Tuples

CSC!372!Spring!2016,!Haskell!Slide!172!

A Haskell tuple is an ordered aggregation of two or more values

of possibly differing types.

> (1, "two", 3.0)

(1,"two",3.0)

it :: (Integer, [Char], Double)

> (3 < 4, it)

(True,(1,"two",3.0))

it :: (Bool, (Integer, [Char], Double))

What's something we can represent with a tuple that we can't

represent with a list?

We can't create analogous lists for the above tuples, due to the

mix of types. Lists must be homogeneous.

Tuples

CSC!372!Spring!2016,!Haskell!Slide!173!

A function can return a tuple:

> let pair x y = (x,y)

What's the type of pair?

pair :: t -> t1 -> (t, t1)

-- why not a -> b -> (a,b)?

Let's play...

> pair 3 4

(3,4)

> pair (3,4)

<function>

> it 5

((3,4),5)

Tuples, continued

CSC!372!Spring!2016,!Haskell!Slide!174!

The Prelude has two functions that operate on 2-tuples.

> let p = pair 30 "forty"

p :: (Integer, [Char])

> p

(30,"forty")

> fst p

30

> snd p

"forty"

Tuples, continued

CSC!372!Spring!2016,!Haskell!Slide!175!

Recall: patterns used to bind names to list elements have the

same syntax as expressions to create lists.

Patterns for tuples are like that, too.

Problem: Write middle, to extract a 3-tuple's second element.

> middle ("372", "BIOW 208", "Mitchell")

"BIOW 208"

> middle (1, [2], True)

[2]

Tuples, continued

CSC!372!Spring!2016,!Haskell!Slide!176!

At hand:

> middle (1, [2], True)

[2]

Solution:

 middle (_, m, _) = m

What's the type of middle?

 middle :: (t, t1, t2) -> t1

Does the following call work?

> middle(1,[(2,3)],4)

[(2,3)]

Tuples, continued

CSC!372!Spring!2016,!Haskell!Slide!177!

Here's the type of zip from the Prelude:

 zip :: [a] -> [b] -> [(a, b)]

Speculate: What does zip do?

> zip ["one","two","three"] [10,20,30]

[("one",10),("two",20),("three",30)]

> zip ['a'..'z'] [1..]
[('a',1),('b',2),('c',3),('d',4),('e',5),('f',6),('g',7),('h',8),('i',

9),('j',10), ...more..., ('x',24),('y',25),('z',26)]

What's especially interesting about the second example?

 [1..] is an infinite list! zip stops when either list runs out.

Tuples, continued

CSC!372!Spring!2016,!Haskell!Slide!178!

Problem: Write elemPos, which returns the zero-based

position of a value in a list, or -1 if not found.

> elemPos 'm' ['a'..'z']

12

Hint: Have a helper function do most of the work.

Solution:

elemPos x vals = elemPos' x (zip vals [0..])

elemPos' _ [] = -1

elemPos' x ((val,pos):vps)

 | x == val = pos

 | otherwise = elemPos' x vps

Tuples, continued

CSC!372!Spring!2016,!Haskell!Slide!179!

Consider these two functions:
> let add_c x y = x + y -- _c for curried arguments
add_c :: Num a => a -> a -> a

> let add_t (x,y) = x + y -- _t for tuple argument
add_t :: Num a => (a, a) -> a

Usage:
> add_c 3 4
7

> add_t (3,4)
7

Which is better, add_c or add_t?

Sidebar: To curry or not to curry?

Important: Note the

difference in types!

CSC!372!Spring!2016,!Haskell!Slide!180!

:info Eq shows many lines like this:
...
instance (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e)
instance (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d)
instance (Eq a, Eq b, Eq c) => Eq (a, b, c)
instance (Eq a, Eq b) => Eq (a, b)

We haven't talked about instance declarations but let's speculate:
What's being specified by the above?

instance (Eq a, Eq b, Eq c) => Eq (a, b, c)

If values of each of the three types a, b, and c can be tested for
equality then 3-tuples of type (a, b, c) can be tested for equality.

The Ord and Bounded type classes have similar instance
declarations.

The Eq type class and tuples

CSC!372!Spring!2016,!Haskell!Slide!181!

Type-wise, lists are homogeneous; tuples are heterogeneous.

We can write a function that handles a list of any length but a

function that operates on a tuple specifies the arity of that tuple.

Example: we can't write an analog for head, to return the first

element of an arbitrary tuple.

Even if values are homogeneous, using a tuple lets static type-

checking ensure that an exact number of values is being aggregated.

Example: A 3D point could be represented with a 3-element list

but using a 3-tuple guarantees points have three coordinates.

If there were Head First Haskell it would no doubt have an

interview with List and Tuple, each arguing their own merit.

Lists vs. tuples

CSC!372!Spring!2016,!Haskell!Slide!182!

More on

patterns and functions

CSC!372!Spring!2016,!Haskell!Slide!183!

Literal values can be part or all of a pattern. Here's a 3-clause

binding for f:

f 1 = 10

f 2 = 20

f n = n

Usage:

> f 1

10

> f 3

3

Remember: Patterns are tried in the order specified.

Literals in patterns

For contrast, with guards:

f n

 | n == 1 = 10

 | n == 2 = 20

 | otherwise = n

CSC!372!Spring!2016,!Haskell!Slide!184!

Here's a function that classifies characters as parentheses (or not):

parens c

 | c == '(' = "left"

 | c == ')' = "right"

 | otherwise = "neither"

Could we improve it by using patterns instead of guards?

parens '(' = "left"

parens ')' = "right"

parens _ = "neither"

Which is better?

 Remember: Patterns, then guards, then if-else.

Literals in patterns, continued

CSC!372!Spring!2016,!Haskell!Slide!185!

not is a function:

> :type not

not :: Bool -> Bool

> not True

False

Problem: Using literals in patterns, define not.

Solution:

not True = False

not _ = True -- Using wildcard avoids comparison

Literals in patterns, continued

CSC!372!Spring!2016,!Haskell!Slide!186!

A pattern can be:

• A literal value such as 1, 'x', or True
• An identifier (bound to a value if there's a match)
• An underscore (the wildcard pattern)
• A tuple composed of patterns
• A list of patterns in square brackets (fixed size list)
• A list of patterns constructed with : operators
• Other things we haven't seen yet

Note the recursion.

Patterns can be arbitrarily complex.

3.17.1 in H10 shows the full syntax for patterns.

Pattern construction

CSC!372!Spring!2016,!Haskell!Slide!187!

Intermediate values and/or helper functions can be defined using an

optional where clause for a function.

Here's an example to show the syntax; the computation is not

meaningful.

f x
 | g x < 0 = g a + g b

 | a > b = g b

 | otherwise = g a * g b

 where {

 a = x * 5;
 b = a * 2 + x;

 g t = log t + a

 }

The where clause for functions

The names a and b are bound to

expressions; g is a function binding.

The bindings in the where clause

are done first (!), then the guards are

evaluated in turn.

Like variables defined in a method

or block in Java, a, b, and g are not

visible outside the the function f.

CSC!372!Spring!2016,!Haskell!Slide!188!

This is a valid declaration with a where clause:
 f x = a + b + g a where { a = 1; b = 2; g x = -x }

The where clause has three declarations enclosed in braces
and separated by semicolons.

We can take advantage of the layout rule and write it like this
instead:

f x = a + b + g a
 where
 a = 1
 b = 2
 g x =

 -x

Besides whitespace what's different about the second version?

The layout rule for where (and more)

CSC!372!Spring!2016,!Haskell!Slide!189!

At hand:
f x = a + b + g a
 where
 a = 1
 b = 2
 g x =

 -x

The absence of a brace after where activates the layout rule.

The column position of the first token after where establishes
the column in which declarations of the where must start.

Note that the declaration of g is continued onto a second line;
if the minus sign were at or left of the line, it would be an error.

The layout rule, continued

Another example:

f x = a + b + g a where a = 1

 b = 2

 g x =

 -x

CSC!372!Spring!2016,!Haskell!Slide!190!

Don't confuse the layout rule with indentation-based continuation

of declarations! (See slides 94-95.)

The layout rule allows omission of braces and semicolons in

where, do, let, and of blocks. (We'll see do and let later.)

Indentation-based continuation applies

1.  outside of where/do/let/of blocks

2.  inside where/do/let/of blocks when the layout rule is

triggered by the absence of an opening brace.

The layout rule is also called the "off-side rule".

TAB characters are assumed to have a width of 8.

What other languages have rules of a similar nature?

The layout rule, continued

CSC!372!Spring!2016,!Haskell!Slide!191!

Imagine a function that counts occurrences of even and odd numbers

in a list.

> countEO [3,4,5]

(1,2) -- one even, two odds

Code:

countEO [] = (0,0) -- no odds or evens in []

countEO (x:xs)

 | odd x = (evens, odds+1)

 | otherwise = (evens+1, odds)

 where
 (evens, odds) = countEO xs -- do counts for tail first!

Would it be awkward to write it without using where?

 Try it!

countEO

CSC!372!Spring!2016,!Haskell!Slide!192!

At hand:

countEO [] = (0,0)

countEO (x:xs)

 | odd x = (evens, odds + 1)

 | otherwise = (1+ evens, odds)

 where (evens, odds) = countEO xs

Here's one way to picture this recursion:

 countEO [10,20,25]

 countEO [20,25]

 countEO [25]

 countEO []

CSC!372!Spring!2016,!Haskell!Slide!193!

countEO, continued

returns (0,0)

returns (0,1) (result of (0,0 + 1))

returns (1,1) (result of (1 + 0,1))

returns (2,1) (result of (1 + 1,1))

Larger examples

CSC!372!Spring!2016,!Haskell!Slide!194!

Imagine a robot that travels on an infinite grid of cells. Movement is

directed by a series of one character commands: n, e, s, and w.

Let's write a function travel that moves the robot about the grid and

determines if the robot ends up where it started (i.e., it got home) or

elsewhere (it got lost).

travel

R!

If the robot starts in square R the

command string nnnn leaves the robot

in the square marked 1.

The string nenene leaves the robot in

the square marked 2.

nnessw and news move the robot in a

round-trip that returns it to square R.

CSC!372!Spring!2016,!Haskell!Slide!195!

2!

1!

Usage:

> travel "nnnn" AA!ends!at!1!

"Got lost; 4 from home"

> travel "nenene" AA!ends!at!2

"Got lost; 6 from home"

> travel "nnessw"

"Got home"

How can we approach this problem?

travel, continued

1!

2!

R!

CSC!372!Spring!2016,!Haskell!Slide!196!

One approach:

1.  Map letters into integer 2-tuples representing X and Y

displacements on a Cartesian plane.

2.  Sum the X and Y displacements to yield a net displacement.

Example:

 Argument value: "nnee"

 Mapped to tuples: (0,1) (0,1) (1,0) (1,0)

 Sum of tuples: (2,2)

Another:

 Argument value: "nnessw"

 Mapped to tuples: (0,1) (0,1) (1,0) (0,-1) (0,-1) (-1,0)

 Sum of tuples: (0,0)

travel, continued

CSC!372!Spring!2016,!Haskell!Slide!197!

First, let's write a helper function to turn a direction into an (x,y)
displacement:

mapMove :: Char -> (Int, Int)

mapMove 'n' = (0,1)

mapMove 's' = (0,-1)

mapMove 'e' = (1,0)
mapMove 'w' = (-1,0)

mapMove c = error ("Unknown direction: " ++ [c])

Usage:

> mapMove 'n'
(0,1)

> mapMove 'w'

(-1,0)

travel, continued

Missing case found with

ghci$0fwarn0incomplete0pa6erns$

CSC!372!Spring!2016,!Haskell!Slide!198!

Next, a function to sum x and y displacements in a list of tuples:

> sumTuples [(0,1),(1,0)]

(1,1)

> sumTuples [mapMove 'n', mapMove 'w']

(-1,1)

Implementation:

sumTuples :: [(Int,Int)] -> (Int,Int)

sumTuples [] = (0,0)

sumTuples ((x,y):ts) = (x + sumX, y + sumY)
 where

 (sumX, sumY) = sumTuples ts

CSC!372!Spring!2016,!Haskell!Slide!199!

travel, continued

travel itself:

travel :: [Char] -> [Char]

travel s

 | disp == (0,0) = "Got home"

 | otherwise = "Got lost; " ++ show (abs x + abs y) ++

 " from home"

 where

 tuples = makeTuples s

 disp@(x,y) = sumTuples tuples -- note "as pattern"

 makeTuples :: [Char] -> [(Int, Int)]

 makeTuples [] = []

 makeTuples (c:cs) = mapMove c : makeTuples cs

As is, mapMove and sumTuples are at the top level but

makeTuples is hidden inside travel. How should they be arranged?

travel, continued

CSC!372!Spring!2016,!Haskell!Slide!200!

travel s
 | disp == (0,0) = "Got home"
 | otherwise = "Got lost; " ...
 where
 tuples = makeTuples s
 disp = sumTuples tuples

 makeTuples [] = []
 makeTuples (c:cs) =

 mapMove c:makeTuples cs

 mapMove 'n' = (0,1)
 mapMove 's' = (0,-1)
 mapMove 'e' = (1,0)
 mapMove 'w' = (-1,0)
 mapMove c = error ...

 sumTuples [] = (0,0)
 sumTuples ((x,y):ts) = (x + sumX, y + sumY)
 where
 (sumX, sumY) = sumTuples ts

Sidebar: top-level vs. hidden functions

Top-level functions can be

tested after code is loaded

but functions inside a

where block are not visible.

The functions at left are

hidden in the where block

but they can easily be

changed to top-level using a

shift or two with an editor.

Note: Types are not shown, to

save space.

CSC!372!Spring!2016,!Haskell!Slide!201!

Consider a function tally that counts character occurrences in a

string:

> tally "a bean bag"

a 3

b 2

 2

g 1

n 1

e 1

Note that the characters are shown in order of decreasing frequency.

How can this problem be approached?

 In a nutshell: [('a',3),('b',2),(' ',2),('g',1),('n',1),('e',1)]

tally

CSC!372!Spring!2016,!Haskell!Slide!202!

Let's start by writing incEntry c tuples, which takes a list of

(character, count) tuples and produces a new list of tuples that

reflects the addition of the character c.

 incEntry :: Char -> [(Char, Int)] -> [(Char, Int)]

Calls to incEntry with 't', 'o', 'o':

> incEntry 't' []

[('t',1)]

> incEntry 'o' it

[('t',1),('o',1)]

> incEntry 'o' it

[('t',1),('o',2)]

tally, continued

CSC!372!Spring!2016,!Haskell!Slide!203!

{- incEntry c tups

tups is a list of (Char, Int) tuples that indicate how many

times a character has been seen. A possible value for tups:

 [('b',1),('a',2)]

incEntry produces a copy of tups with the count in the tuple

containing the character c incremented by one.

If no tuple with c exists, one is created with a count of 1.

-}

incEntry::Char -> [(Char,Int)] -> [(Char,Int)]

incEntry c [] = [(c, 1)]

incEntry c ((char, count):entries)

 | c == char = (char, count+1) : entries

 | otherwise = (char, count) : incEntry c entries

CSC!372!Spring!2016,!Haskell!Slide!204!

Next, let's write mkentries s. It calls incEntry for each character in

the string s in turn and produces a list of (char, count) tuples.

 mkentries :: [Char] -> [(Char, Int)]

Usage:

> mkentries "tupple"

[('t',1),('u',1),('p',2),('l',1),('e',1)]

> mkentries "cocoon"

[('c',2),('o',3),('n',1)]

Code:

mkentries :: [Char] -> [(Char, Int)]

mkentries s = mkentries' s []

 where

 mkentries' [] entries = entries

 mkentries' (c:cs) entries =

 mkentries' cs (incEntry c entries)
CSC!372!Spring!2016,!Haskell!Slide!205!

{- insert, isOrdered, and sort provide an insertion sort -}
insert v [] = [v]

insert v (x:xs)

 | isOrdered (v,x) = v:x:xs

 | otherwise = x:insert v xs

isOrdered ((_, v1), (_, v2)) = v1 > v2

sort [] = []

sort (x:xs) = insert x (sort xs)

> mkentries "cocoon"

[('c',2),('o',3),('n',1)]

> sort it
[('o',3),('c',2),('n',1)]

CSC!372!Spring!2016,!Haskell!Slide!206!

{- fmtEntries prints (char,count) tuples one per line -}
fmtEntries [] = ""

fmtEntries ((c, count):es) =

 [c] ++ " " ++ (show count) ++ "\n" ++ fmtEntries es

{- top-level function -}
tally s = putStr (fmtEntries (sort (mkentries s)))

> tally "cocoon"

o 3

c 2
n 1

tally, continued

•  How does this solution exemplify functional

programming? (slide 24)

•  How is it like procedural programming (slide 5)

CSC!372!Spring!2016,!Haskell!Slide!207!

Let's run it on lectura...

% code=/cs/www/classes/cs372/spring16/haskell

% cat $code/tally.hs

... everything we've seen before and now a main:

main = do

 bytes <- getContents -- reads all of standard input

 tally bytes

% echo -n cocoon | runghc $code/tally.hs

o 3

c 2

n 1

Running tally from the command line

CSC!372!Spring!2016,!Haskell!Slide!208!

$code/genchars N generates N random letters:

% $code/genchars 20

KVQaVPEmClHRbgdkmMsQ

Lets tally a million letters:

 % $code/genchars 1000000 |

 time runghc $code/tally.hs >out

21.79user 0.24system 0:22.06elapsed

% head -3 out

s 19553

V 19448

 J 19437

tally from the command line, continued

CSC!372!Spring!2016,!Haskell!Slide!209!

Let's try a compiled executable.

% cd $code

% ghc --make -rtsopts tally.hs

% ls -l tally

-rwxrwxr-x 1 whm whm 1118828 Jan 26 00:54 tally

% ./genchars 1000000 > 1m

% time ./tally +RTS -K40000000 -RTS < 1m > out

real 0m7.367s

user 0m7.260s

sys 0m0.076s

tally from the command line, continued

CSC!372!Spring!2016,!Haskell!Slide!210!

Here are user CPU times for implementations of tally in several

languages. The same one-million letter file was used for all timings.

However, our tally implementation is very simplistic. An implementation

of tally by an expert Haskell programmer, Chris van Horne, ran in 0.008

seconds. (See spring16/haskell/tally-cwvh[12].hs.)

Then I revisited the C version (tally2.c) and got to 3x faster than Chris'

version with a one-billion character file.

CSC!372!Spring!2016,!Haskell!Slide!211!

tally performance in other languages

Language Time (seconds)

Haskell 7.260

Ruby 0.548

Icon 0.432

Python 2 0.256

C w/ gcc -O3 0.016

Here's an early question when planning a course for a

semester:

 "How many lectures will there be?"

How should we answer that question?

 Google for a course planning app?

 No! Let's write a Haskell program! !

Real world problem: "How many lectures?"

CSC!372!Spring!2016,!Haskell!Slide!212!

One approach:

> classdays ...arguments...

#1 H 1/15 (for 2015...)

#2 T 1/20

#3 H 1/22

#4 T 1/27

#5 H 1/29

...

What information do the arguments need to specify?

First and last day

Pattern, like M-W-F or T-H

How about holidays?

classdays

CSC!372!Spring!2016,!Haskell!Slide!213!

Let's start with something simple:

> classdays (1,15) (5,6) [('H',5),('T',2)]

#1 H 1/15

#2 T 1/20

#3 H 1/22

#4 T 1/27
...

#32 T 5/5

>

The first and last days are represented with (month,day) tuples.

The third argument shows the pattern of class days: the first is a

Thursday, and it's five days to the next class. The next is a Tuesday,

and it's two days to the next class. Repeat!

Arguments for classdays

CSC!372!Spring!2016,!Haskell!Slide!214!

There's a Data.Time.Calendar module but writing two minimal

date handling functions provides good practice.

> toOrdinal (12,31)

365 -- 12/31 is the last day of the year

> fromOrdinal 32

(2,1) -- The 32nd day of the year is February 1.

What's a minimal data structure that could help us?

[(0,0),(1,31),(2,59),(3,90),(4,120),(5,151),(6,181),

(7,212),(8,243),(9,273),(10,304),(11,334),(12,365)]

 (1,31) The last day in January is the 31st day of the year

 (7,212) The last day in July is the 212th day of the year

Date handling

CSC!372!Spring!2016,!Haskell!Slide!215!

offsets = [(0,0),(1,31),(2,59),(3,90),(4,120),(5,151),(6,181),
(7,212),(8,243),(9,273),(10,304),(11,334),(12,365)]

toOrdinal (month, day) = days + day

 where

 (_,days) = offsets!!(month-1)

fromOrdinal ordDay =

 fromOrdinal' (reverse offsets) ordDay

 where

 fromOrdinal' ((month,lastDay):t) ordDay
 | ordDay > lastDay = (month + 1, ordDay - lastDay)

 | otherwise = fromOrdinal' t ordDay

 fromOrdinal' [] _ = error "invalid month?"

toOrdinal and fromOrdinal

> toOrdinal (12,31)
365

> fromOrdinal 32
(2,1)

CSC!372!Spring!2016,!Haskell!Slide!216!

Recall:

> classdays (1,15) (5,6) [('H',5),('T',2)]

#1 H 1/15

#2 T 1/20

...

Ordinal dates for (1,15) and (5,6) are 15 and 126, respectively.

With the Thursday-Tuesday pattern we'd see the ordinal dates

progressing like this:

 15, 20, 22, 27, 29, 34, 36, 41, ...

 +5 +2 +5 +2 +5 +2 +5 ...

...

CSC!372!Spring!2016,!Haskell!Slide!217!

Imagine this series of calls to a helper, showLecture:

showLecture 1 15 'H'

showLecture 2 20 'T'

showLecture 3 22 'H'

showLecture 4 27 'T'

...

showLecture 32 125 'T'

What computations do we need to transform

 showLecture 1 15 'H'

into

 "#1 H 1/15\n"?

Desired output:

#1 H 1/15

#2 T 1/20

#3 H 1/22

#4 T 1/27

...

#32 T 5/5

CSC!372!Spring!2016,!Haskell!Slide!218!

We have: showLecture 1 15 'H'
We want: "#1 H 1/15"

Let's write showOrdinal :: Integer -> [Char]

> showOrdinal 15

"1/15"

showOrdinal ordDay = show month ++ "/" ++ show day

 where

 (month,day) = fromOrdinal ordDay

Now we can write showLecture:

showLecture lecNum ordDay dayOfWeek =

 "#" ++ show lecNum ++ " " ++ [dayOfWeek] ++

 " " ++ showOrdinal ordDay ++ "\n"

1 is lecture #1; 15 is 15th day of year

CSC!372!Spring!2016,!Haskell!Slide!219!

Recall:
showLecture 1 15 'H'
showLecture 2 20 'T'
...
showLecture 32 125 'T'

Let's "cons up" a list out of the results of those calls...
> showLecture 1 15 'H' :
 showLecture 2 20 'T' :
 "...more..." : -- I literally typed "...more..."
 showLecture 32 125 'T' : []
["#1 H 1/15\n","#2 T 1/20\n", "...more...","#32 T
5/5\n"]

How close are the contents of that list to what we need?

 Desired output:
#1 H 1/15
#2 T 1/20
...
#32 T 5/5

CSC!372!Spring!2016,!Haskell!Slide!220!

Now lets imagine a recursive function showLectures that builds up a

list of results from showLecture calls:

showLectures 1 15 126 [('H',5),('T',2)] "#1 H 1/15\n"

 showLectures 2 20 126 [(T',2),('H',5)] "#2 T 1/20\n"

 ...

 showLectures 32 125 126 [('T',2),('H',5)] "#32 T 5/5\n"

 showLectures 33 127 126 [('H',5),('T',2)]

Result:

["#1 H 1/15\n","#2 T 1/20\n", ... ,"#33 H 5/5\n"]

Now let's write showLectures:

showLectures lecNum thisDay lastDay

 (pair@(dayOfWeek, daysToNext):pairs)

 | thisDay > lastDay = []

 | otherwise = showLecture lecNum thisDay dayOfWeek

 : showLectures (lecNum+1) (thisDay + daysToNext)

 lastDay (pairs ++ [pair])

CSC!372!Spring!2016,!Haskell!Slide!221!

Finally, a top-level function to get the ball rolling:

classdays first last pattern = putStr (concat result)

 where

 result =

 showLectures 1 (toOrdinal first) (toOrdinal last) pattern

Usage:

> classdays (1,15) (5,6) [('H',5),('T',2)]

#1 H 1/15

#2 T 1/20

#3 H 1/22

...

#31 H 4/30

#32 T 5/5

Full source is in spring16/haskell/classdays.hs

classdays—top-level

CSC!372!Spring!2016,!Haskell!Slide!222!

Errors

CSC!372!Spring!2016,!Haskell!Slide!223!

Note: next set of slides!

What syntax errors do you see in the following file?

% cat synerrors.hs

let f x =

 | x < 0 == y + 10

 | x != 0 = y + 20

 otherwise = y + 30

 where

 g x:xs = x

 y =

 g [x] + 5

 g2 x = 10

Syntax errors

CSC!372!Spring!2016,!Haskell!Slide!224!

What syntax errors do you see in the following file?

% cat synerrors.hs

let f x =

 | x < 0 == y + 10

 | x != 0 = y + 20

 otherwise = y + 30

 where

 g x:xs = x

 y =

 g [x] + 5

 g2 x = 10

Syntax errors, continued

no let before

functions in files

no = before guards

=, not ==

before result

use /= for

inequality
missing | before

otherwise

Needs parens:

(x:xs)
continuation should

be indented violates layout rule (a.k.a. off-side rule)
CSC!372!Spring!2016,!Haskell!Slide!225!

In my opinion, producing understandable messages for type errors is

what ghci is worst at.

If only concrete types are involved, type errors are typically easy to

understand.

> chr 'x'
 Couldn't match expected type `Int' with actual

 type `Char'

 In the first argument of `chr', namely 'x'

 In the expression: chr 'x'

 In an equation for `it': it = chr 'x'

> :type chr

chr :: Int -> Char

Type errors

CSC!372!Spring!2016,!Haskell!Slide!226!

Code and error:

f x y

 | x == 0 = []

 | otherwise = f x

 Couldn't match expected type `[a1]' with actual type
 `t0 -> [a1]'

 In the return type of a call of `f'

 Probable cause: `f' is applied to too few arguments

 In the expression: f x

The error message is perfect in this case.

The first clause implies that f returns a list but the second clause

returns a partial application, of type t0 -> [a1], a contradiction.

Type errors, continued

CSC!372!Spring!2016,!Haskell!Slide!227!

Code:

countEO (x:xs)

 | odd x = (evens, odds+1)

 | otherwise = (evens+1, odds)

 where (evens,odds) = countEO

 Error:

 Couldn't match expected type `(t3, t4)'

 with actual type `[t0] -> (t1, t2)'

 In the expression: countEO

 In a pattern binding: (evens, odds) = countEO

What's the problem?

It's expecting a tuple, (t3,t4) but it's getting a function, [t0] -> (t1,t2)

Typically, instead of getting errors about too few (or too many) function

arguments, you get function types popping up in unexpected places.

Type errors, continued

CSC!372!Spring!2016,!Haskell!Slide!228!

Is there an error in the following?

f [] = []

f [x] = x

f (x:xs) = x : f xs

 Occurs check: cannot construct the infinite type:

 a0 = [a0] ("a0 is a list of a0s"--whm)

 In the first argument of `(:)', namely `x'

 In the expression: x : f xs

 In an equation for `f': f (x : xs) = x : f xs

The second and third clauses are fine by themselves but together they

create a contradiction.

Technique: Comment out clauses (and/or guards) to find the

troublemaker, or incompatibilities between them.

Type errors, continued

CSC!372!Spring!2016,!Haskell!Slide!229!

Another way to produce an

infinite type:

 let x = head x

Recall ord :: Char -> Int.

Note these two errors:

> ord 5

 No instance for (Num Char) arising from the literal `5'

 Possible fix: add an instance declaration for (Num Char)

> length 3

 No instance for (Num [a0]) arising from the literal `3'

 Possible fix: add an instance declaration for (Num [a0])

The error "No instance for (A B)" means I want a B but got an A.

The suggested fix, adding an instance declaration, is always wrong in

our simple Haskell world.

Type errors, continued

CSC!372!Spring!2016,!Haskell!Slide!230!

Debugging

CSC!372!Spring!2016,!Haskell!Slide!231!

My advice in a nutshell for debugging in Haskell:

 Don't need to do any debugging!

My usual development process in Haskell:

1.  Work out expressions at the ghci prompt.

2.  Write a function using those expressions and put it in a file.

3.  Test that function at the ghci prompt.

4.  Repeat with the next function.

With conventional languages I might write dozens of lines of code

before trying them out.

With Haskell I might write a half-dozen lines of code before trying

them out.

CSC!372!Spring!2016,!Haskell!Slide!232!

Debugging in general

The Debug.Trace module provides a trace function that sneakily does
output without getting embroiled with the I/O machinery.

Consider a trivial function:

f 1 = 10
f n = n * 5 + 7

Let's augment it with tracing:

import Debug.Trace
f 1 = trace "f: first case" 10
f n = trace "f: default case" n * 5 + 7

Execution:

> f 1
f: first case
10

> f 3
f: default case
22

CSC!372!Spring!2016,!Haskell!Slide!233!

Tracing

Here's countEO with tracing:

import Debug.Trace

countEO [] = (0,0)

countEO list@(x:xs)

 | odd x = (evens, odds+1)

 | otherwise = (evens+1, odds)

 where

 result = countEO xs

 (evens,odds) =

 trace ("countEO " ++ show xs ++ " --> " ++ show result) result

Execution:

> countEO [3,2,4]

(countEO [] --> (0,0)

countEO [4] --> (1,0)

countEO [2,4] --> (2,0)

2,1)

CSC!372!Spring!2016,!Haskell!Slide!234!

Tracing, continued

 Before tracing the where was:

 (evens,odds) = countEO xs

ghci does have some debugging support but debugging is expression-

based. Here's some simple interaction with it on countEO:

> :step countEO [3,2,4]

Stopped at countEO.hs:(1,1)-(6,29)

_result :: (t, t1) = _

> :step

Stopped at countEO.hs:3:7-11

_result :: Bool = _

x :: Integer = 3

> :step

Stopped at countEO.hs:3:15-29

_result :: (t, t1) = _

evens :: t = _

odds :: t1 = _

> :step

(Stopped at countEO.hs:6:20-29

_result :: (t, t1) = _

xs :: [Integer] = [2,4]

CSC!372!Spring!2016,!Haskell!Slide!235!

ghci's debugger

countEO [] = (0,0)

countEO (x:xs)

 | odd x = (evens, odds+1)

 | otherwise = (evens+1, odds)

 where

 (evens,odds) = countEO xs

_result shows type of current

expression

Arbitrary expressions can be

evaluated at the > prompt (as

always).

There's lots more to the debugging support in gchi.
https://downloads.haskell.org/~ghc/latest/docs/html/

users_guide/ghci-debugger.html

http://www.youtube.com/watch?v=1OYljb_3Cdg

 GHCi's Debugger - Haskell from Scratch #2

In 352, I promote gdb heavily but this is the first time in 372 that

I've ever mentioned tracing and debugging for Haskell.

Again, my advice in a nutshell for debugging in Haskell:

 Don't need to do any debugging!

CSC!372!Spring!2016,!Haskell!Slide!236!

More on debugging

Excursion:

A little bit with infinite lists

and lazy evaluation

CSC!372!Spring!2016,!Haskell!Slide!237!

Here's a way we've seen to make an infinite list:

> [1..]

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,2

2,23,24,25,26,27,28,29,30,31,32,^C

What does the following let create?

> let f = (!!) [1,3..]

f :: Int -> Integer

A function that produces the Nth odd number, zero-based.

Yes, we could say nthOdd n = (n*2)+1 but that wouldn't be

nearly as much fun! (This is functional programming!)

I want you to be cognizant of performance but don't let

concerns about performance stifle creativity!

Infinite lists

CSC!372!Spring!2016,!Haskell!Slide!238!

Consider the following let. Why does it complete?

> let fives=[5,10..]

fives :: [Integer]

A simple answer we'll later refine:

Haskell uses lazy evaluation. Values aren't computed until

needed.

How will the following expression behave?

> take (head fives) fives

[5,10,15,20,25]

Haskell computes the first element of fives, and then four more

elements of fives.

Lazy evaluation

CSC!372!Spring!2016,!Haskell!Slide!239!

Here is an expression that is said to be non-terminating:

> length fives

...when tired of waiting...^C Interrupted.

The value of length fives is said to be , read "bottom".

But, we can bind a name to length fives:

> let numFives = length fives

numFives :: Int

That completes because Haskell hasn't yet needed to compute a value for

length fives.

We can get another coffee break by asking Haskell to print the value of

numFives:

> numFives

...after a while...^CInterrupted.

Lazy evaluation, continued

CSC!372!Spring!2016,!Haskell!Slide!240!

We can use :print to explore lazy evaluation:

> let fives = [5,10..]

> :print fives

fives = (_t2::[Integer])

> take 3 fives

[5,10,15]

What do you think :print fives will now show?

> :print fives

fives = 5 : 10 : 15 : (_t3::[Integer])

Lazy evaluation, continued

CSC!372!Spring!2016,!Haskell!Slide!241!

Consider this function:

 f x y z = if x < y then y else z

Will the following expressions terminate?

> f 2 3 (length [1..])

3

> f 3 2 (length [1..])

^CInterrupted.

> f 3 (length [1..]) 2
^CInterrupted.

CSC!372!Spring!2016,!Haskell!Slide!242!

Lazy evaluation, continued

In fact, Haskell doesn't fully meet the requirements of lazy evaluation.

 The word "lazy" appears only once in the Haskell 2010 Report.

What Haskell does provide is non-strict evaluation:

 Function arguments are not evaluated until a value is needed.

From the previous slide:

 f x y z = if x < y then y else z

Reconsider the following wrt. non-strict evaluation:

> f 2 3 (length [1..]) -- Third argument is not used

3

> f 3 2 (length [1..]) -- Third argument is used

^CInterrupted.

See wiki.haskell.org/Lazy_vs._non-strict for the fine points of lazy

evaluation vs. non-strict evaluation. Google for more, too.
CSC!372!Spring!2016,!Haskell!Slide!243!

Sidebar: Lazy vs. non-strict

Speculate: Can infinite lists be concatenated?

> let values = [1..] ++ [5,10..] ++ [1,2,3]

> :t values

values :: [Integer]

What will the following do?

> let nums = [1..]

> nums > [1,2,3,5]

False

 False due to lexicographic comparison—4 < 5

How far did evaluation of nums progress?

> :print nums

nums = 1 : 2 : 3 : 4 : (_t2::[Integer])

More with infinite lists

CSC!372!Spring!2016,!Haskell!Slide!244!

What does the following expression mean?

> let threes = 3 : threes

threes is a list whose head is 3 and whose tail is threes!

> take 5 threes

[3,3,3,3,3]

How about the following?

> let xys = ['x','y'] ++ xys

> take 5 xys
"xyxyx"

> xys !! 100000000

'x'

CSC!372!Spring!2016,!Haskell!Slide!245!

Infinite expressions

One more:

> let x = 1 + x

> x

^CInterrupted.

Problem: write a function intsFrom that produces the integers from a

starting value.

> intsFrom 1

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,...

> intsFrom 1000

[1000,1001,1002,1003,1004,1005,1006,1007,1008,...

> take 5 (intsFrom 1000000)

[1000000,1000001,1000002,1000003,1000004]

Solution:

intsFrom n = n : intsFrom (n + 1)

Does length (intsFrom (minBound::Int)) terminate?

CSC!372!Spring!2016,!Haskell!Slide!246!

intsFrom

The cycle function returns an infinite number of repetitions of its

argument, a list:

> take 10 (cycle [1,2,3])

[1,2,3,1,2,3,1,2,3,1]

Using cycle, write repblock:

> repblock "abc" 4 3 -- string width height

abca

bcab

cabc

> repblock "+-" 3 2

+-+

-+-

CSC!372!Spring!2016,!Haskell!Slide!247!

repblock

At hand: repblock s width height

Approach: Create an infinite repetition of s and take width-sized

lines height times.

Solution:

repblock :: String -> Int -> Int -> IO ()

repblock s width height =

 putStr (repblock' (cycle s) width height)

repblock' :: String -> Int -> Int -> String
repblock' s width height

 | height == 0 = ""

 | otherwise = take width s ++ "\n" ++

 repblock' (drop width s) width (height - 1)

CSC!372!Spring!2016,!Haskell!Slide!248!

repblock, continued

Higher-order functions

CSC!372!Spring!2016,!Haskell!Slide!249!

Remember:
A fundamental characteristic of a functional language: functions
are values that can be used as flexibly as values of other types.

Here are some more examples of that. What do the following do?

> let nums = [1..10]

> (if 3 < 4 then head else last) nums
1

> let funcs = (tail, (:) 100)

> fst funcs nums
[2,3,4,5,6,7,8,9,10]

> snd funcs nums
[100,1,2,3,4,5,6,7,8,9,10]

CSC!372!Spring!2016,!Haskell!Slide!250!

Remember: Functions are values

We can work with lists of functions:
> let funcs = [head, last]

> funcs
[<function>,<function>]

> let nums = [1..10]

> head funcs nums
1

> (funcs!!1) nums
10

> last [last]
<function>

Lists of functions

CSC!372!Spring!2016,!Haskell!Slide!251!

Is the following valid?

> [take, tail, init]

Couldn't match type `[a2]' with `Int'

 Expected type: Int -> [a0] -> [a0]

 Actual type: [a2] -> [a2]

 In the expression: init

What's the problem?

 take does not have the same type as tail and init.

Puzzle: Make [take, tail, init] valid by adding two characters.

> [take 5, tail, init]

[<function>,<function>,<function>]

Lists of functions, continued

CSC!372!Spring!2016,!Haskell!Slide!252!

Can functions be compared?

> add == plus

No instance for (Eq (Integer -> Integer -> Integer))

 arising from a use of `=='

In the expression: add == plus

You might see a proof based on this in 473:

If we could determine if two arbitrary functions perform the same

computation, we could solve the halting problem, which is

considered to be unsolvable.

Because functions can't be compared, this version of length won't

work for lists of functions: (Its type: (Num a, Eq t) => [t] -> a)

len list@(_h:t)

 | list == [] = 0

 | otherwise = 1 + len t

Comparing functions

CSC!372!Spring!2016,!Haskell!Slide!253!

Definition: A higher-order function is a function that has one

or more arguments that are functions.

twice is a higher-order function with two arguments: f and x

 twice f x = f (f x)

What does it do?

> twice tail [1,2,3,4,5]

[3,4,5]

> tail (tail [1,2,3,4,5])

[3,4,5]

.

A simple higher-order function

CSC!372!Spring!2016,!Haskell!Slide!254!

At hand:

 > let twice f x = f (f x)

> twice tail [1,2,3,4,5]

[3,4,5]

Let's make the precedence explicit:

> ((twice tail) [1,2,3,4,5])

[3,4,5]

Consider a partial application...

> let t2 = twice tail

> t2

<function>

it :: [a] -> [a]

twice, continued

-- like let t2 x = tail (tail x)

CSC!372!Spring!2016,!Haskell!Slide!255!

At hand:

 > let twice f x = f (f x)

> twice tail [1,2,3,4,5]

[3,4,5]

Let's give twice a partial application!

> twice (drop 2) [1..5]

[5]

Let's make a partial application with a partial application!

> twice (drop 5)
<function>

> it ['a'..'z']

"klmnopqrstuvwxyz"

twice, continued

Try these!

 twice (twice (drop 3)) [1..20]

 twice (twice (take 3)) [1..20]

CSC!372!Spring!2016,!Haskell!Slide!256!

At hand:

 twice f x = f (f x)

What's the the type of twice?

> :t twice

twice :: (t -> t) -> t -> t

Parentheses added to show precedence:

twice :: (t -> t) -> (t -> t)

 twice f x = f (f x)

What's the correspondence between the elements of the clause

and the elements of the type?

twice, continued

A higher-order function is a

function that has one or more

arguments that are functions.

CSC!372!Spring!2016,!Haskell!Slide!257!

The map function

CSC!372!Spring!2016,!Haskell!Slide!258!

Recall double x = x * 2

map is a Prelude function that applies a function to each element of
a list, producing a new list:

> map double [1..5]
[2,4,6,8,10]

> map length (words "a few words")
[1,3,5]

> map head (words "a few words")
"afw"

Is map a higher order function?
 Yes! It's first argument is a function.

The Prelude's map function

CSC!372!Spring!2016,!Haskell!Slide!259!

At hand:

> map double [1..5]

[2,4,6,8,10]

Write it!

 map _ [] = []
map f (x:xs) = f x : map f xs

What is its type?

map :: (a -> b) -> [a] -> [b]

What's the relationship between the length of the input and output

lists?

The lengths are always the same.

map, continued

CSC!372!Spring!2016,!Haskell!Slide!260!

Mapping (via map) is applying a transformation (a function) to

each of the values in a list, always producing a new list of the same

length.

> map chr [97,32,98,105,103,32,99,97,116]

"a big cat"

> map isLetter it

[True,False,True,True,True,False,True,True,True]

> map not it
[False,True,False,False,False,True,False,False,False]

> map head (map show it) -- Note: show True is "True"

"FTFFFTFFF"

map, continued

CSC!372!Spring!2016,!Haskell!Slide!261!

Here's another map:

> map weather [85,55,75]

["Hot!","Cold!","Nice"]

This is equivalent:

> [weather 85, weather 55, weather 75]

["Hot!","Cold!","Nice"]

Because functions have no side effects, we can immediately

turn a mapping into a parallel computation. We might start

each function call on a separate processor and combine the

values when all are done.

Sidebar: map can go parallel

CSC!372!Spring!2016,!Haskell!Slide!262!

What's the result of these?

> map (add 5) [1..10]

[6,7,8,9,10,11,12,13,14,15]

> map (drop 1) (words "the knot was cold")

["he","not","as","old"]

> map (replicate 5) "abc"

["aaaaa","bbbbb","ccccc"]

map and partial applications

CSC!372!Spring!2016,!Haskell!Slide!263!

What's going on here?

> let f = map double

> f [1..5]

[2,4,6,8,10]

> map f [[1..3],[10..15]]
[[2,4,6],[20,22,24,26,28,30]]

Here's the above in one step:

> map (map double) [[1..3],[10..15]]

[[2,4,6],[20,22,24,26,28,30]]

Here's one way to think about it:

 [(map double) [1..3], (map double) [10..15]]

map and partial applications, cont.

CSC!372!Spring!2016,!Haskell!Slide!264!

Instead of using map (add 5) to add 5 to the values in a list, we

should use a section instead: (it's the idiomatic way!)

> map (5+) [1,2,3]

[6,7,8]

More sections:

> map (10*) [1,2,3]

[10,20,30]

> map (++"*") (words "a few words")

["a*","few*","words*"]

> map ("*"++) (words "a few words")

["*a","*few","*words"]

Sections

-- [5+ 1, 5+ 2, 5+ 3]

CSC!372!Spring!2016,!Haskell!Slide!265!

Sections have one of two forms:

 (infix-operator value) Examples: (+5), (/10)

 (value infix-operator) Examples: (5*), ("x"++)

Iff the operator is commutative, the two forms are equivalent.

> map (3<=) [1..4]

[False,False,True,True]

> map (<=3) [1..4]
[True,True,True,False]

Sections aren't just for map; they're a general mechanism.

> twice (+5) 3
13

Sections, continued

[3 <= 1, 3 <= 2, 3 <= 3, 3 <= 4]

 [1 <= 3, 2 <= 3, 3 <= 3, 4 <= 4]

CSC!372!Spring!2016,!Haskell!Slide!266!

travel, revisited

CSC!372!Spring!2016,!Haskell!Slide!267!

Some of the problems on the next assignment will encourage

working with higher-order functions by prohibiting you from

writing any recursive functions!

Think of it as isolating muscle groups when weight training.

Here's a simple way to avoid what's prohibited:

 Pretend that you no longer understand recursion!

 What's a base case? Is it related to baseball?

 Why would a function call itself? How's it stop?

 Is a recursive plunge refreshing?

If you were UNIX machines, I'd do chmod 0 on an appropriate

section of your brains.

Now that we're good at recursion...

CSC!372!Spring!2016,!Haskell!Slide!268!

Recall our traveling robot: (slide 195)

> travel "nnee"

"Got lost"

> travel "nnss"

"Got home"

Recall our approach:

 Argument value: "nnee"

 Mapped to tuples: (0,1) (0,1) (1,0) (1,0)

 Sum of tuples: (2,2)

How can we solve it non-recursively?

travel revisited

CSC!372!Spring!2016,!Haskell!Slide!269!

Recall:

> :t mapMove

mapMove :: Char -> (Int, Int)

> mapMove 'n'

(0,1)

Now what?

> map mapMove "nneen"

[(0,1),(0,1),(1,0),(1,0),(0,1)]

Can we sum them with map?

travel, continued

CSC!372!Spring!2016,!Haskell!Slide!270!

We have:

> let disps= map mapMove "nneen"

[(0,1),(0,1),(1,0),(1,0),(0,1)]

We want: (2,3)

Any ideas?

> :t fst

fst :: (a, b) -> a

> map fst disps
[0,0,1,1,0]

> map snd disps

[1,1,0,0,1]

travel, continued

CSC!372!Spring!2016,!Haskell!Slide!271!

We have:

> let disps= map mapMove "nneen"

[(0,1),(0,1),(1,0),(1,0),(0,1)]

> map fst disps

[0,0,1,1,0]

> map snd disps
[1,1,0,0,1]

We want: (2,3)

Ideas?

> :t sum

sum :: Num a => [a] -> a

> (sum (map fst disps), sum (map snd disps))
(2,3)

travel, revisited

CSC!372!Spring!2016,!Haskell!Slide!272!

travel :: [Char] -> [Char]
travel s
 | totalDisp == (0,0) = "Got home"
 | otherwise = "Got lost"
 where
 disps = map mapMove s
 totalDisp = (sum (map fst disps),
 sum (map snd disps))

Did we have to understand recursion to write this?

 No.

Did we write any recursive functions?

 No.

Did we use any recursive functions?

Maybe so, but using recursive functions doesn't violate the
prohibition at hand.

travel—Final answer

CSC!372!Spring!2016,!Haskell!Slide!273!

Filtering

CSC!372!Spring!2016,!Haskell!Slide!274!

Another higher order function in the Prelude is filter:

> filter odd [1..10]

[1,3,5,7,9]

> filter isDigit "(800) 555-1212"

"8005551212"

What's filter doing?

What is the type of filter?

filter :: (a -> Bool) -> [a] -> [a]

Think of filter as filtering *in*, not filtering *out*.

Filtering

CSC!372!Spring!2016,!Haskell!Slide!275!

More...

> filter (<= 5) (filter odd [1..10])

[1,3,5]

> map (filter isDigit) ["br549", "24/7"]

["549","247"]

> filter (`elem` "aeiou") "some words here"

"oeoee"

 Note that (`elem` ...) is a section!

 elem :: Eq a => a -> [a] -> Bool

filter, continued

CSC!372!Spring!2016,!Haskell!Slide!276!

At hand:

> filter odd [1..10]

[1,3,5,7,9]

> :t filter

filter :: (a -> Bool) -> [a] -> [a]

Let's write filter!

filter _ [] = []

filter f (x:xs)

 | f x = x : filteredTail
 | otherwise = filteredTail

 where

 filteredTail = filter f xs

filter, continued

CSC!372!Spring!2016,!Haskell!Slide!277!

filter's first argument (a function) is called a predicate because

inclusion of each value is predicated on the result of calling that

function with that value.

Several Prelude functions use predicates. Here are two:

all :: (a -> Bool) -> [a] -> Bool
> all even [2,4,6,8]

True

> all even [2,4,6,7]

False

dropWhile :: (a -> Bool) -> [a] -> [a]

> dropWhile isSpace " testing "

"testing "

> dropWhile isLetter it
" "

 filter uses a predicate

CSC!372!Spring!2016,!Haskell!Slide!278!

For reference:
> map double [1..10]
[2,4,6,8,10,12,14,16,18,20]

> filter odd [1..10]
[1,3,5,7,9]

map:

 transforms a list of values
 length input == length output

filter:

 selects values from a list
 0 <= length output <= length input

map and filter are in Python and JavaScript, to name two of many
languages having them. (And, they're trivial to write!)

map vs. filter

CSC!372!Spring!2016,!Haskell!Slide!279!

Anonymous functions

CSC!372!Spring!2016,!Haskell!Slide!280!

Put a big "X" on

281-282 and go to

slide 305!

We can map a section to double the numbers in a list:

> map (*2) [1..5]

[2,4,6,8,10]

Alternatively we could use an anonymous function:

> map (\x -> x * 2) [1..5]
[2,4,6,8,10]

What are things we can do with an anonymous function that we

can't do with a section?

> map (\n -> n * 3 + 7) [1..5]
[10,13,16,19,22]

> filter (\x -> head x == last x) (words "pop top suds")

["pop","suds"]

Anonymous functions

CSC!372!Spring!2016,!Haskell!Slide!281!

The general form:

 \ pattern1 ... patternN -> expression

Simple syntax suggestion: enclose the whole works in parentheses.

 map (\x -> x * 2) [1..5]

The typical use case for an anonymous function is a single instance

of supplying a higher order function with a computation that can't be

expressed with a section or partial application.

Anonymous functions are also called lambdas, lambda expressions,

and lambda abstractions.

The \ character was chosen due to its similarity to λ, used in

Lambda calculus, another system for expressing computation.

Anonymous functions, continued

CSC!372!Spring!2016,!Haskell!Slide!282!

Larger example: longest

CSC!372!Spring!2016,!Haskell!Slide!283!

Imagine a program to print the longest line(s) in a file, along

with their line numbers:

% runghc longest.hs /usr/share/dict/web2

72632:formaldehydesulphoxylate

140339:pathologicopsychological

175108:scientificophilosophical

200796:tetraiodophenolphthalein

203042:thyroparathyroidectomize

What are some ways in which we could approach it?

Example: longest line(s) in a file

CSC!372!Spring!2016,!Haskell!Slide!284!

Let's work with a shorter file for development testing:

% cat longest.1

data

to

test

readFile in the Prelude lazily returns the full contents of a file as a

string:

> readFile "longest.1"

"data\nto\ntest\n"

To avoid wading into I/O yet, let's focus on a function that operates

on a string of characters (the full contents of a file):

> longest "data\nto\ntest\n"

"1:data\n3:test\n"

longest, continued

CSC!372!Spring!2016,!Haskell!Slide!285!

Let's work through a series of transformations of the data:

> let bytes = "data\nto\ntest\n"

> let lns = lines bytes

["data","to","test"]

Note: To save space, values of let bindings are being shown

immediately after each let. E.g., > lns is not shown above.

Let's use zip3 and map length to create (length, line-number, line)

triples:

> let triples = zip3 (map length lns) [1..] lns

[(4,1,"data"),(2,2,"to"),(4,3,"test")]

longest, continued

CSC!372!Spring!2016,!Haskell!Slide!286!

We have (length, line-number, line) triples at hand:
> triples
[(4,1,"data"),(2,2,"to"),(4,3,"test")]

Let's use sort :: Ord a => [a] -> [a] on them:

> let sortedTriples = reverse (sort triples)
[(4,3,"test"),(4,1,"data"),(2,2,"to")]

Note that by having the line length first, triples are sorted first by
line length, with ties resolved by line number.

We use reverse to get a descending order.

If line length weren't first, we'd instead use

 Data.List.sortBy :: (a -> a -> Ordering) -> [a] -> [a]
and supply a function that returns an Ordering.

longest, continued

CSC!372!Spring!2016,!Haskell!Slide!287!

At hand:

> sortedTriples

[(4,3,"test"),(4,1,"data"),(2,2,"to")]

We'll handle ties by using takeWhile to get all the triples with lines

of the maximum length.

Let's use a helper function to get the first element of a 3-tuple:

> let first (len, _, _) = len

> let maxLength = first (head sortedTriples)

4

first will be used in another place but were it not for that we might

have used a pattern:

 let (maxLength,_,_) = head sortedTriples

longest, continued

CSC!372!Spring!2016,!Haskell!Slide!288!

At hand:

> sortedTriples

[(4,3,"test"),(4,1,"data"),(2,2,"to")]

> maxLength

4

Let's use takeWhile :: (a -> Bool) -> [a] -> [a] to get the triples

having the maximum length:

> let maxTriples = takeWhile
 (\triple -> first triple == maxLength) sortedTriples

[(4,3,"test"),(4,1,"data")]

longest, continued

CSC!372!Spring!2016,!Haskell!Slide!289!

anonymous function for takeWhile

At hand:

> maxTriples

[(4,3,"test"),(4,1,"data")]

Let's map an anonymous function to turn the triples into lines

prefixed with their line number:

> let linesWithNums =

 map (\(_,num,line) -> show num ++ ":" ++ line)

 maxTriples

 ["3:test","1:data"]

We can now produce a ready-to-print result:

> let result = unlines (reverse linesWithNums)

> result
"1:data\n3:test\n"

longest, continued

CSC!372!Spring!2016,!Haskell!Slide!290!

Let's package up our work into a function:

longest bytes = result

 where

 lns = lines bytes

 triples = zip3 (map length lns) [1..] lns

 sortedTriples = reverse (sort triples)
 maxLength = first (head sortedTriples)

 maxTriples = takeWhile

 (\triple -> first triple == maxLength) sortedTriples

 linesWithNums =

 map (\(_,num,line) -> show num ++ ":" ++ line)
 maxTriples

 result = unlines (reverse linesWithNums)

 first (x,_,_) = x

longest, continued

CSC!372!Spring!2016,!Haskell!Slide!291!

At hand:
> longest "data\nto\ntest\n"
"1:data\n3:test\n"

Let's add a main that handles command-line args and does I/O:

% cat longest.hs
import System.Environment (getArgs)
import Data.List (sort)

longest bytes = ...from previous slide...

main = do
 args <- getArgs -- Get command line args as list
 bytes <- readFile (head args)
 putStr (longest bytes)

Execution:

$ runghc longest.hs /usr/share/dict/words
39886:electroencephalograph's

longest, continued

CSC!372!Spring!2016,!Haskell!Slide!292!

Composition

CSC!372!Spring!2016,!Haskell!Slide!293!

Given two functions f and g, the composition of f and g is a function
c that for all values of x, (c x) equals (f (g x))

Here is a primitive compose function that applies two functions in
turn:

> let compose f g x = f (g x)

How many arguments does compose have?

Its type:

 (b -> c) -> (a -> b) -> a -> c

> compose init tail [1..5]
[2,3,4]

> compose signum negate 3
-1

Function composition

CSC!372!Spring!2016,!Haskell!Slide!294!

Haskell has a function composition operator. It is a dot (.)
> :t (.)

(.) :: (b -> c) -> (a -> b) -> a -> c

Its two operands are functions, and its result is a function.

> let numwords = length . words

> numwords "just testing this"

3

> map numwords ["a test", "up & down", "done"]

[2,3,1]

Composition, continued

CSC!372!Spring!2016,!Haskell!Slide!295!

Problem: Using composition create a function that returns the next-

to-last element in a list:

> ntl [1..5]

4

> ntl "abc"
'b'

Two solutions:

 ntl = head . tail . reverse

ntl = last . init

Problem: Recall twice f x = f (f x). Define twice as a composition.

 twice f = f . f

Composition, continued

CSC!372!Spring!2016,!Haskell!Slide!296!

Problem: Create a function to remove the digits from a string:

> rmdigits "Thu Feb 6 19:13:34 MST 2014"

"Thu Feb :: MST "

Solution:

> let rmdigits = filter (not . isDigit)

Given the following, describe f:

> let f = (*2) . (+3)

> map f [1..5]
[8,10,12,14,16]

Would an anonymous function be a better choice?

Composition, continued

CSC!372!Spring!2016,!Haskell!Slide!297!

Given the following, what's the type of numwords?

> :type words

words :: String -> [String]

> :type length

length :: [a] -> Int

> let numwords = length . words

Type:

 numwords :: String -> Int

Assuming a composition is valid, the type is based only on the input

of the rightmost function and the output of the leftmost function.

 (.) :: (b -> c) -> (a -> b) -> a -> c

Composition, continued

CSC!372!Spring!2016,!Haskell!Slide!298!

REPLACEMENTS

Put a big "X" on slides 299-300

in the 223-300 set and continue

with this set.

CSC!372!Spring!2016,!Haskell!Slide!299!

Note: Next set of slides!

Consider the following:

> let s = "It's on!"

> map head (map show (map not (map isLetter s)))

"FFTFTFFT"

Can we use composition to simplify it?

> map (head . show . not . isLetter) s

"FFTFTFFT"

In general, because there are no side-effects,

 map f (map g x)
is equivalent to

 map (f . g) x

If f and g did output, how would the output of the two cases differ?

CSC!372!Spring!2016,!Haskell!Slide!300!

Composition, continued

Recall rmdigits:

> rmdigits "Thu Feb 6 19:13:34 MST 2014"

"Thu Feb :: MST "

What the difference between these two bindings for rmdigits?

rmdigits s = filter (not . isDigit) s

rmdigits = filter (not . isDigit)

The latter version is said to be written in point-free style.

A point-free binding of a function f has NO parameters!

Point-free style

CSC!372!Spring!2016,!Haskell!Slide!301!

I think of point-free style as a natural result of fully grasping partial

application and operations like composition.

Although it was nameless, we've already seen examples of point-free

style, such as these:

nthOdd = (!!) [1,3..]

t2 = twice tail

numwords = length . words

ntl = head . tail . reverse

There's nothing too special about point-free style but it does save some

visual clutter. It is commonly used.

The term "point-free" comes from topology, where a point-free

function operates on points that are not specifically cited.

CSC!372!Spring!2016,!Haskell!Slide!302!

Point-free style, continued

Problem: Using point-free style, bind len to a function that works like
the Prelude's length.

Handy:

> :t const
const :: a -> b -> a

> const 10 20
10

> const [1] "foo"
[1]

Solution:
len = sum . map (const 1)

See also: Tacit programming on Wikipedia

Point-free style, continued

CSC!372!Spring!2016,!Haskell!Slide!303!

CSC!372!Spring!2016,!Haskell!Slide!304!

Go to slide 312

Anonymous functions

(second attempt at 281-283)

CSC!372!Spring!2016,!Haskell!Slide!305!

Imagine that for every number in a list we'd like to double it and

then subtract 5.

Here's one way to do it:

> let f n = n * 2 - 5

> map f [1..5]
[-3,-1,1,3,5]

We could instead use an anonymous function to do the same thing:

> map (\n -> n * 2 - 5) [1..5]

[-3,-1,1,3,5]

Which do you like better, and why?

CSC!372!Spring!2016,!Haskell!Slide!306!

Anonymous functions

At hand:

let f n = n * 2 - 5

map f [1..5]

vs.

 map (\n -> n * 2 - 5) [1..5]

If a computation is only used in one place, using an anonymous

function lets us specify it on the spot, directly associating its

definition with its only use.

We also don't need to think up a name for the function! !

CSC!372!Spring!2016,!Haskell!Slide!307!

Anonymous functions, continued

The general form of an anonymous function:

 \ pattern1 ... patternN -> expression

Simple syntax suggestion: enclose the whole works in parentheses.

 map (\n -> n * 2 - 5) [1..5]

Anonymous functions are also called lambda abstractions (H10),

lambda expressions, and just lambdas (LYAH).

The \ character was chosen due to its similarity to λ, used in the

lambda calculus, another system for expressing computation.

The typical use case for an anonymous function is a single instance

of supplying a higher order function with a computation that can't be

expressed with a section or partial application.

Anonymous functions, continued

CSC!372!Spring!2016,!Haskell!Slide!308!

Speculate: What will ghci respond with?

> \x y -> x + y * 2

<function>

> it 3 4

11

The expression \x y -> x + y * 2 produces a function value.

Here are three ways to bind the name double to a function that

doubles a number:

double x = x * 2

double = \x -> x * 2

double = (*2)

CSC!372!Spring!2016,!Haskell!Slide!309!

Anonymous functions, continued

Anonymous functions are commonly used with higher order

functions such as map and filter.

> map (\w -> (length w, w)) (words "a test now")

[(1,"a"),(4,"test"),(3,"now")]

> map (\c -> "{" ++ [c] ++ "}") "anon."

 ["{a}","{n}","{o}","{n}","{.}"]

> filter (\x -> head x == last x) (words "pop top suds")

["pop","suds"]

In the above examples, the anonymous functions are somewhat like

the bodies of loops in imperative languages.

Anonymous functions, continued

CSC!372!Spring!2016,!Haskell!Slide!310!

CSC!372!Spring!2016,!Haskell!Slide!311!

Go to slide 283

Hocus pocus with

higher-order functions

CSC!372!Spring!2016,!Haskell!Slide!312!

What's this function doing?

f a = g

 where

 g b = a + b

Type?

 f :: Num a => a -> a -> a

Interaction:

> let f ' = f 10

> f ' 20
30

> f 3 4

7

Mystery function

CSC!372!Spring!2016,!Haskell!Slide!313!

Fact:

Curried function definitions are really just syntactic sugar––they just

save some clutter. The don't provide something we can't do without.

Compare these two completely equivalent declarations for add:

 add x y = x + y

 add x = add'

 where

 add' y = x + y

The result of the call add 5 is essentially this function:

 add' y = 5 + y

The combination of the code for add' and the binding for x is known as

a closure. It contains what's needed for execution.

DIY Currying

CSC!372!Spring!2016,!Haskell!Slide!314!

The x used in add' refers to the x parameter

of add.

In 1964 Peter Landin coined the term "syntactic sugar".

A language construct that makes something easier to express but

doesn't add a new capability is called syntactic sugar. It simply

makes the language "sweeter" for human use.

Two examples from C:

•  "abc" is equivalent to a char array initialized with {'a', 'b', 'c',

'\0'}

•  a[i] is equivalent to *(a + i)

What's an example of syntactic sugar in Java?

 The "enhanced for": for (int i: a) { ... }

Sidebar: Syntactic sugar

CSC!372!Spring!2016,!Haskell!Slide!315!

In Haskell a list like [5, 2, 7] can be expressed as 5:2:7:[].
 Is that square-bracket list literal notation syntactic sugar?

What about [1..], [1,3..], ['a'..'z']?

 The Enum type class has enumFrom, enumFromTo, etc.

Recall these equivalent bindings for double:

double x = x * 2

double = \x -> x * 2

Is the first form just syntactic sugar?

What if a function has multiple clauses?

Are anonymous functions syntactic sugar?

Syntactic sugar, continued

CSC!372!Spring!2016,!Haskell!Slide!316!

"Syntactic sugar causes cancer of the semicolon."

 —Alan J. Perlis.

Another Perlis quote:

"A language that doesn't affect the way you think about

programming is not worth knowing."

Perlis was the first recipient of the ACM's Turing Award.

CSC!372!Spring!2016,!Haskell!Slide!317!

Syntactic sugar, continued

DIY currying in JavaScript

JavaScript doesn't provide the syntactic sugar of curried

function definitions but we can do this:

function add(x) {

 return function (y) { return x + y }

 }

Try it in Chrome!

View>Developer>!

JavaScript!Console

brings up a console.

Type in the code for

add on one line.

CSC!372!Spring!2016,!Haskell!Slide!318!

>>> def add(x):

... return lambda y: x + y

...

>>> f = add(5)

>>> type(f)

<type 'function'>

>>> map(f, [10,20,30])

[15, 25, 35]

DIY currying in Python

CSC!372!Spring!2016,!Haskell!Slide!319!

Here's another mystery function:

> let m f x y = f y x

> :type m

m :: (t1 -> t2 -> t) -> t2 -> t1 -> t

Can you devise a call to m?

> m add 3 4

7

> m (++) "a" "b"

"ba"

What is m doing? What could m be useful for?

Another mystery function

CSC!372!Spring!2016,!Haskell!Slide!320!

At hand:

 m f x y = f y x

 m is actually a Prelude function named flip:

> :t flip

flip :: (a -> b -> c) -> b -> a -> c

> flip take [1..10] 3

[1,2,3]

> let ftake = flip take
> ftake [1..10] 3

[1,2,3]

Any ideas on how to use it?

flip

CSC!372!Spring!2016,!Haskell!Slide!321!

At hand:

 flip f x y = f y x

> map (flip take "Haskell") [1..7]

["H","Ha","Has","Hask","Haske","Haskel","Haskell"]

Problem: write a function that behaves like this:

> f 'a'

["a","aa","aaa","aaaa","aaaaa",...

Solution:

 f x = map (flip replicate x) [1..]

flip, continued

CSC!372!Spring!2016,!Haskell!Slide!322!

From assignment 3:

> splits "abcd"

[("a","bcd"),("ab","cd"),("abc","d")]

Some students have noticed the Prelude's splitAt:

> splitAt 2 [10,20,30,40]
([10,20],[30,40])

Problem: Write splits using higher order functions but no explicit

recursion.

Solution:

splits list = map (flip splitAt list) [1..(length list - 1)]

flip, continued

CSC!372!Spring!2016,!Haskell!Slide!323!

$ is the "application operator". Note what :info shows:

> :info ($)

($) :: (a -> b) -> a -> b

infixr 0 $ -- right associative infix operator with very

 -- low precedence

The following binding of $ uses an infix syntax:

f $ x = f x -- Equivalent: ($) f x = f x

Usage:

> negate $ 3 + 4

-7

What's the point of it?

The $ operator

CSC!372!Spring!2016,!Haskell!Slide!324!

$ is a low precedence, right associative operator that applies a

function to a value:

 f $ x = f x

Because + has higher precedence than $, the expression

 negate $ 3 + 4

 groups like this:

 negate $ (3 + 4)

How does the following expression group?

 filter (>3) $ map length $ words "up and down"

 filter (>3) (map length (words "up and down"))

Don't confuse $ with . (composition)!

The $ operator, continued

CSC!372!Spring!2016,!Haskell!Slide!325!

Problem: We're given a function whose argument is a 2-tuple but we

wish it were curried so we could use a partial application of it.

g :: (Int, Int) -> Int

g (x,y) = x^2 + 3*x*y + 2*y^2

> g (3,4)
77

Solution: Curry it with curry from the Prelude!

> map (curry g 3) [1..10]

[20,35,54,77,104,135,170,209,252,299]

Your problem: Write curry!

Currying the uncurried

CSC!372!Spring!2016,!Haskell!Slide!326!

At hand:
> g (3,4)
77
> map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]

Here's curry, and use of it:

 curry :: ((a, b) -> c) -> a -> b -> c
 curry f x y = f (x,y)

> let cg = curry g
> :type cg
cg :: Int -> Int -> Int

> cg 3 4
77

Currying the uncurried, continued

CSC!372!Spring!2016,!Haskell!Slide!327!

At hand:

 curry :: ((a, b) -> c) -> a -> b -> c

 curry f x y = f (x, y)

> map (curry g 3) [1..10]

[20,35,54,77,104,135,170,209,252,299]

The key: (curry g 3) is a partial application of curry!

 Call: curry g 3

 Dcl: curry f x y = f (x, y)

 = g (3, y)

Currying the uncurried, continued

CSC!372!Spring!2016,!Haskell!Slide!328!

At hand:

 curry :: ((a, b) -> c) -> (a -> b -> c) (parentheses added)

 curry f x y = f (x, y)

> map (curry g 3) [1..10]

[20,35,54,77,104,135,170,209,252,299]

Let's get flip into the game!

> map (flip (curry g) 4) [1..10]

[45,60,77,96,117,140,165,192,221,252]

The counterpart of curry is uncurry:

> uncurry (+) (3,4)

7

Currying the uncurried, continued

CSC!372!Spring!2016,!Haskell!Slide!329!

function curry(f) {

 return function(x) {

 return function (y) { return f(x,y) }

 }

 }

A curry function for JavaScript

CSC!372!Spring!2016,!Haskell!Slide!330!

Folding

CSC!372!Spring!2016,!Haskell!Slide!331!

We can reduce a list by a binary operator by inserting that operator
between the elements in the list:

[1,2,3,4] reduced by + is 1 + 2 + 3 + 4

["a","bc", "def"] reduced by ++ is "a" ++ "bc" ++ "def"

Imagine a function reduce that does reduction by an operator.

> reduce (+) [1,2,3,4]
10

> reduce (++) ["a","bc","def"]
"abcdef"

> reduce max [10,2,4]
10

Reduction

 -- think of!10 `max` 2 `max` 4

CSC!372!Spring!2016,!Haskell!Slide!332!

At hand:
> reduce (+) [1,2,3,4]
10

An implementation of reduce:

reduce _ [] = undefined
reduce _ [x] = x
reduce op (x:xs) = x `op` reduce op xs

Does reduce + [1,2,3,4] do
 ((1 + 2) + 3) + 4

or
 1 + (2 + (3 + 4))

?

In general, when would the grouping matter?

 If the operation is non-associative, like division.

Reduction, continued

CSC!372!Spring!2016,!Haskell!Slide!333!

In the Prelude there's no reduce but there is foldl1 and foldr1.

>!foldl1!(+)![1..4]!

10!

!

>!foldl1!max!"maximum"!

'x'!

!

>!foldl1!(/)![1,2,3]!

0.16666666666666666 !AA!lea!associabve:!(1!/!2)!/!3!

!

>!foldr1!(/)![1,2,3]! ! !AA!right!associabve:!1!/!(2!/!3)!

1.5!

The types of both foldl1 and foldr1 are (a!A>!a!A>!a)!A>![a]!A>!a.!

foldl1 and foldr1!

CSC!372!Spring!2016,!Haskell!Slide!334!

Another folding function is foldl (no 1). Let's compare the types of
the two:

foldl1!::!(a!A>!a!A>!a)!A>![a]!A>!a!
foldl!::!(a!A>!b!A>!a)!A>!a!A>![b]!A>!a!

What's different between them?

First difference: foldl requires one more argument:

>!foldl!(+)!0![1..10]!
55!
!
>!foldl!(+)!100![]!
100!
!
>!foldl1!(+)![]!
***!Excepbon:!Prelude.foldl1:!empty!list

CSC!372!Spring!2016,!Haskell!Slide!335!

foldl1 vs. foldl!

Again, the types:
foldl1!::!(a!A>!a!A>!a)!A>![a]!A>!a!
foldl!::!(a!A>!b!A>!a)!A>!a!A>![b]!A>!a!
!

Second difference:

 foldl can fold a list of values into a different type! (This is BIG!)

Examples:

>!foldl!f1!0!["just","a","test"]!
3 ! ! ! ! !AA!folded!strings!into!a!number!
!
>!foldl!f2!"stars:!"![3,1,2]!
"stars:!******" !AA!folded!numbers!into!a!string!
!
>!foldl!f3!0![(1,1),(2,3),(5,10)]!
57 ! ! ! ! !AA!folded!twoAtuples!into!a!sum!of!products!

CSC!372!Spring!2016,!Haskell!Slide!336!

foldl1 vs. foldl, continued

For reference:

!!!!foldl!::!(a!A>!b!A>!a)!A>!a!A>![b]!A>!a!

Here's another view of the type: (acm_t stands for accumulator type)

!!!!foldl!::!(acm_t!A>!elem_t!A>!acm_t)!A>!acm_t!A>![elem_t]!A>!acm_t!

!

foldl takes three arguments:

1.  A function that takes an accumulated value and an element value

and produces a new accumulated value

2.  An initial accumulated value

3.  A list of elements

Recall:

>!foldl!f1!0!["just","a","test"]!

3!

!

>!foldl!f2!"stars:!"![3,1,2]!

"stars:!******"!

CSC!372!Spring!2016,!Haskell!Slide!337!

foldl!

Recall:

>!foldl!f1!0!["just","a","test"]!

3!

Here are the computations that foldl did to produce that result

>!f1!0!"just"!

1!

>!f1!it!"a"!

2!

>!f1!it!"test"!

3!

Let's do it in one shot, and use backquotes to infix f1:

>!((0!!`f1`!!"just")!!`f1`!!"a")!!`f1`!!"test"!

3!

!

!!!!!!!!!!!!!!!1!+!2!+!3!+!4 is the reduction we started this section with.

CSC!372!Spring!2016,!Haskell!Slide!338!

Note the parallels between these two.

At hand:

>!f1!0!"just"!

1!

>!f1!it!"a"!

2!

>!f1!it!"test"!

3!

Problem: Write a function f1 that behaves like above.

Starter:

!f1!::!acm_t!A>!elem_t!A>!acm_t!

!f1!acm!elem!=!!

!

Congratulations! You just wrote a folding function!

CSC!372!Spring!2016,!Haskell!Slide!339!

foldl, continued

acm!+!1!

For reference:

>!foldl!f1!0!["just","a","test"]!

3!

Recall:

>!foldl!f2!"stars:!"![3,1,2]!

"stars:!******"!

!

Here's what foldl does with f2 and the initial value, "stars:!":

>!f2!"stars:!"!3!

"stars:!***"!

>!f2!it!1!

"stars:!****"!

>!f2!it!2!

"stars:!******"!

Write f2, with this starter:

f2!::!acm_t!A>!elem_t!A>!acm_t!

f2!acm!elem!=!acm!++!replicate!elem!'*'!

Look! Another folding function!
CSC!372!Spring!2016,!Haskell!Slide!340!

Folding abstracts a common pattern of computation: a series of values

contribute one-by-one to a result that accumulates.

The challenge of folding is to envision a function that takes nothing but an

accumulated value (acm) and a single list element (elem) and produces a

result that reflects the contribution of elem to acm.

!f2!acm!elem!=!acm!++!replicate!elem!'*'!

It's important to recognize that the folding function never sees the full list!

We then call foldl with that folding function, an appropriate initial value

and a list of values.

 foldl!f2!"stars:!"![3,1,2]

foldl orchestrates the computation by making the appropriate series of calls

to the folding function.

>!(("stars:!"!`f2`!3)!`f2`!1)!`f2`!2!

"stars:!******"!

CSC!372!Spring!2016,!Haskell!Slide!341!

Recall:

>!foldl!f3!0![(1,1),(2,3),(5,10)]!

57!

Here are the calls that foldl!will make:

>!f3!0!(1,1)!

1!

>!f3!it!(2,3)!

7!

>!f3!it!(5,10)!

57!

Problem: write f3!

f3!acm!(a,b)!=!acm!+!a!*!b!

CSC!372!Spring!2016,!Haskell!Slide!342!

 foldl, continued

Remember that

 foldl!f!0![10,20,30]!

is like

 ((0!`f`!10)!`f`!20)!`f`!30!

Here's an implementation of foldl:

foldl!f!acm![]!=!acm!

foldl!f!acm!(elem:elems)!=!!foldl!f!(acm!`f`!elem)!elems!

We can implement foldl1 in terms of foldl:

foldl1!f!(x1:xs)!=!foldl!f!x1!xs!

foldl1!_![]!=!error!"empty!list"!

CSC!372!Spring!2016,!Haskell!Slide!343!

!foldl, continued

Let's use folding to implement our even/odd counter non-recursively.

>!countEO![3,4,7,9]!

(1,3)!

!

Often, a good place to start on a folding is to figure out what the initial

accumulator value should be. What should it be for countEO?

 (0,0)!

!

What will be the calls to the folding function?

>!f!(0,0)!3!

(0,1)!

>!f!it!4!

(1,1)!

>!f!it!7!

(1,2)!

>!f!it!9!

(1,3)!

!

A non-recursive countEO!

CSC!372!Spring!2016,!Haskell!Slide!344!

Now we're ready to write countEO:

countEO!nums!=!foldl!f!(0,0)!nums!

!!!!where!

!!!!!!!!f!(evens,!odds)!elem!

!!!!!!!!!!!!|!even!elem!=!(evens!+!1,!odds)!

!!!!!!!!!!!!|!otherwise!=!(evens,!odds!+!1)!

If a folding function is simple, an anonymous function is typically

used.

Let's redo our three earlier folds with anonymous functions:

>!foldl!(\acm!_!A>!acm!+!1)!0!["just","a","test"]!

3!

!

>!foldl!(\acm!elem!A>!acm!++!replicate!elem!'*')!"stars:!"![3,1,2]!

"stars:!******"!

!

>!foldl!(\acm!(a,b)!A>!acm!+!a!*!b)!0![(1,1),(2,3),(5,10)]!

57!

CSC!372!Spring!2016,!Haskell!Slide!345!

Folds with anonymous functions

The counterpart of foldl!is foldr. Compare their meanings:

!

foldl!f!zero![e1,!e2,!...,!eN]!==!(...((zero!`f`!e1)!`f`!e2)!`f`...)`f`!eN!

!

foldr!f!zero![e1,!e2,!...,!eN]!==!e1!`f`!(e2!`f`!...!(eN!`f`!zero)...)!!

!

"zero" represents a computation-specific initial value. Note that with

foldl, zero is leftmost; but with foldr, zero is rightmost.

!

Their types, with long type variables:

!foldl!::!(acm!A>!val!A>!acm)!A>!acm!A>![val]!A>!acm!

!foldr!::!(val!A>!acm!A>!acm)!A>!acm!A>![val]!A>!acm!

!

Mnemonic aid:

!foldl's folding function has the accumulator on the left

!foldr's folding function has the accumulator on the right

foldr!

CSC!372!Spring!2016,!Haskell!Slide!346!

Because cons (:) is right-associative, folds that produce lists are often

done with foldr.

Imagine a function that keeps the odd numbers in a list:

>!keepOdds![5,4,2,3]!

[5,3]!

Implementation, with foldr:

keepOdds!list!=!foldr!f![]!list!

!!!!where!

!!!!!!!!f!elem!acm!

!!!!!!!!!!!!|!odd!elem!=!elem!:!acm!

!!!!!!!!!!!!|!otherwise!=!acm!

CSC!372!Spring!2016,!Haskell!Slide!347!

foldr, continued

Here are calls to the folding

function:

>!f!3![]!AA!rightmost first!

[3]!

>!f!2!it!

[3]!

>!f!4!it!

[3]!

>!f!5!it!

[5,3]!

keepOdds could have been written using filter:

 keepOdds!=!filter!odd!

Can we implement filter as a fold?

filter!predicate!list!=!foldr!f![]!list!

!!!!where!

!!!!!!!!f!elem!acm!

!!!!!!!!!!!!|!predicate!elem!=!elem!:!acm!

!!!!!!!!!!!!|!otherwise!=!acm!

How about implmenting map as a fold?

map!f!=!foldr!(\elem!acm!A>!f!elem!:!acm)![]!

Is folding One Operation to Rule Them All?

CSC!372!Spring!2016,!Haskell!Slide!348!

filter!and map with folds?

Recall paired from assignment 3:

> paired "((())())"

True

Can we implement paired with a fold?

counter (-1) _ = -1

counter total '(' = total + 1

counter total ')' = total - 1

counter total _ = total

paired s = foldl counter 0 s == 0

Point-free:

paired = (0==) . foldl counter 0

paired with a fold

CSC!372!Spring!2016,!Haskell!Slide!349!

paired is a fold with a simple

wrapper, to test the result of

the fold.

Data.List.partition partitions a list based on a predicate:

> partition isLetter "Thu Feb 13 16:59:03 MST 2014"

("ThuFebMST"," 13 16:59:03 2014")

> partition odd [1..10]

([1,3,5,7,9],[2,4,6,8,10])

Problem: Write partition using a fold.

sorter f val (pass, fail)

 | f val = (val:pass, fail)

 | otherwise = (pass, val:fail)

partition f = foldr (sorter f) ([],[])

Folding, continued

CSC!372!Spring!2016,!Haskell!Slide!350!

Let's do a progression of folds related to finding vowels in a string.

First, let's write a fold that counts vowels in a string:

> foldr (\val acm ->

 acm + if val `elem` "aeiou" then 1 else 0) 0 "ate"
2

Now let's produce both a count and the vowels themselves:

> foldr (\val acm@(n, vows) ->
 if val `elem` "aeiou" then (n+1, val:vows)

 else acm) (0,[]) "ate"

(2,"ae")

A progression of folds

CSC!372!Spring!2016,!Haskell!Slide!351!

Finally, let's write a function that produces a list of vowels and their

positions:

> vowelPositions "Down to Rubyville!"

[('o',1),('o',6),('u',9),('i',13),('e',16)]

Solution:

vowelPositions s = reverse result

 where (_, result, _) =

 foldl (\acm@(n, vows,pos) val ->

 if val `elem` "aeiou" then (n, (val,pos):vows,pos+1)

 else (n,vows,pos+1)) (0,[],0) s

Note that vowelPositions uses foldl to produce a 3-tuple whose

middle element is the result, in reverse order. (This is another

function that's a fold with a wrapper, like paired on 348).

CSC!372!Spring!2016,!Haskell!Slide!352!

A progression of folds, continued

map:
 transforms a list of values
 length input == length output

filter:

 selects values from a list
 0 <= length output <= length input

folding

 Input: A list of values and an initial value for accumulator
 Output: A value of any type and complexity

True or false?

Any operation that processes a list can be expressed in a
terms of a fold, perhaps with a simple wrapper.

map vs. filter vs. folding

CSC!372!Spring!2016,!Haskell!Slide!353!

Far-fetched folding:

Refrigerators in Gould-Simpson to
 ((grams fat, grams protein, grams carbs), calories)

Keyboards in Gould-Simpson to

 [("a", #), ("b", #), ..., ("@2", #), ("CMD", #)]

[Backpack] to

 (# pens, pounds of paper,
 [(title, author, [page #s with the word "computer")])

[Furniture]

to a structure of 3D vertices representing a convex hull
that could hold any single piece of furniture.

We can fold a list of anythings into anything!

CSC!372!Spring!2016,!Haskell!Slide!354!

User-defined types

CSC!372!Spring!2016,!Haskell!Slide!355!

A new type can be created with a data declaration.

Here's a simple Shape type whose instances represent circles or
rectangles:

data Shape =
 Circle Double | -- just a radius
 Rect Double Double -- width and height

 deriving Show

The shapes have dimensions but no position.

Circle and Rect are data constructors.

"deriving Show" declares Shape to be an instance of the Show type
class, so that values can be shown using some simple, default rules.

Shape is called an algebraic type because instances of Shape are built
using other types.

A Shape type

CSC!372!Spring!2016,!Haskell!Slide!356!

Instances of Shape are created by calling the data constructors:

> let r1 = Rect 3 4
> r1
Rect 3.0 4.0

> let r2 = Rect 5 3

> let c1 = Circle 2

> let shapes = [r1, r2, c1]

> shapes
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0]

Lists must be homogeneous—why are both Rects and Circles
allowed in the same list?

Shape, continued

data Shape =
 Circle Double |

 Rect Double Double

 deriving Show

CSC!372!Spring!2016,!Haskell!Slide!357!

The data constructors are just functions—we can use all our

function-fu with them!

> :t Circle

Circle :: Double -> Shape

> :t Rect

Rect :: Double -> Double -> Shape

> map Circle [2,3] ++ map (Rect 3) [10,20]

[Circle 2.0,Circle 3.0,Rect 3.0 10.0,Rect 3.0 20.0]

Shape, continued

data Shape =
 Circle Double |

 Rect Double Double

 deriving Show

CSC!372!Spring!2016,!Haskell!Slide!358!

Functions that operate on algebraic types use patterns based on the type's
data constructors.

area (Circle r) = r ** 2 * pi
area (Rect w h) = w * h

Usage:

> r1
Rect 3.0 4.0

> area r1
12.0

> shapes
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0]

> map area shapes
[12.0,15.0,12.566370614359172]

> sum $ map area shapes
39.56637061435917

Shape, continued

data Shape =

 Circle Double |

 Rect Double Double

 deriving Show

CSC!372!Spring!2016,!Haskell!Slide!359!

Let's make the Shape type an instance of the Eq type class.

What does Eq require?

> :info Eq
class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

We'll say that two shapes are equal if their areas are equal.

instance Eq Shape where
 (==) r1 r2 = area r1 == area r2

Usage:

> Rect 3 4 == Rect 6 2
True

> Rect 3 4 == Circle 2
False

Shape, continued

Default definitions from Eq:

(==) a b = not $ a /= b

(/=) a b = not $ a == b

CSC!372!Spring!2016,!Haskell!Slide!360!

Let's see if we can find the biggest shape:
> maximum shapes
 No instance for (Ord Shape) arising from a use of
`maximum'
 Possible fix: add an instance declaration for (Ord
Shape)

What's in Ord?

> :info Ord
class Eq a => Ord a where
 compare :: a -> a -> Ordering
 (<) :: a -> a -> Bool
 (>=) :: a -> a -> Bool
 (>) :: a -> a -> Bool
 (<=) :: a -> a -> Bool
 max :: a -> a -> a
 min :: a -> a -> a

Shape, continued

Eq a => Ord a requires

would-be Ord classes to be

instances of Eq. (Done!)

Like == and /= with Eq, the

operators are implemented in

terms of each other.

CSC!372!Spring!2016,!Haskell!Slide!361!

Let's make Shape an instance of the Ord type class:
instance Ord Shape where
 (<) r1 r2 = area r1 < area r2 -- < and <= are sufficient
 (<=) r1 r2 = area r1 <= area r2

Usage:

> shapes
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0]

> map area shapes
[12.0,15.0,12.566370614359172]

> maximum shapes
Rect 5.0 3.0

> Data.List.sort shapes
[Rect 3.0 4.0,Circle 2.0,Rect 5.0 3.0]

Note that we didn't need to write functions like sumOfAreas or
largestShape—we can express those in terms of existing operations

Shape, continued

CSC!372!Spring!2016,!Haskell!Slide!362!

Here's all the Shape code: (in shape.hs)
data Shape =
 Circle Double |
 Rect Double Double deriving Show

area (Circle r) = r ** 2 * pi
area (Rect w h) = w * h

instance Eq Shape where
 (==) r1 r2 = area r1 == area r2

instance Ord Shape where
 (<) r1 r2 = area r1 < area r2
 (<=) r1 r2 = area r1 <= area r2

What would be needed to add a Figure8 shape and a perimeter function?

How does this compare to a Shape/Circle/Rect hierarchy in Java?

Shape all in one place

CSC!372!Spring!2016,!Haskell!Slide!363!

Let's look at the compare function:

> :t compare

compare :: Ord a => a -> a -> Ordering

Ordering is a simple algebraic type, with only three values:

> :info Ordering
data Ordering = LT | EQ | GT

> [r1,r2]

[Rect 3.0 4.0,Rect 5.0 3.0]

> compare r1 r2

LT

> compare r2 r1
GT

The type Ordering

CSC!372!Spring!2016,!Haskell!Slide!364!

What do you suppose Bool really is?

Bool is just an algebraic type with two values:

> :info Bool

data Bool = False | True

Bool is an example of Haskell's extensibility. Instead of being a

primitive type, like boolean in Java, it's defined in terms of

something more basic.

CSC!372!Spring!2016,!Haskell!Slide!365!

What is Bool?

Here's an algebraic type for a binary tree: (in tree.hs)

data Tree a = Node a (Tree a) (Tree a)

 | Empty

 deriving Show

The a is a type variable. Our Shape type used Double values but Tree

can hold values of any type!

> let t1 = Node 9 (Node 6 Empty Empty) Empty

> t1

Node 9 (Node 6 Empty Empty) Empty

> let t2 = Node 4 Empty t1

> t2

Node 4 Empty (Node 9 (Node 6 Empty Empty) Empty)

A binary tree

4

9

6

t1

t2

CSC!372!Spring!2016,!Haskell!Slide!366!

Here's a function that inserts values, maintaining an ordered tree:
insert Empty v = Node v Empty Empty
insert (Node x left right) value
 | value <= x = (Node x (insert left value) right)
 | otherwise = (Node x left (insert right value))

Let's insert some values...
> let t = Empty
> insert t 5
Node 5 Empty Empty

> insert it 10
Node 5 Empty (Node 10 Empty Empty)

> insert it 3
Node 5 (Node 3 Empty Empty) (Node 10 Empty Empty)

Note that each insertion rebuilds some portion of the tree!

Tree, continued

5

10 3

CSC!372!Spring!2016,!Haskell!Slide!367!

Here's an in-order traversal that produces a list of values:

inOrder Empty = []

inOrder (Node val left right) =

 inOrder left ++ [val] ++ inOrder right

What's an easy way to insert a bunch of values?

> let t = foldl insert Empty [3,1,9,5,20,17,4,12]

> inOrder t

[1,3,4,5,9,12,17,20]

> inOrder $ foldl insert Empty "tim korb"
" bikmort"

> inOrder $ foldl insert Empty [Rect 3 4, Circle 1, Rect 1 2]

[Rect 1.0 2.0,Circle 1.0,Rect 3.0 4.0]

Tree, continued

CSC!372!Spring!2016,!Haskell!Slide!368!

Here's an interesting type:
> :info Maybe
data Maybe a = Nothing | Just a

Speculate: What's the point of it?

Here's a function that uses it:

> :t Data.List.find
Data.List.find :: (a -> Bool) -> [a] -> Maybe a

How could we use it?

> find even [3,5,6,8,9]
Just 6

> find even [3,5,9]
Nothing

> case (find even [3,5,9]) of { Just _ -> "got one"; _ -> "oops!"}
"oops!"

Maybe

CSC!372!Spring!2016,!Haskell!Slide!369!

 A little I/O

CSC!372!Spring!2016,!Haskell!Slide!370!

Consider this function declaration
f2 x = a + b + c
 where
 a = f x
 b = g x
 c = h x

Haskell guarantees that the order of the where clause bindings is
inconsequential—those three lines can be in any order.

What enables that guarantee?

(Pure) Haskell functions depend only on the argument value. For
a given value of x, f x always produces the same result.

You can shuffle the bindings of any function's where clause without
changing the function's behavior! (Try it with longest, slide 291.)

Sequencing

a = f x
c = h x
b = g x

c = h x
b = g x
a = f x

CSC!372!Spring!2016,!Haskell!Slide!371!

Imagine a getInt function, which reads an integer from standard
input (e.g., the keyboard).

Can the where clause bindings in the following function be done in
any order?

f x = r
 where
 a = getInt
 b = getInt
 r = a * 2 + b + x

The following is not valid syntax but ignoring that, is it reorderable?
greet name = ""
 where
 putStr "Hello, "
 putStr name
 putStr "!\n"

I/O and sequencing

CSC!372!Spring!2016,!Haskell!Slide!372!

One way we can specify that operations are to be performed in a

specific sequence is to use a do:

% cat io2.hs

main = do

 putStrLn "Who goes there?"

 name <- getLine
 let greeting = "Hello, " ++ name ++ "!"

 putStrLn greeting

Interaction:

% runghc io2.hs
Who goes there?

whm (typed)

Hello, whm!

I/O and sequencing, continued

CSC!372!Spring!2016,!Haskell!Slide!373!

Here's the type of putStrLn:

putStrLn :: String -> IO () ("unit", (), is the no-value value)

The type IO x represents an interaction with the outside world that

produces a value of type x. Instances of IO x are called actions.

When an action is evaluated the corresponding outside-world

activity is performed.

> let hello = putStrLn "hello!" (Note: no output here!)

hello :: IO () (Type of hello is an action.)

> hello

hello! (Evaluating hello, an action, caused output.)

it :: ()

Actions

CSC!372!Spring!2016,!Haskell!Slide!374!

The value of getLine is an action that reads a line:

getLine :: IO String

We can evaluate the action, causing the line to be read, and bind a

name to the string produced:

> s <- getLine
testing

> s

"testing"

Note that getLine is not a function!

Actions, continued

CSC!372!Spring!2016,!Haskell!Slide!375!

Recall io2.hs:

main = do

 putStrLn "Who goes there?"

 name <- getLine

 let greeting = "Hello, " ++ name ++ "!"

 putStrLn greeting

Note the type: main :: IO (). We can say that main is an action.

Evaluating main causes interaction with the outside world.

> main

Who goes there?
hello? (I typed)

Hello, hello?!

Actions, continued

CSC!372!Spring!2016,!Haskell!Slide!376!

A pure function (1) always produces the same result for a given

argument value, and (2) has no side effects.

Is this a pure function?

twice :: String -> IO ()

twice s = do
 putStr s

 putStr s

twice "abc" will always produce the same value, an action that if

evaluated will cause "abcabc" to be output.

Is it pure?

CSC!372!Spring!2016,!Haskell!Slide!377!

We want to use pure functions whenever possible but we want to be

able to do I/O, too.

In general, evaluating an action produces side effects.

Here's the Haskell solution for I/O in a nutshell:

Actions can evaluate other actions and pure functions but pure

functions don't evaluate actions.

Recall longest.hs:

longest bytes = result where ...lots...
main = do

 args <- getArgs -- gets command line arguments

 bytes <- readFile (head args)

 putStr (longest bytes)

The Haskell solution for I/O

CSC!372!Spring!2016,!Haskell!Slide!378!

In conclusion...

CSC!372!Spring!2016,!Haskell!Slide!379!

If we had a whole semester to study functional programming, here's what
might be next:

•  More with infinite data structures (like x = 1:x)

•  How lazy/non-strict evaluation works

•  Implications and benefits of referential transparency (which means that
the value of a given expression is always the same).

•  Functors (structures that can be mapped over)

•  Monoids (a set of things with a binary operation over them)

•  Monads (for representing sequential computations)

•  Zippers (a structure for traversing and updating another structure)

•  And more!

Jeremiah Nelson and Jordan Danford are great local resources for Haskell!

If we had a whole semester...

CSC!372!Spring!2016,!Haskell!Slide!380!

Recursion and techniques with higher-order functions can be used in most
languages. Some examples:

JavaScript, Python, PHP, all flavors of Lisp, and lots of others:

Functions are "first-class" values; anonymous functions are supported.

C

Pass a function pointer to a recursive function that traverses a data
structure.

C#

Excellent support for functional programming with the language itself,
and LINQ, too.

Java 8

 Lambda expressions are in!

OCaml

"an industrial strength programming language supporting functional,
imperative and object-oriented styles" – OCaml.org
http://www.ffconsultancy.com/languages/ray_tracer/comparison.html

Even if you never use Haskell again...

CSC!372!Spring!2016,!Haskell!Slide!381!

Killer Quiz!

CSC!372!Spring!2016,!Haskell!Slide!382!

Ruby
CSC#372,#Spring#2016#

The#University#of#Arizona#

William#H.#Mitchell#

whm@cs#

#
CSC#372#Spring#2016,#Ruby#Slide#1#

Our topic sequence:

•  Functional programming with Haskell (Done!)

•  Imperative and object-oriented programming using dynamic

typing with Ruby

•  Logic programming with Prolog

•  Whatever else in the realm of programming languages that we

find interesting and have time for.

The Big Picture

CSC#372#Spring#2016,#Ruby#Slide#2#

Introduction

CSC#372#Spring#2016,#Ruby#Slide#3#

From:#Ralph#Griswold#<ralph@CS.Arizona.EDU>#
Date:#Mon,#18#Sep#2006#16:14:46#S0700#
#
whm#wrote:#
>#I#ran#into#John#Cropper#in#the#mailroom#a#few#minutes#ago.##He#said#
>#he#was#out#at#your#place#today#and#that#you're#doing#well.##I#
>#understand#you've#got#a#meeWng#coming#up#regarding#math#in#your#
>#weaving#book#SS#sounds#like#fun!?#
#
Hi,#William#
#
I'm#doing#well#in#the#sense#of#surviving#longer#than#expected.##But#
I'm#sWll#a#sick#person#without#much#energy#and#with#a#lot#of#pain.#
>#
>#My#first#lecture#on#Ruby#is#tomorrow.##Ruby#was#cooked#up#by#a#
>#Japanese#fellow.##Judging#by#the#number#of#different#ways#to#do#the#
>#same#thing,#I#wonder#if#Japanese#has#a#word#like#"no".#
#
InteresWng.##I#know#nothing#about#Ruby,#but#I've#noWced#it's#
ge`ng#a#lot#of#press,#so#there#must#be#something#to#it.#

Ralph's#obituary:#hap://cs.arizona.edu/news/arWcles/200610Sgriswold.html# CSC#372#Spring#2016,#Ruby#Slide#4#

"A dynamic, open source programming language with a focus on

simplicity and productivity. It has an elegant syntax that is natural to

read and easy to write." — ruby-lang.org

Ruby is commonly described as an "object-oriented scripting

language".

 (I don't like the term "scripting language"!)

I describe Ruby as a dynamically typed object-oriented language.

Ruby was invented by Yukihiro Matsumoto ("Matz"), a "Japanese

amateur language designer", in his own words.

Ruby on Rails, a web application framework, has largely driven

Ruby's popularity.

What is Ruby?

CSC#372#Spring#2016,#Ruby#Slide#5#

Here is a second-hand excerpt of a posting by Matz:

"Well, Ruby was born on February 24, 1993. I was talking with

my colleague about the possibility of an object-oriented

scripting language. I knew Perl (Perl4, not Perl5), but I didn't

like it really, because it had smell of toy language (it still has).

The object-oriented scripting language seemed very promising."

Another quote from Matz:

"I believe that the purpose of life is, at least in part, to be happy.

Based on this belief, Ruby is designed to make programming not

only easy but also fun. It allows you to concentrate on the

creative side of programming, with less stress. If you don’t

believe me, read this book [the "pickaxe" book] and try Ruby.

I’m sure you’ll find out for yourself."

Matz says...

CSC#372#Spring#2016,#Ruby#Slide#6#

There is no written standard for Ruby. The language is effectively defined

by MRI—Matz' Ruby Implementation.

The most recent stable version of MRI is 2.3.0.

The default version of Ruby on lectura is 1.8.7 but we'll use rvm (the

Ruby Version Manager) to run version 2.2.4.

OS X, from Mavericks to El Capitan, has Ruby 2.0.0.

The last major upheaval in Ruby occurred between 1.8 and 1.9.

In general, there are few incompatibilities between 1.9.3 and the latest

version.

The examples in these slides should work with with 1.9.3 through 2.3.0.

CSC#372#Spring#2016,#Ruby#Slide#7#

Version issues

The Ruby Programming Language by David Flanagan and Matz

 – Perhaps the best book on Safari that covers 1.9 (along with 1.8)

 – I'll refer to it as "RPL" .

Programming Ruby 1.9 & 2.0 (4th edition): The Pragmatic Programmers'

Guide by Dave Thomas, with Chad Fowler and Andy Hunt

 – Known as the "Pickaxe book"

 – $28 for a DRM-free PDF at pragprog.com.#

 – I'll refer to it as "PA".

 – First edition is here: hap://rubySdoc.com/docs/ProgrammingRuby/

Safari has lots of pre-1.9 books, lots of books that teach just enough Ruby

to get one into the water with Rails, and lots of "cookbooks".

Resources

CSC#372#Spring#2016,#Ruby#Slide#8#

ruby-lang.org

•  Ruby's home page

ruby-doc.org

•  Documentation

•  Here's a sample URL, for the String class in 2.2.4:

 http://ruby-doc.org/core-2.2.4/String.html

•  Suggestion: Create a Chrome "search engine" named rc ("Ruby

class") with this expansion:

 http://www.ruby-doc.org/core-2.2.4/%s.html

 (See hap://www.cs.arizona.edu/~whm/o1nav.pdf)

Resources, continued

CSC#372#Spring#2016,#Ruby#Slide#9#

Ruby 2.0.0, as supplied by Apple with recent versions of OS X,

should be fine for our purposes.

I installed Ruby 2.2.0 on my Mac using MacPorts. The "port" is

ruby22.

Lot of people install Ruby versions using the Homebrew package

manager, too.

CSC#372#Spring#2016,#Ruby#Slide#10#

Getting Ruby for OS X

Go to http://rubyinstaller.org/downloads/ and get

 "Ruby 2.2.4" (not x64)

When installing, I recommend these selections:

 Add Ruby executables to your PATH

 Associate .rb and .rbw files with this Ruby installation

Getting Ruby for Windows

CSC#372#Spring#2016,#Ruby#Slide#11#

Running Ruby

CSC#372#Spring#2016,#Ruby#Slide#12#

rvm is the Ruby Version Manager. It lets one easily select a particular

version of Ruby to work with.

On lectura, we can select Ruby 2.2.4 and then check the version like this:

% rvm 2.2.4

% ruby --version

ruby 2.2.4p230 (2015-12-16 revision 53155) [x86_64-linux]

Depending on your bash configuration, rvm may produce a message like

"Warning! PATH is not properly set up..." but if ruby --version

shows 2.2.4, all is well.

Note: rvm does not work with ksh. If you're running ksh, let us know.

CSC#372#Spring#2016,#Ruby#Slide#13#

rvm––Ruby Version Manager

IMPORTANT: you must either

 1. Do rvm 2.2.4 each time you login on lectura.

 ––OR––

 2. Add the command rvm 2.2.4 to one of your bash start-up files.

There are a variety of ways in which bash start-up files can be configured.

•  With the default configuration for CS accounts, add the line

 rvm 2.2.4 >& /dev/null

 at the end of your ~/.profile.

•  If you're using the configuration suggested in my Fall 2015 352

slides, put that line at the end of your ~/.bashrc.

•  Let us know if you have trouble with this.

CSC#372#Spring#2016,#Ruby#Slide#14#

rvm, continued

The irb command provides a REPL for Ruby.

irb can be run with no arguments but I usually start irb with a bash alias

that specifies using a simple prompt and activates auto-completion:

 alias irb="irb --prompt simple -r irb/completion"

When irb starts up, it first processes ~/.irbrc, if present.

spring16/ruby/dotirbrc is a recommended starter ~/.irbrc file.

 % cp /cs/www/classes/cs372/spring16/ruby/dotirbrc ~/.irbrc

Control-D terminates irb.

irb––Interactive Ruby Shell

CSC#372#Spring#2016,#Ruby#Slide#15#

irb evaluates expressions as they are typed.

% irb

>> 1+2

=> 3

>> "testing" + "123"

=> "testing123"

Assuming you're using the ~/.irbrc suggested on the previous slide, you

can use "it" to reference the last result:

>> it

=> "testing123"

>> it + it

=> "testing123testing123"

irb, continued

CSC#372#Spring#2016,#Ruby#Slide#16#

A couple more:

>> `ssh lec uptime`

=> " 18:00:58 up 10 days, 9:00, 99 users, load average: 0.50,

0.32, 0.32\n"

>> it[-26,8]

=> "average:"

If an expression is definitely incomplete, irb displays an alternate prompt:

>> 1.23 +

?> 2e3

=> 2001.23

Note: To save space on the slides I'll typically not show the result line

(=> ...) when it's uninteresting.

irb, continued

CSC#372#Spring#2016,#Ruby#Slide#17#

Ruby basics

CSC#372#Spring#2016,#Ruby#Slide#18#

In Ruby every value is an object.

Methods can be invoked using receiver.method(parameters...)

>> "testing".count("t") # How many "t"s are there?

 => 2

>> "testing".slice(1,3)

=> "est"

>> "testing".length()

=> 7

Repeat: In Ruby every value is an object.

What are some values in Java that are not objects?

Every value is an object

CSC#372#Spring#2016,#Ruby#Slide#19#

Of course, "everything" includes numbers:

>> 1.2.class()

=> Float

>> (10-20).class()

=> Fixnum

>> 17**25

=> 5770627412348402378939569991057

>> it.succ() # Remember: the custom .irbc is needed to use "it"

=> 5770627412348402378939569991058

>> it.class()

=> Bignum

Everything is an object, continued

CSC#372#Spring#2016,#Ruby#Slide#20#

100.__id__
100.__send__
100.abs
100.abs2
100.angle
100.arg
100.between?
100.ceil
100.chr
100.class
100.clone
100.coerce
100.conj
100.conjugate
100.define_singleton_method
100.denominator

100.display
100.div
100.divmod
100.downto
100.dup
100.enum_for
100.eql?
100.equal?
100.even?
100.extend
100.fdiv
100.floor
100.freeze
100.frozen?
100.gcd
100.gcdlcm

Everything is an object, continued

The TAB key can be used to show completions:

>> 100.<TAB><TAB>

Display all 107 possibilities? (y or n)

CSC#372#Spring#2016,#Ruby#Slide#21#

Parentheses are often optional in method invocations:

>> 1.2.class

=> Float

>> "testing".count "aeiou"

=> 2

But, the following case fails. (Why?)

>> "testing".count "aeiou".class

TypeError: no implicit conversion of Class into String

 from (irb):17:in `count'

Solution:

>> "testing".count("aeiou").class

=> Fixnum

I usually omit parentheses in simple method invocations.

Parentheses are optional, sometimes

CSC#372#Spring#2016,#Ruby#Slide#22#

Don't let the optional parentheses make you have a Haskell moment and

leave out a comma between arguments:

>> "testing".slice 2 3

SyntaxError: (irb):20: syntax error, unexpected tINTEGER,

expecting end-of-input

Commas are required between arguments!

>> "testing".slice 2,3

=> "sti"

CSC#372#Spring#2016,#Ruby#Slide#23#

A post-Haskell hazard!

Ruby operators are methods with symbolic names.

In general,

 expr1 op expr2

means

 expr1.op(expr2)

Example:

>> 3 + 4

=> 7

>> 3.+(4)

=> 7

>> "abc".==(97.chr.+("bc"))

=> true

CSC#372#Spring#2016,#Ruby#Slide#24#

Operators are methods, too

The Kernel module has methods for I/O and more. Methods in Kernel

can be invoked with only the method name.

>> puts "hello"

hello

=> nil

>> printf "sum = %d, product = %d\n", 3+4, 3 * 4

sum = 7, product = 12

=> nil

>> puts gets.inspect

testing

"testing\n"

=> nil

See http://ruby-doc.org/core-2.2.4/Kernel.html

CSC#372#Spring#2016,#Ruby#Slide#25#

Kernel methods

For two assignment points of extra credit:

1.  Run irb somewhere and try ten Ruby expressions with some

degree of variety.

2.  Capture the output and put it in a plain text file, eca2.txt. No need

for your name, NetID, etc. in the file. No need to edit out errors.

3.  On lectura, turn in eca2.txt with the following command:

%#turnin#372Seca2#eca2.txt#

Due: At the start of the next lecture after we hit this slide.

Needless to say, feel free to read ahead in the slides and show

experimentation with the following material, too.

Extra Credit Assignment 2

CSC#372#Spring#2016,#Ruby#Slide#26#

The ruby command can be used to execute Ruby source code contained in

a file.

By convention, Ruby files have the suffix .rb.

Here is "Hello" in Ruby:

% cat hello.rb

puts "Hello, world!"

% ruby hello.rb

Hello, world!

Note that the code does not need to be enclosed in a method—"top level"

expressions are evaluated when encountered.

Executing Ruby code in a file

CSC#372#Spring#2016,#Ruby#Slide#27#

Alternatively, code can be placed in a method that is invoked by an

expression at the top level:

% cat hello2.rb

def say_hello

 puts "Hello, world!"

end

say_hello

% ruby hello2.rb

Hello, world!

The definition of say_hello must precede the call.

We'll see later that Ruby is somewhat sensitive to newlines.

Executing Ruby code in a file, continued

CSC#372#Spring#2016,#Ruby#Slide#28#

Here's a program that reads lines from standard input and writes each, with

a line number, to standard output:

line_num = 1 # numlines.rb

while line = gets

 printf("%3d: %s", line_num, line)

 line_num += 1 # Ruby does not have ++ and --

end

Execution:

% ruby numlines.rb < hello2.rb

 1: def say_hello

 2: puts "Hello, world!"

 3: end

 4:

 5: say_hello

A line-numbering program

CSC#372#Spring#2016,#Ruby#Slide#29#

Problem: Write a program that reads lines from standard input and writes

them in reverse order to standard output. Use only the Ruby you've seen.

For reference, here's the line-numbering program:

line_num = 1

while line = gets

 printf("%3d: %s", line_num, line)

 line_num += 1

end

Solution: (spring16/ruby/tac.rb)

reversed = ""

while line = gets

 reversed = line + reversed

end

puts reversed

tac.rb

CSC#372#Spring#2016,#Ruby#Slide#30#

Some basic types

CSC#372#Spring#2016,#Ruby#Slide#31#

nil is Ruby's "no value" value. The name nil references the only instance

of the class.

>> nil

=> nil

>> nil.class

=> NilClass

>> nil.object_id

=> 4

We'll see that Ruby uses nil in a variety of ways.

Speculate: Do uninitialized variables have the value nil?

>> x

NameError: undefined local variable or method `x' for main

The value nil

CSC#372#Spring#2016,#Ruby#Slide#32#

TODO
 x = 1 if false

 p x # outputs nil

It seems like the presence of an assignment for

x causes a reference to x to produce nil if no

assignment is ever done.

Instances of Ruby's String class represent character strings.

A variety of "escapes" are recognized in double-quoted string literals:

>> puts "newline >\n< and tab >\t<"

newline >

< and tab > <

>> "\n\t\\".length

=> 3

>> "Newlines: octal \012, hex \xa, control-j \cj"

=> "Newlines: octal \n, hex \n, control-j \n"

Section 3.2, page 49 in RPL has the full list of escapes.

Strings and string literals

CSC#372#Spring#2016,#Ruby#Slide#33#

In single-quoted literals only \' and \\ are recognized as escapes:

>> puts '\n\t'
\n\t
=> nil

>> '\n\t'.length # Four chars: backslash, n, backslash, t
=> 4

>> puts '\'\\'
'\
=> nil

>> '\'\\'.length # Two characters: apostrophe, backslash
=> 2

String literals, continued

CSC#372#Spring#2016,#Ruby#Slide#34#

The public_methods method shows the public methods that are

available for an object. Here are some of the methods for String:

>> "abc".public_methods.sort

=> [:!, :!=, :!~, :%, :*, :+, :<, :<<, :<=, :<=>, :==, :===, :=~,

 :>, :>=, :[], :[]=, :__id__, :__send__, :ascii_only?,

 :between?, :bytes, :bytesize, :byteslice, :capitalize, :capitalize!

, :casecmp, :center, :chars, :chomp, :chomp!, :chop, :chop!, :chr

, :class, :clear, :clone, :codepoints, :concat, :count, :crypt, :defi

ne_singleton_method, :delete, :delete!, :display, :downcase, :d

owncase!, :dump, :dup, :each_byte, :each_char, :each_codepoi

nt, :each_line, :empty?, ...

>> "abc".public_methods.length

=> 169

String has a lot of methods

CSC#372#Spring#2016,#Ruby#Slide#35#

Unlike Java, Haskell, and many other languages, strings in Ruby are

mutable.

If two variables reference a string and the string is changed, the change is

reflected by both variables:

>> x = "testing"

>> y = x # x and y now reference the same instance of String

>> y << " this" # the << operator appends a string

=> "testing this"

>> x

=> "testing this"

Is it a good idea to have mutable strings?

Strings are mutable

CSC#372#Spring#2016,#Ruby#Slide#36#

The dup method produces a copy of a string.

>> x = "testing"

>> y = x.dup

=> "testing"

>> y << "...more"

=> "testing...more"

>> y

=> "testing...more"

>> x

=> "testing"

Some objects that hold strings dup the string when the string is added to

the object.

Strings are mutable, continued

CSC#372#Spring#2016,#Ruby#Slide#37#

Some methods have both an applicative and an imperative form.

String's upcase method is applicative––it produces a new String but

doesn't change its receiver, the instance of String on which it's called:

>> s = "testing"

=> "testing"

>> s.upcase

=> "TESTING"

>> s

=> "testing"

CSC#372#Spring#2016,#Ruby#Slide#38#

Sidebar: applicative vs. imperative methods

In contrast, an imperative method potentially changes its receiver.

String's upcase! method is the imperative counterpart to upcase:

>> s.upcase!

=> "TESTING"

>> s

=> "TESTING"

A Ruby convention is that when methods have both an applicative and an

imperative form, the imperative form ends with an exclamation mark.

CSC#372#Spring#2016,#Ruby#Slide#39#

applicative vs. imperative methods, contineud

Strings can be compared with a typical set of operators:

>> s1 = "apple"

>> s2 = "testing"

>> s1 == s2

=> false

>> s1 != s2

=> true

>> s1 < s2

=> true

We'll talk about details of true and false later.

String comparisons

CSC#372#Spring#2016,#Ruby#Slide#40#

There is also a comparison operator: <=>

It produces -1, 0, or 1 depending on whether the first operand is less than,

equal to, or greater than the second operand.

>> "apple" <=> "testing"

=> -1

>> "testing" <=> "apple"

=> 1

>> "x" <=> "x"

=> 0

This operator is sometimes read as "spaceship".

String comparisons, continued

CSC#372#Spring#2016,#Ruby#Slide#41#

Subscripting a string with a number produces a one-character string.

>> s="abcd"

>> s[0] # Positions are zero-based
=> "a"

>> s[1]
=> "b"

>> s[-1] # Negative positions are counted from the right
=> "d"

>> s[100]
=> nil # An out-of-bounds reference produces nil

Historical note: With Ruby versions prior to 1.9, "abc"[0] is 97.

Why doesn't Java provide s[n] instead of s.charAt(n)?

Substrings

CSC#372#Spring#2016,#Ruby#Slide#42#

A subscripted string can be the target of an assignment. A string of any
length can be assigned.

>> s = "abc"
=> "abc"

>> s[0] = 65.chr
=> "A"

>> s[1] = "tomi"

>> s
=> "Atomic"

>> s[-3] = ""

>> s
=> "Atoic"

Substrings, continued

CSC#372#Spring#2016,#Ruby#Slide#43#

A substring can be referenced with

 s[start, length]

>> s = "replace"

>> s[2,3]

=> "pla"

>> s[3,100] # Note too-long behavior!

=> "lace"

>> s[-4,3]

=> "lac"

>> s[10,10]

=> nil

Substrings, continued

r e p l a c e

0 1 2 3 4 5 6

7 6 5 4 3 2 1 (negative)

CSC#372#Spring#2016,#Ruby#Slide#44#

Instances of Ruby's Range class represent a range of values. A Range

can be used to reference a substring.

>> r = 2..-2

=> 2..-2

>> r.class

=> Range

>> s = "replaced"

>> s[r]

=> "place"

>> s[r] = ""

>> s

=> "red"

Substrings with ranges

CSC#372#Spring#2016,#Ruby#Slide#45#

It's more common to use literal ranges with strings:

>> s = "rebuilding"

>> s[2..-1]

=> "building"

>> s[2..-4]

=> "build"

>> s[2...-4] # three dots is "up to"

=> "buil"

>> s[-8..-4]

=> "build"

>> s[-4..-8]

=> ""

CSC#372#Spring#2016,#Ruby#Slide#46#

Substrings with ranges, continued

 r e b u i l d i n g

 0 1 2 3 4 5 6 7 8 9

10 9 8 7 6 5 4 3 2 1 (negative)

A substring can be the target of an assignment:
>> s = "replace"

>> s[0,2] = ""
=> ""

>> s
=> "place"

>> s[3..-1] = "naria"
>> s
=> "planaria"

>> s["aria"] = "kton" # If "aria" appears, replace it (error if not).
=> "kton"

>> s
=> "plankton"

Changing substrings

r e p l a c e

0 1 2 3 4 5 6

7 6 5 4 3 2 1 (negative)

p l a c e

0 1 2 3 4

5 4 3 2 1 (negative)

CSC#372#Spring#2016,#Ruby#Slide#47#

In a string literal enclosed with double quotes the sequence #{expr}
causes interpolation of expr, an arbitrary Ruby expression.

>> x = 10

>> y = "twenty"

>> s = "x = #{x}, y + y = #{y + y}"
=> "x = 10, y + y = twentytwenty"

>> puts "There are #{"".public_methods.length} string methods"
There are 169 string methods

>> "test #{"#{"abc".length*4}"}" # Arbitrary nesting works
=> "test 12"

It's idiomatic to use interpolation rather than concatenation to build a
string from multiple values.

Interpolation in string literals

CSC#372#Spring#2016,#Ruby#Slide#48#

With 2.2.4 on lectura, integers in the range -262 to 262-1 are represented by
instances of Fixnum. If an operation produces a number outside of that
range, the value is represented with a Bignum.

>> x = 2**62-1
=> 4611686018427387903

>> x.class => Fixnum

>> x += 1 => 4611686018427387904

>> x.class => Bignum

>> x -= 1 => 4611686018427387903

>> x.class => Fixnum

Is this automatic transitioning between Fixnum and Bignum a good idea?
How do other languages handle this?

Numbers

CSC#372#Spring#2016,#Ruby#Slide#49#

LHtLaL:

Explore boundaries!

The Float class represents floating point numbers that can be represented

by a double-precision floating point number on the host architecture.

>> x = 123.456

=> 123.456

>> x.class

=> Float

>> x ** 0.5

=> 11.111075555498667

>> x = x / 0.0

=> Infinity

>> (0.0/0.0).nan?

=> true

Numbers, continued

CSC#372#Spring#2016,#Ruby#Slide#50#

Arithmetic on two Fixnums produces a Fixnum.

>> 2/3

=> 0

>> it.class

=> Fixnum

Fixnums and Floats can be mixed. The result is a Float.

>> 10 / 5.1

=> 1.9607843137254903

>> 10 % 4.5

=> 1.0

>> it.class

=> Float

Numbers, continued

CSC#372#Spring#2016,#Ruby#Slide#51#

Ruby has a Complex type.

>> x = Complex(2,3)

=> (2+3i)

>> x * 2 + 7

=> (11+6i)

>> Complex 'i'

=> (0+1i)

>> it ** 2

=> (-1+0i)

Numbers, continued

CSC#372#Spring#2016,#Ruby#Slide#52#

There's Rational, too.

>> Rational(1,3)

=> (1/3)

>> it * 300

=> (100/1)

>> Rational 0.5

=> (1/2)

>> Rational 0.6

=> (5404319552844595/9007199254740992)

>> Rational 0.015625

=> (1/64)

Numbers, continued

CSC#372#Spring#2016,#Ruby#Slide#53#

Unlike some languages, Ruby does not automatically convert strings to

numbers and numbers to strings as needed.

>> 10 + "20"

TypeError: String can't be coerced into Fixnum

The methods to_i, to_f, and to_s are used to convert values to Fixnums,

Floats and Strings, respectively.

>> 10.to_s + "20"

=> "1020"

>> 10 + "20".to_f

=> 30.0

>> 10 + 20.9.to_i

=> 30

Conversions

>> 33.to_<TAB><TAB>

33.to_c 33.to_int

33.to_enum 33.to_r

33.to_f 33.to_s

33.to_i

CSC#372#Spring#2016,#Ruby#Slide#54#

A sequence of values is typically represented in Ruby by an instance of

Array.

An array can be created by enclosing a comma-separated sequence of values

in square brackets:

>> a1 = [10, 20, 30]

=> [10, 20, 30]

>> a2 = ["ten", 20, 30.0, 2**40]

=> ["ten", 20, 30.0, 1099511627776]

>> a3 = [a1, a2, [[a1]]]

=> [[10, 20, 30], ["ten", 20, 30.0, 1099511627776], [[[10, 20, 30]]]]

What's a difference between Ruby arrays and Haskell lists?

Arrays

CSC#372#Spring#2016,#Ruby#Slide#55#

Array elements and subarrays (sometimes called slices) are specified with

a notation like that used for strings.

>> a = [1, "two", 3.0, %w{a b c d}]

=> [1, "two", 3.0, ["a", "b", "c", "d"]]

>> a[0]

=> 1

>> a[1,2] # a[start, length]

=> ["two", 3.0]

>> a[-1]

=> ["a", "b", "c", "d"]

>> a[-1][-2]

=> "c"

Arrays, continued

CSC#372#Spring#2016,#Ruby#Slide#56#

Elements and subarrays can be assigned to. Ruby accommodates a variety
of cases; here are some:

>> a = [10, 20, 30, 40, 50, 60]

>> a[1] = "twenty"; a
=> [10, "twenty", 30, 40, 50, 60]

>> a[2..4] = %w{a b c d e}; a
=> [10, "twenty", "a", "b", "c", "d", "e", 60]

>> a[1..-1] = []; a
=> [10]

>> a[0] = [1,2,3]; a => [[1, 2, 3]]

>> a[4] = [5,6]; a => [[1, 2, 3], nil, nil, nil, [5, 6]]

>> a[0,2] = %w{a bb ccc}; a => ["a", "bb", "ccc", nil, nil, [5, 6]]

Arrays, continued

CSC#372#Spring#2016,#Ruby#Slide#57#

A variety of operations are provided for arrays. Here's a sampling:

>> a = []

>> a << 1; a

=> [1]

>> a << [2,3,4]; a

=> [1, [2, 3, 4]]

>> a.reverse!; a

=> [[2, 3, 4], 1]

Arrays, continued

CSC#372#Spring#2016,#Ruby#Slide#58#

A few more:

>> a

=> [[2, 3, 4], 1]

>> a[0].shift

=> 2

>> a

=> [[3, 4], 1]

>> a.unshift "a","b","c"

=> ["a", "b", "c", [3, 4], 1]

>> a.shuffle.shuffle

=> ["a", [3, 4], "b", "c", 1]

Arrays, continued

CSC#372#Spring#2016,#Ruby#Slide#59#

Even more!

>> a = [1,2,3,4]; b = [1,3,5]

>> a + b

=> [1, 2, 3, 4, 1, 3, 5]

>> a - b

=> [2, 4]

>> a & b

=> [1, 3]

>> a | b

=> [1, 2, 3, 4, 5]

>> ('a'..'zzz').to_a.size

=> 18278

Arrays, continued

CSC#372#Spring#2016,#Ruby#Slide#60#

We can compare arrays with == and !=. Elements are compared in turn,

possibly recursively.

>> [1,2,3] == [1,2]

=> false

>> [1,2,[3,"bcd"]] == [1,2] + [[3, "abcde"]]

=> false

>> [1,2,[3,"bcd"]] == [1,2] + [[3, "abcde"[1..-2]]]

=> true

Comparing arrays

CSC#372#Spring#2016,#Ruby#Slide#61#

Comparison of arrays with <=> is lexicographic.

>> [1,2,3,4] <=> [1,2,10]

=> -1

>> [[10,20],[2,30], [5,"x"]].sort

=> [[2, 30], [5, "x"], [10, 20]]

Comparing arrays

CSC#372#Spring#2016,#Ruby#Slide#62#

Comparison with <=> produces nil if differing types are encountered.

>> [1,2,3,4] <=> [1,2,3,"four"]

=> nil

>> [[10,20],[5,30], [5,"x"]].sort

ArgumentError: comparison of Array with Array failed

Here's a simpler failing case. Should it be allowed?

>> ["sixty",20,"two"].sort

ArgumentError: comparison of String with 20 failed

Comparing arrays

Tie!

CSC#372#Spring#2016,#Ruby#Slide#63#

At hand:

>> ["sixty",20,"two"].sort

ArgumentError: comparison of String with 20 failed

Contrast with Icon:

][sort(["sixty",20,"two"])

 r := [20,"sixty","two"] (list)

][sort([3.0, 7, 2, "a", "A", ":", [2], [1], -1.0])

 r := [2, 7, -1.0, 3.0, ":", "A", "a", [2], [1]] (list)

What does Icon do better? What does Icon do worse?

Here's Python 2:

>>> sorted([3.0, 7, 2, "a", "A", ":", [2], [1], -1.0])

[-1.0, 2, 3.0, 7, [1], [2], ':', 'A', 'a']

CSC#372#Spring#2016,#Ruby#Slide#64#

Comparing arrays, continued

An array can hold a reference to itself:

>> a = [1,2,3]

>> a.push a

=> [1, 2, 3, [...]]

>> a.size

=> 4

>> a[-1]

=> [1, 2, 3, [...]]

>> a[-1][-1][-1]

=> [1, 2, 3, [...]]

Arrays can be cyclic

[1, 2, 3,]

a

>> a << 10

=> [1, 2, 3, [...], 10]

>> a[-2][-1]

=> 10

CSC#372#Spring#2016,#Ruby#Slide#65#

Type Checking

CSC#372#Spring#2016,#Ruby#Slide#66#

"The Java programming language is a statically typed language, which
means that every variable and every expression has a type that is known at
compile time."

 -- The Java Language Specification, Java SE 7 Edition

Assume the following:

int i = ...; String s = ...; Object o = ...; static int f(int n);

What are the types of the following expressions?

i + 5
i + s
s + o
o + o
o.hashCode()
f(i.hashCode())
i = i + s

Did we need to know any values or execute any code to determine those
types?

Static typing

CSC#372#Spring#2016,#Ruby#Slide#67#

Java does type checking based on the declared types of variables and the

intrinsic types of literals.

Haskell supports type declarations but also provides type inferencing.

What are the inferred types for x, y, and z in the following expression?

 (isLetter $ head $ [x] ++ y) && z

> let f x y z = (isLetter $ head $ [x] ++ y) && z

f :: Char -> [Char] -> Bool -> Bool

Did we need to know any values or execute any code to determine those

types?

Haskell is a statically typed language—the type of every expression can be

determined by analyzing the code.

Static typing, continued

CSC#372#Spring#2016,#Ruby#Slide#68#

With a statically typed language, the type for all expressions is determined

when a body of code is compiled/loaded/etc. Any type inconsistencies

that exist are discoverable at that time.

Without having to run any code a statically typed language lets us

guarantee that various types of errors don't exist. Examples:

 Dividing a string by a float

 Taking the "head" of an integer

 Concatenating two numbers

 Putting an integer in a list of strings

Static typing, continued

CSC#372#Spring#2016,#Ruby#Slide#69#

How often did your Haskell code run correctly as soon as the type errors

were fixed?

How does that compare with your experience with Java?

 With C?

 With Python?

"The best news is that Haskell's type system will tell you if your program

is well-typed before you run it. This is a big advantage because most

programming errors are manifested as typing errors."—Paul Hudak, Yale

Do you agree with Hudak?

Static typing, continued

CSC#372#Spring#2016,#Ruby#Slide#70#

In Java, variables are declared to have a type.

Variables in Ruby do not have a type. Instead, type is associated with

values.

>> x = 10

>> x.class # What's the class of the object held in x?

=> Fixnum

>> x = "ten"

>> x.class

=> String

>> x = 2**100

>> x.class

=> Bignum

Variables in Ruby have no type

CSC#372#Spring#2016,#Ruby#Slide#71#

Ruby is a dynamically typed language. There is no static analysis of the

types involved in expressions.

Consider this Ruby method:

def f x, y, z

 return x[y + z] * x.foo

end

For some combinations of types it will produce a value. For others it will

produce a TypeError.

With dynamic typing such methods are allowed to exist.

Dynamic typing

CSC#372#Spring#2016,#Ruby#Slide#72#

With dynamic typing, no type checking is done when code is compiled.

Instead, types of values are checked during execution, as each operation is

performed.

Consider this Ruby code:

while line = gets

 puts(f(line) + 3 + g(line)[-2])

end

What types must be checked each time through that loop?

Wrt. static typing, what are the implications of dynamic typing for...

 Compilation speed?

 Probably faster!

 Execution speed?

 Probably slower!

 Reliability?

 It depends...

Dynamic typing, continued

CSC#372#Spring#2016,#Ruby#Slide#73#

A long-standing question in industry:

Can a good test suite find type errors in dynamically typed code as

effectively as static type checking?

What's a "good" test suite?

 Full code coverage? (every line executed by some test)

 Full path coverage? (all combinations of paths exercised)

 How about functions whose return type varies?

But wouldn't we want a good test suite no matter what language we're

using?

"Why have to write tests for things a compiler can catch?"

 ––Brendan Jennings, SigFig

Can testing compensate?

CSC#372#Spring#2016,#Ruby#Slide#74#

What does the end-user of software care about?

 Software that works
 Facebook game vs. radiation therapy system

 Fast enough
 When does 10ms vs. 50ms matter?

 Better sooner than later
 A demo that's a day late for a trade show isn't worth much.

 Affordable

How much more would you pay for a version of your
favorite game that has half as many bugs?

I'd pay A LOT for a version of PowerPoint with more
keyboard shortcuts!

What ultimately matters?

CSC#372#Spring#2016,#Ruby#Slide#75#

Java is statically typed but casts introduce the possibility of a type error

not being detected until execution.

C is statically typed but has casts that allow type errors during execution

that are never detected.

Ruby, Python, and Icon have no static type checking whatsoever, but type

errors during execution are always detected.

An example of a typing-related trade-off in execution time:

•  C spends zero time during execution checking types.

•  Java checks types during execution only in certain cases.

•  Languages with dynamic typing check types on every operation, at

least conceptually.

Is type inferencing applicable in a dynamically typed language?

 UA CS TR 93-32a: Type Inference in the Icon Programming Language

Variety in type checking

CSC#372#Spring#2016,#Ruby#Slide#76#

"Why?" vs. "Why Not?"

CSC#372#Spring#2016,#Ruby#Slide#77#

When designing a language some designers ask,

 "Why should feature X be included?"

Some designers ask the opposite:

 "Why should feature X not be included?"

Let's explore that question with Ruby.

"Why?" or "Why not?"

CSC#372#Spring#2016,#Ruby#Slide#78#

A "here document" is a third way to literally specify a string.

>> s = <<XYZZY
 +-----+
 | \\\ |
 | */ |
 | ''' |
 +-----+
XYZZY
=> "\n +-----+\n\n | \\ |\n\n | */ |\n
\n | ''' |\n\n +-----+\n\n"

The string following << specifies a delimiter that ends the literal. The

ending occurrence must be at the start of a line.

"There's more than one way to do it!"—a Perl motto

More string literals!

CSC#372#Spring#2016,#Ruby#Slide#79#

Here's another way to specify string literals. See if you can discern some

rules from these examples:

>> %q{ just testin' this... }

=> " just testin' this... "

>> %Q|\n\t|

=> "\n\t"

>> %q(\u0041 is Unicode for A)

=> "\\u0041 is Unicode for A"

>> %q.test.

=> "test"

%q follows single-quote rules. %Q follows double quote rules.

Symmetrical pairs like (), {}, and <> can be used.

And that's not all!

CSC#372#Spring#2016,#Ruby#Slide#80#

Partial summary of string literal syntax in Ruby:

>> x = 5; s = "x is #{x}"

=> "x is 5"

>> '\'\\\n\t'.length

=> 6

>> hd = <<X

just

testing

X

=> "just\ntesting\n"

>> %q{ \n \t } + %Q|\n \t | + %Q(\u0021 \u{23})

=> " \\n \\t \n \t ! #"

How much is enough?

How many ways does Haskell

have to make a string literal?

How many ways should there be

to make a string literal?

What's the minimum functionality

needed?

Which would you remove?

CSC#372#Spring#2016,#Ruby#Slide#81#

Here are some examples of operator overloading:

>> [1,2,3] + [4,5,6] + [] + [7]

=> [1, 2, 3, 4, 5, 6, 7]

>> "abc" * 5

=> "abcabcabcabcabc"

>> [1, 3, 15, 1, 2, 1, 3, 7] - [3, 2, 1, 3]

=> [15, 7]

>> [10, 20, 30] * "..."

=> "10...20...30" # "intercalation"

>> "decimal: %d, octal: %o, hex: %x" % [20, 20, 20]

=> "decimal: 20, octal: 24, hex: 14"

"Why" or "Why not?" as applied to operator overloading

CSC#372#Spring#2016,#Ruby#Slide#82#

What are some ways in which inclusion of a feature impacts a language?

•  Increases the "mental footprint" of the language.

 – There are separate footprints for reading code and writing code.

•  Maybe makes the language more expressive.

•  Maybe makes the language useful for new applications.

•  Probably increases size of implementation and documentation.

•  Might impact performance.

"Why" or "Why not?", continued

CSC#372#Spring#2016,#Ruby#Slide#83#

Features come in all sizes!

 Small: A new string literal escape sequence ("\U{65}" for "A")

 Small: Supporting an operator on a new pair of types

 Medium: Support for arbitrary precision integers

Large or small?

 Support for object-oriented programming

 Support for garbage collection

CSC#372#Spring#2016,#Ruby#Slide#84#

Features come in all sizes!

At one of my first meetings with Ralph Griswold I put forth a number of

ideas I had for new features for Icon.

He listened patiently. When I was done he said,

 "Go ahead. Add all of those you want to."

As I left his office he added,

 "But for every feature you add, first find one to remove."

What would Ralph do?

CSC#372#Spring#2016,#Ruby#Slide#85#

There's a lot of science in programming language design but there's art, too.

Excerpt from interview with Perl Guru Damian Conway:

Q: "What languages other than Perl do you enjoy programming in?"
A: "I'm very partial to Icon. It's so beautifully put together, so elegantly

proportioned, almost like a Renaissance painting."
 hap://www.pair.com/pair/current/insider/1201/damianconway.html#(404#now!)#

#

"Icon: A general purpose language known for its elegance and grace.
Designed by Ralph Griswold to be successor to SNOBOL4."

 ––Digibarn "Mother Tongues" chart (see Intro slides)

Between SNOBOL4 and Icon there was there SL5 (SNOBOL Language 5).

I think of SL5 as an example of the "Second System Effect". It was never
released.

Ralph once said, "I was laying in the hospital thinking about SL5. I felt
there must be something simpler." That turned out to be Icon.

The art of language design

CSC#372#Spring#2016,#Ruby#Slide#86#

Procedure call in Icon:

][reverse("programming")

 r := "gnimmargorp" (string)

][p := reverse

 r := function reverse (procedure)

][p("foo")

 r := "oof" (string)

Doctoral student Steve Wampler added mutual goal directed evaluation

(MGDE). A trivial example:

][3("one", 2, "III")

 r := "III" (string)

][(?3)("one", 2, "III")

 r := "one" (string)

Design example: invocation in Icon

CSC#372#Spring#2016,#Ruby#Slide#87#

After a CSC 550A lecture where Ralph introduced MGDE, I asked,

 "How about 'string invocation', so that "+"(3,4) would be 7?"

What do you suppose Ralph said?

 "How would we distinguish between unary and binary operators?"

Solution: Discriminate based on the operand count!

]["-"(5,3)

 r := 2 (integer)

]["-"(5)

 r := -5 (integer)

][(?"+-")(3,4)

 r := -1 (integer)

Within a day or two I added string invocation to Icon.

Why did Ralph choose to allow this feature?

 He felt it would increase the research potential of Icon.

Invocation in Icon, continued

CSC#372#Spring#2016,#Ruby#Slide#88#

An interesting language design example in Ruby is parallel assignment.

Some simple examples:

>> a, b = 10, [20, 30]

>> a

=> 10

>> b

=> [20, 30]

>> c, d = b

>> c

=> 20

>> d

=> 30

Design example: Parallel assignment

CSC#372#Spring#2016,#Ruby#Slide#89#

Could we do a swap with parallel assignment?

>> x, y = 10, 20

>> x,y = y,x

>> x

=> 20

>> y

=> 10

This swaps, too:

 >> x,y=[y,x]

Contrast:

 Icon has a swap operator: x :=: y

CSC#372#Spring#2016,#Ruby#Slide#90#

Parallel assignment, continued

Speculate: What does the following do?

>> a,b,c = [10,20,30,40,50]

>> [a,b,c]

=> [10, 20, 30]

Speculate again:

>> a,b,*c = [10,20,30,40,50]

>> [a,b,c]

=> [10, 20, [30, 40, 50]]

>> a,*b,*c = [10,20,30,40,50]

SyntaxError: (irb):57: syntax error, unexpected *

Section 4.5.5 in RPL has full details on parallel assignment. It is both

more complicated and less general than pattern matching in Haskell. (!)

CSC#372#Spring#2016,#Ruby#Slide#91#

Parallel assignment, continued

Control Structures

CSC#372#Spring#2016,#Ruby#Slide#92#

Here's a loop to print the integers from 1 through 10, one per line.

i=1

while i <= 10 do # "do" is optional

 puts i

 i += 1

end

When i <= 10 produces false, control branches to the code following

end, if any.

The body of the while is always terminated with end, even if there's only

one expression in the body.

The while loop

CSC#372#Spring#2016,#Ruby#Slide#93#

Java control structures such as if, while, and for are driven by the result of

expressions that produce a value whose type is boolean.

C has a more flexible view: control structures consider a scalar value that

is non-zero to be "true".

PHP considers zeroes, the empty string, the string "0", empty arrays, and

more to be false.

Python and JavaScript, too, have sets of "truthy" and "falsy/falsey" values.

Here's the Ruby rule:

 Any value that is not false or nil is considered to be "true".

while, continued

CSC#372#Spring#2016,#Ruby#Slide#94#

Remember: Any value that is not false or nil is considered to be "true".

Let's analyze this loop, which reads lines from standard input using gets.

while line = gets
 puts line

end

gets returns a string that is the next line of the input, or nil, on end of file.

The expression line = gets has two side effects but also produces a value.

 Side effects: (1) a line is read from standard input and (2) is assigned to line.
 Value: The string assigned to line.

If the first line of the file is "one", then the first time through the loop what's
evaluated is while "one".

The value "one" is not false or nil, so the body of the loop is executed, causing
"one" to be printed on standard output.

At end of file, gets returns nil. nil is assigned to line and produced as the value
of the assignment, in turn terminating the loop.

while, continued

CSC#372#Spring#2016,#Ruby#Slide#95#

From the previous slide:

while line = gets

 puts line

end

Partial understanding:

 That loop reads and prints every line from standard input.

Full understanding:

 What we worked through on the previous slide.

I think there's merit in full understanding.

Another example of full understanding:

 Knowing the full set of truthy/falsy rules for a language.

CSC#372#Spring#2016,#Ruby#Slide#96#

LHtLaL sidebar: Partial vs. full understanding

String's chomp method removes a carriage return and/or newline from

the end of a string, if present.

Here's a program that's intended to flatten all input lines to a single line:

result = ""

while line = gets.chomp

 result += line

end

puts result

It doesn't work. What's wrong with it?

Here's the error:

% ruby while4.rb < lines.txt

while4.rb:2:in `<main>': undefined method `chomp' for

nil:NilClass (NoMethodError)

while, continued

CSC#372#Spring#2016,#Ruby#Slide#97#

At hand:

result = ""

while line = gets.chomp

 result += line

end

puts result

At end of file, gets returns nil, producing an error on gets.chomp.

Which of the two alternatives below is better? What's a third alternative?

CSC#372#Spring#2016,#Ruby#Slide#98#

while, continued

result = ""

while line = gets

 line.chomp!

 result += line

end

puts result

result = ""

while line = gets

 result += line.chomp

end

puts result

Problem: Write a while loop that prints the characters in the string s, one

per line. Don't use the length or size methods of String.

Extra credit: Don't use any variables other than s.

Solution: (while5.rb)

i = 0

while c = s[i]

 puts c

 i += 1

end

Solution with only s: (while5a.rb)

while s[0]

 puts s[0]

 s[0] = ""

end

while, continued

CSC#372#Spring#2016,#Ruby#Slide#99#

Unlike Java, Ruby does pay some attention to the presence of newlines in

source code.

For example, a while loop cannot be trivially squashed onto a single line.

 while i <= 10 puts i i += 1 end # Syntax error

If we add semicolons where newlines originally were, it works:

 while i <= 10; puts i; i += 1; end # OK

There is some middle ground, too:

 while i <= 10 do puts i; i+=1 end # OK. Note added "do"

Unlike Haskell and Python, indentation is never significant in Ruby.

Source code layout

CSC#372#Spring#2016,#Ruby#Slide#100#

Ruby considers a newline to terminate an expression, unless the

expression is definitely incomplete.

For example, the following is ok because "i <=" is definitely incomplete.

while i <=

10 do puts i; i += 1 end

Is the following ok?

while i

<= 10 do puts i; i += 1 end

Nope...

syntax error, unexpected tLEQ

<= 10 do puts i; i += 1 end

^

Source code layout, continued

CSC#372#Spring#2016,#Ruby#Slide#101#

Can you think of any pitfalls that the incomplete expression rule could

produce?

Example of a pitfall: Ruby considers

x = a + b

 + c

to be two expressions: x = a + b and + c.

Rule of thumb: If breaking an expression across lines, end lines with an

operator:

 x = a + b +

 c

Alternative: Indicate continuation with a backslash at the end of the line.

Source code layout, continued

CSC#372#Spring#2016,#Ruby#Slide#102#

Academic writing on programming languages commonly uses the term

"statement" to denote a syntactic element that performs operation(s) but

does not produce a value.

The term "expression" is consistently used to describe a construct that

produces a value.

Ruby literature sometimes talks about the "while statement" even though

while produces a value:

>> i = 1

>> while i <= 3 do i += 1 end

=> nil

Dilemma: Do we call it the "while statement" or the "while expression"?

We'll see later that the break construct can cause a while loop to produce

a value other than nil.

Expression or statement?

CSC#372#Spring#2016,#Ruby#Slide#103#

Ruby has operators for conjunction, disjunction, and "not" with the same
symbols as Java and C, but with somewhat different semantics.

Conjunction is &&, just like Java, but note the values produced:

>> true && false
=> false

>> 1 && 2
=> 2

>> true && "abc"
=> "abc"

>> nil && 1
=> nil

Challenge: Concisely describe the rule that Ruby uses to determine the
value of a conjunction operation.

Logical operators

Remember:

Any value that is not false or

nil is considered to be "true".

CSC#372#Spring#2016,#Ruby#Slide#104#

Disjunction is ||, also like Java. As with conjunction, the values produced

are interesting:

>> 1 || nil

=> 1

>> false || 2

=> 2

>> "abc" || "xyz"

=> "abc"

>> s = "abc"

>> s[0] || s[3]

=> "a"

>> s[4] || false

=> false

Logical operators, continued

Remember:

Any value that is not false or

nil is considered to be "true".

CSC#372#Spring#2016,#Ruby#Slide#105#

An exclamation mark inverts a logical value. The resulting value is always
true or false.

 >> ! true
 => false

>> ! 1
=> false

>> ! nil
=> true

>> ! (1 || 2)
=> false

>> ! ("abc"[5] || [1,2,3][10])
=> true

>> ![nil]
=> false

Logical operators, continued

Remember:

Any value that is not false or

nil is considered to be "true".

CSC#372#Spring#2016,#Ruby#Slide#106#

There are also and, or, and not operators, but with very low precedence.

Why?

 They eliminate the need for parentheses in some cases.

We can write this,

 x < 2 && y > 3 or x * y < 10 || z > 20

instead of this:

 (x < 2 && y > 3) || (x * y < 10 || z > 20)

LHtLaL problem: Devise an example for ! vs. not.

Logical operators, continued

CSC#372#Spring#2016,#Ruby#Slide#107#

Here is Ruby's if-then-else:

>> if 1 < 2 then "three" else [4] end

=> "three"

>> if 10 < 2 then "three" else [4] end

=> [4]

>> if 0 then "three" else [4] end * 3

=> "threethreethree"

Observations?

Speculate: Is the following valid? If so, what will it produce?

if 1 > 2 then 3 end

if-then-else

CSC#372#Spring#2016,#Ruby#Slide#108#

If a language's if-then-else returns a value, it creates an issue about the
meaning of an if-then with no else.

In Ruby, if there's no else clause and the control expression is false, nil is
produced:

>> if 1 > 2 then 3 end
=> nil

In the C family, if-else doesn't return a value.

Haskell and ML simply don't allow an else-less if.

In Icon, an expression like if 2 > 3 then 4 is said to fail. No value is
produced, and failure propagates to any enclosing expression, which in
turn fails.

Ruby also provides 1 > 2 ? 3 : 4, a ternary conditional operator, just like
the C family. Is that a good thing or bad thing? (TMTOWTDI!)

if-then-else, continued

CSC#372#Spring#2016,#Ruby#Slide#109#

The most common Ruby coding style puts the if, the else, the end, and

the expressions of the clauses on separate lines:

if lower <= x && x <= higher or inExRange(x, rangeList) then

 puts "x is in range"

 history.add x

else

 outliers.add x

end

Note the use of the low-precedence or instead of ||.

The trailing then above is optional.

then is not optional in this one-line expression:

 if 1 then 2 else 3 end

if-then-else, continued

CSC#372#Spring#2016,#Ruby#Slide#110#

Ruby provides an elsif clause for "else-if" situations.

if average >= 90 then
 grade = "A"
elsif average >= 80 then
 grade = "B"
elsif average >= 70 then
 grade = "C"
else
 grade = "F"
end

Note that there is no "end" to terminate the then clauses. elsif both closes
the current then and starts a new clause.

It is not required to have a final else.

Is elsif syntactic sugar?

The elsif clause

CSC#372#Spring#2016,#Ruby#Slide#111#

At hand:

if average >= 90 then

 grade = "A"

elsif average >= 80 then

 grade = "B"

elsif average >= 70 then

 grade = "C"

else

 grade = "F"

end

Can we shorten it by thinking less imperatively and more about values?

See 5.1.4 in RPL for Ruby's case (a.k.a. "switch") expression.

elsif, continued

grade =

 if average >= 90 then "A"

 elsif average >= 80 then "B"

 elsif average >= 70 then "C"

 else "F"

 end

CSC#372#Spring#2016,#Ruby#Slide#112#

if and unless can be used as modifiers to indicate conditional execution.

>> total, count = 123.4, 5 # Note: parallel assignment

>> printf("average = %g\n", total / count) if count != 0

average = 24.68

=> nil

>> total, count = 123.4, 0

>> printf("average = %g\n", total / count) unless count == 0

=> nil

The general forms are:

expr1 if expr2

expr1 unless expr2

What does 'x.f if x' mean?

if and unless as modifiers

CSC#372#Spring#2016,#Ruby#Slide#113#

Ruby's break and next are similar to Java's break and continue.

Below is a loop that reads lines from standard input, terminating on end of

file or when a line beginning with a period is read. Each line is printed

unless the line begins with a pound sign.

while line = gets

 if line[0] == "." then

 break

 end

 if line[0] == "#" then

 next

 end

 puts line

end

Problem: Rewrite the above loop to use if as a modifier.

break and next

while line = gets

 break if line[0] == "."

 next if line[0] == "#"

 puts line

end

CSC#372#Spring#2016,#Ruby#Slide#114#

Remember that while is an expression that by default produces the value

nil when the loop terminates.

If a while loop is exited with break expr, the value of expr is the value

of the while.

Here's a contrived example to show the mechanics of it:

% cat break2.rb

s = "x"

puts (while true do

 break s if s.size > 30

 s += s

 end)

% ruby break2.rb

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

break and next, continued

CSC#372#Spring#2016,#Ruby#Slide#115#

Here are three examples of Ruby's for loop:

for i in 1..100 do # as with while, the do is optional

 sum += i

end

for i in [10,20,30]

 sum += i

end

for msymbol in "x".methods

 puts msymbol if msymbol.to_s.include? "!"

end

The "in" expression must be an object that has an each method.

In the first case, the "in" expression is a Range. In the latter two it is an

Array.

The for loop

CSC#372#Spring#2016,#Ruby#Slide#116#

The for loop supports parallel assignment:

for s,n,sep in [["1",5,"-"], ["s",2,"o"], [" <-> ",10,""]]

 puts [s] * n * sep

end

Output:

1-1-1-1-1

sos

 <-> <-> <-> <-> <-> <-> <-> <-> <-> <->

Consider the feature of supporting parallel assignment in the for.

•  How would we write the above without it?

•  What's the mental footprint of this feature?

•  What's the big deal since there's already parallel assignment?

•  Is this creeping featurism?

The for loop, continued

CSC#372#Spring#2016,#Ruby#Slide#117#

Methods and more

CSC#372#Spring#2016,#Ruby#Slide#118#

Here is a simple Ruby method:

def add x, y

 return x + y

end

The keyword def indicates that this is a method definition.

Next is the method name.

The parameter list follows, optionally enclosed in parentheses.

No types can be specified.

Zero or more expressions follow

end terminates the definition.

Method definition

CSC#372#Spring#2016,#Ruby#Slide#119#

If the end of a method is reached without encountering a return, the value

of the last expression becomes the return value.

Here is a more idiomatic definition for add:

def add x, y

 x + y

end

CSC#372#Spring#2016,#Ruby#Slide#120#

Method definition, continued

As we saw in an early example, if no arguments are required, the

parameter list can be omitted:

def hello

 puts "Hello!"

end

What does hello return?

 What does the last expression in hello return?

Method definition, continued

CSC#372#Spring#2016,#Ruby#Slide#121#

One way to test methods in a file is to use load, a

Kernel method.

>> load "simple.rb"

=> true

>> add 3,4

=> 7

>> hello

Hello!

[...edit simple.rb in another window...]

>> load "simple.rb"

=> true

>> hello

Hello! (v2)

CSC#372#Spring#2016,#Ruby#Slide#122#

Testing methods with irb

% cat simple.rb

def add x, y

 x + y

end

def hello

 puts "Hello!"

end

How does load in Ruby differ from :load in

ghci?

load "simple.rb" is simply a Ruby

expression that's evaluated by irb. Its side-

effect is that the specified file is loaded.

I claim to be defining methods add and hello but there's no class in sight!

Methods can be added to a class at run-time in Ruby!

A freestanding method found in a file is associated with an object referred

to as "main", an instance of Object.

At the top level, the name self references that object.

>> [self.class, self.to_s] => [Object, "main"]

>> methods_b4 = self.private_methods

>> load "simple.rb"

>> self.private_methods - methods_b4

=> [:add, :hello]

We see that loading simple.rb added two methods to main.

Where's the class?!

CSC#372#Spring#2016,#Ruby#Slide#123#

We'll later see how to define classes but our initial "mode" on the

Ruby assignments will be writing programs in terms of top-level

methods.

This is essentially procedural programming with an object-oriented

library.

CSC#372#Spring#2016,#Ruby#Slide#124#

Where's the class, continued?

Ruby allows default values to be specified for a method's arguments:

def wrap s, wrapper = "()" # wrap3.rb

 wrapper[0] + s + wrapper[-1] # Why -1?

end

>> wrap "abc", "<>"

=> "<abc>"

>> wrap "abc"

=> "(abc)"

>> wrap it, "|"

=> "|(abc)|"

Lots of library methods use default arguments.

>> "a-b c-d".split => ["a-b", "c-d"]

>> "a-b c-d".split "-" => ["a", "b c", "d"]

Default values for arguments

CSC#372#Spring#2016,#Ruby#Slide#125#

Ruby does not allow the methods of a class to be overloaded. Here's a
Java-like approach that does not work:

def wrap s
 wrap(s, "()")
end

def wrap s, wrapper
 wrapper[0] + s + wrapper[-1]
end

The imagined behavior is that if wrap is called with one argument it will
call the two-argument wrap with "()" as a second argument. In fact, the
second definition of wrap simply replaces the first. (Last def wins!)

>> wrap "x"
ArgumentError: wrong number of arguments (1 for 2)

>> wrap("testing", "[]") => "[testing]"

Methods can't be overloaded!

CSC#372#Spring#2016,#Ruby#Slide#126#

Different languages approach overloading and default arguments in

various ways. Here's a sampling:

Java Overloading; no default arguments

Ruby No overloading; default arguments

C++ Overloading and default arguments

Icon No overloading; no default arguments; use an idiom

How does the mental footprint of the four approaches vary? What's the

impact on the language's written specification?

Here is wrap in Icon:

procedure wrap(s, wrapper)

 /wrapper := "()" # if wrapper is &null, assign "()" to wrapper

 return wrapper[1] || s || wrapper[-1]

end

Sidebar: A study in contrast

CSC#372#Spring#2016,#Ruby#Slide#127#

Java's String.format and C's printf can accept any number of arguments.

This Ruby method accepts any number of arguments and prints them:

def showargs(*args)
 puts "#{args.size} arguments"
 for i in 0...args.size do # Recall a...b is a to b-1
 puts "##{i}: #{args[i]}"
 end
end

The rule: If a parameter is prefixed with an asterisk, an array is made of all
following arguments.

>> showargs(1, "two", 3.0)
3 arguments:
#0: 1
#1: two
#2: 3.0

Arbitrary number of arguments

CSC#372#Spring#2016,#Ruby#Slide#128#

Problem: Write a method format that interpolates argument values into a

string where percent signs are found.

>> format("x = %, y = %, z = %\n", 7, "ten", "zoo")

=> "x = 7, y = ten, z = zoo\n"

>> format "testing\n"

=> "testing\n"

Use to_s for conversion to String.

A common term for this sort of facility

is "varargs"––variable number of

arguments.

Arbitrary number of arguments, continued

def format(fmt, *args)

 result = ""

 for i in 0...fmt.size do

 if fmt[i] == "%" then

 result += args.shift.to_s

 else

 result += fmt[i]

 end

 end

 result

end

CSC#372#Spring#2016,#Ruby#Slide#129#

Here's an example of source file layout for a
program with several methods:

def main
 puts "in main"; f; g
end

def f; puts "in f" end
def g; puts "in g" end

main # This runs the program

A rule: the definition for a method must be seen before it is executed.

The definitions for f and g can follow the definition of main because they
aren't executed until main is executed.

Could the line "main" appear before the definition of f?

Try shuffling the three definitions and "main" to see what works and what
doesn't.

Source File Layout

Execution:

% ruby main1.rb

in main

in f

in g

CSC#372#Spring#2016,#Ruby#Slide#130#

I'd like to load the following file and then test showline, but loading it in

irb seems to hang. Why?

% cat main3.rb

def showline s

 puts "Line: #{s.inspect} (#{s.size} chars)"

end

def main

 while line = gets; showline line; end

end

main

% irb

>> load "main3.rb"

...no output or >> prompt after the load...

Actually, it's waiting for input! After the defs for showline and main,

main is called. main does a gets, and that gets is waiting for input.

CSC#372#Spring#2016,#Ruby#Slide#131#

Testing methods when there's a "main"

Here's a technique that lets the program run normally with ruby but not

run main when loaded with irb:

% cat main3a.rb

def showline s

 puts "Line: #{s.inspect} (#{s.size} chars)"

end

def main

 while line = gets; showline line; end

end

main unless $0 == "irb"

% irb

>> load "main3a.rb"

>> showline "testing"

Line: "testing" (7 chars)

>> main

(waits for input)

CSC#372#Spring#2016,#Ruby#Slide#132#

Testing methods when there's a "main", cont.

Call main unless the name of the

program being run is "irb".

Now I can test methods by hand in

irb but still do ruby main3.rb ...

Ordinary variables are local to the method in which they're created.

Example: (global0.rb)

def f

 puts "f: x = #{x}" # undefined local variable or method `x'

end

def g

 x = 100 # This x is visible only in g

end

x = 10 # This x is visible only at the top-level in this file.

g

puts "top-level: x = #{x}"

Scoping rules for variables

CSC#372#Spring#2016,#Ruby#Slide#133#

Variables prefixed with a $ are global, and can be referenced in any

method in any file, including top-level code.

def f

 puts "f: $x = #{$x}"

end

def g

 $x = 100

end

$x = 10

f

g

puts "top-level: $x = #{$x}"

Global variables

The code at left...

1.  Sets $x at the top-level.

2.  Prints $x in f.

3.  Changes $x in g.

4.  Prints the final value of

$x at the top-level.

Output:

f: $x = 10

top-level: $x = 100

CSC#372#Spring#2016,#Ruby#Slide#134#

A rule in Ruby is that if an identifier begins with a capital letter, it
represents a constant.

The first assignment to a constant is considered initialization.

>> MAX_ITEMS = 100

Assigning to an already initialized constant is permitted but a warning is
generated.

>> MAX_ITEMS = 200
(irb):4: warning: already initialized constant MAX_ITEMS
=> 200

Modifying an object referenced by a constant does not produce a warning:

>> L = [10,20]
=> [10, 20]

>> L.push 30
=> [10, 20, 30]

Constants

CSC#372#Spring#2016,#Ruby#Slide#135#

Pitfall: If a method is given a name that begins with a capital letter, it

compiles ok but it can't be run!

>> def Hello; puts "hello!" end

>> Hello

NameError: uninitialized constant Hello

Constants, continued

CSC#372#Spring#2016,#Ruby#Slide#136#

There are a number of predefined constants. Here are a few:

RUBY_VERSION

 The version of Ruby that's running.

ARGV

An array holding the command line arguments, like the argument to

main in a Java program.

ENV

An object holding the "environment variables" (shown with env on

UNIX machines and set on Windows machines.)

STDIN, STDOUT

Instances of the IO class representing standard input and standard

output (the keyboard and screen, by default).

Constants, continued

CSC#372#Spring#2016,#Ruby#Slide#137#

Duck Typing

CSC#372#Spring#2016,#Ruby#Slide#138#

Definition from Wikipedia (c.2015):
Duck typing is a style of typing in which an object's methods and
properties determine the valid semantics, rather than its inheritance
from a particular class or implementation of an explicit interface.

Recall these examples of the for loop:

for i in 1..100 do ...end

for i in [10,20,30] do ... end

for only requires that the "in" value be an object that has an each method.
(It doesn't need to be a subclass of Enumerable, for example.)

This is an example of duck typing, so named based on the "duck test":

If it looks like a duck, swims like a duck, and quacks like a duck, then
it probably is a duck.

For the case at hand, the value produced by the "in" expression qualifies
as a "duck" if it has an each method.

Duck typing

CSC#372#Spring#2016,#Ruby#Slide#139#

For reference:

Duck typing is a style of typing in which an object's methods and

properties determine the valid semantics, rather than its inheritance

from a particular class or implementation of an explicit interface.

 ––Wikipedia (c.2015)

Duck typing is both a technique and a mindset.

Ruby both facilitates and uses duck typing.

We don't say Ruby is duck typed. We say that Ruby allows duck typing.

CSC#372#Spring#2016,#Ruby#Slide#140#

Duck typing, continued

The key characteristic of duck typing is that we only care about whether

an object supports the operation(s) we require.

With Ruby's for loop, it is only required that the in value have an each

method.

Consider this method:

def double x

 x * 2

end

Remember: x * 2 actually means x.*(2) — invoke the method * on the

object x and pass it the value 2 as a parameter.

What operation(s) does double require that x support?

Duck typing, continued

CSC#372#Spring#2016,#Ruby#Slide#141#

>> double 10
=> 20

>> double "abc"
=> "abcabc"

>> double [1,2,3]
=> [1, 2, 3, 1, 2, 3]

>> double Rational(3)
=> (6/1)

>> double 1..10
NoMethodError: undefined method `*' for 1..10:Range

Is it good or bad that double operates on so many different types?

Is double polymorphic? What's the type of double?

Should we limit double to certain types, like numbers, strings and lists?

Duck typing, continued

def double x

 x * 2

end

CSC#372#Spring#2016,#Ruby#Slide#142#

Recall: The key characteristic of duck typing is that we only care about

whether an object supports the operation(s) we require.

Should we have double check for known types?

def double x

 if [Fixnum, Float, String, Array].include? x.class

 x * 2

 else raise "Can't double a #{x.class}!" end

end

>> double "abc"

=> "abcabc"

>> double 1..2

RuntimeError: Can't double a Range!

>> double Rational(3)

RuntimeError: Can't double a Rational!

Duck typing, continued

Previously...

>> double 1..10

NoMethodError: undefined

method `*' for 1..10:Range

CSC#372#Spring#2016,#Ruby#Slide#143#

Here's wrap from slide 125. What does it require of s and wrapper?

def wrap s, wrapper = "()"

 wrapper[0] + s + wrapper[-1]

end

>> wrap "test", "<>"

=> "<test>"

Will the following work?

>> wrap "test", ["<<<",">>>"]

=> "<<<test>>>"

>> wrap [1,2,3], [["..."]]

=> ["...", 1, 2, 3, "..."]

>> wrap 10,3

=> 11

CSC#372#Spring#2016,#Ruby#Slide#144#

Duck typing, continued

Recall: The key characteristic of duck typing is that we only care about

whether an object supports the operation(s) we require.

Does the following Java method exemplify duck typing?

 static double sumOfAreas(Shape shapes[]) {

 double area = 0.0;

 for (Shape s: shapes)

 area += s.getArea();

 return area;

 }

No! sumOfAreas requires an array of Shape instances.

Could we change Shape to Object above? Would that be duck typing?

Does duck typing require a language to be dynamically typed?

Duck typing, continued

CSC#372#Spring#2016,#Ruby#Slide#145#

Iterators and blocks

CSC#372#Spring#2016,#Ruby#Slide#146#

Some methods are iterators. One of the many iterators in the Array class
is each.

each iterates over the elements of the array. Example:

>> x = [10,20,30]

>> x.each { puts "element" }
element
element
element
=> [10, 20, 30] # (each returns its receiver but it's often not used)

The construct { puts "element" } is a block.

Array#each invokes the block once for each element of the array.

Because there are three values in x, the block is invoked three times,
printing "element" each time.

Iterators and blocks

An iterator is a method that

can invoke a block.

CSC#372#Spring#2016,#Ruby#Slide#147#

Recall: An iterator is a method that can invoke a block.

Iterators can pass one or more values to a block as arguments.

A block can access arguments by naming them with a parameter list, a

comma-separated sequence of identifiers enclosed in vertical bars.

>> [10, "twenty", [30,40]].each { |e| puts "element: #{e}" }

element: 10

element: twenty

element: [30, 40]

=> [10, "twenty", [30, 40]]

The behavior of the iterator Array#each is to invoke the block with each

array element in turn.

Iterators and blocks, continued

CSC#372#Spring#2016,#Ruby#Slide#148#

For reference:

 [10, "twenty", [30,40]].each { |e| puts "element: #{e}" }

Problem: Using a block, compute the sum of the numbers in an array

containing values of any type. (Use e.is_a? Numeric to decide whether e

is a number of some sort.)

>> sum = 0

>> [10, "twenty", 30].each { ??? }

>> sum => 40 Note: sum = ... inside the block changes

 it outside the block. (Rules coming soon!)

>> sum = 0

>> (1..100).to_a.each { }

>> sum => 5050

Iterators and blocks, continued

|e| sum += e if e.is_a? Numeric

CSC#372#Spring#2016,#Ruby#Slide#149#

Recall that the for loop requires the value of the "in" expression to have

an each method.

That leads to a choice between a for loop,

for name in "x".methods do

 puts name if name.to_s.include? "!"

end

and iteration with each,

 "x".methods.each {|name| puts name if name.to_s.include? "!" }

Which is better?

Sidebar: Iterate with each or use a for loop?

CSC#372#Spring#2016,#Ruby#Slide#150#

Array#each is typically used to create side effects of interest, like

printing values or changing variables.

In contrast, with some iterators it is the value returned by an iterator that is

of principle interest.

See if you can describe what the following iterators are doing.

>> [10, "twenty", 30].collect { |v| v * 2 }

=> [20, "twentytwenty", 60]

>> [[1,2], "a", [3], "four"].select { |v| v.size == 1 }

=> ["a", [3]]

What do those remind you of?

Iterators and blocks, continued

CSC#372#Spring#2016,#Ruby#Slide#151#

The block for Array#sort takes two arguments.

>> [30, 20, 10, 40].sort { |a,b| a <=> b}

=> [10, 20, 30, 40]

Speculate: what are the arguments being passed to sort's block? How

could we find out?

>> [30, 20, 10, 40].sort { |a,b| puts "call: #{a} #{b}"; a <=> b}

call: 30 10

call: 10 40

call: 30 40

call: 20 30

call: 10 20

=> [10, 20, 30, 40]

How could we reverse the order of the sort?

Iterators and blocks, continued

CSC#372#Spring#2016,#Ruby#Slide#152#

Problem: sort the words in a sentence by descending length.

>> "a longer try first".split.sort { }

 => ["longer", "first", "try", "a"]

What do the following examples remind you of?

>> [10, 20, 30].inject(0) { |sum, i| sum + i }

=> 60

>> [10,20,30].inject([]) {

 |memo, element| memo << element << "---" }

=> [10, "---", 20, "---", 30, "---"]

Iterators and blocks, continued

|a,b| b.size <=> a.size

CSC#372#Spring#2016,#Ruby#Slide#153#

We can query the "ancestors" of a class like this:

>> Array.ancestors

=> [Array, Enumerable, Object, Kernel, BasicObject]

For now we'll simply say that an object can call methods in its ancestors.

Enumerable has a number of iterators. Here are some:

>> [2,4,5].any? { |n| n.odd? }

=> true

>> [2,4,5].all? { |n| n.odd? }

=> false

>> [1,10,17,25].find { |n| n % 5 == 0 }

=> 10

Iterators in Enumerable

CSC#372#Spring#2016,#Ruby#Slide#154#

At hand:

A object can call methods in its ancestors. An ancestor of Array is

Enumerable.

Another Enumerable method is max:

>> ["apple", "banana", "grape"].max {

 |a,b| v = "aeiou"

 a.count(v) <=> b.count(v)

 }

=> "banana"

The methods in Enumerable use duck typing. They require only an

each method except for min, max, and sort, which also require <=>.

See http://ruby-doc.org/core-2.2.4/Enumerable.html

Iterators in Enumerable

CSC#372#Spring#2016,#Ruby#Slide#155#

Recall: An iterator is a method that can invoke a block.

Many classes have one or more iterators. One way to find them is to

search their ruby-doc.org page for "block".

What will 3.times { |n| puts n } do?

Iterators abound!

>> 3.times { |n| puts n }

0

1

2

=> 3
CSC#372#Spring#2016,#Ruby#Slide#156#

Three more examples:

>> "abc".each { |c| puts c }

NoMethodError: undefined method `each' for "abc":String

>> "abc".each_char { |c| puts c }

a

b

c

=> "abc"

>> i = 0

>> "Mississippi".gsub("i") { (i += 1).to_s }

=> "M1ss2ss3pp4"

A few more iterators

CSC#372#Spring#2016,#Ruby#Slide#157#

An alternative to enclosing a block in braces is to use do/end:

a.each do
 |element|
 print "element: #{element}\n"
end

Common style is to use brackets for one-line blocks, like previous
examples, and do...end for multi-line blocks.

The opening brace or do for a block must be on the same line as the
iterator invocation. Here's an error:

a.each
 do # syntax error, unexpected keyword_do_block,

 # expecting $end
 |element|
 print "element: #{element}\n"
end

The "do" syntax for blocks

CSC#372#Spring#2016,#Ruby#Slide#158#

sumnums.rb reads lines from standard input, assumes the lines consist of

integers separated by spaces, and prints their total, count, and average.

total = n = 0

readlines().each do

 |line|

 line.split(" ").each do

 |word|

 total += word.to_i

 n += 1

 end

end

printf("total = %d, n = %d, average = %g\n",

 total, n, total / n.to_f) if n != 0

Kernel#readlines reads/returns all of standard input as an array of lines.

The printf format specifier %g indicates to format a floating point number and

select the better of fixed point or exponential form based on the value.

Nested blocks

% cat nums.dat

5 10 0 50

 200

1 2 3 4 5 6 7 8 9 10

% ruby sumnums.rb < nums.dat

total = 320, n = 15, average = 21.3333

CSC#372#Spring#2016,#Ruby#Slide#159#

Blocks raise issues with the scope of variables.

If a variable exists outside of a block, references to that variable in a block

refer to that existing variable. Example:

>> sum = 0 Note: sum will accumulate across two iterator calls

>> [10,20,30].each {|x| sum += x}

>> sum

=> 60

>> [10,20,30].each {|x| sum += x}

>> sum

=> 120

Scoping issues with blocks

CSC#372#Spring#2016,#Ruby#Slide#160#

If a variable is created in a block, the scope of the variable is limited to the

block.

In the example below we confirm that x exists only in the block, and that

the block's parameter, e, is local to the block.

>> e = "eee"

>> x

NameError: undefined local variable or method `x' ...

>> [10,20,30].each {|e| x = e * 2; puts x}

20

...

>> x

NameError: undefined local variable or method `x' ...

>> e

=> "eee" # e's value was not changed by the block

Scoping issues with blocks, continued

LHtLaL

CSC#372#Spring#2016,#Ruby#Slide#161#

Pitfall: If we write a block that references a currently unused variable but

later add a use for that variable outside the block, we might get a surprise.

Version 1:

 a.each do |x|

 result = ... # first use of result in this method

 ...

end

Version 2:

result = ... # new first use of result in this method

...

a.each do |x|

 ...

 result = ... # references/clobbers result in outer scope

end

...

...use result... # uses value of result set in block. Surprise!

Scoping issues with blocks, continued

CSC#372#Spring#2016,#Ruby#Slide#162#

We can make variable(s) local to a block by adding them at the end of the

block's parameter list, preceded by a semicolon.

result = ...

...

a.each do

 |x; result, tmp|

 result = ... # result is local to block

 ...

end

...

...use result... # uses result created outside of block

Scoping issues with blocks, continued

CSC#372#Spring#2016,#Ruby#Slide#163#

Writing iterators

CSC#372#Spring#2016,#Ruby#Slide#164#

Recall: An iterator is a method that can invoke a block.

The yield expression invokes the block associated with the current

method invocation. Arguments of yield become parameters of the block.

Here is a simple iterator that yields two values, a 3 and a 7:

def simple

 puts "simple: Starting..."

 yield 3

 puts "simple: Continuing..."

 yield 7

 puts "simple: Done..."

 "simple result"

end

The puts in simple are used to show when simple is active. Note the

interleaving of execution between the iterator and the block.

A simple iterator

Usage:

>> simple {|x|puts "\tx = #{x}" }

simple: Starting...

 x = 3

simple: Continuing...

 x = 7

simple: Done...

=> "simple result"

CSC#372#Spring#2016,#Ruby#Slide#165#

At hand:

def simple

 puts "simple: Starting..."

 yield 3

 puts "simple: Continuing..."

 yield 7

 puts "simple: Done..."

 "simple result"

end

There's no formal parameter that corresponds to a block. The block, if any, is

implicitly referenced by yield.

The parameter of yield becomes the named parameter for the block.

Calling simple without a block produces an error on the first yield:

>> simple

simple: Starting...

LocalJumpError: no block given (yield)

A simple iterator, continued
Usage:

>> simple { |x| puts "\tx = #{x}" }

simple: Starting...

 x = 3

simple: Continuing...

 x = 7

simple: Done...

=> "simple result"

CSC#372#Spring#2016,#Ruby#Slide#166#

Problem: Write an iterator from_to(f, t, by) that yields the integers from f

through t in steps of by, which defaults to 1. Assume f <= t.

>> from_to(1,3) { |i| puts i }

1

2

3

=> 3

>> from_to(0,99,25) { |i| puts i }

0

25

50

75

=> 4

Parameters are passed to the iterator (the method) just like any other

method.

Write from_to

CSC#372#Spring#2016,#Ruby#Slide#167#

Solution:

def from_to(from, to, by = 1)

 n = from

 results = 0

 while n <= to do

 yield n

 n += by

 results += 1

 end

 results

end

Another test:

>> from_to(-5,5,1) { |i| print i, " " }

-5 -4 -3 -2 -1 0 1 2 3 4 5 => 11

from_to, continued

Desired:

>> from_to(1,10,2) { |i| puts i }

1

3

5

7

9

=> 5

CSC#372#Spring#2016,#Ruby#Slide#168#

To pass multiple arguments for a block, specify multiple arguments for

yield.

Imagine an iterator that produces overlapping pairs from an array:

>> elem_pairs([3,1,5,9]) { |x,y| print "x = #{x}, y = #{y}\n" }

x = 3, y = 1

x = 1, y = 5

x = 5, y = 9

Implementation:

def elem_pairs(a)

 for i in 0...(a.length-1)

 yield a[i], a[i+1] # yield(a[i], a[i+1]) is ok, too

 end

end

Speculate: What will be the result with yield [a[i], a[i+1]]? (Extra [...])

yield, continued

CSC#372#Spring#2016,#Ruby#Slide#169#

When yield passes a value to a block the result of the block becomes the

value of the yield expression.

Here is a trivial iterator to show the mechanics:

def round_trip x

 r = yield x

 "yielded #{x} and got back #{r}"

end

Usage:

>> round_trip(3) {|x| x * 5 } # parens around 3 are required!

=> "yielded 3 and got back 15"

>> round_trip("testing") {|x| x.size }

=> "yielded testing and got back 7"

A round-trip with yield

CSC#372#Spring#2016,#Ruby#Slide#170#

At hand:

def round_trip x

 r = yield x

 "yielded #{x} and got back #{r}"

end

>> round_trip(3) {|x| x * 5 }

=> "yielded 3 and got back 15"

r = yield 3 {|x| x * 5 }

A round-trip with yield, continued

1. Iterator yields 3 to block. x becomes 3.

2. Block returns 15, which becomes value of yield 3.

3. Value of yield 3 is assigned to r.

CSC#372#Spring#2016,#Ruby#Slide#171#

Consider this iterator:

>> select([[1,2], "a", [3], "four"]) { |v| v.size == 1 }

=> ["a", [3]]

>> select("testing this here".split) { |w| w.include? "e" }

=> ["testing", "here"]

What does it appear to be doing?

Producing the elements in its argument, an array, for which the block

produces true.

Problem: Write it!

Round trips with yield

CSC#372#Spring#2016,#Ruby#Slide#172#

At hand:

>> select([[1,2], "a", [3], "four"]) { |v| v.size == 1 }

=> ["a", [3]]

Solution:

def select array

 result = []

 for element in array

 if yield element then

 result << element

 end

 end

 result

end

Round trips with yield, continued

What does the iterator/block interaction

look like?

 Iterator Block

if yield [1,2] then # [1,2].size == 1

 result << [1,2]

if yield "a" then # "a".size == 1

 result << "a"

if yield [3] then # [3] .size == 1

 result << [3]

if yield "four" then # "four".size == 1

 result << "four"

CSC#372#Spring#2016,#Ruby#Slide#173#

Is select limited to arrays?

>> select(1..10) {|n| n.odd? && n > 5 }

=> [7, 9]

Why does that work?

Because for var in x works for any x that

has an each method. (Duck typing!)

What's a better name than array for select's

parameter?

Problem: Rewrite select to use the iterator

each instead of a for loop. Also use an if

modifier with the yield.

Round trips with yield, continued
def select array

 result = []

 for element in array

 if yield element then

 result << element

 end

 end

 result

end

CSC#372#Spring#2016,#Ruby#Slide#174#

Solution:

def select eachable

 result = []

 eachable.each do

 |element|

 result << element if yield element

 end

 result

end

Round trips with yield, continued
def select array

 result = []

 for element in array

 if yield element then

 result << element

 end

 end

 result

end

What's the difference between our select,

 select([[1,2], "a", [3], "four"]) { |v| v.size == 1 }

And Ruby's Array#select?

 [[1,2], "a", [3], "four"].select { |v| v.size == 1 }

Ruby's Array#select is a method of Array. Our select is added to the

object "main". (See slide 123.)

CSC#372#Spring#2016,#Ruby#Slide#175#

Sidebar: Ruby vs. Haskell

def select array

 result = []

 for element in array

 if yield element then

 result << element

 end

 end

 result

end

>> select(["just","a", "test"]) { |x| x.size == 4 }

=> ["just", "test"]

Which is better?

select _ [] = []

select f (x:xs)

 | f x = x : select f xs

 | otherwise = select f xs

> select (\x -> length x == 4) ["just","a", "test"]

["just","test"]

CSC#372#Spring#2016,#Ruby#Slide#176#

>> [10, "twenty", [30,40]].each { |e| puts "element: #{e}" }
>> sum = 0; [1,2,3].each { |x| sum += x }

Invokes block with each element in turn for side-effect(s). Result of
each uninteresting.

>> [10,20,30].map { |x| x * 2 } => [20, 40, 60]

Invokes block with each element in turn and returns array of block
results.

>> [2,4,5].all? { |n| n.odd? } => false

Invokes block with each element in turn; each block result
contributes to final result of true or false, possibly short-circuiting.

>> [[1,2], "a", [3], "four"].select { |v| v.size == 1 } => ["a", [3]]

Invokes block to determine membership in final result.

>> "try this first".split.sort {|a,b| b.size <=> a.size } => [...]

Invokes block an arbitrary number of times; each block result guides
further computation towards final result.

Various types of iteration side-by-side

CSC#372#Spring#2016,#Ruby#Slide#177#

The Hash class

CSC#372#Spring#2016,#Ruby#Slide#178#

Ruby's Hash class is similar to the Map family in Java and dictionaries in

Python. It's like an array that can be subscripted with values of any type.

The expression { } (empty curly braces) creates a Hash:

>> numbers = {} => {}

>> numbers.class => Hash

Subscripting with a key and assigning a value stores that key/value pair.

>> numbers["one"] = 1

>> numbers["two"] = 2

>> numbers

=> {"one"=>1, "two"=>2}

>> numbers.size

=> 2

The Hash class

CSC#372#Spring#2016,#Ruby#Slide#179#

At hand:

>> numbers

=> {"one"=>1, "two"=>2}

Subscripting with a key fetches the associated value. If the key is not

found, nil is produced.

>> numbers["two"]

=> 2

>> numbers["three"]

=> nil

Hash, continued

CSC#372#Spring#2016,#Ruby#Slide#180#

At hand:

>> numbers => {"one"=>1, "two"=>2}

The Hash class has many methods. Here's a sampling:

>> numbers.keys

=> ["one", "two"]

>> numbers.values

=> [1, 2]

>> numbers.invert

=> {1=>"one", 2=>"two"}

>> numbers.to_a

=> [["one", 1], ["two", 2]]

Some of the many Hash iterators: delete_if, each_pair, select

Hash, continued

CSC#372#Spring#2016,#Ruby#Slide#181#

At hand:

>> numbers

=> {"one"=>1, "two"=>2}

The value associated with a key can be changed via assignment.

>> numbers["two"] = "1 + 1"

A key/value pair can be removed with Hash#delete.

>> numbers.delete("one")

=> 1 # Returns associated value

>> numbers

=> {"two"=>"1 + 1"}

>> numbers["one"]

=> nil

Hash, continued

CSC#372#Spring#2016,#Ruby#Slide#182#

The rules for keys and values:

•  Key values must have a hash method that produces a Fixnum.

(Duck typing!)

•  Any value can be the value in a key/value pair.

>> h = {}; a = [1,2,3]

>> h[a] = "-"

>> h[String] = ["a","b","c"]

>> h["x".class] * h[(1..3).to_a]

=> "a-b-c"

>> h[h] = h

>> h

=> {[1, 2, 3]=>"-", String=>["a", "b", "c"], {...}=>{...}}

Hash, continued

CSC#372#Spring#2016,#Ruby#Slide#183#

Note that keys for a given Hash

may be a mix of types. Ditto for

values. (Unlike a Java HashMap.)

Inconsistencies can arise when using mutable values as keys.

>> h = {}; a = []

>> h[a] = "x"

>> h
=> {[]=>"x"}

>> a << 1

>> h
=> {[1]=>"x"}

>> h[a]
=> nil

Ruby treats string-valued keys as a special case and makes a copy of them.

Hash, continued

CSC#372#Spring#2016,#Ruby#Slide#184#

Here's a sequence that shows some of the flexibility of hashes.
>> h = {}

>> h[1000] = [1,2]

>> h[true] = {}

>> h[[1,2,3]] = [4]

>> h
=> {1000=>[1, 2], true=>{}, [1, 2, 3]=>[4]}

>> h[h[1000] + [3]] << 40

>> h[!h[10]]["x"] = "ten"

>> h
=> {1000=>[1, 2], true=>{"x"=>"ten"}, [1, 2, 3]=>[4, 40]}

Hash, continued

CSC#372#Spring#2016,#Ruby#Slide#185#

An earlier simplification: If a key is not found, nil is returned.

Full detail: If a key is not found, the default value of the hash is returned.

The default value of a hash defaults to nil but an arbitrary default value

can be specified when creating a hash with new:

 >> h = Hash.new("Go Fish!") # Example from ruby-doc.org

>> h.default

=> "Go Fish!"

>> h["x"] = [1,2]

>> h["x"]

=> [1, 2]

>> h["y"]

=> "Go Fish!"

Default values

CSC#372#Spring#2016,#Ruby#Slide#186#

Problem: write tally.rb, to tally occurrences of blank-separated "words"

on standard input.

% ruby tally.rb

to be or

not to be

^D

{"to"=>2, "be"=>2, "or"=>1, "not"=>1}

How can we approach it?

tally.rb

CSC#372#Spring#2016,#Ruby#Slide#187#

Solution:

 # Use default of zero so += 1 works

counts = Hash.new(0)

readlines.each do

 |line|

 line.split(" ").each do

 |word|

 counts[word] += 1

 end

end

Like puts counts.inspect

p counts

tally.rb

% ruby tally.rb

to be or

not to be

^D

{"to"=>2, "be"=>2,

"or"=>1, "not"=>1}

Contrast with while/for vs. iterators:

counts = Hash.new(0)

while line = gets do

 for word in line.split(" ") do

 counts[word] += 1

 end

end

p counts

CSC#372#Spring#2016,#Ruby#Slide#188#

The output of tally.rb is not customer-ready!

 {"to"=>2, "be"=>2, "or"=>1, "not"=>1}

Hash#sort produces an array of key/value arrays ordered by the keys, in

ascending order:

>> counts.sort

=> [["be", 2], ["not", 1], ["or", 1], ["to", 2]]

Problem: Produce nicely labeled output, like this:

Word Count
be 2
not 1
or 1
to 2

tally.rb, continued

CSC#372#Spring#2016,#Ruby#Slide#189#

At hand:

>> counts.sort

[["be", 2], ["not", 1], ["or", 1], ["to", 2]]

Solution:

([["Word","Count"]] + counts.sort).each do

 |k,v| printf("%-7s %5s\n", k, v)

end

Notes:

•  The minus in the format %-7s left-justifies, in a field of width seven.

•  As a shortcut for easy alignment, the column headers are put at the start

of the array, as a fake key/value pair.

•  We use %5s instead of %5d to format the counts and accommodate

"Count", too. (This works because %s causes to_s to be invoked on

the value being formatted.)

•  A next step might be to size columns based on content.

tally.rb, continued

Word Count
be 2
not 1
or 1
to 2

CSC#372#Spring#2016,#Ruby#Slide#190#

Hash#sort's default behavior of ordering by keys can be overridden by

supplying a block. The block is repeatedly invoked with two key/value

pairs, like ["be", 2] and ["or", 1].

Here's a block that sorts by descending count: (the second element of the

two-element arrays)

>> counts.sort { |a,b| b[1] <=> a[1] }

=> [["to", 2], ["be", 2], ["or", 1], ["not", 1]]

How we could resolve ties on counts by alphabetic ordering of the words?

counts.sort do

 |a,b|

 r = b[1] <=> a[1]

 if r != 0 then r else a[0] <=> b[0] end

end

=> [["be", 2], ["to", 2], ["not", 1], ["or", 1]]

More on Hash sorting

CSC#372#Spring#2016,#Ruby#Slide#191#

Let's turn tally.rb into a cross-reference program:

% cat xref.1

to be or

not to be is not

to be the question

% ruby xref.rb < xref.1

Word Lines

be 1, 2, 3

is 2

not 2

or 1

question 3

the 3

to 1, 2, 3

How can we approach it?

CSC#372#Spring#2016,#Ruby#Slide#192#

xref.rb

counts = Hash.new(0)

readlines.each do

 |line|

 line.split(" ").each do

 |word|
 counts[word] += 1

 end

end

Changes:

•  Use each_with_index to get line numbers (0-based).

•  Turn counts into refs, a Hash whose values are arrays.

•  For each word on a line...

– If word hasn't been seen, add a key/value pair with word and an

empty array.

– Add the current line number to refs[word]

Revised:

refs = {}

readlines.each_with_index do

 |line, num|

 line.split(" ").each do

 |word|

 refs[word] = [] unless refs.member? word

 refs[word] << num unless refs[word].member? num

 end

end
CSC#372#Spring#2016,#Ruby#Slide#193#

xref.rb, continued

If we add "p refs" after that loop, here's what we see:

% cat xref.1

to be or

not to be is not

to be the question

% ruby xref.rb < xref.1

{"to"=>[0, 1, 2], "be"=>[0, 1, 2], "or"=>[0], "not"=>[1],

"is"=>[1], "the"=>[2], "question"=>[2]}

We want:

% ruby xref.rb < xref.1

Word Lines

be 1, 2, 3

is 2

not 2

...

CSC#372#Spring#2016,#Ruby#Slide#194#

xref.rb, continued

At hand:

{"to"=>[0, 1, 2], "be"=>[0, 1, 2], "or"=>[0], "not"=>[1], ...

We want:

Word Lines

be 1, 2, 3

...

Let's get fancy and size the "Word" column based on the largest word:

max_len = refs.map {|k,v| k.size}.max

fmt = "%-#{max_len}s %s\n"

print fmt % ["Word", "Lines"]

refs.sort.each do

 |k,v|

 printf(fmt, k, v.map {|n| n+1} * ", ")

end

CSC#372#Spring#2016,#Ruby#Slide#195#

xref.rb, continued

Observe:

>> h = Hash.new { |h,k| h[k] = [] }

>> h["to"]

=> []

>> h

=> {"to"=>[]}

If Hash.new is called with a block, that block is invoked when a non-

existent key is accessed.

The block is passed the Hash and the key.

What does the block above do when a key doesn't exist?

 It adds a key/value pair that associates the key with a new, empty array.

CSC#372#Spring#2016,#Ruby#Slide#196#

Another Hash behavior

An identifier preceded by a colon creates a Symbol.

>> s1 = :testing

=> :testing

>> s1.class

=> Symbol

A symbol is much like a string but a given identifier always produces the

same Symbol object.

>> s1.object_id => 1103708

>> :testing.object_id => 1103708

In contrast, two identical string literals produce two different String

objects:

>> "testing".object_id => 3673780

>> "testing".object_id => 4598080

Symbols

CSC#372#Spring#2016,#Ruby#Slide#197#

A symbol can also be made from a string with to_sym:

>> "testing".to_sym

=> :testing

>> "==".to_sym

=> :==

Recall that .methods returns an array of symbols:

>> "".methods.sort

=> [:!, :!=, :%, :*, :+, :<, :<<, :<=, :<=>, :==, :===, :=~, :>, :>=,

:__id__, :__send__, :ascii_only?, :b, :between?, :bytes,

:bytesize, :byteslice, :capitalize, :capitalize!, :casecmp, :center,

:chars, :chomp, :chomp!, :chop, :chop!, :chr, :class, :clear, ...

CSC#372#Spring#2016,#Ruby#Slide#198#

Symbols, continued

Because symbols can be quickly compared, they're commonly used as

hash keys.

moves = {}

moves[:up] = [0,1]

moves[:down] = [0,-1]

>> moves

=> {:up=>[0, 1], :down=>[0, -1]}

> moves["up".to_sym]

=> [0, 1]

>> moves["down"]

=> nil

CSC#372#Spring#2016,#Ruby#Slide#199#

Symbols and hashes

Instead of a series of assignments we can use an initialization syntax:

 >> moves = { :up => [0,1], :down => [0,-1] }

 => {:up=>[0, 1], :down=>[0, -1]}

There's even more syntactic sugar available:

 >> moves = { up:[0,1], down:[0,-1] }

 => {:up=>[0, 1], :down=>[0, -1]}

CSC#372#Spring#2016,#Ruby#Slide#200#

Symbols and hashes, continued

Regular Expressions

CSC#372#Spring#2016,#Ruby#Slide#201#

In computer science theory, a language is a set of strings. The set may be infinite.

The Chomsky hierarchy of languages looks like this:

Unrestricted languages ("Type 0")
Context-sensitive languages ("Type 1")
Context-free languages ("Type 2")
Regular languages ("Type 3")

Roughly speaking, natural languages are unrestricted languages that can only be
specified by unrestricted grammars.

Programming languages are usually context-free languages—they can be
specified with context-free grammars, which have restrictive rules.

•  Every Java program is a string in the context-free language that is specified
by the Java grammar.

A regular language is a very limited kind of context free language that can be
described by a regular grammar.

•  A regular language can also be described by a regular expression.

A little theory

CSC#372#Spring#2016,#Ruby#Slide#202#

A regular expression is simply a string that may contain metacharacters—
characters with special meaning.

Here is a simple regular expression:

a+

It specifies the regular language that consists of the strings {a, aa, aaa, ...}.

Here is another regular expression:

(ab)+c*

It describes the set of strings that start with ab repeated one or more times
and followed by zero or more c's.

Some strings in the language are ab, ababc, and ababababccccccc.

The regular expression (north|south)(east|west) describes a language
with four strings: {northeast, northwest, southeast, southwest}.

A little theory, continued

CSC#372#Spring#2016,#Ruby#Slide#203#

Regular expressions have a sound theoretical basis and are also very

practical.

UNIX tools such as the ed editor and the grep family introduced regular

expressions to a wide audience.

Most current editors and IDEs support regular expressions in searches.

Many languages provide a library for working with regular expressions.

•  Java provides the java.util.regex package.

•  The command man regex shows the interface for POSIX regular

expression routines, usable in C.

Some languages, Ruby included, have a regular expression type.

Good news and bad news

CSC#372#Spring#2016,#Ruby#Slide#204#

Regular expressions as covered in a theory class are relatively simple.

Regular expressions as available in many languages and libraries have

been extended far beyond their theoretical basis.

In languages like Ruby, regular expressions are truly a language within a

language.

An edition of the "Pickaxe" book devoted four pages to its summary of

regular expressions.

•  Four more pages sufficed to cover integers, floating point numbers,

strings, ranges, arrays, and hashes.

Entire books have been written on the subject of regular expressions.

A number of tools have been developed to help programmers create and

maintain complex regular expressions.

Good news and bad news, continued

CSC#372#Spring#2016,#Ruby#Slide#205#

Here is a regular expression written by Mark Cranness and posted at

RegExLib.com:

^((?>[a-zA-Z\d!#$%&'*+\-/=?^_`{|}~]+\x20*|"((?=[\x01-\x7f])

[^"\\]|\\[\x01-\x7f])*"\x20*)*(? <angle><))?((?!\.)(?>\.?[a-zA-

Z\d!#$%&'*+\-/=?^_`{|}~]+)+|"((?=[\x01-\x7f])[^"\\]|\\[\x01-\

x7f])*")@(((?!-)[a-zA-Z\d\-]+(?<!-)\.)+[a-zA-Z]{2,}|\[(((?(?<!\[)

\.)(25[0-5]|2[0-4]\d|[01]?\d? \d)){4}|[a-zA-Z\d\-]*[a-zA-Z\d]:

((?=[\x01-\x7f])[^\\\[\]]|\\[\x01-\x7f])+)\])(?(angle)>)$

It describes RFC 2822 email addresses.

My opinion: regular expressions are good for simple tasks but grammar-

based parsers should be favored as complexity rises, especially when an

underlying specification includes a grammar.

We'll cover a subset of Ruby's regular expression capabilities.

Good news and bad news, continued

CSC#372#Spring#2016,#Ruby#Slide#206#

One way to create a regular expression (RE) in Ruby is to use the

/regexp/ syntax, for regular expression literals.

>> re = /a.b.c/ => /a.b.c/

>> re.class => Regexp

In a RE, a dot is a metacharacter (a character with special meaning) that

will match any (one) character.

Letters, numbers, and some special characters simply match themselves.

The RE /a.b.c/ matches strings that contain the five-character sequence

a<anychar>b<anychar>c

 Examples: "albacore", "barbecue", "drawback", and "iambic".

A simple regular expression in Ruby

CSC#372#Spring#2016,#Ruby#Slide#207#

The binary operator =~ is called "match".

One operand must be a string and the other must be a regular expression.
If the string contains a match for the RE, the position of the match is
returned. nil is returned if there is no match.

>> "albacore" =~ /a.b.c/ => 0

>> "drawback" =~ /a.b.c/ => 2

>> "abc" =~ /a.b.c/ => nil

>> "abcdef" =~ /..f/
=> 3

>> "abcdef" =~ /.f./
=> nil

>> "abc" =~ /..../
=> nil

The match operator

CSC#372#Spring#2016,#Ruby#Slide#208#

Language-wise, what's an implication of the following?

>> /x/.class => Regexp

Ruby has syntactic support for regular expressions. We can say that

regular expressions are first-class values in Ruby.

In general there are two levels of support for a type:

 Syntactic support

 Most languages have syntactic support for strings with "...".

 Scala and ActionScript have syntactic support for XML.

 In Icon, 'aeiou' is a character set, not a string.

 Library support

 Java and Python have classes for working with REs.

 C and Icon have function libraries for working with REs.

What are the tradeoffs between the two levels?

 Example from Icon: cset("aeiou") vs. 'aeiou'

Regular expressions are "in deep" in Ruby

CSC#372#Spring#2016,#Ruby#Slide#209#

The UNIX grep command reads standard input or files named as

arguments and prints lines that contain a specified regular expression:

$ grep g.h.i < /usr/share/dict/words

lengthwise

$ grep l.m.n < /usr/share/dict/words | wc -l

 252 252 2825

$ grep < /usr/share/dict/words

electroencephalograph's

Problem: Write a simple grep in Ruby that will handle the cases above.

Hint: #{...} interpolation works in /.../ (regular expression) literals.

Sidebar: rgrep.rb

CSC#372#Spring#2016,#Ruby#Slide#210#

UNIX grep:

$ grep g.h.i < /usr/share/dict/words

Solution:

while line = STDIN.gets # STDIN so "g.h.i" isn't opened for input

 puts line if line =~ /#{ARGV[0]}/

end

Usage:

$ ruby rgrep.rb g.h.i < /usr/share/dict/words

lengthwise

$ ruby rgrep.rb < /usr/share/dict/words

electroencephalograph's

rgrep.rb sidebar, continued

CSC#372#Spring#2016,#Ruby#Slide#211#

After a successful match we can use some cryptically named predefined

global variables to access parts of the string:

$` Is the portion of the string that precedes the match. (That's a

backquote—ASCII code 96.)

$& Is the portion of the string that was matched by the regular

expression.

$' Is the portion of the string following the match.

Example:

>> "limit=300" =~ /=/ => 5

>> $` => "limit" (left of the match)

>> $& => "=" (the match itself)

>> $' => "300" (right of the match)

The match operator, continued

CSC#372#Spring#2016,#Ruby#Slide#212#

Here's a handy utility routine from the Pickaxe book:
def show_match(s, re)
 if s =~ re then
 "#{$`}<<#{$&}>>#{$'}"
 else
 "no match"
 end
end

Usage:
>> show_match("limit is 300",/is/)
=> "limit <<is>> 300"

>> %w{albacore drawback iambic}.

 each { |w| puts show_match(w, /a.b.c/) }
<<albac>>ore
dr<<awbac>>k
i<<ambic>>

Great idea: Put it in your .irbrc! Call it "sm", to save some typing!

The match operator, continued

LHtLaL

CSC#372#Spring#2016,#Ruby#Slide#213#

[characters] is a character class—a RE that matches any one of the

characters enclosed by the square brackets.

/[aeiou]/ matches a single lower-case vowel

>> show_match("testing", /[aeiou]/)

=> "t<<e>>sting"

A dash between two characters in a class specification creates a range

based on the collating sequence. [0-9] matches a single digit.

>> show_match("Testing 1, 2, 3...", /[0-9]/)

=> "Testing <<1>>, 2, 3..."

>> show_match("Take five!", /[0-9]/)

=> "no match"

Character classes

CSC#372#Spring#2016,#Ruby#Slide#214#

[^characters] is a RE that matches any single character not in the class.

(It matches the complement of the class.)

/[^0-9]/ matches a single character that is not a digit.

 >> show_match("1,000", /[^0-9]/)

 => "1<<,>>000"

For any RE we can ask,

 What is the shortest string the RE can match? What is the longest?

What is the shortest string that [A-Za-z345] can match? The longest?

 One for both! [anything] always has a one-character match!

Character classes

CSC#372#Spring#2016,#Ruby#Slide#215#

Describe what's matched by this regular expression:

 /.[a-z][0-9][a-z]./

A five character string whose middle three characters are, in order, a

lowercase letter, a digit, and a lowercase letter.

In the following, which portion of the string is matched, if any?

>> show_match("A1b33s4ax1", /.[a-z][0-9][a-z]./)

=> "A1b3<<3s4ax>>1"

Character classes, continued

CSC#372#Spring#2016,#Ruby#Slide#216#

String#gsub does global substitution with both plain old strings and

regular expressions

>> "520-621-6613".gsub("-", "<DASH>")

=> "520<DASH>621<DASH>6613"

>> "520-621-6613".gsub(/[02468]/, "(e#)")

=> "5(e#)(e#)-(e#)(e#)1-(e#)(e#)13"

There's an imperative form of gsub, too.

Character classes, continued

CSC#372#Spring#2016,#Ruby#Slide#217#

Some frequently used character classes can be specified with \C
 \d Stands for [0-9]
 \w Stands for [A-Za-z0-9_]
 \s Whitespace—blank, tab, carriage return, newline, formfeed

The abbreviations \D, \W, and \S produce a complemented class.

Examples:

>> show_match("Call me at 555-1212", /\d\d\d-\d\d\d\d/)
=> "Call me at <<555-1212>>"

>> "fun double(n) = n * 2".gsub(/\w/,".")
=> "...(.) = . * ."

>> "BIOW 208, 14:00-15:15 TR".gsub(/\D/, "")
=> "20814001515"

>> "buzz93@tv-2000.com".gsub(/[\w-]/,"*")
=> "******@*******.***"

Character classes, continued

CSC#372#Spring#2016,#Ruby#Slide#218#

Preceding an RE metacharacter with a backslash suppresses its meaning.

>> show_match("123.456", /.\../)

=> "12<<3.4>>56"

>> "5-3^2*2.0".gsub(/[\^.\-6]/, "_")

=> "5_3_2*2_0"

>> show_match("x = y[1] + z", /\[\d\]/)

=> "x = y<<[1]>> + z"

An old technique with regular expressions is to take advantage of the fact

that metacharacters often aren't special when used out of context:

>> "5-3^2*2.0".gsub(/[-6^.]/, "_")

=> "5_3_2*2_0"

CSC#372#Spring#2016,#Ruby#Slide#219#

Backslashes suppress special meaning

Alternatives can be specified with a vertical bar:

>> show_match("a green box", /red|green|blue/)

=> "a <<green>> box"

>> %w{you ate a pie}.select { |s| s =~ /ea|ou|ie/ }

=> ["you", "pie"]

Alternatives

CSC#372#Spring#2016,#Ruby#Slide#220#

Parentheses can be used for grouping. Consider this regular expression:

/(two|three) (apple|biscuit)s/

It corresponds to a regular language that is a set of four strings:

{two apples, three apples, two biscuits, three biscuits}

Usage:

 >> "I ate two apples." =~ /(two|three) (apple|biscuit)s/

 => 6

 >> "She ate three mice." =~ /(two|three) (apple|biscuit)s/

 => nil

Another:

>> %w{you ate a mouse}.select { |s| s =~ /.(ea|ou|ie)./ }

=> ["mouse"]

Alternatives and grouping

CSC#372#Spring#2016,#Ruby#Slide#221#

Imagine a program to look through a word list for a pattern of consonants
and vowels specified on the command line, showing matches in bars.

% ruby convow.rb cvcvcvcvcvcvcvcvc < web2
c|hemicomineralogic|al
|hepatoperitonitis|
o|verimaginativenes|s

A capital letter means to match exactly that letter, in lowercase. e matches
either consonant or vowel.

% ruby convow.rb vvvDvvv < web2
Chromat|ioideae|
Rhodobacter|ioideae|

% ruby convow.rb vvvCvvv < web2 | wc -l
24

% ruby convow.rb vvvevvv < web2 | wc -l
43

Simple app: looking for letter patterns

CSC#372#Spring#2016,#Ruby#Slide#222#

Here's a solution. We loop through the command line argument and build
up a regular expression of character classes and literal characters, and then
look for lines with a match.

re = ""
ARGV[0].each_char do |char|
 re += case char # An example of Ruby's case
 when "v" then "[aeiou]"
 when "c" then "[^aeiou]"
 when "e" then "[a-z]"
 else char.downcase
 end
end
puts re
re = /#{re}/ # Transform re from String to Regexp
STDIN.each do
 |line|
 puts [$`, $&, $'] * "|" if line.chomp =~ re
end

convow.rb

$ ruby convow.rb cvc

[^aeiou][aeiou][^aeiou]

$ ruby convow.rb cEEcc

[^aeiou]ee[^aeiou][^aeiou]

CSC#372#Spring#2016,#Ruby#Slide#223#

A rule we've been using but haven't formally stated is this:

 If R1 and R2 are regular expressions then R1R2 is a regular expression.

 In other words, juxtaposition is the concatenation operation for REs.

There are also postfix operators on regular expressions.

If R is a regular expression, then...

R* matches zero or more occurrences of R

R+ matches one or more occurrences of R

R? matches zero or one occurrences of R

All have higher precedence than juxtaposition.

*, +, and ? are commonly called quantifiers but PA doesn't use that term.

There are regular expression operators

CSC#372#Spring#2016,#Ruby#Slide#224#

At hand:

R* matches zero or more occurrences of R

R+ matches one or more occurrences of R

R? matches zero or one occurrences of R

What does the RE ab*c+d describe?

 An 'a' that is followed by zero or more 'b's that are followed by one

or more 'c's and then a 'd'.

>> show_match("acd", /ab*c+d/)

=> "<<acd>>"

>> show_match("abcccc", /ab*c+d/)

=> "no match"

>> show_match("abcabccccddd", /ab*c+d/)

=> "abc<<abccccd>>dd"

 The *, +, and ? quantifiers

CSC#372#Spring#2016,#Ruby#Slide#225#

At hand:

R* matches zero or more occurrences of R

R+ matches one or more occurrences of R

R? matches zero or one occurrences of R

What does the RE -?\d+ describe?

 Integers with any number of digits

>> show_match("y is -27 initially", /-?\d+/)

=> "y is <<-27>> initially"

>> show_match("maybe --123.4e-10 works", /-?\d+/)

=> "maybe -<<-123>>.4e-10 works"

>> show_match("maybe --123.4e-10 works", /-?\d*/) # *, not +

=> "<<>>maybe --123.4e-10 works"

The *, +, and ? quantifiers, continued

CSC#372#Spring#2016,#Ruby#Slide#226#

What does a(12|21|3)*b describe?

 Matches strings like ab, a3b, a312b, and a3123213123333b.

Write an RE to match numbers with commas, like these:

 58 4,297 1,000,000 446,744 73,709,551,616

 (\d\d\d|\d\d|\d)(,\d\d\d)* # Why is \d\d\d first?

Write an RE to match floating point literals, like these:

 1.2 .3333e10 -4.567e-30 .0001

>> %w{1.2 .3333e10 -4.567e-30 .0001}.

 each {|s| puts show_match(s, /-?\d*\.\d+(e-?\d+)?/) }

<<1.2>>

<<.3333e10>>

<<-4.567e-30>>

<<.0001>>

 The *, +, and ? quantifiers, continued

Note the \. to match only a period.

CSC#372#Spring#2016,#Ruby#Slide#227#

/(\d?\d?\d)(,\d\d\d)*/#SS#Alan#Smith#

The operators *, +, and ? are "greedy"—each tries to match the longest

string possible, and cuts back only to make the full expression succeed.

Example:

 Given a.*b and the input 'abbb', the first attempt is:

 a matches a

 .* matches bbb

 b fails—no characters left!

 The matching algorithm then backtracks and does this:

 a matches a

 .* matches bb

 b matches b

 *, +, and ? are greedy!

CSC#372#Spring#2016,#Ruby#Slide#228#

More examples of greedy behavior:

>> show_match("xabbbbc", /a.*b/)

=> "x<<abbbb>>c"

>> show_match("xabbbbc", /ab?b?/)

=> "x<<abb>>bbc"

>> show_match("xabbbbcxyzc", /ab?b?.*c/)

=> "x<<abbbbcxyzc>>"

Why are *, +, and ? greedy?

 *, +, and ? are greedy, continued

CSC#372#Spring#2016,#Ruby#Slide#229#

In the following we'd like to match just 'abc' but the greedy asterisk goes

too far:

show_match("x + 'abc' + 'def' + y", /'.*'/)

=> "x + <<'abc' + 'def'>> + y"

We can make * lazy by putting ? after it, causing it to match only as much

as needed to make the full expression match. Example:

>> show_match("x + 'abc' + 'def' + y", /'.*?'/)

=> "x + <<'abc'>> + 'def' + y"

?? and +? are supported, too. The three are also called reluctant

quantifiers.

Once upon a time, before *? was supported, one would do this:

>> show_match("x + 'abc' + 'def' + y", /'[^']+'/)

=> "x + <<'abc'>> + 'def' + y"

Lazy/reluctant quantifiers

CSC#372#Spring#2016,#Ruby#Slide#230#

We can use curly braces to require a specific number of repetitions:

>> show_match("Call me at 555-1212!", /\d{3}-\d{4}/)

=> "Call me at <<555-1212>>!"

There are also forms with {min,max} and {min,}

>> show_match("3/17/2013", /\d{1,2}\/\d{1,2}\/(\d{4}|\d{2})/)

=> "<<3/17/2013>>"

Note that the RE above has escaped slashes to match the literal slashes.

Specific numbers of repetitions

CSC#372#Spring#2016,#Ruby#Slide#231#

We can split a string using a regular expression:

>> " one, two,three / four".split(/[\s,\/]+/) # w.s., commas, slashes

=> ["", "one", "two", "three", "four"]

Note that leading delimiters produce an empty string in the result.

If we can describe the strings of interest instead of what separates them,

scan is a better choice:

>> " one, two,three / four".scan(/\w+/)

=> ["one", "two", "three", "four"]

>> "10.0/-1.3...5.700+[1.0,2.3]".scan(/-?\d+\.\d+/)

=> ["10.0", "-1.3", "5.700", "1.0", "2.3"]

Here's a way to keep all the pieces:

>> " one, two,three / four".scan(/\w+|\W+/)

=> [" ", "one", ", ", "two", ",", "three", " / ", "four"]

split and scan with regular expressions

CSC#372#Spring#2016,#Ruby#Slide#232#

Reminder: s =~ /x/ succeeds if "x" appears anywhere in s.

The metacharacter ^ is an anchor when used at the start of a RE. (At the

start of a character class it means to complement.)

^ doesn't match any characters but it constrains the following regular

expression to appear at the beginning of the string being matched against.

>> show_match("this is x", /^x/) => "no match"

>> show_match("this is x", /^this/) => "<<this>> is x"

What will /^x|y/ match? Hint: it's not the same as /^(x|y)/

What does /^.[^0-9]/ match?

TODO: Talk about newlines, and \A, \Z, and \z

Anchors

CSC#372#Spring#2016,#Ruby#Slide#233#

Another anchor is $. It constrains the preceding regular expression to

appear at the end of the string.

>> show_match("ending", /end$/)

=> "no match"

>> show_match("the end", /end$/)

=> "the <<end>>"

What does /\d+$/ match?

 Can it be shortened?

Anchors, continued

CSC#372#Spring#2016,#Ruby#Slide#234#

We can combine the ^ and $ anchors to fully specify a string.

Problem: Write a RE to match lines with only a curly brace and (maybe)

whitespace.

>> show_match(" } ", /^\s*[{}]\s*$/)

=> "<< } >>"

Using grep, print lines in Ruby source files that are exactly three

characters long.

 % grep ^...$ *.rb

The sets of metacharacters recognized by grep, egrep, and egrep -P

differ. fgrep treats all characters as literals. The set in egrep -P is closest

to Ruby, but there's also rgrep.rb from slide 210.

CSC#372#Spring#2016,#Ruby#Slide#235#

Anchors, continued

What does /\w+\d+/ specify?

 One or more "word" characters followed by one or more digits.

How do the following matches differ from each other?

 line =~ /\w+\d+/

 line =~ /^\w+\d+/

 line =~ /\w+\d+$/

 line =~ /^\w+\d+$/

 line =~ /^.\w+\d+.$/

 line =~ /^.*\w+\d+$/

Anchors, continued

CSC#372#Spring#2016,#Ruby#Slide#236#

Imagine a program that's reading dozens of large data files whose lines

start with first names, like "Mary". We're getting drowned by the data.

for fname in files

 f = open(fname)

 while line = f.gets

 ...lots of processing to build a data structure, bdata...

 end

 p bdata # outputs way too much to easily analyze!!

We could edit data files down to a few names but here's an RE-based

solution.

for fname in files

 f = open(fname)

 while line = f.gets

 next unless line =~ /^(John|Dana|Mary),/

 ...processing... # toomuch.rb

Sidebar: Dealing with too much input

CSC#372#Spring#2016,#Ruby#Slide#237#

Note trailing comma!

Recall that convow.rb on slide 223 simply does char.downcase on any

characters it doesn't recognize. downcase doesn't change ^ or $.

The command

% ruby convow.rb ^cvc$

builds this this RE

/^[^aeiou][aeiou][^aeiou]$/

Let's explore with it:

% ruby convow.rb ^cvc$ < web2 | wc -l

858

% ruby convow.rb ^vccccv$ < web2 | wc -l

15

% ruby convow.rb ^vccccccv$ < web2

|oxyphyte|

Sidebar: convow.rb with anchors

CSC#372#Spring#2016,#Ruby#Slide#238#

web2 is in spring16

The following regular expression uses three named groups to capture the

elements of a binary arithmetic expression

>> re = /(?<lhs>\d+)(?<op>[+\-*\/])(?<rhs>\d+)/

After a successful match, the predefined global $~, an instance of

MatchData, shows us the groups:

>> re =~ "What is 100+23?"

=> 8

>> $~

=> #<MatchData "100+23" lhs:"100" op:"+" rhs:"23">

>> $~["lhs"]

=> "100"

Named groups are sometimes called named backreferences or named

captures.

CSC#372#Spring#2016,#Ruby#Slide#239#

Named groups

At hand:
 /(?<lhs>\d+)(?<op>[+\-*\/])(?<rhs>\d+)/

Important: Named groups must always be enclosed in parentheses.

Consider the difference in these two REs:

/x(?<n>\d+)/
 Matches strings like "x10" and "testx7ing"

/x?<n>\d+/

 Matches strings like "<n>10", "ax<n>10", "testx<n>10ing"

Design lesson:
"(?" in a RE originally had no meaning, so it provided an opportunity
for extension without breaking any existing REs.

Post-lecture addition: See "NAMED CAPTURES AND LOCAL
VARIABLES" in RPL.

CSC#372#Spring#2016,#Ruby#Slide#240#

Named groups, continued

Consider an application that reads elapsed times on standard input and

prints their total:

% ruby ttl.rb

3h

15m

4:30

^D

7:45

Multiple times can be specified per line, separated by spaces and commas.

% ruby ttl.rb

10m, 3:30

20m 2:15 1:01 3h

^D

10:16

How can we approach it?

Application: Time totaling

CSC#372#Spring#2016,#Ruby#Slide#241#

def main

 mins = 0

 while line = gets do

 line.scan(/[^\s,]+/).each {|time| mins += parse_time(time) }

 end

 printf("%d:%02d\n", mins / 60, mins % 60)

end

def parse_time(s)

 if s =~ /^(?<hours>\d+):(?<mins>[0-5]\d)$/

 $~["hours"].to_i * 60 + $~["mins"].to_i

 elsif s =~ /^(?<n>\d+)(?<which>[hm])$/

 n = $~["n"].to_i

 if $~["which"] == "h" then n * 60

 else n end

 else

 0 # return 0 for things that don't look like times

 end

end

main

Time totaling, continued

CSC#372#Spring#2016,#Ruby#Slide#242#

Problem: Write a method pt(s) that takes a string like "[(10,'a'),(3,'x'),

(7,'o')]" and returns an array with the sum of the numbers and a

concatenation of the letters. If s is malformed, nil is returned.

Examples:

>> pt "[(10,'a'),(3,'x'),(7,'o')]"

=> [20, "axo"]

>> pt "[(100,'c')]"

=> [100, "c"]

>> pt "[(10,'x'),(5,7,'y')]"

=> nil

>> pt "[(10,'x'),(5,'y'),]"

=> nil

CSC#372#Spring#2016,#Ruby#Slide#243#

Example: consuming a string

Desired:

>> pt "[(10,'a'),(3,'x'),(7,'o')]"

=> [20, "axo"]

Approach:

1.  Remove outer brackets: "(10,'a'),(3,'x'),(7,'o')"

2.  Append a comma: "(10,'a'),(3,'x'),(7,'o'),". (Why?!)

3.  Recognize (NUM,LET), and replace with ""

4.  Repeat 3. until failure

5.  If nothing left but an empty string, success!

Important: By appending that comma we produce a simple repetition,

 (tuple ,)+

rather than

 tuple (, tuple)*

CSC#372#Spring#2016,#Ruby#Slide#244#

Example, continued

Solution:

def pt(s) # process_tuples.rb

 if s =~ /^\[(?<tuples>.*)\]$/ then

 tuples = $~["tuples"] + ","

 sum, lets = 0, ""

 tuples.gsub!(/\((?<num>\d+),'(?<let>[a-z])'\),/) do

 sum += $~["num"].to_i

 lets << $~["let"]

 "" # block result--replaces matched string in tuples

 end

 if tuples.empty? then

 [sum,lets]

 end

 end

end

CSC#372#Spring#2016,#Ruby#Slide#245#

Example, continued

Approach:

1.  Remove outer brackets

2.  Append a comma

3.  Recognize (NUM,LET), and replace with ""

4.  Repeat 3. until failure

5.  If nothing left but an empty string, success!

TODO: Named groups

can set local variables

calc.rb on assignment 6 accepts input lines such as these:

x=7

yval=x+10*x

x+yval+z

Here's a very repetitious RE that recognizes calc.rb input lines:

valid_line = /^([a-zA-Z][a-zA-Z\d]*=)?([a-zA-Z][a-zA-Z\d]*|\d

+)([-+*\/]([a-zA-Z][a-zA-Z\d]*|\d+))*$/

Let's use some intermediate variables to build that same RE.

var = /[a-z][a-z\d]*/i # trailing "i": case insensitive

expr = /(#{var}|\d+)/

op = /[-+*\/]/

valid_line = /^(#{var}=)?#{expr}(#{op}#{expr})*$/

CSC#372#Spring#2016,#Ruby#Slide#246#

Avoiding repetitious REs

Our look at regular expressions ends here but there's lots more, like...

•  Back references––/(.)(.).\2\1/ matches 5-character palindromes

•  Nested regular expressions

•  Nested and conditional groups

•  Conditional subpatterns

•  Zero-width positive lookahead

Proverb:

A programmer decided to use regular expressions to solve a problem.

Then the programmer had two problems.

Regular expressions are great, up to a point.

SNOBOL4 patterns, Icon's string scanning facility, and Prolog grammars

can all recognize unrestricted languages and are far less complex than the

regular expression facility in most languages.

Lots more with regular expressions

CSC#372#Spring#2016,#Ruby#Slide#247#

Groups can be accessed in

code with $1, $2, ...

Defining classes

CSC#372#Spring#2016,#Ruby#Slide#248#

Imagine a class named Counter that models a tally counter.

Here's how we might create and interact with an instance of Counter:

c1 = Counter.new
c1.click
c1.click

puts c1 # Output: Counter's count is 2
c1.reset

c2 = Counter.new "c2"
c2.click

puts c2 # Output: c2's count is 1

c2.click
puts "c2 = #{c2.count}" # Output: c2 = 2

A tally counter

CSC#372#Spring#2016,#Ruby#Slide#249#

Here is a partial implementation of Counter:

class Counter

 def initialize(label = "Counter")

 ...

 end

 ...

end # Counter.rb

Class definitions are bracketed with class and end. Class names must

start with a capital letter. Unlike Java there are no filename requirements.

The initialize method is the constructor, called when new is invoked.

c1 = Counter.new

c2 = Counter.new "c2"

If no argument is supplied to new, the default value of "Counter" is used.

Counter, continued

CSC#372#Spring#2016,#Ruby#Slide#250#

Here is the body of initialize:

class Counter

 def initialize(label = "Counter")

 @count = 0

 @label = label

 end

end

Instance variables are identified by prefixing them with @.

An instance variable comes into existence when it is assigned to. The

code above creates @count and @label. (There are no instance variable

declarations.)

Just like Java, each object has its own copy of instance variables.

Counter, continued

CSC#372#Spring#2016,#Ruby#Slide#251#

Let's add click and reset methods, which are straightforward:

class Counter

 def initialize(label = "Counter")

 @count = 0

 @label = label

 end

 def click

 @count += 1

 end

 def reset

 @count = 0

 end

end

Counter, continued

CSC#372#Spring#2016,#Ruby#Slide#252#

In Ruby the instance variables of an object cannot by accessed by any
other object.

The only way way to make the value of @count available to other objects
is via methods.

Here's a simple "getter" for the counter's count.

def count
 @count
end

Let's override Object#to_s with a to_s that produces a detailed
description:

def to_s
 return "#{@label}'s count is #{@count}"
end

In Ruby, there is simply no such thing as a public instance variable. All
access must be through methods.

Counter, continued

CSC#372#Spring#2016,#Ruby#Slide#253#

Full source for Counter thus far:
class Counter
 def initialize(label = "Counter")
 @count = 0; @label = label
 end

 def click
 @count += 1
 end

 def reset
 @count = 0
 end

 def count # Note the convention: count, not get_count
 @count
 end

 def to_s
 return "#{@label}'s count is #{@count}"
 end
end # Counter.rb

Common error: omitting the @ on a reference to an instance variable.

Counter, continued

CSC#372#Spring#2016,#Ruby#Slide#254#

Consider this class: (instvar.rb)

class X

 def initialize(n)

 case n

 when 1 then @x = 1

 when 2 then @y = 1

 when 3 then @x = @y = 1

 end; end; end

What's interesting about the following?

>> X.new 1

=> #<X:0x00000101176838 @x=1>

>> X.new 2

=> #<X:0x00000101174970 @y=1>

>> X.new 3

=> #<X:0x0000010117aaa0 @x=1, @y=1>

An interesting thing about instance variables

CSC#372#Spring#2016,#Ruby#Slide#255#

Instances of a class can

have differing sets of

instance variables!

If class X ... end has been seen and another class X ... end is
encountered, the second definition adds and/or replaces methods.

Let's confirm Counter has no label method.

 >> c = Counter.new "ctr 1"

>> c.label
NoMethodError: undefined method `label' ...

Now we add a label method: (we're typing lines into irb but could load)
>> class Counter
>> def label; @label; end
>> end

>> c.label => "ctr 1"

What's an implication of this capability?

 We can add methods to classes written by others!

Addition of methods

CSC#372#Spring#2016,#Ruby#Slide#256#

In Icon, the unary ? operator can be used to generate a random number or

select a random value from an aggregate.

Icon Evaluator, Version 1.1

][?10

 r1 := 3 (integer)

][?"abcd"

 r2 := "b" (string)

I miss that. Let's add something similar to Ruby!

If we call Kernel#rand with a Fixnum n it will return a random Fixnum

r such that 0 <= r < n.

There's no unary ? to overload in Ruby so let's just add a rand method to

Fixnum and String.

Addition of methods, continued

CSC#372#Spring#2016,#Ruby#Slide#257#

Here is random.rb:

class Fixnum

 def rand

 Kernel.rand(self)+1

 end

end

class String

 def rand

 self[size.rand-1] # Uses Fixnum.rand

 end

end

>> load "random.rb"

>> 12.times { print 6.rand, " " }

2 1 2 4 2 1 4 3 4 4 6 3

>> 8.times { print "HT".rand, " " }

H H T H T T H H

Addition of methods, continued

MONKEY

PATCHING

CSC#372#Spring#2016,#Ruby#Slide#258#

Observe the following. What does it suggest to you?

>> class X

>> end

=> nil

>> p (class Y; end)

nil

=> nil

>> class Z; puts "here"; end

here

=> nil

Class definitions are executable code!

An interesting thing about class definitions

CSC#372#Spring#2016,#Ruby#Slide#259#

At hand: A class definition is executable code. The following class
definition uses a case statement to selectively execute defs for methods.

class X
 print "What methods would you like? "
 gets.split.each do |m|
 case m
 when "f" then def f; "from f" end
 when "g" then def g; "from g" end
 when "h" then def h; "from h" end
 end
 end
end

Use:
>> load "dynmethods1.rb"
What methods would you like?
>> x = X.new => #<X:0x007fc45c0b0f40>
>> x.f => "from f"
>> x.g => "from g"
>> x.h
NoMethodError: undefined method `h' for #<X:...>

Class definitions are executable code

f g

CSC#372#Spring#2016,#Ruby#Slide#260#

Kernel#eval parses a string containing Ruby source code and executes it.

>> s = "abc"

>> n = 3

>> eval "x = s * n" => "abcabcabc"

>> x => "abcabcabc"

>> eval "x[2..-2].length" => 6

>> eval gets
s.reverse
=> "cba"

Note that eval uses variables from the current scope and that an assignment to x
is reflected in the current scope. (Note: There are details about scoping!)

Bottom line: A Ruby program can generate code for itself.

Sidebar: Fun with eval

CSC#372#Spring#2016,#Ruby#Slide#261#

mk_methods.rb prompts for a method name, parameters, and method
body. It then creates that method and adds it to class X.

>> load "mk_methods.rb"
What method would you like? add
Parameters? a, b
What shall it do? a + b
Method add(a, b) added to class X

What method would you like? last
Parameters? x
What shall it do? x[-1]
Method last(x) added to class X

What method would you like? ^D => true
>> x = X.new => #<X:0x0000010185d930>
>> x.add(3,4) => 7
>> x.last "abcd" => "d"

Sidebar, continued

CSC#372#Spring#2016,#Ruby#Slide#262#

Here is mk_methods.rb. Note that the body of the class is a while loop.

class X

 while (print "What method would you like? "; name = gets)

 name.chomp!

 print "Parameters? "

 params = gets.chomp

 print "What shall it do? "

 body = gets.chomp

 code = "def #{name} #{params}; #{body}; end"

 eval(code)

 print("Method #{name}(#{params}) added to class #{self}\n\n");

 end

end

Is this a useful capability or simply fun to play with?

Sidebar, continued

CSC#372#Spring#2016,#Ruby#Slide#263#

Does eval pose any risks?

while (print("? "); line = gets)
 eval(line)
end # eval1.rb

Interaction: (input is underlined)
% ruby eval1.rb
? puts 3*5
15
? puts "abcdef".size
6
? system("date")
Mon Mar 23 19:09:35 MST 2015
? system("rm –rf ...")
...
? system("chmod 777 ...")
...

Sidebar: Risks with eval

CSC#372#Spring#2016,#Ruby#Slide#264#

At hand:
% ruby eval1.rb
? system("rm –rf ...")
...
? system("chmod 777 ...")
...

But, we can do those things without using Ruby!

eval gets risky when we can't trust the source of the data. Examples:

 A collaborator on a project sends us a data file.
 A Ruby on Rails web app calls eval with user-supplied data. (!)

It's very easy to fall victim to a variety of code-injection attacks when
using eval.

The define_method (et. al) machinery is often preferred over eval but
risks still abound!

Related topic: Ruby supports the notion of tainted data.

Sidebar, continued

while (print("? "); line = gets)

eval(line)

end # eval1.rb

CSC#372#Spring#2016,#Ruby#Slide#265#

Like Java, Ruby provides a way to associate data and methods with a class
itself rather than each instance of a class.

Java uses the static keyword to denote a class variable.

In Ruby a variable prefixed with two at-signs is a class variable.

Here is Counter augmented with a class variable that keeps track of how
many counters have been created.

class Counter
 @@created = 0 # Must precede any use of @@created
 def initialize(label = "Counter")
 @count, @label = 0, label
 @@created += 1
 end
end

Note: Unaffected methods are not shown.

Class variables and methods

CSC#372#Spring#2016,#Ruby#Slide#266#

To define a class method, simply prefix the method name with the name of

the class:

class Counter

 @@created = 0

 ...

 def Counter.created

 return @@created

 end

end

Usage:

>> Counter.created => 0

>> c = Counter.new

>> Counter.created => 1

>> 5.times { Counter.new }

>> Counter.created => 6

Class variables and methods, continued

CSC#372#Spring#2016,#Ruby#Slide#267#

By default, methods are public. If private appears on a line by itself,
subsequent methods in the class are private. Ditto for public.

class X
 def f; puts "in f"; g end # Note: calls g
 private
 def g; puts "in g" end
end

Usage:

>> x = X.new
>> x.f
in f
in g
>> x.g
NoMethodError: private method `g' ...

Speculate: What are private and public? Keywords?

 Methods in Module! (Module is an ancestor of Class.)

A little bit on access control

CSC#372#Spring#2016,#Ruby#Slide#268#

If Counter were in Java, we might provide methods like void

setCount(int n) and int getCount().

Our Counter already has a count method as a "getter".

For a "setter" we implement count=, with a trailing equals sign.

 def count= n

 puts "count=(#{n}) called" # Just for observation (LHtLAL)

 @count = n unless n < 0

 end

Usage:

>> c = Counter.new

>> c.count = 10

count=(10) called

=> 10

>> c => Counter's count is 10

Getters and setters

CSC#372#Spring#2016,#Ruby#Slide#269#

Here's a class to represent points on a Cartesian plane:

class Point

 def initialize(x, y)

 @x = x

 @y = y

 end

 def x; @x end

 def y; @y end

end

Usage:

>> p1 = Point.new(3,4) => #<Point:0x00193320 @x=3, @y=4>

>> [p1.x, p1.y] => [3, 4]

It can be tedious and error prone to write a number of simple getter

methods like Point#x and Point#y.

Getters and setters, continued

CSC#372#Spring#2016,#Ruby#Slide#270#

The method attr_reader creates getter methods.

Here's an equivalent definition of Point:

class Point
 def initialize(x, y)
 @x = x
 @y = y
 end
 attr_reader :x, :y
end

Usage:

>> p = Point.new(3,4)
>> p.x => 3
>> p.x = 10
NoMethodError: undefined method `x=' for #<Point: ...>

Why does p.x = 10 fail?

Getters and setters, continued

CSC#372#Spring#2016,#Ruby#Slide#271#

If you want both getters and setters, use attr_accessor.

class Point

 def initialize(x, y)

 @x = x

 @y = y

 end

 attr_accessor :x, :y

end

Usage:

>> p = Point.new(3,4)

>> p.x

=> 3

>> p.y = 10

It's important to appreciate that attr_reader and attr_accessor are

methods that create methods.

Getters and setters, continued

CSC#372#Spring#2016,#Ruby#Slide#272#

(What if Ruby didn't provide them?)

Operator overloading

CSC#372#Spring#2016,#Ruby#Slide#273#

In most languages at least a few operators are "overloaded"—an operator

stands for more than one operation.

C: + is used to express addition of integers, floating point numbers,

and pointer/integer pairs.

Java: + is used to express addition and string concatenation.

Icon: *x produces the number of...

 characters in a string

 values in a list

 key/value pairs in a table

 results a "co-expression" has produced

Icon: + means only addition; s1 || s2 is string concatenation

What are examples of overloading in Ruby? In Haskell?

Operator overloading

CSC#372#Spring#2016,#Ruby#Slide#274#

We've seen that Ruby operators can be expressed as method calls:

 3 + 4 is 3.+(4)

Here's what subscripting means:

 "abc"[2] is "abc".[](2)

 "testing"[2,3] is "testing".[](2,3)

Unary operators are indicated by adding @ after the operator:

-5 is 5.-@()

!"abc" is "abc".!@()

Challenge: See if you can find a binary operation that can't be expressed as

a method call.

Operators as methods

CSC#372#Spring#2016,#Ruby#Slide#275#

Let's use a dimensions-only rectangle class to study overloading in Ruby:

class Rectangle

 def initialize(w,h)

 @width, @height = w, h

 end

 attr_reader :width, :height

 def area; width * height; end

 def inspect

 "#{width} x #{height} Rectangle"

 end

end

Usage:

>> r = Rectangle.new(3,4) => 3 x 4 Rectangle

>> r.area => 12

>> r.width => 3

Operator overloading, continued

CSC#372#Spring#2016,#Ruby#Slide#276#

Let's imagine that we can compute the "sum" of two rectangles:

>> a = Rectangle.new(3,4) => 3 x 4 Rectangle

>> b = Rectangle.new(5,6) => 5 x 6 Rectangle

>> a + b => 8 x 10 Rectangle

>> c = a + b + b => 13 x 16 Rectangle

>> (a + b + c).area => 546

As shown above, what does Rectangle + Rectangle mean?

Operator overloading, continued

CSC#372#Spring#2016,#Ruby#Slide#277#

Our vision:
>> a = Rectangle.new(3,4); b = Rectangle.new(5,6)
>> a + b => 8 x 10 Rectangle

Here's how to make it so:

class Rectangle
 def + rhs
 Rectangle.new(self.width + rhs.width, self.height + rhs.height)
 end
end

Remember that a + b is equivalent to a.+(b). We are invoking the method "+" on
a and passing it b as a parameter.

The parameter name, rhs, stands for "right-hand side".

Do we need self in self.width or would just width work? How about @width?

Even if somebody else had provided Rectangle, we could still overload + on it—
the lines above are additive, assuming Rectangle.freeze hasn't been done.

Operator overloading, continued

CSC#372#Spring#2016,#Ruby#Slide#278#

For reference:
def + rhs
 Rectangle.new(self.width + rhs.width, self.height + rhs.height)

 end

Here is a faulty implementation of our idea of rectangle addition:

def + rhs
 @width += rhs.width; @height += rhs.height
end

What's wrong with it?
>> a = Rectangle.new(3,4)
>> b = Rectangle.new(5,6)

>> c = a + b => 10

>> a => 8 x 10 Rectangle

The problem:

We're changing the attributes of the left operand instead of creating and
returning a new instance of Rectangle.

Operator overloading, continued

CSC#372#Spring#2016,#Ruby#Slide#279#

Just like with regular methods, we have complete freedom to define what's

meant by an overloaded operator.

Here is a method for Rectangle that defines unary minus to be imperative

"rotation" (a clear violation of the Principle of Least Astonishment!)

def -@ # Note: @ suffix to indicate unary form of -

 @width, @height = @height, @width

 self

end

>> a = Rectangle.new(2,5) => 2 x 5 Rectangle

>> -a => 5 x 2 Rectangle

>> a + -a => 4 x 10 Rectangle

>> a => 2 x 5 Rectangle

Goofy, yes?

Operator overloading, continued

CSC#372#Spring#2016,#Ruby#Slide#280#

At hand:

def -@

 @width, @height = @height, @width

 self

end

What's a more sensible implementation of unary -?

 def -@

 Rectangle.new(height, width)

 end

>> a = Rectangle.new(5,2) => 5 x 2 Rectangle

>> -a => 2 x 5 Rectangle

>> a => 5 x 2 Rectangle

>> a += -a; a => 7 x 7 Rectangle

Operator overloading, continued

CSC#372#Spring#2016,#Ruby#Slide#281#

Consider "scaling" a rectangle by some factor. Example:

>> a = Rectangle.new(3,4) => 3 x 4 Rectangle

>> b = a * 5 => 15 x 20 Rectangle

>> c = b * 0.77 => 11.55 x 15.4 Rectangle

Implementation:

 def * rhs

 Rectangle.new(self.width * rhs, self.height * rhs)

end

A problem:

>> a => 3 x 4 Rectangle

>> 3 * a

TypeError: Rectangle can't be coerced into Fixnum

What's wrong?

 We've implemented only Rectangle * Fixnum

Operator overloading, continued

CSC#372#Spring#2016,#Ruby#Slide#282#

Imagine a case where it's useful to reference width and height uniformly,

via subscripts:

>> a = Rectangle.new(3,4) => 3 x 4 Rectangle

>> a[0] => 3

>> a[1] => 4

>> a[2] RuntimeError: out of bounds

Note that a[n] is a.[](n)

Implementation:

def [] n

 case n

 when 0 then width

 when 1 then height

 else raise "out of bounds"

 end

end

Operator overloading, continued

CSC#372#Spring#2016,#Ruby#Slide#283#

A language is considered to be extensible if we can create new types that

can be used as easily as built-in types.

Does our simple Rectangle class and its overloaded operators

demonstrate that Ruby is extensible?

What would a = b + c * 2 with Rectangles look like in Java?

 Maybe: Rectangle a = b.plus(c.times(2));

How about in C?

 Would Rectangle a = rectPlus(b, rectTimes(c, 2)); be workable?

Haskell goes further with extensibility, allowing new operators to be

defined.

Is Ruby extensible?

CSC#372#Spring#2016,#Ruby#Slide#284#

Ruby is not only extensible; it is also mutable—we can change the

meaning of expressions.

If we wanted to be sure that a program never used integer addition, we

could start with this:

class Fixnum

 def + x

 raise "boom!"

 end

end

What else would we need to do?

Contrast: C++ is extensible, but not mutable. For example, in C++ you can

define the meaning of Rectangle * int but you can't change the meaning

of integer addition, as we do above.

Ruby is mutable

CSC#372#Spring#2016,#Ruby#Slide#285#

Inheritance

CSC#372#Spring#2016,#Ruby#Slide#286#

Here's the classic Shape/Rectangle/Circle inheritance example in Ruby:

A Shape hierarchy in Ruby

class Shape

 def initialize(label)

 @label = label

 end

 attr_reader :label

end

class Rectangle < Shape

 def initialize(label, width, height)

 super(label)

 @width, @height = width, height

 end

 def area

 width * height

 end

 def inspect

 "Rectangle #{label} (#{width} x

#{height})"

 end

 attr_reader :width, :height

end

Rectangle < Shape

specifies inheritance.

Note that Rectangle

methods use the generated

width and height methods

rather than @width and

@height.

CSC#372#Spring#2016,#Ruby#Slide#287#

class Circle < Shape

 def initialize(label, radius)

 super(label)

 @radius = radius

 end

 attr_reader :radius

 def area

 Math::PI * radius * radius

 end

 def perimeter

 Math::PI * radius * 2

 end

 def inspect

 "Circle #{label} (r = #{radius})"

 end

end

Shape, continued

Math::PI references the

constant PI in the Math class.

CSC#372#Spring#2016,#Ruby#Slide#288#

Inheritance in Ruby has a lot of behavioral overlap with Java:

•  Subclasses inherit superclass methods.

•  Methods in a subclass can call superclass methods.

•  Methods in a subclass override superclass methods of the same name.

•  Calls to a method f resolve to f in the most-subclassed (most-derived)

class.

There are differences, too:

•  Subclass methods can always access superclass fields.

•  Superclass constructors aren't automatically invoked when creating

an instance of a subclass.

CSC#372#Spring#2016,#Ruby#Slide#289#

Similarities to inheritance in Java

The abstract reserved word is used in Java to indicate that a class, method, or
interface is abstract.

Ruby does not have any language mechanism to mark a class or method as
abstract.

Some programmers put "abstract" in class names, like AbstractWindow.

A method-level practice is to have abstract methods raise an error if called:

class Shape
 def area
 raise "Shape#area is abstract"
 end
end

There is also an abstract_method "gem" (a package of code and more):

class Shape
 abstract_method :area
 ...

There's no abstract

CSC#372#Spring#2016,#Ruby#Slide#290#

A common use of inheritance in Java is to let us write code in terms of a

superclass type and then use that code to operate on subclass instances.

With a Shape hierarchy in Java we might write a routine sumOfAreas:

 static double sumOfAreas(Shape shapes[]) {

 double area = 0.0;

 for (Shape s: shapes)

 area += s.getArea();

 return area;

 }

We can make Shape.getArea() abstract to force concrete subclasses to

implement getArea().

sumOfAreas is written in terms of Shape but works with instances of

any subclass of Shape.

Inheritance is important in Java

CSC#372#Spring#2016,#Ruby#Slide#291#

Here is sumOfAreas in Ruby:

def sumOfAreas(shapes)
 area = 0.0
 for shape in shapes do
 area += shape.area
 end
 area
end

Does it rely on inheritance in any way?

Even simpler:

 sum = shapes.inject (0.0) {|memo, shape| memo + shape.area }

Dynamic typing in Ruby makes it unnecessary to require common superclasses or
interfaces to write polymorphic methods that operate on a variety of underlying
types.

If you look closely, you'll find that some common design patterns are simply
patterns of working with inheritance hierarchies in statically typed languages.

Inheritance is less important in Ruby

CSC#372#Spring#2016,#Ruby#Slide#292#

Imagine an abstract class VString with two concrete subclasses:

ReplString and MirrorString.

A ReplString is created with a string and a replication count. It supports

size, substrings with [pos] and [start, len], and to_s operations.

>> r1 = ReplString.new("abc", 2) => ReplString(6)

>> r1.size => 6

>> r1[0] => "a"

>> r1[10] => nil

>> r1[2,3] => "cab"

>> r1.to_s => "abcabc"

Example: VString

CSC#372#Spring#2016,#Ruby#Slide#293#

A MirrorString represents a string concatenated with a reversed copy of

itself.

>> m1 = MirrorString.new("abcdef")

=> MirrorString(12)

>> m1.to_s => "abcdeffedcba"

>> m1.size => 12

>> m1[3,6] => "deffed"

What's a trivial way to implement the VString/ReplString/MirrorString

hierarchy?

VString, continued

CSC#372#Spring#2016,#Ruby#Slide#294#

A trivial VString implementation

class VString

 def initialize(s)

 @s = s

 end

 def [](start, len = 1)

 @s[start, len]

 end

 def size

 @s.size

 end

 def to_s

 @s.dup

 end

end

class ReplString < VString

 def initialize(s, n)

 super(s * n)

 end

 def inspect

 "ReplString(#{size})"

 end

end

class MirrorString < VString

 def initialize(s)

 super(s + s.reverse)

 end

 def inspect

 "MirrorString(#{size})"

 end

end
CSC#372#Spring#2016,#Ruby#Slide#295#

New requirements:

 A VString can be created using either a VString or a String.

 A ReplString can have a very large replication count.

Will VStrings in constructors work with the implemetation as-is?

>> m2 = MirrorString.new(ReplString.new("abc",3))

NoMethodError: undefined method `reverse' for ReplString

>> r2 = ReplString.new(MirrorString.new("abc"),5)

NoMethodError: undefined method `*' for MirrorString

What's the problem?

 The ReplString and MirrorString constructors use * n and .reverse

What will ReplString("abc", 2_000_000_000_000) do?

VString, continued

CSC#372#Spring#2016,#Ruby#Slide#296#

Here's some behavior that we'd like to see:
>> s1 = ReplString.new("abc", 2_000_000_000_000)
=> ReplString("abc",2000000000000)

>> s1[0] => "a"

>> s1[-1] => "c"

>> s1[1_000_000_000] => "b"

>> s2 = MirrorString.new(s1)
=> MirrorString(ReplString("abc",2000000000000))

>> s2.size => 12000000000000

>> s2[-1] => "a"

>> s2[s2.size/2 - 3, 6] => "abccba"

VString, continued

CSC#372#Spring#2016,#Ruby#Slide#297#

Let's review requirements:

•  Both ReplString and MirrorString are subclasses of VString.

•  A VString can be created using either a String or a VString.

•  The ReplString replication count can be a Bignum.

•  If vs is a VString, vs[pos] and vs[pos,len] produce Strings.

•  VString#size works, possibly producing a Bignum.

•  VString#to_s "works" but is problematic with long strings.

How can we make this work?

VString, continued

CSC#372#Spring#2016,#Ruby#Slide#298#

Let's play computer!

>> s = MirrorString.new(ReplString.new("abc",1_000_000))

=> MirrorString(ReplString("abc",1000000))

>> s.size

=> 6000000

>> s[-1]

=> "a"

>> s[3_000_000]

=> "c"

>> s[3_000_000,6]

=> "cbacba"

What data did you need to perform those computations?

VString, continued

To be continued,
on assignment 7!

VString stands for "virtual string"—the

hierarchy provides the illusion of very

long strings but uses very little memory.

CSC#372#Spring#2016,#Ruby#Slide#299#

Modules and "mixins"

CSC#372#Spring#2016,#Ruby#Slide#300#

A Ruby module can be used to group related methods for organizational purposes.

Imagine some methods to comfort a homesick Haskell programmer at Camp Ruby:

module Haskell
 def Haskell.head(a) # Class method--prefixed with class name
 a[0]
 end

 def Haskell.tail(a)
 a[1..-1]
 end
 ...more...
end

>> a = [10, "twenty", 30, 40.0]
>> Haskell.head(a)
=> 10
>> Haskell.tail(a)
=> ["twenty", 30, 40.0]

Modules

CSC#372#Spring#2016,#Ruby#Slide#301#

In addition to providing a way to group related methods, a module can be

"included" in a class. When a module is used in this way it is called a

"mixin" because it mixes additional functionality into a class.

Here is a revised version of the Haskell module. The class methods are

now written as instance methods; they use self and have no parameter:

module Haskell

 def head

 self[0]

 end

 def tail

 self[1..-1]

 end

end

Modules as "mixins"

Previous version:

 module Haskell

 def Haskell.head(a)

 a[0]

 end

 def Haskell.tail(a)

 a[1..-1]

 end

end

CSC#372#Spring#2016,#Ruby#Slide#302#

We can mix our Haskell methods into the Array class like this:
% cat mixin1.rb
require './Haskell' # loads ./Haskell.rb if not already loaded
class Array
 include Haskell
end

We can load mixin1.rb and then use .head and .tail on arrays:

>> load "mixin1.rb"
>> ints = (1..10).to_a => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>> ints.head
=> 1

>> ints.tail
=> [2, 3, 4, 5, 6, 7, 8, 9, 10]

>> ints.tail.tail.head
=> 3

Mixins, continued

CSC#372#Spring#2016,#Ruby#Slide#303#

We can add those same capabilities to String, too:

class String

 include Haskell

end

Usage:

>> s = "testing"

>> s.head => "t"

>> s.tail => "esting"

>> s.tail.tail.head => "s"

In addition to the include mechanism, what other aspect of Ruby

facilitates mixins?

Mixins, continued

CSC#372#Spring#2016,#Ruby#Slide#304#

The Ruby core classes and standard library make extensive use of mixins.

The class method ancestors can be used to see the superclasses and

modules that contribute methods to a class:

>> Array.ancestors

=> [Array, Enumerable, Object, Kernel, BasicObject]

>> Fixnum.ancestors

=> [Fixnum, Integer, Numeric, Comparable, Object, Kernel,

BasicObject]

>> load "mixin1.rb"

>> Array.ancestors

=> [Array, Haskell, Enumerable, Object, Kernel, BasicObject]

Modules and superclasses

CSC#372#Spring#2016,#Ruby#Slide#305#

The method included_modules shows the modules that a class
includes.

>> Array.included_modules => [Haskell, Enumerable, Kernel]

>> Fixnum.included_modules => [Comparable, Kernel]

instance_methods can be used to see what methods are in a module:

>> Enumerable.instance_methods.sort =>
[:all?, :any?, :chunk, :collect, :collect_concat, :count, :cycle, :de
tect, :drop, :drop_while, :each_cons, :each_entry, ...more...

>> Comparable.instance_methods.sort
=> [:<, :<=, :==, :>, :>=, :between?]

>> Haskell.instance_methods
=> [:head, :tail]

Modules and superclasses, continued

CSC#372#Spring#2016,#Ruby#Slide#306#

When talking about iterators we encountered Enumerable. It's a module:

>> Enumerable.class

=> Module

>> Enumerable.instance_methods.sort =>

[:all?, :any?, :chunk, :collect, :collect_concat, :count, :cycle, :de

tect, :drop, :drop_while, :each_cons, :each_entry, :each_slice, :

each_with_index, :each_with_object, :entries, :find, :find_all, :f

ind_index, :first, :flat_map, :grep, :group_by, :include?, :inject,

:map, :max, :max_by, :member?, :min, :min_by, :minmax, :min

max_by, :none?, :one?, :partition, :reduce, :reject, ...

The methods in Enumerable use duck typing, requiring only an each

method. min, max, and sort, also require <=> for values operated on.

If class implements each and includes Enumerable then all those

methods become available to instances of the class.

The Enumerable module

CSC#372#Spring#2016,#Ruby#Slide#307#

Here's a class whose instances simply hold three values:
class Trio
 include Enumerable
 def initialize(a,b,c); @values = [a,b,c]; end

 def each
 @values.each {|v| yield v }
 end
end

Because Trio implements each and includes Enumerable, lots of stuff works:

>> t = Trio.new(10, "twenty", 30)

>> t.member?(30) => true

>> t.map{|e| e * 2} => [20, "twentytwenty", 60]

>> t.partition {|e| e.is_a? Numeric } => [[10, 30], ["twenty"]]

What would the Java equivalent be for the above?

The Enumerable module, continued

CSC#372#Spring#2016,#Ruby#Slide#308#

Another common mixin is Comparable:

 >> Comparable.instance_methods

=> [:==, :>, :>=, :<, :<=, :between?]

Comparable's methods are implemented in terms of <=>.

Let's compare rectangles on the basis of areas:

class Rectangle

 include Comparable

 def <=> rhs

 (self.area - rhs.area) <=> 0

 end

end

The Comparable module

CSC#372#Spring#2016,#Ruby#Slide#309#

Usage:
>> r1 = Rectangle.new(3,4) => 3 x 4 Rectangle
>> r2 = Rectangle.new(5,2) => 5 x 2 Rectangle
>> r3 = Rectangle.new(2,2) => 2 x 2 Rectangle

>> r1 < r2 => false

>> r1 > r2 => true

>> r1 == Rectangle.new(6,2) => true

>> r2.between?(r3,r1) => true

Is Comparable making the following work?
>> [r1,r2,r3].sort
=> [2 x 2 Rectangle, 5 x 2 Rectangle, 3 x 4 Rectangle]

>> [r1,r2,r3].min
=> 2 x 2 Rectangle

Comparable, continued

CSC#372#Spring#2016,#Ruby#Slide#310#

In conclusion...

CSC#372#Spring#2016,#Ruby#Slide#311#

•  Everything is an object?

•  Substring/subarray access with x[...] notation?

•  Negative indexing to access from right end of strings and arrays?

•  if modifiers? (puts x if x > y)

•  Iterators and blocks?

•  Ruby's support for regular expressions?

•  Monkey patching? Adding methods to existing classes?

•  Programmer-defined operator overloading?

•  Dynamic typing?

Is programming more fun with Ruby?

If you know Python, do you prefer Python or Ruby?

What do you like (or not?) about Ruby?

CSC#372#Spring#2016,#Ruby#Slide#312#

September 3, 2006:
n=1

d = Date.new(2006, 8, 22)

incs = [2,5]

pos = 0

while d < Date.new(2006, 12, 6)
 if d != Date.new(2006, 11, 23)

 printf("%s %s, #%2d\n",

 if d.cwday() == 2: "T"; else "H";end,

 d.strftime("%m/%d/%y"), n)

 n += 1
 end

 d += incs[pos % 2]

 pos += 1

end

Output:

T 08/22/06, # 1
H 08/24/06, # 2
T 08/29/06, # 3
...

My first practical Ruby program

CSC#372#Spring#2016,#Ruby#Slide#313#

If we had more time, we'd...

•  Learn about lambdas, blocks as explicit parameters, and call.

•  Play with ObjectSpace. (Try ObjectSpace.count_objects)

•  Do some metaprogramming with hooks like method_missing,

included, and inherited.

•  Experiment with internal Domain Specific Languages (DSL).

•  Look at how Ruby on Rails puts Ruby features to good use.

•  Write a Swing app with JRuby, a Ruby implementation for the JVM.

•  Take a peek at BDD (Behavior-Driven Development) with Cucumber

and RSpec.

More with Ruby...

CSC#372#Spring#2016,#Ruby#Slide#314#

Prolog
CSC#372,#Spring#2016#

The#University#of#Arizona#

William#H.#Mitchell#

whm@cs#

#
CSC#372#Spring#2016,#Prolog#Slide#1#

The name comes from "programming in logic".

Developed at the University of Marseilles (France) in 1972.

First implementation was in FORTRAN and led by Alain Colmeraurer.

Originally intended as a tool for working with natural languages.

Achieved great popularity in Europe in the late 1970s.

Was picked by Japan in 1981 as a core technology for their "Fifth
Generation Computer Systems" project.

Used in IBM's Watson for NLP (Natural Language Processing).

Prolog is a commercially successful language. Many companies have
made a business of supplying Prolog implementations, Prolog consulting,
and/or applications in Prolog.

A little background on Prolog

CSC#372#Spring#2016,#Prolog#Slide#2#

There are no Prolog books on Safari.

Here are two Prolog books that I like:

 Prolog Programming in Depth, by Covington, Nute, and Vellino

Available for free at http://www.covingtoninnovations.com/books/
PPID.pdf. That PDF is scans of pages and is not searchable.

The copy at http://.../cs372/spring16/covington/ppid.pdf has had a
searchable text layer added.

 Programming in Prolog, 5th edition, by Clocksin and Mellish ("C&M")
 A PDF is available via a UA library link on the Piazza resources page.
######(hIp://link.springer.com.ezproxy1.library.arizona.edu/book/10.1007%2F978T3T642T55481T0)#

A PDF of Dr. Collberg's Prolog slides for 372 is here:
 http://cs.arizona.edu/classes/cs372/spring16/CollbergProlog.pdf

There's no Prolog "home page" that I know of.

We'll be using SWI Prolog. More on it soon.

Prolog resources

CSC#372#Spring#2016,#Prolog#Slide#3#

Facts and queries

CSC#372#Spring#2016,#Prolog#Slide#4#

You'll eventually see lots of connections between elements of Prolog

and other languages, especially Haskell, but for the moment...

CSC#372#Spring#2016,#Prolog#Slide#5#

Step one with Prolog

Clear your mind!

A Prolog program is a collection of facts, rules, and queries. We'll talk
about facts first.

Here is a small collection of Prolog facts:

$ cat foods.pl (in spring16/prolog/foods.PL)
food(apple).
food(broccoli).
food(carrot).
food(lettuce).
food(rice).

These facts enumerate some things that are food. We might read them in
English like this: "An apple is food", "Broccoli is food", etc.

A fact represents a piece of knowledge that the Prolog programmer deems
to be useful. The name food was chosen by the programmer.

We can say that facts.pl holds a Prolog database or knowledgebase.

Facts and queries

CSC#372#Spring#2016,#Prolog#Slide#6#

At hand:

$ cat foods.pl

food(apple).

food(broccoli).

...

food, apple, and broccoli are atoms, which can be thought of as multi-

character literals. Atoms are not strings! Atoms are atoms!

Here are two more atoms:

 'bell pepper'

 'Whopper'

An atom can be written without single quotes if it starts with a lower-case

letter and contains only letters, digits, and underscores.

Note the use of single quotes. (Double quotes mean something else!)

Facts and queries, continued

CSC#372#Spring#2016,#Prolog#Slide#7#

On lectura, we can start SWI Prolog and load a knowledgebase like this:

$ swipl foods.pl

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 7.2.3)

...

?- (?- is the swipl query prompt)

Once the knowledgebase is loaded we can perform queries:

?- food(carrot).

true.

?- food(pickle).

false.

Prolog responds based on the facts it has been given. We know that pickles are

food but Prolog doesn't know that because there's no fact that says so.

Prolog queries have one or more goals. The queries above have one goal.

Facts and queries, continued

CSC#372#Spring#2016,#Prolog#Slide#8#

Here's a fact: food(apple).

Here's a query: food(apple).

Facts and queries have the same syntax. The interpretation depends on the
context in which they appear.

If a line is typed at the interactive ?- prompt, it is interpreted as a query.

If we do swipl foods.pl, the lines in foods.pl are interpreted as facts.

Loading a file of facts is also known as consulting the file.

We'll see later that files can contain "rules", too. Facts and rules are the
two types of clauses in Prolog.

Simple rule for now: use all-lowercase filenames with the suffix .pl (PL)
for Prolog knowledgebases (i.e. source files).

Facts and queries, continued

CSC#372#Spring#2016,#Prolog#Slide#9#

After a .pl file has been consulted (loaded), we can query make. to cause
any modified files to be reconsulted (reloaded), after editing the file.

$ swipl foods.pl
Welcome to SWI-Prolog ...

?- food(pickle).
false.
[Edit foods.pl in a different window, and add food(pickle).]

?- make.
% /home/whm/372/foods compiled 0.00 sec, 2 clauses
true.

?- food(pickle).
true.

?- make.
true. (foods.pl hasn't changed since the last make)

Sidebar: Reconsulting with make

CSC#372#Spring#2016,#Prolog#Slide#10#

An alternative to specifying a file on the command line is to consult using

a query:

$ swipl

Welcome to SWI-Prolog ...

?- [foods]. (do not include the .pl suffix)

% foods compiled 0.00 sec, 8 clauses

true.

Consulting a file via a query is commonly shown in texts.

The end result of the two methods is the same.

Sidebar: Consulting via query

CSC#372#Spring#2016,#Prolog#Slide#11#

How might the food information be represented in Haskell?
food "apple" = True
food "broccoli" = True
food "carrot" = True
food "lettuce" = True
food "rice" = True
food _ = False

> food "apple"
True

Maybe a list would be better:

 foods = ["apple", "broccoli", "carrot", "lettuce", "rice"]

> "pickle" `elem` foods
False

How might we represent the food information in Ruby?

Sidebar: food in Haskell

CSC#372#Spring#2016,#Prolog#Slide#12#

A query like food(apple) asks if it is known that apple is a food.

Speculate: What's the following query asking?

?- food(Edible).

Edible = apple <cursor is here>

Watch what happens when we type semicolons:

Edible = apple ;

Edible = broccoli ;

Edible = carrot ;

...

Edible = 'Big Mac'.

What's going on?

Facts and queries, continued

CSC#372#Spring#2016,#Prolog#Slide#13#

An alternative to specifying an atom, like apple, in a query is to specify a
variable. An identifier that starts with a capital letter is a Prolog variable.

?- food(Edible).
Edible = apple <cursor is here>

The above query asks, "Tell me something that you know is a food."

Prolog finds the first food fact, based on file order, and responds with
Edible = apple, using the variable name specified in the query.

If the user is satisfied with the answer apple, pressing <ENTER>
terminates the query. Prolog responds by printing a period.

?- food(Edible).
Edible = apple . % User hit <ENTER>; Prolog printed the period.

 ?-

Facts and queries, continued

CSC#372#Spring#2016,#Prolog#Slide#14#

If for some reason the user is not satisfied with the response apple, an alternative

can be requested by typing a semicolon, without <ENTER>.

?- food(Edible).

Edible = apple ;

Edible = broccoli ;

Edible = carrot ;

...

Edible = 'Big Mac'.

?-

Facts are searched in the order they appear in foods.pl. Above, the user exhausts

all the facts by typing semicolon. Prolog prints '.' after the last.

Note that a simple set of facts lets us perform two distinct computations:

 (1) We can ask if something is a food.

 (2) We can ask what all the foods are.

How could we make an analog for those two in Java, Haskell, or Ruby?

Facts and queries, continued

CSC#372#Spring#2016,#Prolog#Slide#15#

For three points of extra credit:

(1) Get a copy of foods.pl and try the examples previously shown.

(2) Create a small database (a file of facts) about something other than food

and demonstrate some queries with it using swipl. Minimum: 5 facts.

(3) Copy/paste a transcript of your swipl session into a plain text file named

eca3.txt.

 (4) Before the next lecture, turn in eca3.txt with the following command:

#$ turnin 372-eca3 eca3.txt

Needless to say, feel free to read ahead in the slides and show experimentation
with the following material, too.

Experiment with syntax, too. Where can whitespace appear? What can appear in
a fact other than atoms like apple?

Look ahead a few slides for information about installing SWI Prolog on your
machine, or just use swipl on lectura.

Extra credit!

CSC#372#Spring#2016,#Prolog#Slide#16#

Unlike SWI Prolog, most Prolog implementations use "yes" and "no" to

indicate whether an interactive query succeeds. Here's GNU Prolog:

% gprolog

GNU Prolog 1.3.0

| ?- [foods].

compiling foods.pl for byte code...

| ?- food(apple).

yes

| ?- food(pickle).

no

Most Prolog texts, including Covington and C&M use yes/no, too. Just

read "yes" as true. and "no" as false.

Remember: we're using SWI Prolog; GNU Prolog is shown above just for

contrast.

Yes and no vs. true. and false.

CSC#372#Spring#2016,#Prolog#Slide#17#

One way to think about a query is that we're asking Prolog if something

can be "proven" using the facts (and rules) it has been given.

The query

?- food(apple).

can be thought of as asking, "Can you prove that apple is a food?"

food(apple). is trivially proven because we've supplied a fact that says

that apple is a food.

The query

?- food(pickle).

produces false. because Prolog can't prove that pickle is a food based on

the database (the facts) we've supplied. (We've given it no rules, either.)

"Can you prove it?"

CSC#372#Spring#2016,#Prolog#Slide#18#

Consider again a query with a variable:

?- food(F). % Remember that an initial capital denotes a variable.

F = apple ;

F = broccoli ;

F = carrot ;

...

F = 'Whopper' ;

F = 'Big Mac'.

?-

The query asks, "For what values of F can you prove that F is a food? By

repeatedly entering a semicolon we see the full set of values for which that can be

proven.

The collection of knowledge at hand, a set of facts about what is a food, is trivial

but Prolog is capable of finding proofs for an arbitrarily complicated body of

knowledge expressed as facts and rules.

"Can you prove it?", continued

CSC#372#Spring#2016,#Prolog#Slide#19#

write is one of many built-in predicates. It outputs a value.

?- write('Hello, world!').

Hello, world!

true.

Speculate: Why was "true." output, too?

 Prolog is reporting that it's able to prove write('Hello, world!')!

 A side-effect of "proving" write(X) is outputting the value of X!

Speculate: What does Prolog think we're doing when we type make. ?

We're wanting to see if make can be proven!

A side effect of "proving" make is the knowledgebase is reconsulted

(reloaded) if it's been modified.

"Can you prove it?", continued

CSC#372#Spring#2016,#Prolog#Slide#20#

Getting and running SWI Prolog

CSC#372#Spring#2016,#Prolog#Slide#21#

swi-prolog.org is the home page for SWI Prolog.

On lectura, just run swipl.

For Windows, go to:

 http://swi-prolog.org/download/stable

The non-64 bit version will be fine for our purposes:

 SWI-Prolog 7.2.3 for Windows XP/Vista/7/8

Pick Typical as the Install type, .pl for file extension (or .pro,

to avoid a collision with Perl)

Getting and running SWI Prolog

CSC#372#Spring#2016,#Prolog#Slide#22#

For OS X if you're not running El Capitan, go to

 http://swi-prolog.org/download/stable

and get

 SWI-Prolog 7.2.3 for MacOSX 10.6 (Snow Leopard) and later...

You'll need XQuartz 2.7.5 for development tools that use graphics,

the handiest of which is perhaps the graphical tracer, launched

with the gtrace predicate. (We'll see gtrace later.)

Set your firewall to block incoming connections for X11.bin.

If you are running El Capitan, go to

 http://swi-prolog.org/download/devel

and get

 SWI-Prolog 7.3.19 for MacOSX 10.6 (Snow Leopard) and ...

 This version requires XQuartz 2.7.7

CSC#372#Spring#2016,#Prolog#Slide#23#

Getting and Running SWI Prolog, continued

SWI Prolog on Windows

On Windows, assuming you associated .pl files with SWI Prolog, running
foods.pl on the command line or opening foods.pl in Explorer opens a window
running SWI Prolog and consults the file, as if [foods]. had been typed at the
prompt.

On Windows, a numbered query prompt is shown. ("1 ?-" above)

Remember: You can use make. to reconsult (reload) a file.

CSC#372#Spring#2016,#Prolog#Slide#24#

On my Mac, I have this alias in my ~/.bashrc:

alias swipl='/Applications/SWI-Prolog.app/Contents/MacOS/swipl'

It lets me type swipl at the bash prompt.

If you have trouble with XQuartz, you can force text-only operation with

this alias: (wrapped)

alias swipl='(export -n DISPLAY; /Applications/SWI-Prolog.app/

Contents/MacOS/swipl)'

SWI Prolog on OS X

CSC#372#Spring#2016,#Prolog#Slide#25#

Getting help for predicates

To get help for a predicate, query help(predicate-name). On Windows you'll see:

OS X will be similar, assuming you've got XQuartz 2.7.5+ installed. If not, or you're
using the swipl alias with "export -n DISPLAY...", help will be text based.

Help will be text based on lectura, but if you login to lectura from a Linux machine in
the CS labs with "ssh -X ...", you'll get window-based help there, too.

CSC#372#Spring#2016,#Prolog#Slide#26#

On all platforms a control-D or querying halt. exits SWI Prolog.
$ swipl
...

?- halt.
$

A control-C while a query is executing will produce an Action ... ?
prompt. Then typing h produces a textual menu:

?- food(X).
X = apple ^C
Action (h for help) ? h
Options:
a: abort b: break
c: continue e: exit
g: goals t: trace
h (?): help

Use a to return to the prompt; e exits to the shell.

Getting out of SWI Prolog

CSC#372#Spring#2016,#Prolog#Slide#27#

Building blocks

CSC#372#Spring#2016,#Prolog#Slide#28#

We've seen that apple, food, and 'Big Mac' are examples of atoms.

Typing an atom as a query doesn't do what we might expect!

?- 'just\ntesting'.

ERROR: toplevel: Undefined procedure: 'just\ntesting'/0 (DWIM

could not correct goal)

But we can output an atom with write.

?- write('just\ntesting').

just

testing

true.

Atoms composed of certain non-alphabetic characters do not require quotes:

?- write(#$&*+-./:<=>?^~\).

#$&*+-./:<=>?^~\

true.

Atoms

CSC#372#Spring#2016,#Prolog#Slide#29#

We can use the predicate atom to query whether something is an atom:

 ?- atom(apple).

 true.

?- atom('apple sauce').

true.

?- atom(Ant).

false.

?- atom("apple").

false.

Alternate view: "Can you prove apple is an atom?"

Atoms, continued

CSC#372#Spring#2016,#Prolog#Slide#30#

Integer and floating point literals are numbers.
?- number(10).
true.

?- number(3.4).
true.

?- number(3.4e100).
true.

?- number('100').
false.

Numbers aren't atoms but they are "atomic" values.
?- atom(100).
false.

?- atomic(100). % Note: atomic, not just atom.
true.

Numbers

CSC#372#Spring#2016,#Prolog#Slide#31#

In Prolog, arithmetic doesn't work as you might expect:

?- 3 + 4.

ERROR: toplevel: Undefined procedure: (+)/2 (DWIM could

not correct goal)

?- y = 4 + 5.

false.

?- Y = 4 + 5.

Y = 4+5.

?- write(3 + 4 * 5).

3+4*5

true.

We'll learn about arithmetic later.

Numbers, continued

CSC#372#Spring#2016,#Prolog#Slide#32#

Here are some more examples of facts:

color(sky, blue). color(grass, green).

odd(1). odd(3). odd(5).

number(one, 1, 'English').

number(uno, 1, 'Spanish').

number(dos, 2, 'Spanish').

We can say that the facts above define three predicates: color, odd, and

number.

"The collection of clauses for a given predicate is called a procedure."––C&M

It's common to refer to predicates using predicate indicators like color/2, odd/1,

and number/3, where the number following the slash is the number of terms.

number/3 above doesn't collide with the built-in predicate number/1 we saw

earlier.

Predicates, terms, and structures

CSC#372#Spring#2016,#Prolog#Slide#33#

A term is one of the following: atom, number, structure, variable.

Structures consist of a functor (always an atom) followed by one or more terms
enclosed in parentheses.

Here are examples of structures:

color(grass, green)

odd(1)

'number'('uno', 1, 'Spanish') % 's not needed around number and uno

lunch(sandwich(ham), fries, drink(coke))

The structure functors are color, odd, number, and lunch, respectively.

Two of the terms of the lunch structure are structures themselves, with functors
sandwich and drink.

A structure can serve as a fact or a goal, depending on the context.

Predicates, terms, and structures, continued

CSC#372#Spring#2016,#Prolog#Slide#34#

Structures can have symbolic functors:

+(3,4)

+(3,*(4,5))

\/(x,y)

When Prolog encounters an expression with operators, it builds a

structure. display/1 can be used to examine such structures.

?- display(a+b*c+d^2).

+(+(a,*(b,c)),^(d,2))

true.

?- display(a /\ b \/ c /\ d).

/\(\/(/\(a,b),c),d)

true.

Some predicates evaluate structures but most do not, and simply treat the

structure as a value.

 CSC#372#Spring#2016,#Prolog#Slide#35#

Structures with symbolic functors

+

+ ^

a

b

*

c

d 2

Query help(op) to see the predefined operators and precedences. It shows this:

1200	xfx	-->, :-	
1200	fx	:-, ?-	
1100	xfy	;,	
1050	xfy	->, *->	
1000	xfy	,	
990	xfx	:=	
900	fy	\+	
700	xfx	<, =, =.., =@=, \=@=, =:=, =<, ==,	
		=\=, >, >=, @<, @=<, @>, @>=, \=, \==,	
		as, is, >:<, :<	
600	xfy	:	
500	yfx	+, -, /\, \/, xor	
500	fx	?	
400	yfx	*, /, //, div, rdiv, <<, >>, mod, rem	
200	xfx	**	
200	xfy	^	
200	fy	+, -, \	
100	yfx	.	
____1_	_fx__	$_______________________________________	

Sidebar: op/3

CSC#372#Spring#2016,#Prolog#Slide#36#

•  Left column is precedence; 1200 is

lowest.

•  xfy, yfx, fx, fy etc. are

specifications of associativity and

infix/prefix/postfix forms.

Operators can be created with op/3.

?- op(150,'xf',--). % precedence 150 postfix operator

true.

?- op(200, xfy, @). % right-associative infix operator

true.

The f in xf and xfy (above) specify where the functor can appear wrt. the

operands.

?- display(x @ y @ zz--).

@(x,@(y,--(zz)))

true.

op/3, continued

CSC#372#Spring#2016,#Prolog#Slide#37#

Most operators are not predicates.

?- +(3,4).

ERROR: toplevel: Undefined procedure: (+)/2 ...

But a few operators are predicates. Two are \== and ==. They can be

written in prefix or infix form:

?- \==(this,that).

true.

?- 3 == 3.

true.

They do deep comparison of their terms.

?- 3 == 2+1.

false. % The number 3 is not equal to the structure 2+1.

== and \== do not produce a value! They simply succeed or fail.

CSC#372#Spring#2016,#Prolog#Slide#38#

Operator predicates

In conventional languages there are expressions.

A conventional REPL evaluates expressions and prints the value produced.

At swipl's query prompt we can see if one or more goals can be proven.

In the process of trying to prove all the goals, side effects like output may

occur and variables may be instantiated but the only result of evaluating

goals is success or failure.

So is swipl a REPL?

CSC#372#Spring#2016,#Prolog#Slide#39#

Is swipl a REPL?

More queries

CSC#372#Spring#2016,#Prolog#Slide#40#

Here's a new knowledgebase.

A query about green things:

?- color(Thing, green).

Thing = grass ;

Thing = broccoli ;

Thing = lettuce.

How can we state it in terms of "Can you prove...?"

 For what things can you prove that their color is green?

More queries

$ cat foodcolor.pl

...food facts not shown...

color(sky, blue).

color(dirt, brown).

color(grass, green).

color(broccoli, green).

color(lettuce, green).

color(apple, red).

color(carrot, orange).

color(rice, white).

CSC#372#Spring#2016,#Prolog#Slide#41#

How could we query for each thing and its color?

?- color(Thing,Color).

Thing = sky,

Color = blue ;

Thing = dirt,

Color = brown ;

Thing = grass,

Color = green ;

Thing = broccoli,

Color = green ;

...

How can we state it in terms of "Can you prove...?"

 For what pairs of Thing and Color can you prove color(Thing,Color)?

More queries

color(sky, blue).

color(dirt, brown).

color(grass, green).

color(broccoli, green).

color(lettuce, green).

color(apple, red).

color(carrot, orange).

color(rice, white).

CSC#372#Spring#2016,#Prolog#Slide#42#

A query can contain more than one goal.

Here's a query that directs Prolog to find a
food that is green:

?- food(F), color(F,green).
F = broccoli ;
F = lettuce ;
false.

The query has two goals separated by a
comma, which indicates conjunction—both
goals must succeed in order for the query to
succeed.

We might state it like this:

"Is there an F for which you can prove
both food(F) and color(F, green)?

Queries with multiple goals

$ cat foodcolor.pl

food(apple).

food(broccoli).

food(carrot).

food(lettuce).

food(orange).

food(rice).

color(sky, blue).

color(dirt, brown).

color(grass, green).

color(broccoli, green).

color(lettuce, green).

color(apple, red).

color(carrot, orange).

color(orange,orange).

color(rice, white).

CSC#372#Spring#2016,#Prolog#Slide#43#

Let's see if any foods are blue:

?- color(F,blue), food(F).

false.

Note that the ordering of the goals was

reversed. How might the order make a

difference?

Goals are always tried from left to right.

What's the following query asking?

 ?- food(F), color(F,F).

How about this one?

 ?- food(F), color(F,red), color(F,green).

Queries with multiple goals, continued

food(apple).

food(broccoli).

food(carrot).

food(lettuce).

food(orange).

food(rice).

color(sky, blue).

color(dirt, brown).

color(grass, green).

color(broccoli, green).

color(lettuce, green).

color(apple, red).

color(carrot, orange).

color(orange, orange).

color(rice, white).

CSC#372#Spring#2016,#Prolog#Slide#44#

Which of the following is meant by color(apple,red)?

 All apples are red.

 Some apples are red.

 Some apples have a red area.

 Some apples have a red area at some point in time.

 A red apple has existed.

Facts (and rules) are abstractions that we create for the purpose(s) at hand.

An abstraction emphasizes the important and suppresses the irrelevant.

Don't get bogged down by trying to perfectly model the real world!

Sidebar: The meaning of a fact

CSC#372#Spring#2016,#Prolog#Slide#45#

Write these queries:

 Who likes baseball?

 ?- likes(Who, baseball).

 Who likes a food?

 ?- food(F), likes(Who,F).

 Who likes green foods?

?- food(F), color(F,green),

likes(Who,F).

Who likes foods with the same color as

foods that Mary likes?

?- likes(mary,F), food(F),

color(F, C), food(F2), color(F2,C),

likes(Who,F2).

Even more queries

$ cat fcl.pl

food(apple).

...more food facts...

color(sky, blue).

...more color facts...

likes(bob, carrot).

likes(bob, apple).

likes(joe, lettuce).

likes(mary, broccoli).

likes(mary, tomato).

likes(bob, mary).

likes(mary, joe).

likes(joe, baseball).

likes(mary, baseball).

likes(jim, baseball).

CSC#372#Spring#2016,#Prolog#Slide#46#

Are any two foods the same color?
?- food(F1), food(F2), color(F1,C), color(F2,C).
F1 = F2, F2 = apple, % an apple is the same color as an apple(!)
C = red ;

F1 = F2, F2 = broccoli,
C = green ;
...

Let's use \== to keep foods from matching themselves:

 ?- food(F1), food(F2), F1 \== F2, color(F1,C), color(F2,C).
F1 = broccoli,
F2 = lettuce,
C = green ;

F1 = carrot,
F2 = C, C = orange ;
...

Even more queries, continued

CSC#372#Spring#2016,#Prolog#Slide#47#

A given body of knowledge may be represented in a variety of ways using
Prolog facts. Here is another way to represent the food and color
information.

What are orange foods?

?- thing(Name, orange, yes).
Name = carrot ;
Name = orange.

What things aren't foods?

?- thing(Name, _, no).
Name = dirt ;
Name = grass ;
Name = sky.

The underscore designates an anonymous variable. It indicates that any
value matches and that we don't want to have the value associated with a
variable (and thus displayed).

Alternative representations

thing(apple, red, yes).

thing(broccoli, green, yes).

thing(carrot, orange, yes).

thing(dirt, brown, no).

thing(grass, green, no).

thing(lettuce, green, yes).

thing(orange, orange, yes).

thing(rice, white, yes).

thing(sky, blue, no).

CSC#372#Spring#2016,#Prolog#Slide#48#

What is green that is not a food?

?- thing(N,green,no).
N = grass ;
false.

What color is lettuce?

?- thing(lettuce,C,_).
C = green.

What foods are the same color as lettuce?

?- thing(lettuce,C,_), thing(N,C,yes), N \== lettuce.
C = green,
N = broccoli ;
false.

Is thing/3 a better or worse representation of the knowledge than the
combination of food/1 and color/2?

Alternate representation, continued

thing(apple, red, yes).

thing(broccoli, green, yes).

thing(carrot, orange, yes).

thing(dirt, brown, no).

thing(grass, green, no).

thing(lettuce, green, yes).

thing(orange, orange, yes).

thing(rice, white, yes).

thing(sky, blue, no).

CSC#372#Spring#2016,#Prolog#Slide#49#

Consider this knowledgebase:

x(just(testing,date(5,14,2014))).

x(10).

x(10,20).

The first fact's term is a structure but the second fact's term is a number.

That inconsistency is not considered to be an error.

?- x(V).

V = just(testing, date(5, 14, 2014)) ;

V = 10.

Further, is it x/1 or x/2?

?- x(A,B).

A = 10,

B = 20.

Predicate/goal mismatches

CSC#372#Spring#2016,#Prolog#Slide#50#

At hand:
x(just(testing,date(5,14,2014))).
x(10). x(A,B).

Here are some more queries:

?- x(abc).
false.

?- x([1,2,3]). % A list...
false.

?- x(a(b)).
false.

The goals in the queries have terms that are an atom, a list, and a structure.
There's no indication that those queries are fundamentally mismatched
with respect to the terms in the facts.

Prolog says "false" in each case because nothing it knows about aligns
with anything it's being queried about.

Predicate/goal mismatches, continued

CSC#372#Spring#2016,#Prolog#Slide#51#

At hand:

x(just(testing,date(5,14,2014))).

x(10). x(A,B).

It's an error if there's no predicate defined that has the same number of

terms as the goal in a query. Alternatives are suggested.

?- x(little,green,apples).

ERROR: Undefined procedure: x/3

ERROR: However, there are definitions for:

ERROR: x/1

ERROR: x/2

What does the following tell us?

?- write(1,2).

ERROR: write/2: Domain error: `stream_or_alias' expected,

found `1'

Predicate/goal mismatches, continued

CSC#372#Spring#2016,#Prolog#Slide#52#

Unification

CSC#372#Spring#2016,#Prolog#Slide#53#

Before talking about unification let's note that == and \== are tests. They are

roughly equivalent to Haskell's == and /=, and Ruby's == and !=.

?- abc == 'abc'.

true.

?- 3 \== 5.

true.

Just like comparing tuples and lists in Haskell, and arrays in Ruby, structure

comparisons in Prolog are "deep". Two structures are equal if they have the same

functor, the same number of terms, and the terms are equal. (Recursive def'n.)

?- 3 + 4 == 4 + 3.

false.

?- abc(3 + 4 * 5) == abc(+(3,4*5)).

true.

== and \== are tests

CSC#372#Spring#2016,#Prolog#Slide#54#

The = operator, which we'll read as "unify" or "unify with", provides one
way to do unification.

If a variable doesn't have a value it is said to be uninstantiated. At the start
of a query all variables are uninstantiated.

If we unify an uninstantiated variable with a value, the variable is
instantiated and unified with that value.

?- A = 10, write(A).
10
A = 10.

It can be read as "Unify A with 10 and write A."

That might look like assignment but it is not assignment!

Alternate reading: "Can you unify A with 10 and prove write(A)?"

Unification

CSC#372#Spring#2016,#Prolog#Slide#55#

At hand:

?- A = 10, write(A).
10
A = 10.

An instantiated variable can be unified with a value only if the value equals
(==) whatever value the variable is already unified with.

?- A = 10, write(A), A = 20, write(A).
10
false.

The unification of the uninstantiated A with 10 succeeds, and write(A)
succeeds, but unification of A with 20 fails because 10 == 20 fails.

The query fails because its third goal, the unification A = 20, fails.

In essence the query is saying A must be 10 and A must be 20. Impossible!

Unification, continued

CSC#372#Spring#2016,#Prolog#Slide#56#

The lifetime of a variable is the query in which it is instantiated.

?- A = 10, B = 20, write(A), write(', '), write(B).

10, 20

A = 10,

B = 20.

If we use A, B, and (out of the blue) C in the next query, we find they are

uninstantiated:

?- write(A), write(', '), write(B), write(', '), write(C).

_G1571, _G1575, _G1579

true.

Writing the value of an uninstantiated variable produces _G<NUMBER>.

Some say bound variable and free variable for instantiated and not.

Unification, continued

CSC#372#Spring#2016,#Prolog#Slide#57#

Consider the following:

?- A = B, C = 10, C = B, write(A).

10

A = B, B = C, C = 10.

The code above...

 Unifies A with B (but both are still uninstantiated).

 Unifies C (uninstantiated) with 10.

Unifies B with C.

Because A and B are already unified, and C is instantiated to 10.

Now A, B, and C have the value 10.

How will an initial instantiation for A affect the query?

?- A = 3, A = B, C = 10, C = B, write(A).

false.

Unification, continued

CSC#372#Spring#2016,#Prolog#Slide#58#

With uninstantiated (free) variables, unification has a behavior when

unifying with values that resembles conventional assignment.

With instantiated (bound) variables, unification has a behavior when

unifying with values that resembles comparison.

Unification of uninstantiated variables seems like aliasing of some sort.

But don't think of unification as assignment, comparison and aliasing

rolled into one. Think of unification as a distinct new concept!

Another way to think about things:

Unification is not a question or an action, it is a demand!

 X = 3 is a goal that demands that X must be 3. If not, the goal fails.

Yet another:

 Unifications create constraints that Prolog upholds.

Unification, continued

CSC#372#Spring#2016,#Prolog#Slide#59#

Unification works with structures, too.

?- x(A, B) = x(10,20).

A = 10,

B = 20.

?- f(X, Y, Z) = f(just, testing, f(a,b,c+d)).

X = just,

Y = testing,

Z = f(a, b, c+d).

?- f(X, Y, f(P1,P2,P3)) = f(just, testing, f(a,b,c+d)).

X = just,

Y = testing,

P1 = a,

P2 = b,

P3 = c+d.

Unification with structures

CSC#372#Spring#2016,#Prolog#Slide#60#

?- pair(A, A) = pair(3,5).

false.

?- pair(A, A) = pair(3,3).

A = 3.

?- lets(r,a,d,a,r) = lets(C1,C2,C3,C2,C1).

C1 = r,

C2 = a,

C3 = d.

?- f(X,20,Z) = f(10,Y,30), New = f(Z,Y,X).

X = 10,

Z = 30,

Y = 20,

New = f(30, 20, 10).

Unification with structures, continued

CSC#372#Spring#2016,#Prolog#Slide#61#

Consider again this interaction:

?- food(F).

F = apple ;

F = broccoli ;

...

The query food(F) causes Prolog to search for facts that unify with food(F).

Prolog is able to unify food(apple) with food(F). It then shows that F is unified

with apple.

When the user types semicolon, F is uninstantiated and the search for another fact

to unify with food(F) resumes with the fact following food(apple).

food(broccoli) is unified with food(F), F is unified with broccoli, and the user

is presented with F = broccoli.

The process continues until Prolog has found all the facts that can be unified with

food(F) or the user is presented with a value for F that is satisfactory.

Unification with structures, continued

CSC#372#Spring#2016,#Prolog#Slide#62#

Query evaluation mechanics

CSC#372#Spring#2016,#Prolog#Slide#63#

Goals, like food(fries) or color(What, Color) can be thought of as
having four ports:

In the Active Prolog Tutor, Dennis Merritt describes the ports in this way:

call: Using the current variable bindings, begin to search for the
clauses which unify with the goal.

exit: Set a place marker at the clause which satisfied the goal. Update

the variable table to reflect any new variable bindings. Pass
control to the right.

redo: Undo the updates to the variable table [that were made by this

goal]. At the place marker, resume the search for a clause which
unifies with the goal.

fail: No (more) clauses unify, pass control to the left.

Understanding query execution with the port model

call

fail redo

exit

goal

CSC#372#Spring#2016,#Prolog#Slide#64#

call

fail redo

exit

goal

Example:

?- food(X).

X = apple ;

X = broccoli ;

X = carrot ;

X = lettuce ;

X = rice.

?-

The port model, continued

call

fail redo

exit

food(X)

food(apple).
food(broccoli).

food(carrot).

food(lettuce).

food(rice).

CSC#372#Spring#2016,#Prolog#Slide#65#

trace/0 activates "tracing" for a query.

?- trace, food(X).

 Call: (7) food(_G1571) ? creep

 Exit: (7) food(apple) ? creep

X = apple ;

 Redo: (7) food(_G1571) ? creep

 Exit: (7) food(broccoli) ? creep

X = broccoli ;

 Redo: (7) food(_G1571) ? creep

 Exit: (7) food(carrot) ? creep

The port model, continued

call

fail redo

exit

food(X)

food(apple).

food(broccoli).

food(carrot).

food(lettuce).

food(rice).

Tracing shows the transitions through each port. The first transition is a call to

the goal food(X). The value shown, _G1571, stands for the uninstantiated

variable X. We next see that goal being exited, with X instantiated to apple.

The user isn't satisfied with the value, and by typing a semicolon forces the redo

port to be entered, which causes X, previously bound to apple, to be

uninstantiated. The next food fact, food(broccoli) is tried, instantiating X to

broccoli, exiting the goal, and presenting X = broccoli to the user. (etc.)

CSC#372#Spring#2016,#Prolog#Slide#66#

The port model, continued

call

fail food(F) redo/fail likes(Who,F)

exit/call

redo/fail color(F,green)

exit/call exit

redo

Who likes green foods?

 ?- food(F), likes(Who,F), color(F,green).

food(apple).

food(broccoli).

food(carrot).

food(lettuce).

food(orange).

food(rice).

color(sky, blue).

color(dirt, brown).

color(grass, green).

color(broccoli, green).

color(lettuce, green).

color(apple, red).

color(carrot, orange).

color(rice, white).

likes(bob, carrot).

likes(bob, apple).

likes(joe, lettuce).

likes(mary, broccoli).

likes(mary, tomato).

likes(bob, mary).

likes(mary, joe).

likes(joe, baseball).

likes(mary, baseball).

likes(jim, baseball).

Next: Trace it!
CSC#372#Spring#2016,#Prolog#Slide#67#

We've seen that write/1 always succeeds and, as a side effect, outputs the term it

is called with.

 ?- write(apple), write(' '), write(pie).

apple pie

true.

writeln/1 is similar, but appends a newline.

?- writeln(apple), writeln(pie).

apple

pie

true.

nl/0 outputs a newline. (Note the blank lines before and after middle.)

?- nl, writeln(middle), nl.

middle

true.

Producing output

CSC#372#Spring#2016,#Prolog#Slide#68#

The predicate format/2 is conceptually like printf in Ruby, C, and others.

?- format('x = ~w\n', 101).

x = 101

true.

~w is one of many format specifiers. The "w" indicates to output the

value using write/1. Use help(format/2) to see all the specifiers. (Don't

forget the /2!)

If more than one value is to be output, the values must be in a list.

?- format('label = ~w, value = ~w, x = ~w\n', ['abc', 10, 3+4]).

label = abc, value = 10, x = 3+4

true.

We'll see more on lists later but for now note that we make a list by

enclosing zero or more terms in square brackets. Lists are heterogeneous,

like Ruby arrays.

Producing output, continued

CSC#372#Spring#2016,#Prolog#Slide#69#

A first attempt to print all the foods:

?- food(F), format('~w is a food\n', F).

apple is a food

F = apple ;

broccoli is a food

F = broccoli ;

carrot is a food

F = carrot ;

...

Ick—we have to type semicolons to cycle through them!

Any ideas?

Producing output, continued

CSC#372#Spring#2016,#Prolog#Slide#70#

Second attempt: Force alternatives by specifying a goal that always fails.

?- food(F), format('~w is a food\n', F), 1 == 2.

apple is a food

broccoli is a food

carrot is a food

...

This query is a loop! food(F) unifies with the first food fact and instantiates F to

its term, the atom apple. Then format is called, printing a string with the value

of F interpolated. 1 == 2 always fails. Control then moves left, into the redo port

of format. format doesn't erase the output but it doesn't have an alternatives

either, so it fails, causing the redo port of food(F) to be entered. F is

uninstantiated and food(F) is unified with the next food fact in turn, instantiating

F to broccoli. The process continues, with control repeatedly moving back and

forth until all the food facts have been tried.

Producing output, continued

call

fail food(F) redo/fail format(...)

exit/call

redo/fail 1 == 2

exit/call exit

redo

CSC#372#Spring#2016,#Prolog#Slide#71#

At hand:
?- food(F), format('~w is a food\n', F), 1 == 2.
apple is a food
broccoli is a food
...

The activity of moving leftwards through the goals is known as
backtracking.

We might say, "The query gets a food F, prints it, fails, and then
backtracks to try the next food."

Prolog does not analyze things far enough to recognize that it will never be
able to "prove" what we're asking. Instead it goes through the motions of
trying to prove it and as side-effect, we get the output we want. This is a
key idiom of Prolog programming.

Backtracking

call

fail food(F) redo/fail format(...)

exit/call

redo/fail 1 == 2

exit/call exit

redo

CSC#372#Spring#2016,#Prolog#Slide#72#

At hand:

?- food(F), format('~w is a food\n', F), 1 == 2.

apple is a food

broccoli is a food

...

false.

Predicates respond to "redo" in various ways. With only a collection of facts for

food/1, redo amounts to advancing to the next fact, if any. If there is one, the

goal exits (control goes to the right). If not, it fails (control goes to the left).

Some other possible examples of "redo" behavior:

A sequence of redos might cause a predicate to work through a series of

URLs to find a current data source.

A geometry manager might force a collection of windows to produce a

configuration that is mutually acceptable.

A predicate might create a file when called and delete it on redo.

Backtracking, continued

CSC#372#Spring#2016,#Prolog#Slide#73#

The predicate fail/0 always fails. It's important to understand that an

always-failing goal like 1 == 2 produces exhaustive backtracking but in

practice we'd use fail instead:

?- food(F), format('~w is a food\n', F), fail.

apple is a food

broccoli is a food

...

rice is a food

false.

In terms of the four-port model, think of fail as a box whose call port is

"wired" to its fail port:

The predicate fail

call

fail food(F) redo/fail format(...)

exit/call

redo/fail fail

exit/call

CSC#372#Spring#2016,#Prolog#Slide#74#

The built-in predicate between/3 can be used to instantiate a variable to
a sequence of integer values:

?- between(1,3,X).
X = 1 ;
X = 2 ;
X = 3.

Problem: Print this sequence:

000
001
010
011
100
101
110
111

?- between(0,1,A),between(0,1,B),between(0,1,C),

 format('~w~w~w\n', [A,B,C]), fail.

Sidebar: between

How about

this one?

10101000

10101001

10101010

10101011

10111000

10111001

10111010

10111011

CSC#372#Spring#2016,#Prolog#Slide#75#

Rules

CSC#372#Spring#2016,#Prolog#Slide#76#

Facts are one type of Prolog clause. The other type of clause is a rule.

foods2.pl starts with a rule and is followed by the food facts:

$ cat foods2.pl

showfoods :- food(F), format('~w is a food\n', F), fail.

food(apple).

food(broccoli).

...

Even though showfoods/0 uses food/1, it can either precede or follow

the clauses (the procedure) for that predicate.

showfoods: a simple rule

head neck body

CSC#372#Spring#2016,#Prolog#Slide#77#

At hand:

$ cat foods2.pl
showfoods :- food(F), format('~w is a food\n', F), fail.

food(apple).
food(broccoli).
...

Usage:
$ swipl foods2.pl
...
?- showfoods.
apple is a food
broccoli is a food
carrot is a food
lettuce is a food
orange is a food
rice is a food
false.

showfoods, continued

CSC#372#Spring#2016,#Prolog#Slide#78#

Prolog borrows from the idea of Horn Clauses in symbolic logic. A
simplified definition of a Horn Clause is that it represents logic like this:

 If Q1, Q2, Q3, ..., Qn, are all true, then P is true.

In Prolog we might represent a three-element Horn clause with this rule:

 p :- q1, q2, q3.

The query

 ?- p.

which asks Prolog to "prove" p, causes Prolog to try and prove q1, then
q2, and then q3. If it can prove all three, and can therefore prove p,
Prolog will respond with true. (If not, then false.)

Note that this is an abstract example—we haven't defined the predicates
q1/0 et al.

Sidebar: Horn Clauses

CSC#372#Spring#2016,#Prolog#Slide#79#

At hand are the following rules:
p :- q1, q2, q3.

showfoods :- food(F), format('~w is a food\n', F), fail.

We saw that we can print all the foods with this query:

?- showfoods.
apple is a food
broccoli is a food
carrot is a food
...
rice is a food
false.

In its unsuccessful attempt to "prove" showfoods, and thus trying to
prove all three goals in the body of the showfoods rule, Prolog ends up
doing what we want: all the foods are printed.

We send Prolog on a wild goose chase to get our work done!

showfoods, continued

CSC#372#Spring#2016,#Prolog#Slide#80#

Let's print a header and footer around the foods:

?- writeln('-- Foods --'), showfoods, writeln('-- end --').

-- Foods --

apple is a food

broccoli is a food

carrot is a food

lettuce is a food

orange is a food

rice is a food

false.

What's wrong?

showfoods, continued

CSC#372#Spring#2016,#Prolog#Slide#81#

At hand:

?- writeln('-- Foods --'), showfoods, writeln('-- end --').

-- Foods --

apple is a food

...

rice is a food

false.

(No --end-- line!)

Why does Prolog say false. after printing the foods?

Recall showfoods and note that it can never succeed. It always fails!

showfoods :- food(F), format('~w is a food\n', F), fail.

Because the second goal in

 ?- writeln('-- Foods --'), showfoods, writeln('-- end --').

 always fails, we never reach the third goal.

showfoods, continued

CSC#372#Spring#2016,#Prolog#Slide#82#

The problem: We're using a fail to force display of all the foods but we

want showfoods to ultimately succeed. Any ideas?

showfoods :- food(F), format('~w is a food\n', F), fail.

showfoods.

Result:

?- showfoods.

apple is a food

broccoli is a food

...

rice is a food

true. % Very important: Now we get true., not false.

Prolog tries the two clauses for the predicate showfoods in turn. The first

clause, a rule, is ultimately a failure but prints the foods as a side-effect.

Because the first clause fails, Prolog tries the second clause, a fact which

is trivially proven.

showfoods, continued

CSC#372#Spring#2016,#Prolog#Slide#83#

At hand:

showfoods :- food(F), format('~w is a food\n', F), fail.

showfoods.

?- showfoods.

apple is a food

broccoli is a food

...

true. % Very important: Now it says true., not false.

The underlying rule:

If a clause fails, Prolog tries the predicate's next clause. It continues

until a clause succeeds or no clauses remain.

This is the same mechanism we've been using to go through foods, colors,

and more.

showfoods, continued

CSC#372#Spring#2016,#Prolog#Slide#84#

Here's a variation:

showfoods2 :- writeln('-- Foods --'), food(F), writeln(F), fail.

showfoods2 :- writeln('-- end --').

How does it behave?

?- showfoods2.

-- Foods --

apple

broccoli

carrot

lettuce

orange

rice

-- end --

true.

CSC#372#Spring#2016,#Prolog#Slide#85#

showfoods2

Unlike expressions in conventional languages, Prolog goals don't nest.

Here's a failed attempt at nesting:

showfoods3 :- writeln('-- Foods --'), writeln(food(F)), fail.

showfoods3 :- writeln('-- end --').

How will it behave?

?- showfoods3.

-- Foods --

food(_G1183)

-- end --

true.

What's happening?

We're calling writeln with a one-term structure, food, whose term is

the uninstantiated variable F.

CSC#372#Spring#2016,#Prolog#Slide#86#

Sidebar: goals don't nest!

This one-rule predicate asks if there is a food with a particular color:

 food_color(Color) :- food(F), color(F,Color). % in foods2.pl

Usage:

?- food_color(green).

true

To prove the goal food_color(green), Prolog first searches its clauses

for one that can be unified with the goal. It finds a rule (above) whose

head can be unified with the goal. That unification causes Color to be

instantiated to the atom green.

It then attempts to prove food(F), and color(F, green) for some value F.

The response true tells us that at least one green food exists, but that's all

we know.

Rules with arguments

CSC#372#Spring#2016,#Prolog#Slide#87#

At hand:
 food_color(Color) :- food(F), color(F,Color).

The last slide didn't tell the whole truth. The cursor pauses right after true:

?- food_color(green).
true _ (blink...blink...blink)

If we type semicolons we see this:

?- food_color(green).
true ;
true ;
false.

It reveals that food_color(green) is actually finding two green foods but
we don't know what they are.

A failure:

?- food_color(blue).
false.

Rules with arguments, continued

CSC#372#Spring#2016,#Prolog#Slide#88#

At hand:

 food_color(Color) :- food(F), color(F,Color).

Does food_color let us do anything other than asking if there is a food

with a particular color?

 We can ask for all the colors of foods.

?- food_color(C).

C = red ;

C = green ;

C = orange ;

C = green ;

C = white.

We get green twice because there are two green foods. We'll later see

ways to deal with that.

Rules with arguments, continued

CSC#372#Spring#2016,#Prolog#Slide#89#

At hand:

 food_color(Color) :- food(F), color(F,Color).

?- food_color(C).

C = red ;

C = green ;

A very important rule:

If a fact or the head of a rule in the knowledgebase unifies with a

query, any corresponding variables are unified. (Instantiating one

instantiates the other.)

In the above case the variable C first has the value red because:

 C in the query was unified with Color in the head of the rule,

 AND the goals in the body of the rule succeeded,

 AND Color was instantiated to red.

When we type a semicolon in response to C = red, Prolog backtracks and

ultimately comes up with C = green.

Rules with arguments, continued

These are unified

CSC#372#Spring#2016,#Prolog#Slide#90#

At hand:
food_color(Color) :- food(F), color(F,Color).

Prolog has no analog for "return x"! There's no way to say something
like this,

?- Color = food_color(), writeln(Color), fail.

or this,

?- writeln(food_color()), fail.

Instead, predicates "return" values by instantiating logical variables.

?- food_color(C), writeln(C), fail.
red
green
...

Instantiation as "return"

CSC#372#Spring#2016,#Prolog#Slide#91#

Some examples of instantiation as "return" with built-in predicates:

?- atom_length(testing, Len).

Len = 7.

?- upcase_atom(testing, Caps).

Caps = 'TESTING'.

?- char_type('A', T).

T = alnum ;

T = alpha ;

...

T = upper(a) ;

...

T = xdigit(10).

Instantiation as "return", continued

CSC#372#Spring#2016,#Prolog#Slide#92#

Some two-term built-in predicates will fill in whichever term is

uninstantiated.

?- term_to_atom(date(10,1,1891), A).

A = 'date(10,1,1891)'.

?- term_to_atom(T, 'date(10,1,1891)').

T = date(10, 1, 1891).

The following call specifies a date structure with uninstantiated variables

for its terms.

?- term_to_atom(date(M,D,Y), 'date(10,1,1891)').

M = 10,

D = 1,

Y = 1891.

Instantiation as "return", continued

CSC#372#Spring#2016,#Prolog#Slide#93#

In Prolog, what is ten-four?

A two-term structure with the functor '-'. Its terms are the atoms ten

and four. display(ten-four) shows -(ten,four).

Consider this predicate:

swap_struct(X-Y, R) :- R = Y-X.

Usage:

?- swap_struct(ten-four, X).

X = four-ten.

?- swap_struct(X, 10-20).

X = 20-10.

Can swap_struct be simplified?

 swap_struct(X-Y, Y-X).

CSC#372#Spring#2016,#Prolog#Slide#94#

Instantiation as "return", continued

A little more...

?- swap_struct(a-b*c,R).

R = b*c-a.

?- swap_struct(a-b+c,R).

false.

?- swap_struct(a-b-c,R).

R = c- (a-b).

Problem: Using term_to_atom write a predicate with this behavior:

?- swap('ten-four', R).

R = 'four-ten'.

First cut:

swap(A, Result) :-

 term_to_atom(T,A),

 First-Second = T, Swapped = Second-First,

 term_to_atom(Swapped, Result).

 How many variables are used in swap/2 above?

Better:

swap2(A, Result) :-

 term_to_atom(First-Second, A),

 term_to_atom(Second-First, Result).

Instantiation as "return", continued

CSC#372#Spring#2016,#Prolog#Slide#95#

Problem: Write a predicate with these four behaviors:
?- describe_food(apple-X).
X = red.

?- describe_food(X-green).
X = broccoli ;
X = lettuce ;
false.

?- describe_food(X).
X = apple-red ;
X = broccoli-green ;
...
X = orange-orange ;
X = rice-white.

Solution:
 describe_food(Food-Color) :- food(Food), color(Food,Color).

Instantiation as "return", continued

CSC#372#Spring#2016,#Prolog#Slide#96#

The fourth:

?- describe_food(apple-red).

true.

?- describe_food(apple-blue).

false.

Recall between(1,10,X). Here's what help(between) shows:

between(+Low,#+High,#?Value)#
####Low##and#High#are##integers,#High#>=#Low.###If#Value#is#an##integer,#
####Low#=<#Value#=<#High.#When#Value#is#a#variable#it#is#successively#
####bound#to#all#integers#between#Low#and##High.#...#

If an argument has a plus prefix, like +Low and +High, it means that the
argument is an input to the predicate and must be instantiated. A question
mark indicates that the argument can be input or output, and thus may or
may not be instantiated.

The documentation implies that between can (1) generate values and (2)
test for membership in a range.

?- between(1,10,X).
X = 1 ;
...

?- between(1,10,5).
true.

Sidebar: Describing predicates

Note: This is a documentation convention;

do not use the + and ? symbols in code!

CSC#372#Spring#2016,#Prolog#Slide#97#

Another:

term_to_atom(?Term,#?Atom)#

True##if#Atom#describes#a##term#that#unifies#with##Term.##When##

Atom#is##instanbated,##Atom#is##converted#and##then##unified#with##

Term.#...#

Here is a successor predicate:

succ(?Int1,#?Int2)#

True##if#Int2=#Int1+1##and#Int1>=0.###At#least#one#of#the#arguments#

must##be#instanbated#to##a#natural#number.#...#

#

?- succ(10,N).

N = 11.

There's no pred (predecessor) predicate. Why?

?- succ(N,10).

N = 9.

Describing predicates, continued

CSC#372#Spring#2016,#Prolog#Slide#98#

Here is the synopsis for format/2:

 format(+Format, +Arguments)

Speculate: What does sformat/3 do?

 sformat(-String, +Format, +Arguments)

The minus in -String indicates that the term should be an uninstantiated

variable.

?- sformat(S, 'x = ~w', 1).

S = "x = 1".

?- sformat("x = 1", 'x = ~w', 1).

false.

Describing predicates, continued

CSC#372#Spring#2016,#Prolog#Slide#99#

Arithmetic

CSC#372#Spring#2016,#Prolog#Slide#100#

Next set of slides

We've seen that there are predicates for comparisons but not for arithmetic

operations:

?- 3 == 4.

false.

?- 3 \== 4.

true.

?- 3 + 4.

ERROR: toplevel: Undefined procedure: (+)/2 (DWIM could

not correct goal)

Why is this the case?

Queries succeed or fail. The result of a comparison can be viewed as

success or failure but there's simply no place for the result of 3 + 4 to

appear. (There's no "outlet" for it.)

CSC#372#Spring#2016,#Prolog#Slide#101#

Why are there no arithmetic predicates?

The predicate is(?Value, +Expr) evaluates Expr, a structure representing

an arithmetic expression, and unifies the result with Value.

?- is(X, 3+4*5).

X = 23.

is is an operator and can be used in infix form:

?- X is 3 + 4, Y is 7 * 5, Z is X / Y.

X = 7,

Y = 35,

Z = 0.2.

All variables in the structure being evaluated by is/2 must be instantiated.

?- A is 3 + X.

ERROR: is/2: Arguments are not sufficiently instantiated

(The query ?- ground(3+X). fails––the term 3+X has free variables.)

is/2

CSC#372#Spring#2016,#Prolog#Slide#102#

is supports a number of arithmetic operations. Here are some of them:

-X negation
X + Y addition
X - Y subtraction
X * Y multiplication
X / Y division—produces float quotient
X // Y integer division
X rem Y integer remainder
integer(X) truncation to integer
float(X) conversion to float
sign(X) sign of X: -1, 0, or 1

?- X is 77777777777777777777777*3333333333333333333333333.
X = 259259259259259259259256640740740740740740740741.

?- X is 10 // 3.
X = 3.

?- X is e ** sin(pi). What are e and pi? Is sin a Prolog"function"?
X = 1.0000000000000002.

Arithmetic, continued

help(rem) is a quick way to open

up the documentation section with

the arithmetic operations.

help(op) shows precedence.

CSC#372#Spring#2016,#Prolog#Slide#103#

Problem: Write a predicate around/3 that works like this:

?- around(P ,7, N).

P = 6,

N = 8.

Solution:

around(Prev,X,Next) :- Prev is X - 1, Next is X + 1.

We can use around to test, too, but the second term must be "ground".

?- around(1,2,3).

true.

?- around(1,X,3).

ERROR: is/2: Arguments are not sufficiently instantiated

Arithmetic, continued

CSC#372#Spring#2016,#Prolog#Slide#104#

Here are some predicates to compute the area of shapes. Note the use of

unification to "label" the structure's term(s).

area(rectangle(W,H), A) :- A is W * H.

area(circle(R), A) :- A is pi * R ** 2.

Usage:

?- area(circle(3), A).

A = 28.274333882308138.

?- area(rectangle(5,7), A).

A = 35.

A "figure 8" is two circles touching at a point. Let's handle it by making

two circles and computing the sum of their areas:

 area(figure8(R1,R2), A) :-

 area(circle(R1),A1), area(circle(R2),A2), A is A1 + A2.

CSC#372#Spring#2016,#Prolog#Slide#105#

Arithmetic, continued

For reference:

area(rectangle(W,H), A) :- A is W * H.

Note the "expressions" in the rectangle below. How do they work?

?- area(rectangle(2*3, 4*5), A).

A = 120.

Would ?- area(rectangle(1+2,3+4),A). have precedence issues?

Experiment:

?- W = 1+2, H = 3+4, A = W * H, display(A), R is A.

*(+(1,2),+(3,4))

W = 1+2,

H = 3+4,

A = (1+2)* (3+4),

R = 21.

CSC#372#Spring#2016,#Prolog#Slide#106#

Arithmetic, continued

Here's a predicate that computes the length of a line between two points:

length(point(X1,Y1), point(X2,Y2), Length) :-

 Length is sqrt((X1-X2)**2+(Y1-Y2)**2).

Note that the sqrt "function call" is just another structure whose functor is

known to is/2.

Note also that sqrt's "argument" is a structure that will be evaluated by is.

?- length(point(3,0),point(0,4),Len).

Len = 5.0.

Recalling area from earlier, will the following work?

?- X is sqrt(area(circle(5))).

ERROR: is/2: Arithmetic: `circle/1' is not a function

CSC#372#Spring#2016,#Prolog#Slide#107#

Arithmetic, continued

area

sqrt

5

circle

There are several numeric comparison operators.

X =:= Y numeric equality
X =\= Y numeric inequality
X < Y numeric less than
X > Y numeric greater than
X =< Y numeric equal or less than (NOTE the order, not <= !)
X >= Y numeric greater than or equal

Just like is/2, these operators evaluate their operands. Examples of usage:

?- 3 + 5 =:= 2*3+2.
true.

?- X is 3 / 5, X > X*X.
X = 0.6.

?- X is random(10), X > 5.
false.

?- X is random(10), X > 5.
X = 9.

Note that the comparisons produce no value; they simply succeed or fail.

Comparisons

CSC#372#Spring#2016,#Prolog#Slide#108#

Example: Grade computation

(and "cut")

CSC#372#Spring#2016,#Prolog#Slide#109#

Here is grade(+Score, ?Grade):
grade(Score, 'A') :- Score >= 90.
grade(Score, 'B') :- Score >= 80, Score < 90.
grade(Score, 'C') :- Score >= 70, Score < 80.
grade(Score, 'F') :- Score < 70.

Usage:

?- grade(95,G).
G = 'A' ; (user entered semicolon)
false.

?- grade(82,G).
G = 'B' ; (user entered semicolon)
false.

?- grade(50,G).
G = 'F'. (swipl printed period)

Why did the first two prompt the user?

 There were still untried clauses for grade/2.

Example: grade computation

CSC#372#Spring#2016,#Prolog#Slide#110#

Here are some student facts:
student('Ali', 85).
student('Chris',92).
student('Kendall', 89).

Problem: write grades/0, which behaves like this:

?- grades.
Current Grades
 Ali: B
 Chris: A
 Kendall: B
true.

Solution:
grades :- writeln('Current Grades'),
 student(Student,Score), grade(Score,Grade),
 format(' ~w: ~w\n', [Student, Grade]),
 fail.
grades.

Grade computation, continued

CSC#372#Spring#2016,#Prolog#Slide#111#

Recall grade/2:

?- grade(95,G).

G = 'A'

Here's a new version of grade/2:
grade(Score, 'A') :- Score >= 90.
grade(Score, 'B') :- Score >= 80.
grade(Score, 'C') :- Score >= 70.
grade(_, 'F'). % Note use of underscore for "don't care".

Let's try grades/0 again:

?- grades.
Current Grades
 Ali: B
 Ali: C
 Ali: F
 Chris: A
 Chris: B
 Chris: C
 Chris: F
 Kendall: B
 Kendall: C
 Kendall: F
true.

What's wrong?

Grade computation, continued

Here is grades/0:

grades :- writeln('Current Grades'),

 student(Student,Score), grade(Score,Grade),

 format(' ~w: ~w\n', [Student, Grade]), fail.

grades.

The old grade/2:

grade(Score, 'A') :- Score >= 90.

grade(Score, 'B') :- Score >= 80, Score < 90.

grade(Score, 'C') :- Score >= 70, Score < 80.

grade(Score, 'F') :- Score < 70.

The fail in grades is driving grade to try subsequent

rules. Ali's 85 satisfies the last three rules in the new

version of grade/2! Chris' 92 satisfies all four!

CSC#372#Spring#2016,#Prolog#Slide#112#

The predicate ! is "cut". It's just an exclamation mark.

Cut is a control predicate, like fail/0. It affects the flow of control.

When a cut is encountered in a rule it means,

"If you get to here, you have picked the right rule to produce a final

answer for this call of this predicate."

We can fix grade/2 with some cuts:

grade(Score, 'A') :- Score >= 90, !.

grade(Score, 'B') :- Score >= 80, !.

grade(Score, 'C') :- Score >= 70, !.

grade(_, 'F').

The rule grade(Score, 'A') :- Score >= 90, !. says,

 If score >= 90 then the grade is an "A", and that's my final answer.

"Cut"

?- grades.

Current Grades

 Ali: B

 Chris: A

 Kendall: B

true.

CSC#372#Spring#2016,#Prolog#Slide#113#

How does the behavior change if we do the cut first instead of last?

grade(Score, 'A') :- !, Score >= 90.

grade(Score, 'B') :- !, Score >= 80.

grade(Score, 'C') :- !, Score >= 70.

grade(_, 'F').

Execution:

?- grades.

Current Grades

 Chris: A

true.

Why?

For Ali, grade(85,Grade) is called and grade(Score, 'A') :- !, Score >= 90.

is executed. The cut is done first thing, commiting this rule to producing the

final answer for grade(85, Grade). It then fails on Score >= 90.

grades then backtracks and continues with the next student, Chris.

Cut, continued

grades :- writeln('Current Grades'),

 student(Student,Score),

 grade(Score,Grade),

 format(' ~w: ~w\n', [Student, Grade]),

 fail.

grades.

student('Ali', 85).

student('Chris',92).

student('Kendall', 89).

CSC#372#Spring#2016,#Prolog#Slide#114#

A cut is said to be a "green cut" if it simply makes a predicate more

efficient. By definition, adding or removing a green cut does not effect the

set of results for any call of a predicate.

A "red cut" affects the set of results produced by a predicate.

Are the cuts on slide 111 green cuts or red cuts?

 Red. For example, grade(90,G) produces one result, not four.

Below is the first version of grade with some cuts added. Are they red

cuts or green cuts?

grade(Score, 'A') :- Score >= 90, !.

grade(Score, 'B') :- Score >= 80, Score < 90, !.

grade(Score, 'C') :- Score >= 70, Score < 80, !.

grade(Score, 'F') :- Score < 70.

There are also blue and "grue" cuts.

CSC#372#Spring#2016,#Prolog#Slide#115#

Sidebar: The "color" of a cut

Here's one way to write max: (Adapted from Clause and Effect by Clocksin)

max(X, Y, X) :- X >= Y.

max(X, Y, Y) :- X < Y.

Usage:

?- max(10,3,Max).

Max = 10 ; (Prolog pauses because of a possible alternative.)

false.

Can we shorten it with a cut?

max(X, Y, X) :- X >= Y, !.

max(_, Y, Y).

Usage:

?- max(10,3,Max).

Max = 10. (Prolog prints period because no alternatives.)

Cut, continued

CSC#372#Spring#2016,#Prolog#Slide#116#

Here's that first version of max, with a Ruby analog beside it

Here's the version of max with a cut, also with a Ruby analog:

CSC#372#Spring#2016,#Prolog#Slide#117#

Sidebar: Clauses vs if-else

max(X, Y, X) :- X >= Y.

max(X, Y, Y) :- X < Y.

if X >= Y then X end

if X < Y then Y end

max(X, Y, X) :- X >= Y, !.

max(_, Y, Y).

if X >= Y then X

else Y end

Cuts can be used to limit backtracking inside a query or rule.

Consider these facts:

Queries and cuts:

?- f(F), write(F), g(G), write(G), fail.

 f1 g1 g2 g3 f2 g1 g2 g3 f3 g1 g2 g3

?- f(F), write(F), !, g(G), write(G), fail.

 f1 g1 g2 g3

?- f(F), write(F), g(G), write(G), !, fail.

 f1 g1

Another analogy: A cut is like a door that locks behind you.

There is far more to know about "cut" but for now we'll use it for only one thing:

"If you get to here, this rule will produce a final answer for this call to this

predicate."

Cut, continued

f(' f1 '). f(' f2 '). f(' f3 ').

g(' g1 '). g(' g2 '). g(' g3 ').

CSC#372#Spring#2016,#Prolog#Slide#118#

Predicates naturally fail when a desired condition is absent but sometimes

we want a predicate to fail when a particular condition is present.

I'll consider a person to be "ok" if they're a bowler, they like BBQ, or

they'll loan me money.

But no matter what, if a person went to UNC-CH, they're not "ok"!

We can express that with cut-fail:

ok(Person) :- alma_mater(Person, 'UNC-CH'), !, fail.

ok(Person) :- bowler(Person).

ok(Person) :- likes(Person, bbq).

ok(Person) :- will_loan_me_money(Person).

A cut says, "This is my final answer."

A cut-fail says, "My final answer is no!" (False, in SWI Prolog.)

The "cut-fail" idiom

CSC#372#Spring#2016,#Prolog#Slide#119#

average_taxpayer(X) :-
 foreigner(X), !, fail.

average_taxpayer(X) :-
 spouse(X,Spouse),
 gross_income(Spouse, SpouseIncome),
 SpouseIncome > 3000, !, fail.

average_taxpayer(X) :-
 gross_income(X, Inc),
 Inc > 2000, Inc =< 20_000.

gross_income(X,GrossIncome) :-
 receives_pension(X, GrossIncome),
 GrossIncome < 5000, !, fail.

gross_income(X, GrossIncome) :-
 gross_salary(X, GrossSalary),
 investment_income(X,InvestmentIncome),
 GrossIncome is GrossSalary + InvestmentIncome.

investment_income(X, InvestmentIncome) :- ...

A tax collection example with "cut-fail"

A person is not an average taxpayer if

they are a foreigner.

A person is not an average taxpayer

if they've got a spouse and the

spouse makes over 3000.

A person is an average taxpayer if

their income is between 2000 and 20,000.

A person is not considered to have a

gross income if they receive a pension

of less than 5000.

CSC#372#Spring#2016,#Prolog#Slide#120#
Example straight from C&M, page 91.

The "singleton" warning(!)

CSC#372#Spring#2016,#Prolog#Slide#121#

Here's a predicate add(+X,+Y, ?Sum):

$ cat add.pl

add(X, Y, Sum) :- S is X + Y.

Bug: Sum is used in the head but S is used in the body!

Observe what happens when we load it:

$ swipl add.pl

Warning: /cs/www/classes/cs372/spring16/prolog/add.pl:1:

 Singleton variables: [Sum,S]

...

What is Prolog telling us with that warning?

 The variables Sum and S appear only once in the rule on line 1.

Fact: If a variable appears only once in a rule, its value is never used.

A singleton warning may indicate a misspelled or misnamed variable.

 Pay attention to singleton warnings!

The "singleton" warning

CSC#372#Spring#2016,#Prolog#Slide#122#

print_stars(+N) prints N asterisks:

?- print_stars(10).

true.

Here's a first version of it. Does it have any singletons?

print_stars(N) :- between(1,N,X), write('*'), fail.

print_stars(N).

Let's see...

$ swipl print_stars.pl

Warning: print_stars.pl:1: ... Singleton variables: [X]

Warning: print_stars.pl:2: ... Singleton variables: [N]

...

Should we worry about the warnings? How could we eliminate them?

print_stars(N) :- between(1,N,_), write('*'), fail.

print_stars(_).

Singletons, continued

CSC#372#Spring#2016,#Prolog#Slide#123#

Note that singleton warnings appear before "Welcome to SWI-Prolog"!

$ swipl print_stars.pl (first version)

Warning: /cs/www/classes/cs372/spring16/prolog/print_stars.pl:1:

 Singleton variables: [X]

Warning: /cs/www/classes/cs372/spring16/prolog/print_stars.pl:2:

 Singleton variables: [N]

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 7.2.3)

Copyright (c) 1990-2015 University of Amsterdam, VU Amsterdam

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free

software, and you are welcome to redistribute it under certain

conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

In fact, all errors found when consulting a file appear before the welcome.

Singleton warnings are easy to overlook!

CSC#372#Spring#2016,#Prolog#Slide#124#

"Can't prove"

CSC#372#Spring#2016,#Prolog#Slide#125#

The query \+goal succeeds if goal fails.

?- food(computer).

false.

?- \+food(computer).

true.

An incomplete set of facts can produce oddities.

?- \+food(cake).

true.

\+ is often spoken as "can't prove" or "fail if".

"can't prove"

CSC#372#Spring#2016,#Prolog#Slide#126#

Example: What foods are not green?

?- food(F), \+color(F,green).

F = apple ;

F = carrot ;

F = orange ;

F = rice ;

F = 'Big Mac'.

If there's no color fact for a food, will the query above list that food?

How can we see if there are any foods don't have a color fact?

?- food(F), \+color(F,_).

F = 'Big Mac'.

"can't prove", continued

CSC#372#Spring#2016,#Prolog#Slide#127#

Describe the behavior of inedible/1:

inedible(X) :- \+food(X).

inedible(X) succeeds if something is not known to be a food.

?- inedible(rock).

true.

What will the query ?- inedible(X). do?

?- inedible(X).

false.

"can't prove", continued

CSC#372#Spring#2016,#Prolog#Slide#128#

What's the following query asking?

?- color(X,_), \+food(X).

X = sky ;

X = dirt ;

X = grass ;

false.

What are things with known colors that aren't food?

Let's try reversing the goals:

?- \+food(X), color(X,_).

false.

Why do the results differ?

"can't prove", continued

CSC#372#Spring#2016,#Prolog#Slide#129#

Important: variables are never instantiated by a "can't prove" goal.

Example:

?- \+food(X).

false.

Consider this attempt to ask for things that aren't purple.

?- \+color(Thing, purple).

true.

There are many such things but Thing is not instantiated.

"can't prove", continued

CSC#372#Spring#2016,#Prolog#Slide#130#

Here's how we could implement \+ (can't prove) using the higher-order
predicate call/1 and a cut-fail:

cant_prove(G) :- call(G), !, fail.
cant_prove(_).

Usage:

?- cant_prove(food(apple)).
false.

?- cant_prove(food(computer)).
true.

?- cant_prove(color(_,purple)).
true.

Is cant_prove a higher-order predicate?

"can't prove" with cut-fail

CSC#372#Spring#2016,#Prolog#Slide#131#

More with rules

CSC#372#Spring#2016,#Prolog#Slide#132#

Here is a set of facts for parents and children:

Parents and children

male(tom).

male(jim).

male(bob).

male(mike).

male(david).

female(jane).

female(betty).

female(mary).

female(alice).

parent(tom,betty).

parent(tom,bob).

parent(jane,betty).

parent(jane,bob).

parent(jim,mike).

parent(jim,david).

parent(betty,mike).

parent(betty,david).

parent(bob,alice).

parent(mary,alice).

Jim & Betty

Tom & Jane

Bob & Mary

Alice Mike David

? ?

Define a rule for father(F,C).
 father(F,C) :-

 male(F), parent(F,C).

?- father(F,betty).
F = tom ;
false.

?- father(F,C).
F = tom,
C = betty ;
F = tom,
C = bob ;
...
false.

?- father(F,_).
F = tom ;
F = tom ;
F = jim ;
...

(parents.pl)

CSC#372#Spring#2016,#Prolog#Slide#133#

Here is a set of facts for parents and children:

Parents and children, continued

male(tom).

male(jim).

male(bob).

male(mike).

male(david).

female(jane).

female(betty).

female(mary).

female(alice).

parent(tom,betty).

parent(tom,bob).

parent(jane,betty).

parent(jane,bob).

parent(jim,mike).

parent(jim,david).

parent(betty,mike).

parent(betty,david).

parent(bob,alice).

parent(mary,alice).

Jim & Betty

Tom & Jane

Bob & Mary

Alice Mike David

? ?

Define grandmother(GM,C).

grandmother(GM,C) :-

 female(GM), parent(GM, P),

 parent(P, C).

?- grandmother(GM,C).

GM = jane,

C = mike ;

GM = jane,

C = david ;

GM = jane,

C = alice ;

false.

Or, we could have defined

mother(M,C) and written

grandmother using mother.

CSC#372#Spring#2016,#Prolog#Slide#134#

For who is Tom the father?

?- father(tom,C).

C = betty ;

C = bob.

What are all the father/daughter

relationships?

?- father(F,D), female(D).

F = tom,

D = betty ;

F = bob,

D = alice ;

false.

Who is the father of Jim?

?- father(F,jim).

false.

Parents and children, continued

Jim & Betty

Tom & Jane

Bob & Mary

Alice Mike David

? ?

CSC#372#Spring#2016,#Prolog#Slide#135#

Consider an abstract set of parent/child relationships:

parent(a,b). parent(c,d).
parent(a,c). parent(b,f).
parent(c,e). parent(f,g).

Here is a recursive predicate for the relationship that A is an ancestor of X.

ancestor(A,X) :- parent(A, X).
ancestor(A,X) :- parent(P, X), ancestor(A,P). Experiment: swap these!

In English:

"A is an ancestor of X if A is the parent of X or P is the parent of X and A is
an ancestor of P."

Usage:
?- ancestor(a,f). % Is a an ancestor of f?
true

?- ancestor(c,b). % Is c an ancestor of b?
false.

Recursive predicates
a

c b

e
g

f d

ancestors.pl CSC#372#Spring#2016,#Prolog#Slide#136#

At hand:

 parent(a,b). parent(c,d).

 ...

ancestor(A,X) :- parent(A, X).

ancestor(A,X) :- parent(P, X), ancestor(A,P).

More examples:

?- ancestor(c,Descendant). % Who are the descendants of c?

Descendant = e ;

Descendant = d ;

false.

What's the following query asking?

?- ancestor(A, e), ancestor(A,g).

A = a ;

false.

What are the common ancestors of e and g?

Recursive predicates

a

c b

e
g

f d

CSC#372#Spring#2016,#Prolog#Slide#137#

A recursive rule can be used to perform an iterative computation.

Here is a predicate that prints the integers from 1 through N:

printN(0).
printN(N) :- N > 0, M is N - 1, printN(M), writeln(N).

Usage:

?- printN(3).
1
2
3
true .

Note that we're asking if printN(3) can be proven. The side effect of Prolog
proving it is that the numbers 1, 2, and 3 are printed.

Is printN(0). needed?

Which is better—the above or using between/3?

Iteration with recursion

CSC#372#Spring#2016,#Prolog#Slide#138#

Here's a recursive predicate to compute the factorial of a number:

factorial(0, 1).

factorial(N, F) :-

 N > 0,

 M is N - 1,

 factorial(M, FM),

 F is N * FM.

Usage:

?- factorial(4,F).

F = 24 .

Note that this predicate can't be used to determine N:

?- factorial(N, 24).

ERROR: >/2: Arguments are not sufficiently instantiated

More recursion

CSC#372#Spring#2016,#Prolog#Slide#139#

Here's a correct definition for factorial:

factorial(0, 1).

factorial(N, F) :- N > 0, M is N - 1, factorial(M, FM), F is N * FM.

Here is a common mistake:

factorial(0, 1).

factorial(N, F) :- N > 0, M is N - 1, factorial(M, F), F is N * F.

What's the mistake?

Remember that is/2 unifies its left operand with the result of

arithmetically evaluating its right operand. Further remember that

unification is neither assignment nor comparison.

The goal F is N * F fails unless N == 1.

Sidebar: A common mistake with arithmetic

CSC#372#Spring#2016,#Prolog#Slide#140#

gtrace is the graphical counterpart of trace. Start it like this:

?- gtrace, factorial(6,F).

% The graphical front-end will be used for subsequent tracing

Type space to through step goals one at a time. Click on call stack elements to

show bindings in that call. Try showfoods, ancestor, grades, and printN.

gtrace should work immediately on Windows and Macs. On Linux machines in

the labs use "ssh –X ..." to login to lectura, and it should work there, too.

Sidebar: graphical tracing with gtrace

CSC#372#Spring#2016,#Prolog#Slide#141#

Here's a predicate that tests whether a number is odd:

odd(N) :- N mod 2 =:= 1.

Note that N mod 2 works because =:= evaluates its operands.

An alternative:

odd(1).

odd(N) :- odd(M), N is M + 2.

How does the behavior of the two differ?

Generating alternatives with recursion

CSC#372#Spring#2016,#Prolog#Slide#142#

For reference:

odd(1).
odd(N) :- odd(M), N is M + 2.

Usage:

?- odd(5).
true .

?- odd(X).
X = 1 ;
X = 3 ;
X = 5 ;
...

What does odd(2) do?

How does odd(X) work?

Generating alternatives, continued

CSC#372#Spring#2016,#Prolog#Slide#143#

Query: ?- odd(X).

 odd(1).

 odd(N) :- odd(M), N is M + 2.

 odd(1).

 odd(N) :- odd(M), N is M + 2.

 odd(1).

 odd(N) :- odd(M), N is M + 2.

 odd(1).

 odd(N) :- odd(M), N is M + 2.

Generating alternatives, cont.

odd(X)
exit call

fail redo

odd(M)

exit/call call

fail N is M+2
exit

redo redo/fail

odd(M)

exit/call call

fail N is M+2
exit

redo redo/fail

odd(M)

exit/call call

fail N is M+2
exit

redo redo/fail

odd(M)

exit/call call

fail N is M+2
exit

redo redo/fail

CSC#372#Spring#2016,#Prolog#Slide#144#

For reference:

odd(1).
odd(N) :- odd(M), N is M + 2.

The key point with generative predicates:

If an alternative is requested, another activation of the predicate is
created.

As a contrast, think about how execution differs with this set of clauses:

odd(1).
odd(3).
odd(5).
odd(N) :- odd(M), N is M + 2.

Try gtrace with both the two-clause version at the top and the four-clause
version just above.

Generating alternatives, continued

CSC#372#Spring#2016,#Prolog#Slide#145#

Lists

CSC#372#Spring#2016,#Prolog#Slide#146#

A Prolog list can be literally specified by enclosing a comma-separated

series of terms in square brackets:

[1, 2, 3]

[just, a, test, here]

[1, [one], 1.0, [a,[b,['c this']]]]

Note that there's no evaluation of the terms:

?- write([1, 2, odd(3), 4+5, atom(6)]).

[1,2,odd(3),4+5,atom(6)]

true.

If you enter a list literal as a query, it's taken as a request to consult files!

?- [abc, 123].

ERROR: source_sink `abc' does not exist ...

List basics

CSC#372#Spring#2016,#Prolog#Slide#147#

Here are some unifications with lists:

?- [1,2,3] = [X,Y,Z].
X = 1,
Y = 2,
Z = 3.

?- [X,Y] = [1,[2,[3,4]]]. Note unification of Y with list of lists.
X = 1,
Y = [2, [3, 4]].

?- [X,Y] = [1].
false.

?- Z = [X,Y,X], X = 1, Y = [2,3]. Note that X occurs twice in Z.
Z = [1, [2, 3], 1],
X = 1,
Y = [2, 3].

We'll later see a head-and-tail syntax for lists.

Unification with lists

CSC#372#Spring#2016,#Prolog#Slide#148#

Write a predicate empty(X) that succeeds iff X is an empty list. If called

with something other than a non-empty list, it fails. Examples:

?- empty([]).

true.

?- empty([3,4,5]).

false.

?- empty(empty).

false.

?- empty(10).

false.

Solution:

empty([]).

Note: the latter two calls aren't errors; they just don't unify with empty([]).

Unification with lists, continued

CSC#372#Spring#2016,#Prolog#Slide#149#

Write a predicate as123(X) that succeeds iff X is a list with one, two, or

three identical elements. Example:

?- as123([a]), as123([b,b]), write(ok), as123([1,2,3]),

 write('oops').

ok

false.

?- as123(L).

L = [_G2456] ;

L = [_G2456, _G2456] ;

L = [_G2456, _G2456, _G2456].

Solution:

as123([_]).

as123([X,X]).

as123([X,X,X]).

Unification with lists, continued

Not realizing the power of unification:

as123([X]).

as123([X,Y]) :- X = Y.

as123([X,Y,Z]) :- X = Y, Y = Z.

CSC#372#Spring#2016,#Prolog#Slide#150#

SWI Prolog has a number of built-in predicates that operate on lists. One is nth0:
nth0(?Index,#?List,#?Elem)#
####True#when#Elem#is##the#Index'th#element#of#List.##Counbng#starts#at#0.#

nth0 can be used in a variety of ways:

?- nth0(2, [a,b,a,d,c], X). What is the third element of [a,b,a,d,c]?
X = a.

?- nth0(0, [a,b,a,d,c], b). Is b the first element of [a,b,a,d,c]?
false.

?- nth0(N, [a,b,a,d,c], a). Where are a's in [a,b,a,d,c]?
N = 0 ;
N = 2 ;
false.

?- nth0(N, [a,b,a,d,c], X). What are the positions and values for all?
N = 0,
X = a ;
N = 1,
X = b ;
...

Built-in list-related predicates

NOTE: nth0 makes for a good example

here, but use indexing judiciously! There

are often better alternatives!

CSC#372#Spring#2016,#Prolog#Slide#151#

Recall:
as123([_]).
as123([X,X]).
as123([X,X,X]).

Problem: Using as123 and nth0, write a predicate with this behavior:

?- gen3(test, L).
L = [test] ;
L = [test, test] ;
L = [test, test, test].

Solution:
gen3(X,L) :- as123(L), nth0(0, L, X).

Does the order of the goals matter?

More:

?- gen3(test, [test]).
true .

?- gen3(test, [a,b]).
false.

Built-ins for lists, continued

CSC#372#Spring#2016,#Prolog#Slide#152#

What do you think length(?List, ?Len) does?

Get the length of a list:

?- length([10,20,30],Len).

Len = 3

Anything else?

 Make a list of uninstantiated variables:

?- length(L,3).

L = [_G907, _G910, _G913].

Speculate—what will length(L,N) do?

?- length(L,N).

L = [],

N = 0 ;

L = [_G919],

N = 1 ;

L = [_G919, _G922],

N = 2 ...

Built-ins for lists, continued

CSC#372#Spring#2016,#Prolog#Slide#153#

What does reverse(?List, ?Reversed) do?

 Unifies a list with a reversed copy of itself.
?- reverse([1,2,3],R).
R = [3, 2, 1].

?- reverse([1,2,3],[1,2,3]).
false.

Write palindrome(L).

palindrome(L) :- reverse(L,L).

Speculate—what's the result of reverse(X,Y).?

?- reverse(X,Y).
X = Y, Y = [] ;
X = Y, Y = [_G913] ;
X = [_G913, _G916],
Y = [_G916, _G913] ;
X = [_G913, _G922, _G916],
Y = [_G916, _G922, _G913] ;

Built-ins for lists, continued

CSC#372#Spring#2016,#Prolog#Slide#154#

What might numlist(+Low, +High, -List) do?

?- numlist(5,10,L).

L = [5, 6, 7, 8, 9, 10].

?- numlist(10,5,L).

false.

Problem: Write rnumlist(+High, +Low, -List)

?- rnumlist(10,5,L).

L = [10, 9, 8, 7, 6, 5].

Solution:

 rnumlist(High,Low,List) :-

 numlist(Low,High,List0), reverse(List0,List).

Built-ins for lists, continued

CSC#372#Spring#2016,#Prolog#Slide#155#

sumlist(+List, -Sum) unifies Sum with the sum of the values in List.

?- numlist(1,5,L), sumlist(L,Sum).

L = [1, 2, 3, 4, 5],

Sum = 15.

Will the following work?

?- sumlist([1+2, 3*4, 5-6/7], Sum).

Sum = 19.142857142857142.

?- X = 5, sumlist([X+X, X-X, X*X, X/X],R).

X = 5,

R = 36.

Is it good that sumlist handles arithmetic structures, too?

Built-ins for lists, continued

CSC#372#Spring#2016,#Prolog#Slide#156#

Write a predicate sumGreater(+Target, -N, -Sum) that finds the

smallest N for which the sum of 1..N is greater than Target.

?- sumGreater(50, N, Sum).

N = 10,

Sum = 55 .

?- sumGreater(1000000, N, Sum).

N = 1414,

Sum = 1000405 .

Let's ignore Gauss's summation formula and have some fun with lists!

Sidebar: Developing a list-based predicate goal-by-goal

CSC#372#Spring#2016,#Prolog#Slide#157#

Step one: Have a goal that instantiates N to 1, 2, ...

?- between(1, inf, N). What's inf?

N = 1 ;

N = 2 ;

N = 3 ;

...

Step two: instantiate L to lists [1], [1,2], ...

?- between(1, inf, N), numlist(1, N, L).

N = 1,

L = [1] ;

N = 2,

L = [1, 2] ;

N = 3,

L = [1, 2, 3] ;

...

Sidebar, continued

CSC#372#Spring#2016,#Prolog#Slide#158#

Step three: Compute sum of 1..N.

?- between(1, inf, N), numlist(1,N,L), sumlist(L,Sum).

N = Sum, Sum = 1,

L = [1] ;

N = 2,

L = [1, 2],

Sum = 3 ;

...

Step four: Test sum against target value.

?- between(1, inf, N), numlist(1,N,L), sumlist(L,Sum), Sum > 20.

N = 6,

L = [1, 2, 3, 4, 5, 6],

Sum = 21 .

Note the incremental process followed, adding goals one-by-one and being

sure the results for each step are what we expect.

Sidebar, continued

CSC#372#Spring#2016,#Prolog#Slide#159#

Step four, for reference:
?- between(1, inf, N), numlist(1,N,L), sumlist(L,Sum), Sum > 20.
N = 6,
L = [1, 2, 3, 4, 5, 6],
Sum = 21 .

Step five: Package as a predicate.
$ cat sg.pl
sumGreater(Target,N,Sum) :-

 between(1,inf,N), numlist(1,N,L), sumlist(L,Sum), Sum > Target.

% swipl sg.pl
...
?- sumGreater(1000,N,Sum).
N = 45,
Sum = 1035 ;
N = 46,
Sum = 1081 ;

Is it good or bad that it produces alternatives?

Sidebar, continued

CSC#372#Spring#2016,#Prolog#Slide#160#

Here's atom_chars(?Atom, ?Charlist):

?- atom_chars(abc,L).

L = [a, b, c].

?- atom_chars(A, [a, b, c]).

A = abc.

Problem: write rev_atom/2. Hint: Write it as a test, the latter case.

?- rev_atom(testing,R).

R = gnitset.

?- rev_atom(testing,gnitset).

true.

Solution:

 rev_atom(A,RA) :-

 atom_chars(A,AL), reverse(AL,RL), atom_chars(RA,RL).

Built-ins for lists, continued

CSC#372#Spring#2016,#Prolog#Slide#161#

Problem: write eqlen(+A1,+A2), to test whether two atoms are the same

length.

?- eqlen(test,this).

true.

?- eqlen(test,it).

false.

Solution:

eqlen(A1,A2) :- atom_chars(A1,C1), length(C1,Len),

 atom_chars(A2,C2), length(C2,Len).

CSC#372#Spring#2016,#Prolog#Slide#162#

Built-ins for lists, continued

Note this vs. a Len1 == Len2 goal!

msort(+List, -Sorted) unifies Sorted with a sorted copy of List:

?- msort([3,1,7], L).

L = [1, 3, 7].

?- atom_chars(prolog, L), msort(L,S), atom_chars(A,S).

L = [p, r, o, l, o, g],

S = [g, l, o, o, p, r],

A = gloopr.

If the list is heterogeneous, elements are sorted in "standard order":

?- msort([xyz, 5, [1,2], abc, 1, 5, x(a)], Sorted).

Sorted = [1, 5, 5, abc, xyz, x(a), [1, 2]].

sort/2 is like msort/2 but also removes duplicates.

?- sort([xyz, 5, [1,2], abc, 1, 5, x(a)], Sorted).

Sorted = [1, 5, abc, xyz, x(a), [1, 2]].

Built-ins for lists, continued

CSC#372#Spring#2016,#Prolog#Slide#163#

member(?Elem, ?List) succeeds when Elem can be unified with a
member of List.

member can be used to check for membership:

?- member(30, [10, twenty, 30]).
true.

member can be used to generate the members of a list:

?- member(X, [10, twenty, 30]).
X = 10 ;
X = twenty ;
X = 30.

Problem: Print the numbers from 100 through 1. (Use member!)

?- numlist(1,100,L), reverse(L,R), member(E,R), writeln(E), fail.
100
99
...

The member predicate

CSC#372#Spring#2016,#Prolog#Slide#164#

Problem: Write a predicate has_vowel(+Atom) that succeeds iff Atom

has a lowercase vowel.

?- has_vowel(ack).

true

?- has_vowel(pfft).

false.

Solution:

has_vowel(Atom) :-

 atom_chars(Atom,Chars),

 member(Char,Chars),

 member(Char,[a,e,i,o,u]).

Explain it!

member, continued

CSC#372#Spring#2016,#Prolog#Slide#165#

Here's how the documentation describes append/3:

?- help(append/3).

append(?List1, ?List2, ?List1AndList2)

 List1AndList2 is the concatenation of List1 and List2

Usage:

?- append([1,2], [3,4,5], R).

R = [1, 2, 3, 4, 5].

?- numlist(1,4,L1), reverse(L1,L2), append(L1,L2,R).

L1 = [1, 2, 3, 4],

L2 = [4, 3, 2, 1],

R = [1, 2, 3, 4, 4, 3, 2, 1].

What else can we do with append?

The append predicate

CSC#372#Spring#2016,#Prolog#Slide#166#

What will the following do?

?- append(A, B, [1,2,3]).

A = [],

B = [1, 2, 3] ;

A = [1],

B = [2, 3] ;

A = [1, 2],

B = [3] ;

A = [1, 2, 3],

B = [] ;

false.

The query can be thought of as asking this:

 "For what values of A and B is their concatenation [1,2,3]?

append, continued

CSC#372#Spring#2016,#Prolog#Slide#167#

Think of append(L1,L2,L3) as demanding a relationship between the

three lists:

 L3 must consist of the elements of L1 followed by the elements of L2.

If L1 and L2 are instantiated, L3 must be their concatenation.

If only L3 is instantiated then L1 and L2 represent (in turn) all the possible

ways to divide L3.

What are the other possibilities?

Important:

We can do a lot of list processing by establishing constraints with

append (and other predicates) and asking Prolog to find cases when

those constraints are true.

append is the Swiss Army Knife of list processing in Prolog!

CSC#372#Spring#2016,#Prolog#Slide#168#

append, continued

Problem: Using append, write starts_with(?List, ?Prefix) that

expresses the relationship that List starts with Prefix.

?- starts_with([1,2,3,4], [1,2]).

true.

?- starts_with([1,2,3], L).

L = [] ;

L = [1] ;

L = [1, 2] ;

L = [1, 2, 3] ;

false.

Solution:

 starts_with(L, Prefix) :- append(Prefix, _, L).

What will the following do?

?- starts_with(Start, [1,2,3]).

Start = [1, 2, 3|_G1182].

append, continued

CSC#372#Spring#2016,#Prolog#Slide#169#

Problem: Write ends_with.

?- ends_with([a,b,c],[d,e]).

false.

?- ends_with([a,b,c],[b,c]).

true ;

false.

Solution:

ends_with(List, Suffix) :-

 append(_, Suffix, List).

Haskell meets Prolog:
take(L, N, Result) :-

 length(Result,N), append(Result, _, L).

?- take([1,2,3,4,5], 3, L).
L = [1, 2, 3].

?- take([1,2,3,4,5], N, L).
N = 0,
L = [] ;
N = 1,
L = [1] ;
N = 2,
L = [1, 2] ;
...

drop(L, N, Result) :-
 append(Dropped, Result, L), length(Dropped, N).

append, continued

CSC#372#Spring#2016,#Prolog#Slide#170#

Write sumsegs(+List, +N, -Sums), where Sums is a list with the sum of

the first N elements of List, then the sum of the next N, and so forth.

?- sumsegs([1, 2, 3, 4, 5, 6],2,R).

R = [3, 7, 11] ;

false.

?- sumsegs([1,2,3,4,5,6],4,R).

R = [10] ;

false.

?- sumsegs([1,2,3,4,5,6],7,R).

R = [] ;

false.

How can we approach it?

CSC#372#Spring#2016,#Prolog#Slide#171#

sumsegs (practice with append)

For reference:

?- sumsegs([1, 2, 3, 4, 5, 6], 2, R).

R = [3, 7, 11] ;

Solution:

% If fewer than N elements remain, produce an empty list.

sumsegs(List, N, []) :- length(List,Len), Len < N.

sumsegs(List, N, Sums) :-

 % Get the first N elements into Seg and compute their sum.

 length(Seg, N), append(Seg, Rest, List), sumlist(Seg, Sum),

 % Compute the sums for the rest of the list.

 sumsegs(Rest, N, RestOfSums),

 % Specify the result by forming a list whose first element is the

 % sum of the first segment followed by the sums for the rest of the list.

 append([Sum], RestOfSums, Sums).

CSC#372#Spring#2016,#Prolog#Slide#172#

sumsegs, continued

Key technique!

Here's a predicate that generates successive N-long chunks of a list:
chunk(L, N, Chunk) :-
 length(Chunk, N), append(Chunk, _, L).

chunk(L, N, Chunk) :-
 length(Junk, N), append(Junk, Rest, L), chunk(Rest, N, Chunk).

Usage:
?- chunk([1,2,3,4,5],2,L).
L = [1, 2] ;
L = [3, 4] ;
false.

?- numlist(1,100,L), chunk(L,5,C), sumlist(C,Sum), between(300,350,Sum).
L = [1, 2, 3, 4, 5, 6, 7, 8, 9|...],
C = [61, 62, 63, 64, 65],
Sum = 315 ;

L = [1, 2, 3, 4, 5, 6, 7, 8, 9|...],
C = [66, 67, 68, 69, 70],
Sum = 340 ;
false.

 Generation with append

CSC#372#Spring#2016,#Prolog#Slide#173#

Here's chunk again. How does it work?

chunk(L,N,Chunk) :-

 length(Chunk,N), append(Chunk,_,L).

chunk(L,N,Chunk) :-

 length(Junk, N), append(Junk,Rest,L), chunk(Rest,N,Chunk).

Consider the call chunk([a,b,c,d,e,f], 2, Chunk):

 The first clause produces the first N elements of L. (Chunk = [a,b])

The second clause first uses length and append to form a list Rest that is L

minus the first N elements (Rest = [c,d,e,f]).

The second clause then calls chunk([c,d,e,f], 2, Chunk), creating another

activation of chunk.

Its first clause will produce the first N elements of [c,d,e,f].

Its second clause will end up calling chunk([e,f], 2, Chunk) creating a

third activation of chunk.

Important: Note the similarity to odd on slide 144.

CSC#372#Spring#2016,#Prolog#Slide#174#

?- chunk([1,2,3,4,5],2,L).

L = [1, 2] ;

L = [3, 4] ;

false.

Recall sumsegs:

?- sumsegs([1, 2, 3, 4, 5, 6],2,R).

R = [3, 7, 11] ;

false.

Problem: Instead of producing a list, generate the sums:

?- gensums([1,2,3,4,5,6,7], 2, R).

R = 3 ;

R = 7 ;

R = 11 ;

false.

Solution:

gensums(List, N, Sum) :-

 chunk(List, N, Seg), sumlist(Seg, Sum).

Exercise: Write gensums without using chunk.

gensums (practice with generation)

CSC#372#Spring#2016,#Prolog#Slide#175#

"The concept encountered in [a8's] splits.pl is simple in hindsight, but

represents something pivotal to even vaguely understanding Prolog. There

was a moment several minutes ago when it finally struck me that append

is *not* a function, but some ephemeral statement of fact with several

combinations of conditions that satisfy it."

 ––Bailey Swartz, Spring '15

CSC#372#Spring#2016,#Prolog#Slide#176#

"Getting it" with append Next set of slides

Here are some examples with a new predicate, findall:

?- findall(F, food(F), Foods).

Foods = [apple, broccoli, carrot, lettuce, orange, rice].

?- findall(pos(N,X), nth0(N, [a,b,a,d,c], X), Posns).
Posns = [pos(0, a), pos(1, b), pos(2, a), pos(3, d), pos(4, c)].

?- findall(X, (between(1,100,X), X rem 13 =:= 0), Nums).

Nums = [13, 26, 39, 52, 65, 78, 91].

In your own words, what does findall do?

The findall predicate

CSC#372#Spring#2016,#Prolog#Slide#177#

For reference:

?- findall(F, food(F), Foods).

Foods = [apple, broccoli, carrot, lettuce, orange, rice].

SWI's documentation: (with a minor edit)

findall(+Template,#:Goal,#TList)#

Create#a#list#of#the#instanbabons#Template#gets#successively##on#

backtracking##over#Goal##and#unify#the#result#with#List.###Succeeds#

with#an#empty#list#if#Goal#has#no#solubons.#

#

Template is not limited to being a single variable. It might be a structure.

The second argument can be a single goal, or several goals joined with

conjunction.

The third argument is instantiated to a list of terms whose structure is

determined by the template. Above, each term is just an atom.

CSC#372#Spring#2016,#Prolog#Slide#178#

findall, continued

For reference:

 findall(+Template, :Goal, -Bag) (The colon in :Goal means"meta-argument")

Examples to show the relationship of the template and the resulting list:

?- findall(x, food(F), Foods).

Foods = [x, x, x, x, x, x].

?- findall(x(F), food(F), Foods).

Foods = [x(apple), x(broccoli), x(carrot), x(lettuce), x(orange), x(rice)].

?- findall(1-F, food(F), Foods).

Foods = [1-apple, 1-broccoli, 1-carrot, 1-lettuce, 1-orange, 1-rice].

What does findall remind you of?

Important:

findall is said to be a higher-order predicate. It's a predicate that takes a goal,

food(F) in this case.

findall, continued

CSC#372#Spring#2016,#Prolog#Slide#179#

Here's a case where :Goal is a conjunction of two goals.

?- findall(F-C, (food(F),color(F,C)), FoodsAndColors).

FoodsAndColors = [apple-red, broccoli-green, carrot-orange,

lettuce-green, orange-orange, rice-white].

display sheds some light on that conjunction:

?- display((food(F),color(F,C))).

,(food(_G835),color(_G835,_G838))

true.

The conjunction is a two-term structure whose functor is a comma.

findall, continued

CSC#372#Spring#2016,#Prolog#Slide#180#

,

food color

F F C

Original Thought from Noah Sleiman, Spring '14 :

An easy way to think of it when using the uninstantiated first term (to

find the elements of interest) is this:

 findall(What I call it, How I got it, Where I put it)

Another view:

•  Think of the template (the first argument) as a paper form with some

number of blanks to fill in.

•  Each time the goal produces a result, we fill out a copy of that form

and put it on the list.

•  A series of completed forms is the result of findall.

CSC#372#Spring#2016,#Prolog#Slide#181#

findall, continued

Food: ______

Color: _______

Food: apple

Color: red

Food: lettuce

Color: green

Food: orange

Color: orange

member and findall are somewhat inverses of each other.

If we want to generate values from a list, we can use member:

?- member(X, [a,b,c]).

X = a ;

X = b ;

X = c.

If we have a query that generates values, we can make a list with findall:

?- findall(X, member(X, [a,b,c]), Values).

Values = [a, b, c].

CSC#372#Spring#2016,#Prolog#Slide#182#

member vs. findall

Problem: Write a predicate sumlists that produces a list of the sums of

integer lists.

?- sumlists([[1,2], [10,20,30], []],Sums).

Sums = [3, 60, 0].

Recall sumlist:

?- sumlist([1,2,3],Sum).

Sum = 6.

Solution:

sumlists(Lists, Sums) :-

 findall(Sum, (member(List,Lists),sumlist(List,Sum)), Sums).

Note that findall's goal is a conjunction of two goals.

CSC#372#Spring#2016,#Prolog#Slide#183#

Practice with findall

Problem: Write a variant of sumlists that requires sums to meet a

minimum:

?- minsums([[10,20,30],[1,2,3],[50]], 25, Sums).

Sums = [sum([10, 20, 30], 60), sum([50], 50)].

?- minsums([[10,20,30],[1,2,3],[50]], 250, Sums).

Sums = [].

Note that the result is a list of structures holding both the list and its sum.

Solution:

minsums(Lists, Min, Sums) :-

findall(

 sum(List,Sum),

 (member(List,Lists),sumlist(List,Sum),Sum>=Min),

 Sums).

CSC#372#Spring#2016,#Prolog#Slide#184#

Practice with findall, continued

What's happening in the following query?

 ?- X=a, findall(X-Y, member(Y, [a,b,c]), Values), write(X-Y).

a-_G1095

X = a,

Values = [a-a, a-b, a-c].

The scope of variables created during a findall query is limited to that

query.

Above, X is bound prior to the findall and can be used in it.

The Y inside the findall is unrelated to the Y in write(X-Y).

CSC#372#Spring#2016,#Prolog#Slide#185#

A scoping issue with findall

Was X=Y

Typing in Prolog

CSC#372#Spring#2016,#Prolog#Slide#186#

Recall that with a statically typed language, the type of every variable and

expression can be determined by static analysis of code.

Is Prolog statically typed or dynamically typed? Or is it something else?

Wikipedia says, "Prolog is an untyped language." (4/19/16)

 Does Prolog not have types?

BCPL is sometimes described as an untyped language where all values are

word-sized objects.

Imagine a language where everything is a string. Is it untyped?

"A programming language is untyped if it allows [you] to apply any

operation on any data, and all datatypes are considered as sequences of

bits of various lengths."––http://progopedia.com/typing/untyped

CSC#372#Spring#2016,#Prolog#Slide#187#

Static or dynamic?

There are only two clear references to data types in C&M:

p. 28: "The functor names the general kind of structure, and corresponds to a

datatype in an ordinary programming language."

p. 122, under "Classifying Terms": If we wish to define predicates which will

be used with a wide variety of argument types, it is useful to be able to

distinguish in the definition what should be done for each possible type."

Covington has several references to types, including these:

p. 93: "Terms of this form are called STRUCTURES. The functor is always

an atom, but the arguments can be terms of any type whatever."

p. 130: "If number_codes is given a string that doesn't make a valid

number, or if either of its arguments is of the wrong type, it raises a runtime

error condition."

Another voice:

ISO Prolog's exception handling mechanism has a type_error(Type,Term)

structure.

CSC#372#Spring#2016,#Prolog#Slide#188#

The books say...

Let's see if any predicates concern types.

?- apropos(type).

...

integer/1 Type check for integer

rational/1 Type check for a rational number

number/1 Type check for integer or float

atom/1 Type check for an atom

blob/2 Type check for a blob

string/1 Type check for string

Can we produce a type error?

?- atom_length(a(1), Len).

ERROR: atom_length/2: Type error: `text' expected, found `a(1)'

 Could we find the above error with static analysis?

Bottom line: I'm comfortable saying that Prolog has types.

CSC#372#Spring#2016,#Prolog#Slide#189#

swipl says...

Again:

In a statically typed language, the type of every variable and

expression can be determined by static analysis of code.

Can we construct a Prolog program where a value's type cannot be

determined by looking at the code?

Here's such a program:

f('one'). f(a(1)).

prog :- f(X), random(2) > 0,

 atom_length(X, Len), writeln(Len).

The type of X depends on a random number

and thus varies from run to run.

Therefore, Prolog is dynamically typed!

CSC#372#Spring#2016,#Prolog#Slide#190#

Back to "statically typed or dynamically typed?"

?- prog.

3

true .

?- prog.

false.

?- prog.

ERROR: atom_length:

Type error: ...

Right?

Low-level list processing

CSC#372#Spring#2016,#Prolog#Slide#191#

The list [1,2,3] can be specified in terms of a head and a tail, like this:

[1 | [2, 3]]

More generally, a list can be specified as a sequence of initial elements and

a tail.

The list [1,2,3,4] can be specified in any of these ways:

[1 | [2,3,4]]

[1,2 | [3,4]]

[1,2,3 | [4]]

[1,2,3,4 | []]

General form: [E1, E2, ..., En | Tail]

Heads and tails

Haskell equivalents:

1:[2,3,4]

1:2:[3,4]

1:2:3:[4]

1:2:3:4:[]

CSC#372#Spring#2016,#Prolog#Slide#192#

Consider this unification:

?- [H|T] = [1,2,3,4].
H = 1,
T = [2, 3, 4].

What instantiations are produced by these unifications?

?- [X, Y | T] = [1, 2, 3].
X = 1,
Y = 2,
T = [3].

?- [X, Y | T] = [1, 2].
X = 1,
Y = 2,
T = [].

?- [1, 2 | [3,4]] = [H | T].
H = 1,
T = [2, 3, 4].

?- A = [1], B = [A|A].
A = [1],
B = [[1], 1].

Unifications with lists

CSC#372#Spring#2016,#Prolog#Slide#193#

Here's a rule that describes the relationship between a list and and its head:

head(L, H) :- L = [H|_].

The head of L is H if L unifies with a list whose head is H.

Usage:

?- head([1,2,3],H).
H = 1.

?- head([2],H).
H = 2.

?- head([],H).
false.

?- L = [X,X,b,c], head(L, a).
L = [a, a, b, c],
X = a.

Can we make better use of unification and define head/2 more concisely?

 head([H|_], H).
 The head of a list whose head is H is H.

Simple list predicates

CSC#372#Spring#2016,#Prolog#Slide#194#

Note the contrast between Haskell and Prolog:

Haskell:

 head is a function that produces the first element of a list.

Prolog:

head is a predicate that describes the relationship between a value and

the first element of a list.

In Prolog head can:

•  Produce the first element of a list.

•  See if the first element of a list is a given value.

•  Produce a list that will unify with any list whose head is a given

value.

CSC#372#Spring#2016,#Prolog#Slide#195#

Prolog vs. Haskell

Here is one way to define the built-in member/2 predicate:

member(X,L) :- L = [X|_].

member(X,L) :- L = [_|T], member(X, T).

Usage:

?- member(1, [2,1,4,5]).

true ;

false.

?- member(a, [2,1,4,5]).

false.

?- member(X, [2,1,4,5]).

X = 2 ;

X = 1 ;

X = 4 ;

X = 5.

Implementing member

CSC#372#Spring#2016,#Prolog#Slide#196#

For reference:

member(X,L) :- L = [X|_].

member(X,L) :- L = [_|T], member(X, T).

Problem: Define member more concisely.

member(X,[X|_]).

 X is a member of the list having X as its head

member(X,[_|T]) :- member(X,T).

 X is a member of the list having T as its tail if X is a member of T

Exercise: Following the example of slide 144, trace through how

member generates elements from a list, like this:

?- member(X, [a,b,c]).

X = a ;

X = b ;

...

member, continued

CSC#372#Spring#2016,#Prolog#Slide#197#

Problem: Define a predicate last(L,X) that describes the relationship

between a list L and its last element, X.

?- last([a,b,c],X).

X = c.

?- last([],X).

false.

?- last(L,last), head(L,first), length(L,2).

L = [first, last] .

last is a built-in predicate but here's how we'd write it.

last([X],X).

last([_|T],X) :- last(T,X).

Implementing last

CSC#372#Spring#2016,#Prolog#Slide#198#

Problem: Define a predicate allsame(L) that describes lists in which all elements
have the same value.

?- allsame([a,a,a]).
true

?- allsame([a,b,a]).
false.

?- L = [A,B,C], allsame(L), B = 7, write(L).
[7,7,7]
L = [7, 7, 7],
A = B, B = C, C = 7 .

?- length(L,5), allsame(L), head(L,x).
L = [x, x, x, x, x] .

Solution:
allsame([_]).
allsame([X,X|T]) :- allsame([X|T]).

allsame

Here's another way to test it:

?- allsame(L).

L = [_G1635] ;

L = [_G1635, _G1635] ;

L = [_G1635, _G1635, _G1635] ;

...

CSC#372#Spring#2016,#Prolog#Slide#199#

Write a predicate adjacent(?A, ?B, ?L) that expresses the relationship that
A and B are adjacent in the list L.

?- adjacent(3, 4, [1,2,3,4,5]).
true ;
false.

?- adjacent(a, X, [a,b,a,a,c,a]).
X = b ;
X = a ;
X = c ;
false.

?- adjacent(A,B,[1,2,3,4]).
A = 1, B = 2 ;
A = 2, B = 3 ;
A = 3, B = 4 ;
false.

CSC#372#Spring#2016,#Prolog#Slide#200#

adjacent

?- adjacent(A,B,L).

L = [A, B|_G28] ;

L = [_G30, A, B|_G28] ;

L = [_G30, _G36, A, B|_G28] ;

Solution: (hint––use append!)

 adjacent(A,B,L) :- append(_, [A,B|_], L).

Write a predicate sf_gen that generates elements from a list in this order:

 Second, first, fourth, third, sixth, fifth, ...

Usage:

?- sf_gen([a,b,c,d,e],X).

X = b ;

X = a ;

X = d ;

X = c ;

false. % doesn't produce e because it would break the pattern.

CSC#372#Spring#2016,#Prolog#Slide#201#

sf_gen

Solution:

% Produce the second element.

sf_gen([_,X|_], X).

% Produce the first element, if at least two.

sf_gen([X,_|_], X).

% Get rid of the first two elements and start all over.

sf_gen([_,_|T], X) :- sf_gen(T,X).

 sf_gen([a, b|[c,d,e]], X) :- sf_gen([c,d,e], X).

CSC#372#Spring#2016,#Prolog#Slide#202#

sf_gen, continued

?- sf_gen([a,b,c,d,e],X).

X = b ;

X = a ;

X = d ;

X = c ;

Problem: Implement a slight variant of the built-in numlist predicate.

?- numlist(5,10,L).

L = [5, 6, 7, 8, 9, 10].

?- numlist(5,1,L). % the built-in numlist fails for this case

L = [].

Solution, v1:

numlist(Low, High, []) :- Low > High, !.

numlist(Low, High, Result) :-

Next is Low + 1,

numlist(Next, High, Rest),

Result = [Low|Rest].

What happens if we remove the cut?

CSC#372#Spring#2016,#Prolog#Slide#203#

Implementing numlist

numlist(1,4, Result) :-

Next is 1 + 1,

numlist(2, 4, Rest),

 Rest gets bound to [2,3,4]

Result = [1|[2,3,4]].

Solution, v1:

numlist(Low, High, []) :- Low > High, !.

numlist(Low, High, Result) :-

Next is Low + 1,

numlist(Next, High, Rest),

Result = [Low|Rest].

How can we make better use of unification?

numlist(Low, High, []) :- Low > High, !.

numlist(Low, High, [Low|Rest]) :-

Next is Low + 1,

numlist(Next, High, Rest).

CSC#372#Spring#2016,#Prolog#Slide#204#

numlist, continued

Problem: Implement the built-in predicate delete.

?- delete([a,b,a,c,b,a], a, R).

R = [b, c, b].

Solution:

delete([], _, []).

delete([X|T], X, R) :- delete(T, X, R), !.

delete([E|T], X, [E|R]) :- delete(T, X, R).

How could we write it without a cut?

delete([], _, []).

delete([X|T], X, R) :- delete(T, X, R).

delete([E|T], X, [E|R]) :- E \== X, delete(T, X, R).

CSC#372#Spring#2016,#Prolog#Slide#205#

delete

Problem: Write a predicate that behaves like the built-in length/2.

?- length([],N).
N = 0.

?- length([a,b,c,d], N).
N = 4.

?- length(L,1).
L = [_G901] .

?- length(L,N).
L = [],
N = 0 ;
L = [_G913],
N = 1 ;
L = [_G913, _G916],
N = 2 ;
...

Implementing length

Solution:

length([], 0).

length([_|T], Len) :-

 length(T,TLen),

 Len is TLen + 1.

CSC#372#Spring#2016,#Prolog#Slide#206#

Recall the description of the built-in append predicate:

?T#help(append/3).#

append(?List1,#?List2,#?List1AndList2)#

####List1AndList2#is#the#concatenabon#of#List1#and#List2#

The usual definition of append:

append([], X, X).

append([X|L1], L2, [X|L3]) :- append(L1, L2, L3).

How does it work?

Note the similarity to ++ in Haskell:

 (++) [] rhs = rhs

 (++) (x:xs) rhs = x : (xs ++ rhs)

But, Haskell's ++ only lets us concatenate lists. Prolog's append

expresses a relationship between three lists.

Implementing append

CSC#372#Spring#2016,#Prolog#Slide#207#

At hand:

append([], X, X).

append([X|L1], L2, [X|L3]) :- append(L1, L2, L3).

?- trace, append([1,2,3],[a,b,c],X).

 Call: (8) append([1, 2, 3], [a, b, c], _G971) ? creep

 Call: (9) append([2, 3], [a, b, c], _G1097) ? creep

 Call: (10) append([3], [a, b, c], _G1100) ? creep

 Call: (11) append([], [a, b, c], _G1103) ? creep

 Exit: (11) append([], [a, b, c], [a, b, c]) ? creep

 Exit: (10) append([3], [a, b, c], [3, a, b, c]) ? creep

 Exit: (9) append([2, 3], [a, b, c], [2, 3, a, b, c]) ? creep

 Exit: (8) append([1, 2, 3], [a, b, c], [1, 2, 3, a, b, c]) ? creep

X = [1, 2, 3, a, b, c].

Note that all of the Exit: lines in the trace above show an append

relationship that's true.

CSC#372#Spring#2016,#Prolog#Slide#208#

Implementing append, continued

In fact, lists are structures:

?- display([1,2,3]).
.(1,.(2,.(3,[]))) % not in 7.2.3... !

Essentially, ./2 is the "cons" operation in Prolog.

By default, lists are shown using the [...] notation:

?- X = .(a, .(b,[])).
X = [a, b].

We can write member/2 like this:

member(X, .(X,_)).
member(X, .(_,T)) :- member(X,T).

What does the following produce?

?- X = .(3,4).
X = [3|4].

Lists are structures

A Lisp programmer would call this a "dotted-pair".

CSC#372#Spring#2016,#Prolog#Slide#209#

.

1 .

3

.

[]

2

=../2, spoken as "univ", expresses a relationship between structures and

lists:

?- f(a,b,c) =.. L.

L = [f, a, b, c].

?- f(a,g(c,d),e(f)) =.. L.

L = [f, a, g(c, d), e(f)].

?- 1*2+3/4 =.. L.

L = [+, 1*2, 3/4].

?- S =.. [writeln,hello], call(S).

hello

S = writeln(hello).

CSC#372#Spring#2016,#Prolog#Slide#210#

=..

Problem: Create a predicate functor that produces the functors in a binary

tree.

?- functor(1 * 2 + 3 / 4, F).

F = (+) ;

F = (*) ;

F = (/) ;

false.

Solution:

functor(S,F) :- S =.. [F|T], T \== [].

functor(S,F) :- S =.. [_,Left,_], functor(Left,F).

functor(S,F) :- S =.. [_,_,Right], functor(Right,F).

Which is the better name for this predicate, functor or functors?

CSC#372#Spring#2016,#Prolog#Slide#211#

"univ", continued

C&M 5e p.130 says,

The predicate "=.." (pronounced "univ" for historical reasons)...

I asked about it on the prolog channel on irc.freenode.net:

x77686d:#C&M#says#that#=..#is#called#"univ"#for#historical#reasons.##

Anybody#know#the#story#behind#that?#

dmiles:#for#a#long#bme#we#could#only#used#named#operators#

dmiles:#why#it#was#called#univ#instead#of#t2l#..#i#dont#know#

dmiles:#oh#unify#vector#

dmiles:#erl#v#in#prolog#means#array/vector##

#

The first edition of C&M (1981) has that same line...

CSC#372#Spring#2016,#Prolog#Slide#212#

Sidebar: "univ"

Database (knowledgebase)

manipulation

CSC#372#Spring#2016,#Prolog#Slide#213#

A Prolog program is a database of facts and rules.

The database can be changed dynamically by adding facts with assert/1
and deleting facts with retract/1.

A predicate to establish that certain things are foods:

makefoods :- % foods3.pl
 assert(food(apple)),
 assert(food(broccoli)), assert(food(carrot)),
 assert(food(lettuce)), assert(food(rice)).

Evaluating makefoods adds facts to the database:

?- food(F). ("positive-control" test—be sure no foods already!)
ERROR: toplevel: Undefined procedure: food/1

?- makefoods.
true.

?- findall(F, food(F), L).
L = [apple, broccoli, carrot, lettuce, rice].

assert and retract

CSC#372#Spring#2016,#Prolog#Slide#214#

A fact can be removed with retract:

?- retract(food(carrot)).

true.

?- food(carrot).

false.

retractall removes all matching facts.

?- retractall(food(_)).

true.

?- food(X).

false.

assert and retract, continued

CSC#372#Spring#2016,#Prolog#Slide#215#

If we query makefoods multiple times, it makes multiple sets of food
facts.

?- makefoods.
true.

?- makefoods.
true.

?- findall(F,food(F),Foods).
Foods = [apple, broccoli, carrot, lettuce, rice, apple, broccoli,
carrot, lettuce|...].

Let's start makefoods with a retractall to get a clean slate every time.

makefoods :-
 retractall(food(_)),
 assert(food(apple)),
 assert(food(broccoli)), assert(food(carrot)),
 assert(food(lettuce)), assert(food(rice)).

assert and retract, continued

CSC#372#Spring#2016,#Prolog#Slide#216#

Important: asserts and retracts are not undone with backtracking.

?- assert(f(1)), assert(f(2)), fail.

false.

?- f(X).

X = 1 ;

X = 2.

?- retract(f(1)), fail.

false.

?- f(X). A redo of retract(f(1)) did not restore f(1).

X = 2.

There is no ability to directly change a fact. Instead, a fact is changed by

retracting it and then asserting it with different terms.

assert and retract, continued

CSC#372#Spring#2016,#Prolog#Slide#217#

A rule to remove foods of a given color (assuming the color/2 facts are

present):

rmfood(C) :- food(F), color(F,C),

 retract(food(F)),

 write('Removed '), write(F), nl, fail.

Usage:

?- rmfood(green).

Removed broccoli

Removed lettuce

false.

?- findall(F, food(F), L).

L = [apple, carrot, rice].

The color facts are not affected—color(broccoli, green) and

color(lettuce,green) still exist.

assert and retract, continued

CSC#372#Spring#2016,#Prolog#Slide#218#

Here's a very simple calculator: (calc.pl)

?- calc.

> print.

0

> add(20).

> sub(7).

> print.

13

> set(40).

> print.

40

> exit.

true.

Note that the commands themselves are Prolog terms.

A simple calculator

CSC#372#Spring#2016,#Prolog#Slide#219#

A loop that reads and prints terms:
calc0 :- prompt(_, '> '),
 repeat, read(T), format('Read ~w~n', T), T = exit, !.

Interaction:

?- calc0.
> a.
Read a
> ab(c,d,e).
Read ab(c,d,e)
> exit.
Read exit
true.

How does the loop work?

prompt/2 sets the prompt that's printed when read/1 is called.

repeat/0 always succeeds. If repeat is backtracked into, it simply sends control
back to the right. (Think of its redo port being wired to its exit port.)

The predicate read(-X) reads a Prolog term and unifies it with X.

Simple calculator, continued

CSC#372#Spring#2016,#Prolog#Slide#220#

Partial implementation:
init :-

 retractall(value(_)),
 assert(value(0)).

do(set(V)) :-

 retract(value(_)),
 assert(value(V)).

do(print) :- value(V), writeln(V).

do(exit).

calc :-

 init, prompt(_, '> '),
 repeat, read(T), do(T), T = exit, !.

How can add(N) and sub(N) be implemented? (No repetitious code,
please!)

Simple calculator, continued

?- calc.

> print.

0

> add(20).

> sub(7).

> print.

13

> set(40).

> print.

40

> exit.

true.

CSC#372#Spring#2016,#Prolog#Slide#221#

add and subtract:

do(add(X)) :-

 value(V0),

 V is V0 + X,

 do(set(V)).

do(sub(X0)) :-

 X is -X0,

 do(add(X)).

Could sub be shortened to the following?

 do(sub(X)) :- do(add(-X)).

Try add(3+4*5), too.

Exercise: Add double and halve commands.

Simple calculator, continued

% Is this a nested call to set(V)?!

CSC#372#Spring#2016,#Prolog#Slide#222#

We can use facts like we might use a Java map or a Ruby hash.

Imagine a word tallying program in Prolog:

?- tally.
|: to be or
|: not to be ought not
|: to be the question
|: (Empty line ends the input.)

-- Results --
be 3
not 2
or 1
ought 1
question 1
the 1
to 3
true.

Word tally

CSC#372#Spring#2016,#Prolog#Slide#223#

read_line_to_codes produces a list of ASCII character codes for a line of input.

?- read_line_to_codes(user_input, Codes).
|: ab CD 12
Codes = [97, 98, 32, 67, 68, 32, 49, 50].

?- read_line_to_codes(user_input, Codes).
|: (hit ENTER)
Codes = [].

atom_codes can be used to form an atom from a list of codes.

?- atom_codes(Atom, [97, 98, 10, 49, 50]).
Atom = 'ab\n12'.

readline reads a line and produces an atom.

readline(Line) :-
 read_line_to_codes(user_input, Codes),
 atom_codes(Line, Codes).

?- readline(Line).
|: a test of this
Line = 'a test of this'.

Input handling for tally

CSC#372#Spring#2016,#Prolog#Slide#224#

Let's use word(Word, Count) facts to maintain counts.

Let's write a count(Word) predicate to create and update word/2 facts.

Example of operation:

?- retractall(word(_,_)).
true.

?- count(test).
true.

?- word(W,C).
W = test,
C = 1.

?- count(this), count(test), count(now).
true.

?- findall(W-C, word(W,C), L).
L = [this-1, test-2, now-1].

Counting words

CSC#372#Spring#2016,#Prolog#Slide#225#

For reference:

?- retractall(word(_,_)).

?- count(test), count(this), count(test), count(now).

?- findall(W-C, word(W,C), L).

L = [this-1, test-2, now-1].

Problem: Implement the predicate count.

count(Word) :-

 word(Word,Count0),

 retract(word(Word,_)),

 Count is Count0+1,

 assert(word(Word,Count)), !.

count(Word) :- assert(word(Word,1)).

count implementation

CSC#372#Spring#2016,#Prolog#Slide#226#

tally clears the counts then loops, reading lines and processing each.

tally :-

 retractall(word(_,_)),

 repeat,

 readline(Line),

 do_line(Line),

 Line == '', !, % note that '' is an empty atom

 show_counts.

How does tally terminate?

do_line breaks up a line into words and calls count on each word.

do_line('').

do_line(Line) :-

 atomic_list_concat(Words, ' ', Line), % splits Line on blanks

 member(Word, Words),

 count(Word), fail.

do_line(_).

Top-level and a helper

CSC#372#Spring#2016,#Prolog#Slide#227#

keysort/2 sorts a list of A-B structures on the value of the A terms.

?- keysort([zoo-3, apple-1, noon-4],L).

L = [apple-1, noon-4, zoo-3].

With keysort in hand we're ready to write

show_counts.

show_counts :-

 writeln('\n-- Results --'),

 findall(W-C, word(W,C), Pairs),

 keysort(Pairs, Sorted),

 member(W-C, Sorted),

 format('~w~t~12|~w~n', [W,C]), fail.

show_counts.

Full source is in tally.pl

Showing the counts

-- Results --
be 3
not 2

or 1
ought 1

question 1
the 1
to 3

CSC#372#Spring#2016,#Prolog#Slide#228#

What's a key difference between using Prolog facts and maps/hashes/etc.
to maintain word counts?

A hash or map can be passed around as a value, but Prolog facts are
fundamentally objects with global scope. The collection of word/2 facts
can be likened to a Ruby global, like $words = {}

If we wanted to maintain multiple tallies simultaneously we could add an
id of some sort to word facts.

Example: We might tally word counts for quotations in a document
separately from word counts for body content. Calls to count might look
like this,

 count(Type, Word)

and create facts like these:

word(quotes, testing, 3)
word(body, testing, 10)

Facts vs. Java maps, Ruby hashes, etc.

CSC#372#Spring#2016,#Prolog#Slide#229#

Consider a stack of blocks, each of which is uniquely labeled with a letter:

This arrangement could be represented with these facts:

Problem: Define a predicate clean that will print a sequence of blocks to remove
from the floor such that no block is removed until nothing is on it.

What's suitable sequence of removals for the above diagram?

 a, c, e, b, d, f, g
 Another: a, b, c, d, e, f, g.

Example: Unstacking blocks

a b

c d

g f e

floor

on(a,c). on(c,e). on(e,floor).

on(a,d). on(c,f). on(f,floor).

on(b,d). on(d,f). on(g,floor).

 on(d,g).

CSC#372#Spring#2016,#Prolog#Slide#230#

Here's one solution: (blocks.pl)

removable(B) :- \+on(_,B).

remove(B) :-

 removable(B),
 retractall(on(B,_)),
 format('Remove ~w\n', B).

remove(B) :-
 on(Above,B),
 remove(Above),
 remove(B).

clean :- on(B,floor), remove(B), clean, !.
clean :- \+on(_,_).

How long would in be in Java or Ruby?

Can we tighten it up?

Unstacking blocks, continued

a b

c d

g f e

floor

?- clean.

Remove a

Remove c

Remove e

Remove b

Remove d

Remove f

Remove g

true.

on(a,c). on(a,d). on(b,d). ...

CSC#372#Spring#2016,#Prolog#Slide#231#

A more concise solution:

clean :-
 on(Block,_), \+on(_,Block),
 format('Remove ~w\n', Block),
 retractall(on(Block,_)), clean, !.

clean :- \+on(_,_).

Output:
?- clean.
Remove a
Remove b
Remove c
Remove d
Remove e
Remove f
Remove g
true.

Unstacking blocks, continued

a b

c d

g f e

floor

Previous sequence:
?- clean.
Remove a
Remove c
Remove e
Remove b
Remove d
Remove f
Remove g
true.

on(a,c). on(a,d). on(b,d). ...

Find a block that's on something

and that has nothing on it, and

remove it.

Recurse, continuing as long as

there's a block that's on

something.

CSC#372#Spring#2016,#Prolog#Slide#232#

Pit-crossing Puzzle

CSC#372#Spring#2016,#Prolog#Slide#233#

Consider the problem of crossing over a series of pits using wooden

planks as bridges.

Here's a case with two pits:

----+ +--+ +-----
 | | | |
 | | | |

 +------+ +--+
 5 12 15 18

Pits are represented with pit/2 facts, with a starting position and a width:

pit(5,7) % Think of the interval as [5,12).

pit(15,3)

There may be any number of pit facts. Pits never overlap. Pits always

have some ground between them.

CSC#372#Spring#2016,#Prolog#Slide#234#

The problem

Here's a crossing of distance 20 with the sequence of planks [3, 10, 10]:

=== ==========

 ==========
----+ +--+ +-------

 | | | | ^
 | | | | 20
 +------+ +--+

 5 12 15 18

•  Planks must be placed so that both ends rest on solid ground, rather

than having an end over a pit.

•  Planks must extend continuously from a starting point to (or through)

a specified length.

CSC#372#Spring#2016,#Prolog#Slide#235#

The problem, continued

Planks are drawn with

vertical offsets to show

their widths.

Here's an invalid crossing, with the sequence [9, 11]:

=========
 ===========

----+ +--+ +----
 | | | | ^

 | | | | 20
 +------+ +--+
 5 12 15 18

It's invalid because the two planks meet over a pit, at distance 9.

•  A joint at distance D is considered to be over a pit if

 start-of-pit <= D < end-of-pit

•  Examples of over-pit distances for the above pits are 6, 10, and 17.

•  Valid joint starting positions include 4, 13, 14, and 19.

CSC#372#Spring#2016,#Prolog#Slide#236#

The problem, continued

[11,9] and [16,9] are

invalid crossings, too.

For reference, with two pits: pit(5,7) and pit(15,3):

----+ +--+ +-----
 | | | |

 | | | |
 +------+ +--+

 5 12 15 18

Our task is to write cross(+Distance, +Planks, -Solution).

?- cross(20, [10,10,3], S).

S = [3, 10, 10] .

?- cross(20, [9,11], S).

false.

?- cross(20, [1,2,4,5,5,9], S).

S = [4, 9, 1, 5, 2] .

CSC#372#Spring#2016,#Prolog#Slide#237#

The problem, continued

Distance D is over a pit if

 pit-start <= D < pit-end

At hand:

?- cross(20, [1,2,4,5,5,9], S).

S = [4, 9, 1, 5, 2] .

Let's start with a helper predicate:

layplanks(+Goal, +Supply, +Current, -Solution)

•  It succeeds if we can reach from the Current distance to the Goal

with the given Supply of planks.

•  Solution is instantiated to a suitable sequence of planks.

layplanks will be recursive. What's the base case?

layplanks(Goal, _, Current, []) :- Current >= Goal.

If we're at or past the goal distance, it takes no planks to reach the

goal distance.

?- layplanks(10, [3,1,5], 12, S).

S = [] .

CSC#372#Spring#2016,#Prolog#Slide#238#

layplanks

What should happen with a layplanks call like the following?

 ?- layplanks(20, [10,8,3], 0, S).

Pick a plank and see if we can add it to the solution.

•  If so, then solve from the new distance with the remaining planks

•  If not, pick a different plank.

•  If no plank works, fail.

What if we pick 10?

 We're over a pit!

What if we pick 3?

We're not over a pit, so we lay down the plank and see if we can go

from 3 to 20 with the remaining planks.

?- layplanks(20, [10,8], 3, S).

S = [10, 8]

CSC#372#Spring#2016,#Prolog#Slide#239#

layplanks, continued

----+ +--+ +----

 | | | |

 +------+ +--+

 5 12 15 18

For reference:

Pick a plank and see if we can add it to the solution.

•  If so, then solve from the new state with the remaining planks

•  If not, pick a different plank.

•  If no plank works, fail.

Current state:

?- layplanks(20, [10,8], 3, S).

What if we pick 8?

 We're over a pit! (3+8 == 11)

What if we pick 10?

 ?- layplanks(20, [8], 13, S).

 Picks 8 and does

 ?- layplanks(20, [], 21, S).

 S = [] .

CSC#372#Spring#2016,#Prolog#Slide#240#

layplanks, continued

----+ +--+ +----

 | | | |

 +------+ +--+

 5 12 15 18

We can see the sequence of calls and returns with a spy point:
?- spy(layplanks).

% Spy point on layplanks/4

true.

[debug] ?- layplanks(20, [10,8,3], 0, S).

 * Call: (7) layplanks(20, [10, 8, 3], 0, _G1566)? leap

 * Call: (8) layplanks(20, [10, 8], 3, _G1646)? leap

 * Call: (9) layplanks(20, [8], 13, _G1658)? leap

 * Call: (10) layplanks(20, [], 21, _G1664)? leap

 * Exit: (10) layplanks(20, [], 21, [])? leap

 * Exit: (9) layplanks(20, [8], 13, [8])? leap

 * Exit: (8) layplanks(20, [10, 8], 3, [10, 8])? leap

 * Exit: (7) layplanks(20, [10, 8, 3], 0, [3, 10, 8])?l

S = [3, 10, 8]

Note that once the recursion hits the base case, the solution is built tail-first as the

recursive calls to layplanks return.

CSC#372#Spring#2016,#Prolog#Slide#241#

The full sequence via a spy point

layplanks needs to pick a plank and know which planks are left.

We'll use the built-in select for that:

select(?Elem,#?List1,#?List2)#

####Is#true#when#List1,#with#Elem#removed,#results#in#List2.#

#

Example:

?- select(Plank, [10,8,3], Remaining).

Plank = 10,

Remaining = [8, 3] ;

Plank = 8,

Remaining = [10, 3] ;

Plank = 3,

Remaining = [10, 8] ;

false.

CSC#372#Spring#2016,#Prolog#Slide#242#

Writing layplanks

An implementation of select:

select(X, [X|T], T).

select(X, [H|T], [H|N]) :- select(X, T, N).

Recall our base case:

layplanks(Goal,_,Current,[]) :- Current >= Goal.

Now we're ready to write the recursive case:

layplanks(Distance, Planks, Current,) :-

 % Pick a plank.

 select(Plank, Planks, Remaining),

 % See how far it extends.

 NewEnd is Current + Plank,

 % Be sure we're not over a pit.

 \+over_pit(NewEnd), % todo!

 % Solve it from here with the remaining planks.

 layplanks(Distance, Remaining, NewEnd, MorePlanks).

CSC#372#Spring#2016,#Prolog#Slide#243#

Example: layplanks(20, [10,8,3], 0, S).

[Plank|MorePlanks]

Here's over_pit:

over_pit(N) :-

 pit(Start,Width),

 End is Start + Width,

 N >= Start, N < End.

Finally, cross calls layplanks with a current distance of zero to get things

started:

cross(Goal, Planks, Solution) :-

 layplanks(Goal, Planks, 0, Solution).

?- cross(20, [1,2,4,5,5,9], S).

S = [4, 9, 1, 5, 2] .

Experiment with this! It's in cross.pl.

CSC#372#Spring#2016,#Prolog#Slide#244#

Loose ends

==== = ==

 ========= =====

----+ +--+ +----

 | | | |

 +------+ +--+

 5 12 15 18

Key point:

A failure when attempting to place the very last plank may cause

backtracking across predicate calls all the way back through the choice

of the first plank!

Here's the general pattern for problems involving finding a valid sequence

of parts, steps, movements, etc.:

•  Pick one of the things to add to the solution

•  If it can be added, compute the new state.

•  If it can't be added, pick a different thing, or fail.

•  Solve it from the new state with the remaining things

Note that cross isn't very smart. It didn't even check to see if we had

enough planks to go the full distance, irrespective of the pits.

CSC#372#Spring#2016,#Prolog#Slide#245#

Backtracking makes this work!

Brick laying puzzle

CSC#372#Spring#2016,#Prolog#Slide#246#

Consider six bricks of lengths 7, 5, 6, 4, 3, and 5. One way they can be laid into

three rows of length 10 is like this:

Problem: Write a predicate laybricks that produces a suitable sequence of bricks

for three rows of a given length:

?- laybricks([7,5,6,4,3,5], 10, Rows).

Rows = [[7, 3], [5, 5], [6, 4]] ;

Rows = [[7, 3], [5, 5], [4, 6]] ;

Rows = [[7, 3], [6, 4], [5, 5]] .

?- laybricks([7,5,6,4,3,5], 12, Rows).

false.

In broad terms, how can we approach this problem?

Brick laying

7 3

5 5

6 4

CSC#372#Spring#2016,#Prolog#Slide#247#

layrow produces a sequence of bricks for a row of a given length:

?- layrow([3,2,7,4], 7, BricksLeft, Row).
BricksLeft = [2, 7],
Row = [3, 4] ;

BricksLeft = [3, 2, 4],
Row = [7] ;

BricksLeft = [2, 7],
Row = [4, 3] ;
false.

Implementation:
layrow(Bricks, 0, Bricks, []). % A row of length zero consists of no

 % bricks and doesn't touch the supply.

layrow(Bricks, RowLen, Left, [Brick|MoreBricksForRow]) :-

 select(Brick, Bricks, Left0),
 RemLen is RowLen - Brick, RemLen >= 0,
 layrow(Left0, RemLen, Left, MoreBricksForRow).

Helper layrow

CSC#372#Spring#2016,#Prolog#Slide#248#

Let's write lay3rows, which is hardwired for three rows:

lay3rows(Bricks, RowLen, [Row1,Row2,Row3]) :-
 layrow(Bricks, RowLen, LeftAfter1, Row1),

 layrow(LeftAfter1, RowLen, LeftAfter2, Row2),
 layrow(LeftAfter2, RowLen, LeftAfter3, Row3),
 LeftAfter3 = [].

Usage:
?- lay3rows([2,1,3,1,2], 3, Rows).
Rows = [[2, 1], [3], [1, 2]] ;
...
Rows = [[2, 1], [1, 2], [3]] ;
...

What is the purpose of LeftAfter3 = []?

How can we generalize it to N rows?

Three rows of bricks

CSC#372#Spring#2016,#Prolog#Slide#249#

laybricks(+Bricks, +NRows, +RowLen, ?Rows) works like this:
?- laybricks([5,1,6,2,3,4,3], 3, 8, Rows).
Rows = [[5, 3], [1, 4, 3], [6, 2]] .

?- laybricks([5,1,6,2,3,4,3], 8, 3, Rows).
false.

?- laybricks([5,1,6,2,3,4,3], 2, 12, Rows).
Rows = [[5, 1, 6], [2, 3, 4, 3]] .

?- laybricks([5,1,6,2,3,4,3], 4, 6, Rows).
Rows = [[5, 1], [6], [2, 4], [3, 3]] .

Implementation:

laybricks([], 0, _, []).

laybricks(Bricks, Nrows, RowLen, [Row|Rows]) :-
 layrow(Bricks, RowLen, BricksLeft, Row),
 RowsLeft is Nrows - 1,
 laybricks(BricksLeft, RowsLeft, RowLen, Rows).

N rows of bricks

CSC#372#Spring#2016,#Prolog#Slide#250#

At hand:

laybricks([], 0, _, []).

laybricks(Bricks, Nrows, RowLen, [Row|Rows]) :-

 layrow(Bricks, RowLen, BricksLeft, Row),

 RowsLeft is Nrows - 1,

 laybricks(BricksLeft, RowsLeft, RowLen, Rows).

laybricks requires that all bricks be used. How can we remove that

requirement?

 Modify the base case:

 laybricks(_, 0, _, []).

 ?- laybricks([4,3,2,1], 2, 3, Rows).

 Rows = [[3], [2, 1]] .

 We'll call this variant laybricks2.

N rows of bricks, continued

CSC#372#Spring#2016,#Prolog#Slide#251#

Some facts for testing:

b(1, [7,5,6,4,3,5]).
b(2, [5,1,6,2,3,4,3]).
b(3, [8,5,1,4,6,6,2,3,4,3,3,6,3,8,6,4]). % 6x12
b(4, [8,5,1,4,6,6,2,3,4,3,3,6,3,8,6,4,1]). % 6x12 with extra 1

We can query b(N, Bricks) to set Bricks to a particular list.

?- b(1,Bricks), laybricks(Bricks, 2, 10, Rows).
false.

?- b(1,Bricks), laybricks2(Bricks, 2, 10, Rows). % laybricks2

Bricks = [7, 5, 6, 4, 3, 5],
Rows = [[7, 3], [5, 5]] .

?- b(3,Bricks), laybricks(Bricks,6,12,Rows).
Bricks = [8, 5, 1, 4, 6, 6, 2, 3, 4|...],
Rows = [[8, 1, 3], [5, 4, 3], [6, 6], [2, 4, 3, 3], [6, 6], [8, 4]] .

Testing

laybricks(+Bricks, +NRows, +RowLen, ?Rows)

CSC#372#Spring#2016,#Prolog#Slide#252#

Let's try a set of bricks that can't be laid into six rows of twelve:

?- b(4,Bricks), laybricks(Bricks,6,12,Rows).
...[the sound of a combinatorial explosion]...
^CAction (h for help) ? abort
% Execution Aborted

?- statistics.
8.240 seconds cpu time for 74,996,337 inferences
...
true.

The speed of a Prolog implementation is sometimes quoted in LIPS—
logical inferences per second.

2006 numbers, for contrast:

?- statistics.
8.05 seconds cpu time for 25,594,610 inferences

Testing, continued

CSC#372#Spring#2016,#Prolog#Slide#253#

The Zebra Puzzle

CSC#372#Spring#2016,#Prolog#Slide#254#

The Wikipedia entry for "Zebra Puzzle" presents a puzzle said to have been first
published in the magazine Life International on December 17, 1962. The facts:

•  There are five houses.
•  The Englishman lives in the red house.
•  The Spaniard owns the dog.
•  Coffee is drunk in the green house.
•  The Ukrainian drinks tea.
•  The green house is immediately to the right of the ivory house.
•  The Old Gold smoker owns snails.
•  Kools are smoked in the yellow house.
•  Milk is drunk in the middle house.
•  The Norwegian lives in the first house.
•  The man who smokes Chesterfields lives in the house next to the man

with the fox.
•  Kools are smoked in the house next to the house where the horse is kept.
•  The Lucky Strike smoker drinks orange juice.
•  The Japanese smokes Parliaments.
•  The Norwegian lives next to the blue house.

The article asked readers, "Who drinks water? Who owns the zebra?"

The Zebra Puzzle

CSC#372#Spring#2016,#Prolog#Slide#255#

We can solve this problem by representing all the information with a set of goals
and asking Prolog to find the condition under which all the goals are true.

A good starting point is these three facts:

•  There are five houses.
•  The Norwegian lives in the first house.
•  Milk is drunk in the middle house.

Those facts can be represented as this goal:

 Houses = [house(norwegian, _, _, _, _), % First house
 _, % Second house
 house(_, _, _, milk, _), % Middle house
 _, _] % 4th and 5th houses

Instances of house structures represent knowledge about a house.

house structures have five terms: nationality, pet, smoking preference (remember,
it was 1962!), beverage of choice and house color.

Anonymous variables are used to represent "don't-knows".

Zebra Puzzle, continued

CSC#372#Spring#2016,#Prolog#Slide#256#

Some facts can be represented with goals that specify structures as

members of the list Houses, but with unknown position:

 The Englishman lives in the red house.

 member(house(englishman, _, _, _, red), Houses)

 The Spaniard owns the dog.

 member(house(spaniard, dog, _, _, _), Houses)

 Coffee is drunk in the green house.

 member(house(_, _, _, coffee, green), Houses)

How can we represent The green house is immediately to the right of the

ivory house.?

Zebra Puzzle, continued

CSC#372#Spring#2016,#Prolog#Slide#257#

At hand:
 The green house is immediately to the right of the ivory house.

Here's a predicate that expresses left/right positioning:

left_right(L, R, [L, R | _]).
left_right(L, R, [_ | Rest]) :- left_right(L, R, Rest).

Testing:

?- left_right(Left,Right, [1,2,3,4]).
Left = 1,
Right = 2 ;

Left = 2,
Right = 3 ;
...

Goal: left_right(house(_, _, _, _, ivory),

 house(_, _, _, _, green), Houses)

Zebra Puzzle, continued

CSC#372#Spring#2016,#Prolog#Slide#258#

We have these "next to" facts:

•  The man who smokes Chesterfields lives in the house next to the

man with the fox.

•  Kools are smoked in the house next to the house where the horse is

kept.

•  The Norwegian lives next to the blue house.

How can we represent these?

We can say that two houses are next to each other if one is immediately

left or right of the other:

next_to(X, Y, List) :- left_right(X, Y, List).

next_to(X, Y, List) :- left_right(Y, X, List).

Zebra Puzzle, continued

CSC#372#Spring#2016,#Prolog#Slide#259#

These "next to" facts are at hand:

•  The man who smokes Chesterfields lives in the house next to the

man with the fox.

•  Kools are smoked in the house next to the house where the horse is

kept.

•  The Norwegian lives next to the blue house.

The facts above expressed as goals:

next_to(house(_, _, chesterfield, _, _),

 house(_, fox, _, _, _), Houses)

next_to(house(_, _, kool, _, _),

 house(_, horse, _, _, _), Houses)

next_to(house(norwegian, _, _, _, _),

 house(_, _, _, _, blue), Houses)

Zebra Puzzle, continued

CSC#372#Spring#2016,#Prolog#Slide#260#

A few more simple house & member goals complete the encoding:

•  The Ukrainian drinks tea.

 member(house(ukrainian, _, _, tea, _), Houses)

•  The Old Gold smoker owns snails.

 member(house(_, snails, old_gold, _, _), Houses)

•  Kools are smoked in the yellow house.

 member(house(_, _, kool, _, yellow), Houses)

•  The Lucky Strike smoker drinks orange juice.

 member(house(_, _, lucky_strike, orange_juice, _),

 Houses)

•  The Japanese smokes Parliaments.

 member(house(japanese, _, parliment, _, _), Houses)

Zebra Puzzle, continued

CSC#372#Spring#2016,#Prolog#Slide#261#

A rule that comprises all the goals:

zebra(Zebra_Owner, Water_Drinker) :-
 Houses = [house(norwegian, _, _, _, _), _,
 house(_, _, _, milk, _), _, _],
 member(house(englishman, _, _, _, red), Houses),
 member(house(spaniard, dog, _, _, _), Houses),
 member(house(_, _, _, coffee, green), Houses),
 member(house(ukrainian, _, _, tea, _), Houses),
 left_right(house(_,_,_,_,ivory), house(_,_,_,_,green), Houses),
 member(house(_, snails, old_gold, _, _), Houses),
 member(house(_, _, kool, _, yellow), Houses),
 next_to(house(_,_,chesterfield,_,_),house(_, fox,_,_,_), Houses),
 next_to(house(_,_,kool,_,_), house(_, horse, _, _, _), Houses),
 member(house(_, _, lucky_strike, orange_juice, _), Houses),
 member(house(japanese, _, parliment, _, _), Houses),
 next_to(house(norwegian,_,_,_,_), house(_,_,_,_, blue), Houses),
 member(house(Zebra_Owner, zebra, _, _, _), Houses),
 member(house(Water_Drinker, _, _, water, _), Houses).

Note that the last two goals ask the questions of interest.

Zebra Puzzle, continued

CSC#372#Spring#2016,#Prolog#Slide#262#

The moment of truth:
?- zebra(_, Zebra_Owner, Water_Drinker).
Zebra_Owner = japanese,
Water_Drinker = norwegian ;
false.

The whole neighborhood:
?- zebra(Houses,_,_), member(H,Houses), writeln(H), fail.
house(norwegian,fox,kool,water,yellow)
house(ukrainian,horse,chesterfield,tea,blue)
house(englishman,snails,old_gold,milk,red)
house(spaniard,dog,lucky_strike,orange_juice,ivory)
house(japanese,zebra,parliment,coffee,green)
false.

Credit: The code above was adapted from sandbox.rulemaker.net/
ngps/119, by Ng Pheng Siong, who in turn apparently adapted it from
work by Bill Clementson in Allegro Prolog.

Zebra Puzzle, continued

CSC#372#Spring#2016,#Prolog#Slide#263#

Odds and ends

CSC#372#Spring#2016,#Prolog#Slide#264#

In the mid-1990s Dr. Collberg developed a system that is able to discover
the instruction set, registers, addressing modes and more for a machine
given only a C compiler for that machine.

The basic idea:

Use the C compiler of the target system to compile a large number of
small but carefully crafted programs and then examine the machine
code produced for each program to make inferences about the
architecture.

End result:

A machine description that in turn can be used to generate a code
generator for the architecture.

The system is written in Prolog. What makes Prolog well-suited for this
task?

Paper: http://www.cs.arizona.edu/~collberg/content/research/
papers/collberg02automatic.pdf

Collberg's Architecture Discovery Tool

CSC#372#Spring#2016,#Prolog#Slide#265#

The Prolog 1000 is a compilation of applications written in Prolog and
related languages. Here is a sampling of the entries:

AALPS

The Automated Air Load Planning System provides a flexible spatial
representation and knowledge base techniques to reduce the time
taken for planning by an expert from weeks to two hours. It
incorporates the expertise of loadmasters with extensive cargo and
aircraft data.

ACACIA

A knowledge-based framework for the on-line dynamic synthesis of
emergency operating procedures in a nuclear power plant.

ASIGNA

Resource-allocation problems occur frequently in chemical plans.
Different processes often share pieces of equipment such as reactors
and filters. The program ASIGNA allocates equipment to some given
set of processes. (2,000 lines)

The Prolog 1000

CSC#372#Spring#2016,#Prolog#Slide#266#

Coronary Network Reconstruction

The program reconstructs a three-dimensional image of coronary networks

from two simultaneous X-Ray projections. The procedures in the

reconstruction-labelling process deal with the correction of distortion, the

detection of center-lines and boundaries, the derivation of 2-D branch

segments whose extremities are branching, crossing or end points and the 3-D

reconstruction and display.

All algorithmic components of the reconstruction were written in the C

language, whereas the model and resolution processes were represented by

predicates and production rules in Prolog. The user interface, which includes

a main panel with associated control items, was developed using Carmen, the

Prolog by BIM user interface generator.

DAMOCLES

A prototype expert system that supports the damage control officer aboard

Standard frigates in maintaining the operational availability of the vessel by

safeguarding it and its crew from the effects of weapons, collisions, extreme

weather conditions and other calamities. (> 68,000 lines)

The Prolog 1000, continued

CSC#372#Spring#2016,#Prolog#Slide#267#

DUST-EXPERT
Expert system to aid in design of explosion relief vents in environments where
flammable dust may exist. (> 10,000 lines)

EUREX

An expert system that supports the decision procedures about importing and
exporting sugar products. It is based on about 100 pages of European
regulations and it is designed in order to help the administrative staff of the
Belgian Ministry of Economic Affairs in filling in forms and performing
other related operations. (>38,000 lines)

GUNGA CLERK

Substantive legal knowledge-based advisory system in New York State
Criminal Law, advising on sentencing, pleas, lesser included offenses and
elements.

MISTRAL

An expert system for evaluating, explaining and filtering alarms generated by
automatic monitoring systems of dams. (1,500 lines)

The full list is in prolog/Prolog1000.txt. Several are over 100K lines of code.

The Prolog 1000, continued

CSC#372#Spring#2016,#Prolog#Slide#268#

1. DOS-PROLOG
http://www.lpa.co.uk/dos.htm
2. Open Prolog
http://www.cs.tcd.ie/open-prolog/
3. Ciao Prolog
http://www.clip.dia.fi.upm.es/Software/Ciao
4. GNU Prolog
http://pauillac.inria.fr/~diaz/gnu-prolog/
5. Visual Prolog (PDC Prolog and Turbo Prolog)
http://www.visual-prolog.com/
6. SWI-Prolog
http://www.swi-prolog.org/
7. tuProlog
http://tuprolog.alice.unibo.it/
8. HiLog
ftp://ftp.cs.sunysb.edu/pub/TechReports/kifer/hilog.pdf
9. ?Prolog
http://www.lix.polytechnique.fr/Labo/Dale.Miller/
lProlog/
10. F-logic
http://www.cs.umbc.edu/771/papers/flogic.pdf
11. OW Prolog
http://www.geocities.com/owprologow/
12. FLORA-2
http://flora.sourceforge.net/
13. Logtalk
http://www.logtalk.org/

14. WIN Prolog
http://www.lpa.co.uk/
15. YAP Prolog
http://www.ncc.up.pt/~vsc/Yap
16. AI::Prolog
http://search.cpan.org/~ovid/AI-Prolog-0.734/lib/AI/
Prolog.pm
17. SICStus Prolog
http://www.sics.se/sicstus/
18. ECLiPSe Prolog
http://eclipse.crosscoreop.com/
19. Amzi! Prolog
http://www.amzi.com/
20. B-Prolog
http://www.probp.com/
21. MINERVA
http://www.ifcomputer.co.jp/MINERVA/
22. Trinc Prolog
http://www.trinc-prolog.com/

And 50 more!

Lots of Prologs

For a Fall 2006 honors section assignment Maxim Shokhirev was given the task

of finding as many Prolog implementations as possible in one hour. His results:

CSC#372#Spring#2016,#Prolog#Slide#269#

http://www.artima.com/forums/flat.jsp?forum=123&thread=182574
describes a "tiny Prolog in Ruby".

Here is member:

member[cons(:X,:Y), :X].fact
member[cons(:Z,:L), :X] <<= member[:L,:X]

Here's the common family example:

sibling[:X,:Y] <<= [parent[:Z,:X], parent[:Z,:Y], noteq[:X,:Y]]
parent[:X,:Y] <<= father[:X,:Y]
parent[:X,:Y] <<= mother[:X,:Y]

facts: rules with "no preconditions"
father["matz", "Ruby"].fact
mother["Trude", "Sally"].fact
...

query sibling[:X, "Sally"]
>> 1 sibling["Erica", "Sally"]

Ruby meets Prolog

CSC#372#Spring#2016,#Prolog#Slide#270#

In conclusion...

CSC#372#Spring#2016,#Prolog#Slide#271#

•  Parsing with definite clause grammars (slides 273-289 in the PDF)

•  More with...

•  Puzzle solving

•  Higher-order predicates

•  Expert systems

•  Natural language processing

•  Constraint programming

•  Look at Prolog implementation with the Warren Abstract Machine.

Continued study:

 More in Covington and Clocksin & Mellish.

 The Craft of Prolog by O'Keefe

 The Art of Prolog by Sterling and Shapiro

If we had a whole semester...

CSC#372#Spring#2016,#Prolog#Slide#272#

Parsing and grammars

Credit:(The(first(part(of(this(sec2on(borrows(heavily(from(chapter(

12(in(Covington.

CSC#372#Spring#2016,#Prolog#Slide#273#

Here is a grammar for a very simple language. It has four productions.

Sentence => Article Noun Verb

Article => the | a

Noun => dog | cat | girl | boy

Verb => ran | talked | slept

Here are some sentences in the language:

the dog ran
a boy slept
the cat talked

the, dog, cat, etc. are terminal symbols—they appear in the strings of the language.
Generation terminates with them.

Sentence, Article, Noun and Verb are non-terminal symbols—they can produce
something more.

Sentence is the start symbol. We can generate sentences by starting with it and
replacing non-terminals with terminals and non-terminals until only terminals remain.

A very simple grammar

CSC#372#Spring#2016,#Prolog#Slide#274#

Here is a simple parser for the grammar, expressed as clauses: (parser0.pl)

sentence(Words) :-
 article(Words, Left0), noun(Left0, Left1), verb(Left1, []).

article([the| Left], Left).
article([a| Left], Left).
noun([Noun| Left], Left) :- member(Noun, [dog,cat,girl,boy]).
verb([Verb|Left], Left) :- member(Verb, [ran,talked,slept]).

Usage:

?- sentence([the,dog,ran]).
true .

?- sentence([the,dog,boy]).
false.

?- sentence(S). % Generates all valid sentences
S = [the, dog, ran] ;
S = [the, dog, talked] ;
S = [the, dog, slept] ;
...

A very simple parser

Sentence => Article Noun Verb

Article => the | a

Noun => dog | cat | girl | boy

Verb => ran | talked | slept

CSC#372#Spring#2016,#Prolog#Slide#275#

For reference:
sentence(Words) :-

 article(Words, Left1), noun(Left1, Left2), verb(Left2, []).

article([the|Left], Left).
article([a| Left], Left).
noun([Noun|Left], Left) :- member(Noun, [dog,cat,girl,boy]).
verb([Verb|Left], Left) :- member(Verb, [ran,talked,slept]).

Note that the heads for article, noun, and verb all have the same form.

Let's look at a clause for article and a unification:

article([the|Left], Left).

?- article([the,dog,ran], Remaining).
Remaining = [dog, ran] .

If Words begins with the or a, then article(Words, Remaining) succeeds and
unifies Remaining with the rest of the list. The key idea: article, noun, and
verb each consume an expected word and produce the remaining words.

A very simple parser, continued

CSC#372#Spring#2016,#Prolog#Slide#276#

sentence(Words) :-

 article(Words, Left1), noun(Left1, Left2), verb(Left2, []).

A query sheds light on how sentence operates:

?- article(Words, Left1), noun(Left1, Left2),

 verb(Left2, Left3), Left3 = [].

Words = [the, dog, ran],

Left1 = [dog, ran],

Left2 = [ran],

Left3 = [] .

?- sentence([the,dog,ran]).

true .

Each goal consumes one word. The remainder is then the input for the

next goal.

Why is verb's result, Left3, unified with the empty list?

A very simple parser, continued

CSC#372#Spring#2016,#Prolog#Slide#277#

Here's a convenience predicate that splits up a string and calls sentence.

s(String) :-

 concat_atom(Words, ' ', String), sentence(Words).

sentence(Words) :-

 article(Words, Left1), noun(Left1, Left2), verb(Left2, []).

Usage:

?- s('the dog ran').

true .

?- s('ran the dog').

false.

A very simple parser, continued

CSC#372#Spring#2016,#Prolog#Slide#278#

Prolog's grammar rule notation provides a convenient way to express these

stylized rules. Instead of this,

sentence(Words) :-

 article(Words, Left0), noun(Left0, Left1), verb(Left1, []).

article([the| Left], Left).

article([a| Left], Left).

noun([Noun| Left], Left) :- member(Noun, [dog,cat,girl,boy]).

verb([Verb|Left], Left) :- member(Verb, [ran,talked,slept]).

we can take advantage of grammar rule notation and say this,

sentence --> article, noun, verb.

article --> [a]; [the].

noun --> [dog]; [cat]; [girl]; [boy].

verb --> [ran]; [talked]; [slept].

Note that the literals (terminals) are specified as singleton lists.

The semicolon is an "or". Alternative: noun --> [dog]. noun --> [cat]. ...

Grammar rule notation

This is Prolog source code, too!

CSC#372#Spring#2016,#Prolog#Slide#279#

$ cat parser1.pl
sentence --> article, noun, verb.
article --> [a]; [the].
noun --> [dog]; [cat]; [girl]; [boy].
verb --> [ran]; [talked]; [slept].

listing can be used to see the clauses generated for that grammar.

?- [parser1].
...

?- listing(sentence).
sentence(A, D) :- article(A, B), noun(B, C), verb(C, D).

?- listing(article).
article(A, B) :-
 (A=[a|B]
 ; A=[the|B]
).

Note that the predicates generated for sentence, article and others have an
arity of 2.

Grammar rule notation, continued

CSC#372#Spring#2016,#Prolog#Slide#280#

At hand: (a definite clause grammar)
sentence --> article, noun, verb.
article --> [a]; [the].
noun --> [dog]; [cat]; [girl]; [boy].
verb --> [ran]; [talked]; [slept].

?- listing(sentence).
sentence(A, D) :- article(A, B), noun(B, C), verb(C, D).

?- listing(article).
article(A, B) :- (A=[a|B]; A=[the|B]).

?- sentence([a,dog,talked,to,me], Leftover).
Leftover = [to, me] .

?- sentence([a,bird,talked,to,me], Leftover).
false.

Remember that sentence, article, verb, and noun are non-terminals. dog,
cat, ran, talked, are terminals, represented as atoms in singleton lists.

Grammar rule notation, continued

CSC#372#Spring#2016,#Prolog#Slide#281#

Below we've added a second term to the call to sentence, and mixed in a regular
rule for verb along with the grammar rule.

s(String) :- % parser1a.pl
 concat_atom(Words, ' ', String), sentence(Words,[]).

sentence --> article, noun, verb.
article --> [a]; [the].
noun --> [dog]; [cat]; [girl]; [boy].

verb --> [ran]; [talked]; [slept].
verb([Verb|Left], Left) :- verb0(Verb).

verb0(jumped). verb0(ate). verb0(computed).

?- s('a boy computed').
true .

?- s('a boy computed pi').
false.

Grammar rule notation, continued

CSC#372#Spring#2016,#Prolog#Slide#282#

We can insert ordinary goals into grammar rules by enclosing the goal(s) in curly

braces.

Here is a chatty parser that recognizes the language described by the regular

expression a*:

parse(S) :- atom_chars(S,Chars), string(Chars, []). % parser6.pl

string --> as.

as --> [a], {writeln('got an a')}, as.

as --> [], {writeln('empty match')}.

Usage:

?- parse(aaa).

got an a

got an a

got an a

empty match

true .

Goals in grammar rules

?- parse(aab).

got an a

got an a

empty match

empty match

empty match

false.

What if the as clauses are

swapped?

?- parse(aaa).

empty match

got an a

empty match

got an a

empty match

got an a

empty match

true.

CSC#372#Spring#2016,#Prolog#Slide#283#

We can add parameters to the non-terminals in grammar rules. The

following grammar recognizes a* and produces the length, too.

parse(S, Count) :- % parser6a.pl

 atom_chars(S,Chars), string(Count,Chars, []).

string(N) --> as(N).

as(N) --> [a], as(M), {N is M + 1}.

as(0) --> [].

Usage:

?- parse(aaa, N).

N = 3 .

?- parse(aaab, N).

false.

Parameters in non-terminals

CSC#372#Spring#2016,#Prolog#Slide#284#

Here is a grammar that recognizes aNb2Nc3N: (parser7a.pl)

parse(S,L) :- atom_chars(S,Chars), string(L, Chars, []).

string([N,NN,NNN]) -->

 as(N), {NN is 2*N}, bs(NN), {NNN is 3*N}, cs(NNN).

as(N) --> [a], as(M), {N is M+1}.
as(0) --> [].

bs(N) --> [b], bs(M), {N is M+1}.
bs(0) --> [].

cs(N) --> [c], cs(M), {N is M+1}.
cs(0) --> [].

?- parse(aabbbbcccccc, L).
L = [2, 4, 6] .

?- parse(aabbc, L).
false.

Can this language be described with a regular expression?

Parameters in non-terminals, continued

CSC#372#Spring#2016,#Prolog#Slide#285#

How could we handle aXbYcZ where X <= Y <= Z?

?- parse(abbbccc, L).
L = [1, 3, 3] .

?- parse(ccccc, L).
L = [0, 0, 5] .

?- parse(aaabbc, L).
false.

parse(S,L) :- atom_chars(S,Chars), string(L, Chars, []). % parser7b.pl

string([X,Y,Z]) --> as(X), bs(Y), {X =< Y}, cs(Z), {Y =< Z}.

as(N) --> [a], as(M), {N is M+1}.
as(0) --> [].

bs(N) --> [b], bs(M), {N is M+1}.
bs(0) --> [].

cs(N) --> [c], cs(M), {N is M+1}.
cs(0) --> [].

Parameters in non-terminals, continued

CSC#372#Spring#2016,#Prolog#Slide#286#

Problem: Write a parser that recognizes a string of digits and creates an integer
from them:

?- parse('4341', N).
N = 4341 .

?- parse('1x3', N).
false.

Solution:

parse(S,N) :- % parser8.pl
 atom_chars(S, Chars), intval(N,Chars,[]), integer(N).

intval(N) --> digits(Digits), { atom_number(Digits,N) }.

digits(Digit) --> [Digit], {digit(Digit)}.
digits(Digits) --> [Digit], {digit(Digit)},
 digits(More), {concat_atom([Digit,More],Digits)}.

digit('0'). digit('1'). digit('2'). ...

How do the digits(...) rules work?

Accumulating an integer

CSC#372#Spring#2016,#Prolog#Slide#287#

Consider a parser that recognizes lists consisting of positive integers and lists:

?- parse('[1,20,[30,[[40]],6,7],[]]').
true .

?- parse('[1,20,,[30,[[40]],6,7],[]]').
false.

?- parse('[1, 2 , 3]'). % Whitespace! How could we handle it?
false.

Implementation: (list.pl)

parse(S) :- atom_chars(S, Chars), list(Chars, []).

list --> ['['], values, [']'].
list --> ['['], [']'].

values --> value.
values --> value, [','], values.

value --> digits(_). % digits(...) from previous slide
value --> list.

A list recognizer

CSC#372#Spring#2016,#Prolog#Slide#288#

These parsing examples are far short of what's done in a compiler. The first phase

of compilation is typically to break the input into "tokens". Tokens are things like

identifiers, individual parentheses, string literals, etc.

Input text like this,

[1, [30+400], 'abc']

might be represented as a stream of tokens with this Prolog list:

[lbrack, integer(1), comma, lbrack, integer(30), plus, integer(400),

rbrack, comma, atom(abc), rbrack]

The second phase of compilation is to parse the stream of tokens and generate

code (traditional compilation) or execute it immediately (interpretation).

We could use a pair of Prolog grammars to parse source code:

•  The first one would parse character-by-character and generate a token

stream like the list above. (A scanner.)

•  The second grammar would parse that token stream.

"Real" compilation

CSC#372#Spring#2016,#Prolog#Slide#289#

CSC 372 Survey / Assignment 1; due
Tuesday, Jan 19 at 2:00pm
Thanks in advance for taking the time to work through all the questions below.

Several questions have a long list of checkboxes. If you click the text of your rst selection, you
can then use TAB to move through them, hitting a space to mark selections. Use SHIFT+TAB to
move backwards. TAB can be used to move between questions, too.

Note that when you click the Submit button at the end you'll have a chance to save a link that you
can use to revise your answers.

* Required

What is your name? (rst last) *

What is your NetID? *
Your NetID is your @email.arizona.edu address, like "jsmith", NOT your numeric student ID.

What computer science or programming classes have you taken here or elsewhere? Use the
"Other" box for any not listed or taken elsewhere. *

 127A

 127B

 196H

 227

 245

 252

 296

 335

 337

 345

 346

 352

 372

 391

 397C

 422

 425

 436

 437

 445

Edit this form

 447

 450

 452

 453

 460

 466

 473

 477

 496

 ECE 175

 ISTA 130

 ISTA 303

 ISTA 350

 ISTA 403

 Other:

Other than 372, what computer science or programming classes are you taking this semester? *
(Yes, some of these aren't offered this semester. I'm just too lazy to change this list each semester!)

 245

 252

 296

 335

 337

 345

 346

 352

 391

 397C

 422

 425

 433

 436

 437

 445

 452

 453

 460

 466

 473

 477

 496

 ECE 175

 ISTA 130

 ISTA 303

 ISTA 350

 No other CS courses this semester

 Other:

What's your preferred working environment? *

 Windows 7

 Windows 8

 Windows 10

 Mac OS X

 Linux

 Other:

If your preferred environment is Windows, do you have Cygwin or something similar installed?

 yes

 no

What text editors are in your "toolbox"? *
The editors of interest here are things like vim, Emacs, nano, Sublime, and Notepad++; NOT IDEs like
Eclipse, and NOT document preparation tools like Microsoft Word.

What's your preferred option for developing solutions for this class? *

 Work on CS department machines

 Work on my laptop or home computer, installing whatever packages are needed

 Some combination of the above

 Other:

Do you have a laptop? (Count a Chromebook as "yes".) *

 yes

 no

Do you typically keep a laptop open during class? *

 yes

 no

 it depends...

If we did in-class polls using a web app do you have a device you could easily use to participate in
those polls? *

 yes

 no

What's your preference for the frequency of assignments? *
Assume the total amount of work required is the same for both cases.

 An assignment every week

 An assignment every two weeks

 No preference

Would you rather have assignments regularly due on Thursday nights or Friday nights? *

 Thursday nights

 Friday nights

 No preference

If there were *suggested* reading assignments, how likely would you be to do them? *

 Very likely

 Somewhat likely

 Not very likely

What are the top three companies you'd like to work for someday? If you'd like to have your own
company, say "self".

Where do you consider yourself to be "from"? *

Tell me at least three things about yourself. Some possibilities: current employment, near-term
goals, post-graduation aspirations, hobbies, etc. *

Assuming you've seen the TV game show "Jeopardy!", what are three Jeopardy categories outside
the realm of computer science that you'd do well at?
(In other words, what are three non-CS areas in which you consider yourself knowledgable?)

In what languages can you (the reader) write a program to
print 1 through N?
Without consulting any documentation, nor asking others, nor Googling, etc., in what programming
languages could you write a program to print the integers from 1 through N?

Assume N is supplied by the user in a way of your choice, such as a command line argument, read
from keyboard or a le, a URL parameter, or from a GUI input element.

Assume you can edit/run/debug but there's no documentation whatsoever. Don't worry about error
checking or corner cases; assume you're on the Happy Path.

NOTE: Your answer is to be a list of languages, like "Java, Python". You are NOT being asked to
write any code!

*

In what languages can you (the reader) write a program to
reverse the order of input lines?
Same rules as the previous question, but instead of printing 1-N, read lines from the keyboard and at
end of le, print them out in reverse order: last line rst, rst line last (like tac(1), if you're familiar
with that).

NOTE: Again, your answer is to be a list of languages, like "Java, Python". You are NOT being asked
to write any code!

*

How comfortable are you with recursive functions/methods? *

 Very comfortable. I fully understand the idea of recursive code.

 I've written some recursive functions/methods but recursion is still a little sketchy to me.

 I've never written a recursive function/method.

 I don't know what "recursive function" means.

Self-rating of skills
For each of the following languages/technologies/systems/packages rate your skill on this 0-5
scale:

 0: I've done nothing or almost nothing with it
 1: I've read and/or experimented with it a little but spent probably less than a day with it
 2: I can do a few things with it but there's lots I don't know
 3: I'm in the middle, knowledge-wise
 4: I am skilled with it
 5: I consider myself to be an expert on it

If you used a language in the past but are rusty with it now, rate your skill as it was at your peak with
it.

Programming in general *

0 1 2 3 4 5

Java *

0 1 2 3 4 5

C *

0 1 2 3 4 5

C++ (the part that's not in C) *

0 1 2 3 4 5

Haskell *

0 1 2 3 4 5

Ruby *

0 1 2 3 4 5

Prolog *

0 1 2 3 4 5

Python *

0 1 2 3 4 5

JavaScript *

0 1 2 3 4 5

PHP *

0 1 2 3 4 5

Objective-C *

0 1 2 3 4 5

Are you a "2" or better on any other programming languages?

If you'd rate yourself a 2 or better on any other programming languages, list them here and rate yourself on
each.

UNIX command line tools *

0 1 2 3 4 5

Regular expressions *

0 1 2 3 4 5

Microsoft Windows (any version >= XP) *

0 1 2 3 4 5

Mac OS X *

0 1 2 3 4 5

Linux (any distro) *

0 1 2 3 4 5

Which of these programming languages have you
previously heard of?

The following is a long list of programming languages. If you'd ever heard of the language BEFORE
the rst 372 lecture (or this survey), no matter whether you know anything at all about it, check
the box for it. *

 ActionScript

 Ada

 ALGOL

 APL

 Arc

 awk

 BASIC

 BCPL

 "BF"

 C

 C++

 C#

 Ceylon

 Clojure

 COBOL

 CoffeeScript

 D

 Dart

 Delphi (Object Pascal)

 Dylan

 Eiffel

 Erlang

 F#

 Forth

 Fortran

 Go

 Groovy

 Hack

 Haskell

 Icon

 INTERCAL

 JavaScript

 LabVIEW

 Leda

 Limbo

 Lisp

 LOBOL

 Lua

 MATLAB

 Miranda

 ML

 Objective-C

 Pascal

 perl

 PHP

 PL/I

 Plankakul

 Prolog

 Python

 R

 Ratfor

 Ruby

 Rust

 Scala

 Scheme

 Short Code

 SIMULA

 Smalltalk

 SNOBOL4

 SR

 Swift

 Tcl

 WhereLQ

 Y

 None of the above

STRICTLY OPTIONAL, for those who have NOT had a class with me before: Tell me one thing
you've heard about me. :)

If there's anything else you'd like to say at the moment, say it here! :)

Never submit passwords through Google Forms.

Powered by This content is neither created nor endorsed by Google.

Report Abuse Terms of Service Additional Terms

CSC 372, Spring 2016

Assignment 2

Due: Friday, January 29 at 23:59:59

Introduction

There's no programming at all on this assignment. It's a combination of web research (for two problems),

creative thought, pondering, and a little writing.

For each problem you are to answer via a plain ASCII text file. Use an editor like Sublime, Vim, Emacs,

Notepad++, etc. DO NOT submit Word documents, PDFs, Rich Text files, HTML documents, etc. As a

double-check, your .txt files should look perfectly fine when displayed with cat on lectura, and the

file command should show them as "ASCII text" or maybe "ASCII English text", or

something similar.

Important: You'll be using a bash script on lectura to turn in your work. I recommend you give the

submission process a try well before the deadline, in case you have trouble with it. See page 4.

Problem 1. (6 points) morefacts.txt

When covering slide 24 in the intro set (http://www.cs.arizona.edu/classes/cs372/spring16/intro.pdf) I

said a sentence or two about various languages of interest. For this problem I'd like you to find three

languages that are not mentioned on that slide and tell me a sentence or two about each.

I'll compile all the answers and post them on Piazza. Follow this format for your answers:

(1) The full response for each language should be a single line of text.

(2) Begin the line with the language's name followed by the year it appeared and then a colon,

followed by one or more sentences with whatever you want to say.

(3) End each line with an attribution that is either your name or "anonymous".

As examples of both the format and the sort of thing I'm looking for, here are three of mine, one with

anonymous attribution. I'll use cat to display my morefacts.txt and then wc -l to demonstrate

it's only three lines:

% cat morefacts.txt
Ada 1980: The DoD's attempt to have one language for military embedded systems,
instead of 450. -- William Mitchell
Java 1995: The most rapidly adopted language of all time. In Spring 1997 I gave
one lecture in 372 about Java as a rising language; by Fall 1998 it was being taught
in 127A. -- William Mitchell
Scala 2003: Proof that Germans should stick to beer and BMWs. -- anonymous

% wc -l morefacts.txt
3 morefacts.txt

Feel free to use Google, Wikipedia, etc., for research on this question but needless to say, no posts

anywhere soliciting ideas.

Above I say, "the year it appeared" but that's often subject to debate. Feel free to believe Wikipedia or go

with other sources.

Just to be clear, you may use anonymous attribution to keep your classmates from knowing you wrote a

particular entry but what you submit must be original, not something you found on the net.

Page 1 of 5

http://www.cs.arizona.edu/classes/cs372/spring16/intro.pdf

Problem 2. (6 points) jp.txt

Slide 35 in the intro set raises the idea of the philosophy of a language. In a nutshell, I think of the

philosophy of a language as what it treats as important, or not. For this problem I'd like you to identify

three elements of the philosophy of Java.

For this problem it's fine to brainstorm with CLASSMATES, Google for "what is the philosophy

of java", etc., but what you submit must be stated in your own words.

A piece of "low-hanging fruit" in Java's philosophy that I'm hereby prohibiting you to use is support for

object-oriented programming. If it were not prohibited, here's what you might have said about that

element:

Java supports the object-oriented paradigm by providing classes and inheritance. The "abstract"

keyword allows classes and methods to be marked as abstract. The "static" keyword, although

poorly named, supports the concept of class variables and methods.

Problem 3. (3 points) measure.txt

Slide 27 in the intro set cites some attempts to measure language popularity. Some use simple measures,

such as new GitHub repositories and job postings. The TIOBE index is more complicated.

http://www.code2015.com was a simple tweet-based survey.

For this problem I'd like you to invent another simple way to measure language popularity. For example

you might say, "Stand at the intersection of Speedway and Campbell and count programming

language-specific bumper stickers." That's not a bad first thought, but I'd be worried about a dearth of

data points and not be inclined to award that idea full credit.

Along with describing your idea, mention any weaknesses you see with it. For example, a weakness with

code2015.com was that it wasn't widely known. Another is that such polls are subject to inflation by

promotion of it within user communities. (Just for fun: see if you see any code2015.com results that

seem way out of line. There was a code 2014.com, too, with more participation.)

No web research or discussion with anybody else for this problem, please. It's just you and your

brain on this one.

Any ideas that make me say "Wow!" will earn a point of extra credit.

If you should find yourself completely blank for an idea 48 hours prior to the deadline, ask me for a hint.

Problem 4. (2 points) negative.txt

Java's String.charAt() method allows strings to be indexed from the left end of the string but not

the right end of the string—s.charAt(0) is the first character, but we need to write something like

s.charAt(s.length()-1) to get the last character. In contrast, many languages interpret negative

string indices as being right-relative: -1 is the last character, -2 is next to last, etc.

For this problem you are to imagine you're designing a new language and you are currently considering

whether to support negative indexing for strings. Present an argument that's either in favor of negative

indexing, or against it.

Page 2 of 5

http://www.code2015.com

Problem 5. (1 point) javarepl.txt

http://www.javarepl.com is a REPL for Java. Spend a few minutes experimenting with it and write a

few sentences about it. You might talk about what you liked, what you expected to work but didn't, what

you'd like to change, etc.

Problem 6. (ZERO points) quickrepl.txt

After working with languages that have a REPL available, you may find yourself really wanting a REPL

when you go to learn a language that doesn't have one. One approach to a REPL is to integrate it with a

language's implementation, but that typically requires a good understanding of that implementation.

Another approach is a completely standalone REPL, such as provided by javarepl.com, but that can

require a lot of code—wc shows about 8,000 lines in Java source files for that system.

For this problem your challenge is to come up with a quick approach to write a simple REPL for a

language. Your quick REPL needn't be nearly as good as ghci but it should be able do the sorts of

things you do when learning a language, such as evaluating expressions and showing types. Think about

an approach that provides a lot of functionality for relatively little effort—something you could

implement in a day, and not be late for dinner.

I'm not asking you to write any code for this problem; just write a description of how you might quickly

produce a simple REPL for a language of your choice.

Note: This is a hard problem that requires some creativity and cleverness, so I'm making it worth zero

points, but I'm curious to see who'll do it anyway! For this problem you are free to work in any groups of

any size, but for me to possibly be impressed with your answer you'll have to specifically state that you

came up with whatever you did all by yourself/yourselves—no Googling.

If you work in a group, all members may submit identical copies of quickrepl.txt, but it should

include list of group members.

Problem 7. Extra Credit observations.txt

Submit a plain text file named observations.txt with...

(a) (1 point extra credit) An estimate of how long it took you to complete this assignment. To facilitate

programmatic extraction of the hours from all submissions have an estimate of hours on a line by itself,

more or less like one of the following three examples:

Hours: 6
Hours: 3-4.5
Hours: ~8

If you want the one-point bonus, be sure to report your total (estimated) hours on a line that starts with

"Hours:". There must be only one "Hours:" line in observations.txt. It's fine if you care to

provide per-problem times, and that data is useful to us, but report it in some form of your own invention,

not with multiple lines that contain "Hours:", in either upper- or lower-case.

Other comments about the assignment are welcome, too. Was it too long, too hard, too detailed? Speak

up! I appreciate all feedback, favorable or not.

(b) (1-3 points extra credit) Cite an interesting course-related observation (or observations) that you made

while working on the assignment. The observation should have at least a little bit of depth. Think of me

Page 3 of 5

http://www.javarepl.com

saying "Good!" as one point, "Excellent!" as two points, and "Wow!" as three points. I'm looking for

quality, not quantity.

Turning in your work

Here's the full list of deliverables for this assignment

morefacts.txt
jp.txt
measure.txt
negative.txt
javarepl.txt

quickrepl.txt (zero points—it's optional!)

observations.txt (for extra credit)

 Note that all characters in the file names are lowercase.

Do not include your name, NetID, etc. in your .txt files—I like reading answers without knowing who

wrote them.

The bash script /cs/www/classes/cs372/spring16/a2/turnin (on lectura) should be used

to turn in your work. It creates a time-stamped tar file that contains the expected files and then uses the

system-wide turnin program to actually turn in that tar file.

I recommend that you create a symbolic link named a2 that references the

/cs/www/classes/cs372/spring16/a2 directory. Here's a command that creates such a link:

ln -s /cs/www/classes/cs372/spring16/a2 .

(Yes, that final argument, a dot to specify that the symbolic link be made in the current directory, can be

omitted.) If you haven't worked with symbolic links, slides 134+ in my 352 UNIX slides, on the Piazza

resources page, talk about them.

Assuming you've made that symbolic link, you should see something like the following when you run

a2/turnin:

% a2/turnin
Warning: quickrepl.txt not found
======== contents of a2.20160118.143419.tz ========
-rw-r--r-- whm/whm 521 2016-01-18 14:00 morefacts.txt
-rw-r--r-- whm/whm 692 2016-01-18 14:00 jp.txt
-rw-r--r-- whm/whm 535 2016-01-18 14:00 measure.txt
-rw-r--r-- whm/whm 880 2016-01-18 14:00 negative.txt
-rw-rw-r-- whm/whm 188 2016-01-18 14:00 javarepl.txt
-rw-r--r-- whm/whm 353 2016-01-18 14:00 observations.txt
======== running turnin ========
Turning in:
 a2.20160118.143419.tz -- ok
All done.

Note that the first line of output, "Warning: quickrepl.txt not found", indicates that a

deliverable was not found. We'll imagine that since that quickrepl.txt is a zero-point problem, the

student elected not to do it.

Page 4 of 5

After that warning, the contents of the tar file, named a2.20160118.143419.tz, are shown.

Finally, the system-wide turnin program is run and its output is shown.

You can run a2/turnin as often as you want. We'll grade your final non-late submission.

We can add a -ls option to a2/turnin to show what's been turned in:

% a2/turnin -ls
.:
total 4
-rw-rw---- 1 whm whm 1878 Jan 18 14:34 a2.20160118.143419.tz

If a submission is late, i.e., it shows a date of January 30 or later, it will be ignored unless you mail

to 372s16 with some reason as to why it was late.

Miscellaneous

Point values of problems correspond directly to assignment points in the syllabus. For example, a 10-

point problem would correspond to 1% of your final grade in the course.

Remember that late assignments are not accepted, and that there are no late days; but if circumstances

beyond your control interfere with your work on this assignment, there may be grounds for an extension.

See the syllabus for details.

Page 5 of 5

CSC 372, Spring 2016

Assignment 3

Due: Friday, February 12 at 23:59:59

Introduction

Some of you may find this to be one of the hardest programming assignments you've ever had. Others may

find it to be very easy. I recommend that you start on this assignment as soon as possible, in case you

happen to fall into that first group. Remember that as the syllabus states, late work is not accepted and

there are no "late days", but I will consider extensions for circumstances beyond your control.

The Haskell slides through 193 show you all the elements of Haskell you need for this assignment, but the

two sections that follow in the slides, "Larger Examples" and "Errors" (ending around 230), will broaden

your understanding.

I refer to assignments as "aN". This assignment is a3. This document is the "a3 write-up".

My assignment write-ups are a combination of education, specification, and guidance. My goal is to

produce write-ups that need no further specification or clarification. That goal is rarely achieved. If you

have questions you can either mail to 372s16 or post to Piazza using the appropriate aN folder.

This assignment has a long preamble that covers a variety of topics, including the "Tester", a symlink that

you need to create, some warnings about old solutions for recycled problems, a very important section on

assignment-wide restrictions, and more. You might be inclined to skip all that stuff and get right to the

problems, but I recommend you carefully read the preliminary material.

Use the "Tester"!

The syllabus says,

For programming problems great emphasis will be placed on the ability to deliver code whose output

exactly matches the specification. Failing to achieve that will typically result in large point deductions,

sometimes the full value of the problem.

I'll provide a tester—a testing script—that you can use to confirm that the output of each of your solutions

for the programming problems exactly matches the expected output for a number of test cases.

Don't just "eyeball" your output—use the tester! I won't have any sympathy for those who fail tests

during grading simply because they didn't want to bother with the tester! However, we'll be happy to help

you with using the tester and understanding its output.

The tester is described in the document Using the Tester, on the Piazza resources page.

Create a symbolic link to my a3 directory

For each assignment there will be subdirectory of /cs/www/classes/cs372/spring16 with

assignment-specific files. Those directories will be named a2, a3, etc.

This write-up assumes your assignment 3 directory on lectura has an a3 symlink (symbolic link) that

references the directory /cs/www/classes/cs372/spring16/a3. For example, you'll run the

tester with the script a3/tester and submit your work with a3/turnin.

Page 1 of 18

Some of you may not have worked with symbolic links, so here's a little detail on what you need to do.

First, let's imagine that you've made a 372 directory in your home directory, /home/YOURNETID, and

that in that directory you've made an a3 directory. (You can do both with "mkdir -p ~/372/a3".)

Next, go to your 372/a3 directory and then make a symlink to spring16/a3:

% cd ~/372/a3
% ln -s /cs/www/classes/cs372/spring16/a3

Then check the link with ls:

% ls -l a3

That lowercase "L" at the start of the line indicates a symbolic link, and a3 -> ... shows what the

symbolic link a3 references. If you do "ls a3", "cat a3/delivs", etc., you'll actually be operating

on /cs/www/classes/cs372/spring16/a3 and files therein.

Let us know if you have trouble with this!

Don't post Piazza questions with pieces of solutions!

Just so there's no doubt about it, IT IS STRICTLY PROHIBITED TO POST PIECES OF SOLUTIONS,

whether they work or not.

If you can boil code down to a generic question, like "Why doesn't "f _ = _" compile?" or "Is there a

function that produces the maximum value of a list of numbers?", that's ok.

If code has any trace of the problem or it conveys or implies anything about a solution, DON'T POST IT.

A good rule of thumb is this: If it's apparent what problem some code is related to, that code shouldn't be

posted.

If you have even a minor concern that a Piazza post may reveal too much, mail to 372s16 instead!

Recycling of problems from past semesters

When I first started teaching here at The University of Arizona my aim was to come up with a great new

set of problems for each assignment each time I taught a class. Maybe I just got old but I eventually found

I couldn't keep up with that standard. I noticed that sometimes an old problem was simply better than a new

one. I began to reconsider my "all new problems every semester" goal and started thinking about questions

like these: Is there an ideal set of problems to teach a set of concepts? How should a teacher's time be

balanced between writing new problems and other responsibilities, like working with students and

improving lecture material? If creative efforts fail is it better to recycle a good problem or go with a new

one that's lesser just so that students won't be tempted to consult an old solution? To make a long story

short, I do recycle some problems from past semesters.

If you should come into possession of a solution from a past semester, whether it be from "homework help"

site on the net, a friend who took the class, or some other source, let me encourage you to discard it! For

one thing, I sometimes put dunsels in my solutions. I'd like to distribute solutions with perfectly clean and

idiomatic code but I've found that an extra part that sticks out like a sore thumb (and that the lazy don't

tend to notice!) helps me eliminate students who find and reuse my solutions. If you notice a silly extra in

my code, try removing it and see if things still work. If so, you've perhaps found a dunsel!

Page 2 of 18

While I'm talking about disincentives for cheating I'll also mention that I keep a copy of all former students'

submissions for a given problem. We use tools like MOSS to look for suspicious similarities both in the

set of this semester's submissions and in that set combined with submissions from any previous semesters

when the problem was used.

Remember my cheating policy: one strike and you're out!

Don't forget what you already know about programming!

A key to success in this class is not forgetting everything you've learned about programming just

because you're working in a new language. The skills you've learned in other classes for breaking

problems down into smaller problems will serve you well in Haskell, too. On the larger problems,

particularly street and editstr, look for small functions to write first that you can then build into

larger functions. Test those functions one at a time, as they're written.

If you don't see the cause of a syntax or type error in an expression, whittle the code down until you do.

Or, start with something simple and build towards the desired expression until it breaks.

You'll probably have some number of errors due to surprises with precedence. Adding parentheses to

match the precedence you're assuming may reveal a problem.

I think of a bug as a divergence between expectation and reality. A key skill for programmers is being able

to work backwards to find where that divergence starts. Here's an example of working backwards from an

observed divergence to its source: Imagine a program whose expected output is a series of values but

instead it produces no output. You then discover that it's producing no output because the count of values

to print is zero. You then find that the count is zero because the argument parser is returning a zero for

that argument. It then turns out that the argument parser was being passed an incorrect argument.

Once upon a time, I was stumped by a type error in this expression:

"#" ++ show lecNum ++ " " ++ [dayOfWeek] ++ " "
: classdays' (lecNum+1) (first+daysToNext) last pairs

I reduced it down to the following expression, which works:

"#" -- ++ show lecNum ++ " " ++ [dayOfWeek] ++ " "
: []

Note the use of that "--" (comment to end of line) just after "#", temporarily hiding the rest of the line!

I then tried advancing that "--" past the show lecNum call:

"#" ++ show lecNum -- ++ " " ++ [dayOfWeek] ++ " "
: []

It broke! I then tried a very simple equivalent expression:

"a" ++ "b" : []

It produced the original type error! I checked the precedence chart. (Slide 84.) I also used :info to look

at the ++ and "cons" operators:

> :info (++)

Page 3 of 18

(++) :: [a] -> [a] -> [a]
infixr 5 ++

> :info (:)
data [] a = ... | a : [a]
infixr 5 :

Since both ++ and : are right associative operators (infixR) with equal precedence (5),

"a" ++ "b" : []

grouped as

"a" ++ ("b" : [])

and that was the divergence between expectation and reality! I expected it to group as

("a" ++ "b") : []

but the reality was the opposite.

If you're puzzled by a syntax or type error, make an effort to chop down the code some before you send it

to us. If you get it down as far as I did with "a" ++ "b" : [], then you've got a GREAT question!

And, something as simple as "a" ++ "b" : [] can clearly be posted on Piazza for all to see, without

any worry about giving away part of a solution (which would cause me to give you a lot of grief!)

When you want us to take a look at a problem, send us the whole file, not just an excerpt where you think

the error lies. Our first step is to reproduce the problem that you're seeing. We often can't do that without

having all of your code.

ASSIGNMENT-WIDE RESTRICTIONS

There are three assignment-wide restrictions:

 1. The only module you may import is Data.Char. You can use Prelude functions as long as they

are not higher-order functions (see third restriction).

 2. You may not use list comprehensions. See slide 135 for an example of one. The general form of a

list comprehension is [expression | qualifier1, ..., qualifierN]. That

vertical bar after the initial expression is the most obvious characteristic of a list comprehension.

 3. You may not use any higher-order functions, which are functions that take other functions as

arguments. We'll start talking about them in the section "Higher-order functions", probably around

slide 250.

I'd say that higher-order functions are hard to use by accident but I've been surprised before, so let

me say a little bit to help you recognize them. A common example of a higher-order function is

map:

> :t map
map :: (a -> b) -> [a] -> [b]

map takes two arguments, the first of which has type (a -> b)and that's a function type. It's

saying that the first argument is a function that takes one argument. Here's a usage of map—see if

Page 4 of 18

you can understand what it's doing:

> map negate [1..5]
[-1,-2,-3,-4,-5]

To be clear, the purpose of this whole section on the third restriction is to help you stay away from

higher-order functions on this assignment. We'll be learning them about soon, and you'll see that

we can use them instead of writing recursive functions in many cases, but for now I want you

writing recursive functions—think of it as getting good at walking before learning how to run!

Here is, I believe, a full list of all higher-order functions in the Prelude:
all any break concatMap curry dropWhile either filter flip
foldl foldl1 foldr foldr1 interact iterate map mapM mapM_
maybe scanl scanl1 scanr scanr1 span takeWhile uncurry
until zipWith zipWith3

Try :t on some of them and look for argument types with (... -> ...),

(... -> ... ->), etc.

Whenever I put restrictions in place we're happy to take a look at your code before it's due

to see if there are any violations. Just mail it to 372s16.

Strong Recommendation: Specify types for functions, but be careful!

Slides 91-93 talk about specifying types for functions but I'm going to say a little more about it here.

The following function has an error.

f ((x,y,z):t) index len
 | (index `mod` length) == 0 = ""

Here's the type that Haskell infers for that erroneous function:

f :: Integral ([a] -> Int) =>
 [(t1, t2, t3)] -> ([a] -> Int) -> t -> [Char]

Whoa! Where'd that ([a] -> Int) for the second argument, index, come from?

If you look close, you'll see that instead of using the parameter len, the guard inadvertently uses length,

a Prelude function. Since the type of mod is Integral a => a -> a -> a, Haskell proceeds to

infer that this function needs a second argument that's an [a] -> Int function which is a instance of the

Integral type class. I can't think of any use for such a thing, but Haskell proceeds with that inferred

type and bases subsequent type inferences on the assumption that the inferred type of f is correct.

That can produce far-flung false positives for errors in other functions.

If I simply precede the clause for f with a specification for the type of f that I intend, I get a perfect error

message:

% cat extype.hs
f::[(Int,Int,Char)] -> Int -> Int -> String -- The intended type
f ((x,y,z):t) index len
 | (index `mod` length) == 0 = ""

Page 5 of 18

% ghci extype.hs
...
extype.hs:3:20:
 Couldn't match expected type `Int' with actual type `[a0] -> Int'
 In the second argument of `mod', namely `length'
 In the first argument of `(==)', namely `(index `mod` length)'
 In the expression: (index `mod` length) == 0

The downside of specifying a type for a function is that we might inadvertently make a function's type

needlessly specific, perhaps by using an Int or Double when an instance of the Num type class would be

better.

My common practice is to see what type Haskell infers for a newly written function. If it looks reasonable,

I then "set it in stone" by adding a specification for that type. If an apparent type problem arises later, I

might try temporarily commenting that type specification to help get a handle on the problem.

Helper functions are OK, except in warmup.hs and ftypes.hs

In general, writing helper functions to break a computation into smaller, simpler pieces is a good practice.

However, the functions in warmup.hs, the first problem, are simple enough that you shouldn't need a

helper to write any of them. The last problem on the assignment, ftypes.hs, has a number of problem-

specific restrictions, including no helper functions.

Aside from warmup.hs and ftypes.hs, it's fine to use helper functions.

Haskell version issues

As slide 35 mentions, there are some non-trivial version issues with Haskell. We've yet to see any

significant incompatibilities between lectura's 7.4.1 and the version I've suggested for your laptops (7.8.3),

but your code will be tested on lectura, so how it behaves on lectura is what matters.

Prelude documentation

Prelude documentation for version 7.4.1 is here:

https://hackage.haskell.org/package/base-4.5.0.0/docs/Prelude.html. On the far right side of each entry

is a link to a file with the source code for the function, but you'll find that many functions are written using

elements of Haskell we haven't seen. There's a link for the above on the Piazza resources page,

too—search for "Prelude".

You can see a list of all Prelude functions by using :browse Prelude at the gchi prompt.

Page 6 of 18

At long last I present...

The Problems of a3!

Problem 1. (7 points) warmup.hs

The purpose of this problem is to get you warmed up by writing your own version of several simple

functions from the Prelude: last, init, replicate, drop, take, elem and ++.

The code for these functions is easy to find on the web and in books—a couple are shown as examples of

recursion in chapter 4 of LYAH. Whether or not you've seen the code I'd like you first to try to write them

from scratch. If you have trouble, go ahead and look for the code. Study it but then put it away and try to

write the function from scratch. Repeat as needed. Think of these like practicing scales on a musical

instrument.

To avoid conflicts with the Prelude functions of the same name, use these names for your versions:

Your

function

Prelude

function

lst last

initial init

repl replicate

drp drop

tk take

has elem

concat2 (++)

You should be able to write these functions using only pattern matching, comparisons in guards, list

literals, cons (:), subtraction, and recursive calls to the function itself. If you find yourself about to use

if-else, think about using a guard instead.

concat2 is a function that's used exactly like you'd use the ++ operator as a function:

> concat2 "abc" "xyz"
"abcxyz"

> (++) "abc" "xyz" -- see slides 77-78
"abcxyz"

You may find that concat2 is the most difficult of the bunch—it's simple but subtle.

Experiment with the Prelude functions to see how they work. Note that replicate, drop, and take
use a numeric count. Be sure to see how the Prelude versions behave with zero and negative values for that

count. For testing with negative counts, remember that unary negation typically needs to be enclosed in

parentheses:

> take (-3) "testing"
""

Page 7 of 18

> drop (-3) "testing"
"testing"

You'll find that last and init throw an exception if called with an empty list. You can handle that with

a clause like this one for lst:

lst [] = error "emptyList"

As I hope you'd assume, you can't use the Prelude function that you are recreating! Beware that when

writing these reproductions it's easy to forget and use the Prelude function by mistake, like this:

drp ... = ... drop ...

Here's an egrep command you can use to quickly check for accidental use of the Prelude functions in

your solution: (a3/check-warmup)

egrep -w "last|init|replicate|drop|take|elem|\+\+" warmup.hs

Testing note: If you run the Tester with a3/tester warmup you'll see that it runs tests for all of the

expected functions, producing a long stream of failures for any functions you haven't completed. You can

test functions one at a time by using a -t option following warmup:

% a3/tester warmup -t lst
...

% a3/tester warmup -t drp
...

Problem 2. (2 points) join.hs

Write a function join separator strings of type [Char] -> [[Char]] -> [Char] that

concatenates the strings in strings into a single string with separator between each string.

Examples:

> join "." ["a","bc","def"]
"a.bc.def"

> join ", " ["a", "bc"]
"a, bc"

> join "" ["a","bc","def", "g", "h"]
"abcdefgh"

> join "..." ["test"]
"test"

> join "..." []
""

> join ".." ["","","x","",""]
"....x...."

> join "-" (words "just testing this")
"just-testing-this"

Page 8 of 18

In Java you might use a counter of some sort to know when to insert the separators but that's not the right

approach in Haskell.

Problem 3. (4 points) rme.hs

Write a function rme n of type Integral a => a -> a that, using an arithmetic approach,

removes the even digits from n, which is assumed to be greater than zero.

Examples:

> rme 3478
37

> rme 100100010010
1111

> rme (17^19)
39735515137153

Important: Your solution must be based on arithmetic operations like *, -, and div rather than

doing something like using show to turn n into a string, and then processing that string with list

operations.

A obvious difficulty is posed by numbers consisting solely of even digits, like 2468. For such numbers,

rme produces zero:

> rme 2468
0

Problem 4. (4 points) splits.hs

Consider splitting a list into two non-empty lists and creating a 2-tuple from those lists. For example, the

list [1,2,3,4] could be split after the first element to produce the tuple ([1],[2,3,4]). In this

problem you are to write a function splits of type [a] -> [([a], [a])] that produces a list of

tuples representing all the possible splits of the given list.

Examples:

> :type splits
splits :: [a] -> [([a], [a])]

> splits [1..4]
[([1],[2,3,4]),([1,2],[3,4]),([1,2,3],[4])]

> splits "xyz"
[("x","yz"),("xy","z")]

> splits [True,False]
[([True],[False])]

> length (splits [1..50])
49

In order to be split, a list must contain at least two elements. If splits is called with a list that has fewer

Page 9 of 18

than two elements, raise the exception shortList. Example:

> splits [1]
*** Exception: shortList

In case you missed it, there's an example of raising an exception in problem 1, for lst.

Problem 5. (7 points) cpfx.hs

Write a function cpfx, of type [[Char]] -> [Char], that produces the common prefix, if any,

among a list of strings.

If there is no common prefix or the list is empty, return an empty string. If the list has only one string, then

that string is the result.

Examples:

> cpfx ["abc", "ab", "abcd"]
"ab"

> cpfx ["abc", "abcef", "a123"]
"a"

> cpfx ["xabc", "xabcef", "axbc"]
""

> cpfx ["obscure","obscures","obscured","obscuring"]
"obscur"

> cpfx ["xabc"]
"xabc"

> cpfx []
""

Problem 6. (8 points) paired.hs

Write a function paired s of type [Char] -> Bool that returns True iff (if and only if) the

parentheses in the string s are properly paired.

Examples with properly paired parentheses:

> paired "()"
True

> paired "(a+b)*(c-d)"
True

> paired "(()()(()))"
True

> paired "((1)(2)((3)))"
True

> paired "((()(()()((((()))))((())))))"

Page 10 of 18

True

> paired ""
True

Examples with improper pairing:

> paired ")"
False

> paired "("
False

> paired "())"
False

> paired "(a+b)*((c-d)"
False

> paired ")("
False

Note that you need only pay attention to parentheses:

> paired "a+}(/.$#${)[[["
True

> paired"a+}(/.$#$([[)["
False

Problem 7. (25 points) street.hs

In this problem you are to write a function street that prints an ASCII representation of the buildings

along a street, as described by a list of (Int, Int, Char) tuples, each of which represents a building.

The elements of the tuple represent the width, height, and character used to create the building,

respectively.

Consider this example:

> street [(3,2,'x'), (2,6,'y'), (5,4,'z')]

 yy
 yy
 yyzzzzz
 yyzzzzz
xxxyyzzzzz
xxxyyzzzzz

The street has three buildings. As specified by the first tuple, the first building has a width of three, a

height of two, and is composed of "x"s. The second tuple specifies that a width of two, a height of six,

and that "y"s be used for the second building. The third building has a width of five, a height of four, and

is made of "z"s. Note that a blank line appears above the buildings and a line of hyphens (minus signs,

not underscores) provides a foundation for the buildings.

Page 11 of 18

This function does something we've only touched on lightly in class: it produces output, which being a side-

effect, is a big deal in Haskell. Here's the type of street:

street::[(Int,Int,Char)] -> IO ()

What street returns is an IO action, which when evaluated produces output as a side effect. putStr
is a Prelude function of type String -> IO () that outputs a string:

> :set +t –- just to show us "it" after putStr
> putStr "hello\nworld\n"
hello
world
it :: ()

To avoid tangling with the details of I/O in Haskell on this assignment, make your street function look

like this:

street buildings = putStr result
 where
 ...some number of expressions and helper functions that

 build up result, a string...

The string result will need to have whatever characters, blanks, and newlines are required, and that's the

challenge of this problem—figuring out how to build up that multiline string!

To help, and hopefully not confuse, here's a trivial version of street that's hardwired for two buildings,

[(2,1,'a'), (2,2, 'b')]:

streetHW _ = putStr result
 where
 result = "\n bb\naabb\n----\n"

Execution:

> streetHW "foo"

 bb
aabb

Like I said, I hope this streetHW example doesn't confuse! It's intended to show the connection between

(1) binding result to a string that represents the buildings, (2) calling putStr with result, and (3)

the output being produced.

Open spaces may be placed between buildings by using buildings of zero height:

> street [(3,0,'a'), (3,4,'b') ,(1,0,'c'), (5,7,'d'), (2,0,'e')]

 ddddd
 ddddd
 ddddd
 bbb ddddd
 bbb ddddd
 bbb ddddd
 bbb ddddd

Page 12 of 18

Note that the foundation (the line of hyphens) extends to the left of the "b" building and to the right of the

"d" building because of the zero-height "a" and "e" buildings.

You may assume that: (1) at least one building is specified (2) a building width is always greater than zero

(3) a building height is always greater than or equal to zero.

Additional examples:

> street [(2,5,'x')]

xx
xx
xx
xx
xx
--
> street [(5,0,'x')]

Problem 8. (25 points) editstr.hs

For this problem you are to write a function editstr ops s that applies a sequence of operations

(ops) to a string s and returns the resulting string. Here is the type of editstr:

> :type editstr
editstr :: [([Char], [Char], [Char])] -> [Char] -> [Char]

Note that ops is a list of tuples. One of the available operations is replacement. Here's a tuple that

specifies that every blank is to be replaced with an underscore:

("rep", " ", "_")

Another operation is translation, specified with "xlt".

("xlt", "aeiou", "AEIOU")

The above tuple specifies that every occurrence of "a" should be translated to "A", every "e" to "E",

etc. A tuple such as ("xlt", "aeiouAEIOU", "**********") specifies that all vowels should

be translated to asterisks.

Here are two cases I won't test with xlt:

• A duplicated "from" character, as in("xlt", "aa", "12")
• "from" characters appearing in the "to" string, as in ("xlt", "tab", "bats")

Here is an example of a call that specifies a sequence of two operations, first a replacement and then a

translation:

> editstr [("rep", " ", "_"),
("xlt", "aeiou", "AEIOU")] "just a test"

"jUst_A_tEst"

Page 13 of 18

Note that for formatting purposes the example above and some below are broken across lines.

For "rep" (replace), the second element of the tuple is assumed to be a one-character string. The third

element, the replacement, is a string of any length. For example, we can remove "o"s and triple "e"s like

this:

> editstr [("rep", "o", ""), ("rep", "e", "eee")] "toothsomeness"
"tthsmeeeneeess"

Another example:

> editstr [("xlt", "123456789", "xxxxxxxxx"),
("rep", "x", "")] "5203-3100-1230"

"0-00-0"

There are three simpler operations, too: length (len), reverse (rev), and replication (x):

> editstr [("len", "", "")] "testing"
"7"

> editstr [("rev", "", "")] "testing"
"gnitset"

> editstr [("x", "3", "")] "xy"
"xyxyxy"

> editstr [("x", "0", "")] "the"
""

Implementation note: The replication operation ("x") requires conversion of a string to an Int. That can

be done with the read function. Here's an example:

> let stringToInt s = read s::Int
> stringToInt "327"
327

Note that read does not do input! What it is "reading" from is its string argument, like

Integer.parseInt() in Java. Because read is overloaded and can return values of many different

types we use ::Int to specifically request an Int.

Because we're using three-tuples of strings, len, rev, and repl leave us with one or two unused

elements in the tuples.

Let's define some tuple-creating functions and simple value bindings so that we can specify operations with

much less punctuation noise. Put the following lines in your editstr.hs:

rep from to = ("rep", from, to)

xlt from to = ("xlt", from, to)

len = ("len", "", "")

rev = ("rev", "", "")

Page 14 of 18

x n = ("x", show n, "") -- Note: show converts a value to a string

Recall this example above:

editstr [("xlt", "123456789", "xxxxxxxxx"),
("rep", "x", "")] "5203-3100-1230"

Let's redo it using the rep and xlt bindings from above.

>editstr [xlt "123456789" "xxxxxxxxx", rep "x" ""] "5203-3100-1230"
"0-00-0"

Note that instead of specifying two literal tuples as operations, we're specifying two function calls that

create tuples instead. Notice what editstr's first argument, a list with two expressions, turns into a list

with two operation tuples:

> [xlt "123456789" "xxxxxxxxx", rep "x" ""]
[("xlt","123456789","xxxxxxxxx"),("rep","x","")]

Here's a more complex sequence of operations:

> editstr [x 2, len, x 3, rev, xlt "1" "x"] "testing"
"4x4x4x"

Operations are done from left to right. The above specifies the following steps:

1. Replicate the string twice, producing "testingtesting".

2. Get the length of the string, producing "14".

3. Replicate the string three times, producing "141414".

4. Reverse the string, producing "414141".

5. Translate "1"s into "x"s, producing "4x4x4x".

Any number of modifications can be specified.

Again, it case it helps you understand what the x, len, rev, etc. bindings are all about, let's see what that

first argument to editstr turns into:

> [x 2, len, x 3, rev, xlt "1" "x"]
[("x","2",""),("len","",""),("x","3",""),("rev","",""),("xlt","1","
x")]

Incidentally, this is a simple example of an internal DSL (Domain Specific Language) in Haskell. An

expression like [x 2, len, x 3, rev, xlt "1" "x"] is using the facilities of Haskell to

specify computation in a new language that's specialized for string manipulation. This write-up is already

long enough so I won't say anything about DSLs here but you can Google and learn! What we now call

Domain Specific Languages were often called "little languages" years ago.

If the list of operations is empty, the original string is returned.

> editstr [] "test"
"test"

The exception badSpec is raised to indicate any of three error conditions:

Page 15 of 18

• An operation is something other than "rep", "xlt", "rev", "len", or "x".

• For "rep", the length of the string being replaced is not one.

• For "xlt", the two strings are not the same length.

Here are examples of each, in turn:

> editstr [("foo", "the", "bar")] "test"
"*** Exception: badSpec

> editstr [("rep", "xx", "yy")] "test"
"*** Exception: badSpec

> editstr [("xlt", "abc", "1")] "test"
"*** Exception: badSpec

Problem 9. (5 points) ftypes.hs

Slides 86-89 demonstrate that Haskell infers types based on how values are used. Your task in this problem

is to create a sequence of operations on function arguments that cause each of five functions, fa, fb, fc,

fd and fe to have a specific inferred type. The functions will not be run, only loaded, and need not

perform any meaningful computation or even terminate.

Here are the types, shown via interaction with ghci:

% ghci ftypes.hs
...
[1 of 1] Compiling Main (ftypes.hs, interpreted)
Ok, modules loaded: Main.
> :browse
fa :: Int -> Bool -> Char -> (Char, Int, Bool)
fb :: [Bool] -> [Int] -> Char -> String
fc :: (Num t1, Num t) => [(t1, t)] -> (t, t1)
fd :: (Integer, [a]) -> Int -> Bool
fe :: [[Char]] -> [[a]]

To make this problem challenging we need to have some restrictions:

No apostrophes ('), double-quotes (") or decimal digits may appear in ftypes.hs, not even in

comments. (Yes, this makes character, string, and numeric literals off-limits!)

You may not use True or False.

You may not use the ::type specification, introduced on slide 65.

You may not define any additional functions.

You may not use the fst or snd functions from the Prelude.

You may not use "as-patterns", the where clause, or let, do, or case expressions.

You may not use guards or if-else.

Violation of a restriction will result in a score of a zero for that function.

Page 16 of 18

Depending on your code you might end up with a type that's equivalent to a desired type but that has type

variables with names that differ from those shown above. For example, fc is shown above as this,

fc :: (Num t1, Num t) => [(t1, t)] -> (t, t1)

but the Tester will consider the following to be correct, too:

fc :: (Num a, Num b) => [(a, b)] -> (b, a)

If you look close, you'll see that the only difference is that the former uses the type variables t1 and t
instead of a and b, respectively.

Similarly, the following type would also be considered correct:

fc :: (Num t, Num a) => [(t, a)] -> (a, t)

Problem 10. Extra Credit observations.txt

Submit a plain text file named observations.txt with...

(a) (1 point extra credit) An estimate of how long it took you to complete this assignment. To facilitate

programmatic extraction of the hours from all submissions have an estimate of hours on a line by itself,

more or less like one of the following three examples:

Hours: 6
Hours: 3-4.5
Hours: ~8

If you want the one-point bonus, be sure to report your total (estimated) hours on a line that starts with

"Hours:". There must be only one "Hours:" line in observations.txt. It's fine if you care to

provide per-problem times, and that data is useful to us, but report it in some form of your own invention,

not with multiple lines that contain "Hours:", in either upper- or lower-case.

Other comments about the assignment are welcome, too. Was it too long, too hard, too detailed? Speak up!

I appreciate all feedback, favorable or not.

(b) (1-3 points extra credit) Cite an interesting course-related observation (or observations) that you made

while working on the assignment. The observation should have at least a little bit of depth. Think of me

saying "Good!" as one point, "Excellent!" as two points, and "Wow!" as three points. I'm looking for

quality, not quantity.

Turning in your work

Use a3/turnin to submit your work. Each run creates a time-stamped "tar file" in your current

directory with a name like aN.YYYYMMDD.HHMMSS.tz You can run a3/turnin as often as you

want. We'll grade your final submission.

Note that each of the aN.*.tz files is essentially a backup, too, but perhaps mail to 372s16 if you need

to recover a file and aren't familiar with tar—it's easy to accidentally overwrite your latest copies with a

poorly specified extraction.

a3/turnin -l shows your submissions.

Page 17 of 18

To give you an idea about the size of my solutions, here's what I see as of press time:

% wc $(grep -v txt < a3/delivs)
 29 115 491 warmup.hs
 3 21 81 join.hs
 8 42 215 rme.hs
 6 34 202 splits.hs
 8 38 171 cpfx.hs
 8 51 278 paired.hs
 25 143 907 street.hs
 49 220 1210 editstr.hs
 12 60 278 ftypes.hs
 148 724 3833 total

My code has few comments.

Miscellaneous

Point values of problems correspond directly to assignment points in the syllabus. For example, a 10-point

problem would correspond to 1% of your final grade in the course.

Feel free to use comments to document your code as you see fit, but note that no comments are required,

and no points will be awarded for documentation itself. (In other words, no part of your score will be based

on documentation.) Two minus signs (--) is comment to end of line; {- and -} are used to enclose block

comments, like /* and */ in Java.

Remember that late assignments are not accepted and that there are no late days; but if circumstances

beyond your control interfere with your work on this assignment, there may be grounds for an extension.

See the syllabus for details.

My estimate is that it will take a typical CS junior from 10 to 15 hours to complete this assignment.

Our goal is that everybody gets 100% on this assignment AND gets it done in an amount of time that

is reasonable for them.

If you put ten hours into this assignment and don't seem to be close to

completing it, it's probably time to touch base with us. Specifically mention

that you've reached ten hours. Give us a chance to speed you up!

I hate to have to mention it but keep in mind that cheaters don't get a second chance. If you give your code

to somebody else and they turn it in, you'll both likely fail the class, get a permanent transcript notation

stating you cheated, and maybe more. See the syllabus for the details.

Page 18 of 18

CSC 372, Spring 2016

Assignment 4

Due: Friday, February 26 at 23:59:59

ASSIGNMENT-WIDE RESTRICTIONS

There are three assignment-wide restrictions:

 1. Minus some exceptions that are noted for group.hs and avg.hs, the only module you may

import is Data.Char. The purpose of this restriction is so that students don't waste time

scouring dozens of Haskell packages in search of something that might be useful. Data.Char

and the Prelude have all you need!

 2. List comprehensions may not be used. They are interesting and powerful but due to time

constraints we don't cover them. I want your attention focused on the elements of Haskell that

we have covered.

 3. Recall the idea put forth on slide 268: To build your skills with higher-order functions I want you

to solve most of these problems while pretending that you don't understand recursion!

Specifically, except for problem 1, warmup.hs, you may not WRITE any recursive code!

Instead, use higher-order functions like map, filter, and the various folds. Those functions,

and other Prelude functions, might themselves be recursive but that's no problem—it's OK to use

recursive functions but you're prohibited from writing any recursive functions.

Make an a4 symlink

Just like you did for a3, make an a4 symlink:

$ cd ~/372/a4
$ ln -s /cs/www/classes/cs372/spring16/a4

Use the tester!

Just like for assignment 3, there's a tester for this assignment. Don't just "eyeball" your output—use

the tester! I won't have any sympathy for those who fail tests during grading simply because they didn't

want to bother with the tester! We'll be happy to help you with using the tester and understanding its

output.

The tester is in a4/tester. Run it with "a4/tester PROBLEM-NAME". To maybe save a little

typing, a4/t is symlinked to a4/tester, so you can run the tester with just a4/t.

Problem 1. (7 points) warmup.hs

This problem is like warmup.hs on assignment 3—I'd like you to write your own version of some

functions from the Prelude: map, filter, foldl, foldr, any, all, and zipWith.

The code for map, filter, and foldl is in the slides and the others are easy to find, but I'd like you to

start with a blank piece of paper and try to write them from scratch. If you have trouble, go ahead and

look for the code. Study it but then put it away and try to write the function from scratch. Repeat as

needed.

To avoid conflicts with the Prelude functions of the same name, use these names for your versions:

Page 1 of 16

Your

function

Prelude

function

mp map

filt filter

fl foldl

fr foldr

myany any

myall all

zw zipWith

You should be able to write these functions using only pattern matching, comparisons in guards, list

literals, cons (:), subtraction, and recursive calls to the function itself. Experiment with the Prelude

functions to see how they work.

You might find foldl and foldr to be tough. Don't get stuck on them!

Just like for a3's warmup.hs, you can use a -t option with the tester to name a specific function to

test. Example: "a4/tester warmup -t mp". Note that -t mp follows warmup.

This problem, warmup.hs, is the only problem on this assignment in which you can write

recursive functions.

Problem 2. (3 points) dezip.hs

Write a function dezip list that separates a list of 2-tuples into two lists. The first list holds the first

element of each tuple. The second list holds the second element of each tuple. Don't overlook the

additional restrictions for this problem following the examples.

> :t dezip
dezip :: [(a, b)] -> ([a], [b])

> dezip [(1,10),(2,20),(3,30)]
([1,2,3],[10,20,30])

> dezip [("just","testing")]
(["just"],["testing"])

> dezip []
([],[])

ADDITIONAL RESTRICTIONS for dezip.hs:

The only functions your solution may use are map, fst , (.) (i.e., composition), and this function:

swap (x,y) = (y,x) –- include this line in your solution

Remember that writing recursive functions is prohibited.

Page 2 of 16

This function is just like the Prelude function unzip, but with a hopefully different enough name that

you don't test with unzip by mistake!

Problem 3. (2 points) repl.hs

Write a function repl that works just like replicate in the Prelude.

> :t repl
repl :: Int -> a -> [a]

> repl 3 7
[7,7,7]

> repl 5 'a'
"aaaaa"

> repl 2 it
["aaaaa","aaaaa"]

ADDITIONAL RESTRICTION for repl.hs: You may not use replicate.

Remember the assignment-wide prohibition on recursion.

This is an easy problem; there are several ways to solve it using various functions from the Prelude. Just

for fun you might see how many distinct solutions you can come up with.

Problem 4. (2 points) doubler.hs

Create a function named doubler that duplicates each value in a list:

> :t doubler
doubler :: [a] -> [a]

> doubler [1..5]
[1,1,2,2,3,3,4,4,5,5]

> doubler "bet"
"bbeett"

> doubler [[]]
[[],[]]

> doubler []
[]

RESTRICTION: Your solution must look like this:

doubler = foldr ...

That is, you are to bind doubler to a partial application of foldr. Think about using an anonymous

function.

Replace the ... with code that makes it work. Thirty characters should be about enough but it can be as

long as you need.

Page 3 of 16

Problem 5. (2 points) revwords.hs

Using point-free style (slides 301-303), create a function revwords that reverses the "words" in a

string. Assume the string contains only letters and spaces.

> revwords "Reverse the words in this sentence"
"esreveR eht sdrow ni siht ecnetnes"

> revwords "testing"
"gnitset"

> revwords ""
""

You'll want to use the words function on this one.

Problem 6. (4 points) cpfx.hs

Once the a3 deadline has passed, a4/whm_cpfx.hs will have my solution for cpfx from assignment

3. (Remind me if I forget!) The cpfx function is recursive. Rewrite that function to be non-recursive

but still make use of my cpfx' function, the code for which is to be a part of your solution. Yes,

cpfx' is recursive. That's OK.

See the assignment 3 write-up for examples of using cpfx.

Problem 7. (7 points) nnn.hs

The behavior of the function you are to write for this problem is best shown with an example:

> nnn [3,1,5]
["3-3-3","1","5-5-5-5-5"]

The first element is a 3 and that causes a corresponding value in the result to be a string of three 3s,

separated by dashes. Then we have one 1. Then five 5s.

More examples:

> :t nnn
nnn :: [Int] -> [[Char]]

> nnn [1,3..10]
["1","3-3-3","5-5-5-5-5","7-7-7-7-7-7-7","9-9-9-9-9-9-9-9-9"]

> nnn [10,2,4]
["10-10-10-10-10-10-10-10-10-10","2-2","4-4-4-4"]

> length (head (nnn [100]))
399

Note the math for the last example: 100 copies of "100" and 99 copies of "-" to separate them amount

to 399 characters.

Assume that the values are greater than zero.

Page 4 of 16

Remember: You can't write any recursive code!

Problem 8. (9 points) expand.hs

Consider the following two entries that specify the spelling of a word and spelling of forms of the word

with suffixes:

program,s,#ed,#ing,'s
code,s,d,@ing

If a suffix begins with a pound sign (#), it indicates that the last letter of the word should be doubled

when adding the suffix. If a suffix begins with an at-sign (@), it indicates that the last letter of the word

should be dropped when adding the suffix. In all other cases, including the possessive ('s), the suffix is

simply added. Given those rules, the two entries above represent the following words:

program
programs
programmed
programming
program's

code
codes
coded
coding

For this problem you are to write a function expand entry that returns a list that begins with the word

with no suffix and is followed by all the suffixed forms in turn.

> :t expand
expand :: [Char] -> [String]

> expand "code,s,d,@ing"
["code","codes","coded","coding"]

> expand "program,s,#ed,#ing,'s"
["program","programs","programmed","programming","program's"]

> expand "adrift" (If no suffixes, produce just the word.)
["adrift"]

> expand "a,b,c,d,e,f"
["a","ab","ac","ad","ae","af"]

> expand "a,b,c,d,@x,@y,@z,#1,#2,#3"
["a","ab","ac","ad","x","y","z","aa1","aa2","aa3"]

> expand "ab,#c,d,@e,f,::x"
["ab","abbc","abd","ae","abf","ab::x"]

A word may have any number of suffixes with an arbitrary combination of types. Words and suffixes

may be arbitrarily long. You may assume that an entry never contains a blank, like "a b,c".

Note that the only characters with special meaning are comma, #, and @. Everything else is just text.

Page 5 of 16

Assume that the entry is well-formed. You won't see things like a zero-length word or suffix. Here are

some examples of entries that will not be tested: ",", "test,", "test,s,#,@"

Remember: You can't write any recursive code!

Problem 9. (17 points) pancakes.hs

In this problem you are to print a representation of a series of stacks of pancakes. Let's start with an

example:

> :t pancakes
pancakes :: [[Int]] -> IO ()

> pancakes [[3,1],[3,1,5]]

*** *
 * *****
>

The list specifies two stacks of pancakes: the first stack has two pancakes, of widths 3 and 1,

respectively. The second stack has three pancakes. Pancakes are always centered on their stack. A

single space separates each stack. Pancakes are always represented with asterisks.

Here's another example:

> pancakes [[1,5],[1,1,1],[11,3,15],[3,3,3,3],[1]]

 * *********** ***
 * * *** ***
***** * *************** *** *
>

There are opportunities for creative cooking:

> pancakes [[7,1,1,1,1,1],[5,7,7,7,7,5],[7,5,3,1,1,1],
[5,7,7,7,7,5], [7,1,1,1,1,1],[1,3,3,5,5,7]]
******* ***** ******* ***** ******* *
 * ******* ***** ******* * ***
 * ******* *** ******* * ***
 * ******* * ******* * *****
 * ******* * ******* * *****
 * ***** * ***** * *******
>

Assume that there is at least one stack. Assume all stacks have at least one pancake. Assume all widths

are odd numbers greater than zero. The smallest "order" you'll ever see is this:

> pancakes [[1]]
*
>

Like street on assignment 3, pancakes produces output. Use this structure:

pancakes stacks = putStr result
 where

 ...

Page 6 of 16

 result = ...

Remember: You can't write any recursive code!

Problem 10. (17 points) group.hs

For this problem you are to write a program that reads a text file and prints the file with a line of dashes

inserted whenever the first character on a line differs from the first character on the previous line.

Additionally, the lines from the input file are to be numbered.

$ cat a4/group.1
able
academia
algae
carton
fairway
hex
hockshop

$ runghc group.hs a4/group.1
1 able
2 academia
3 algae

4 carton

5 fairway

6 hex
7 hockshop
$

First, note that the command runghc, not ghci, is being used.

Note also that only the lines from the input file are numbered. The separators are NOT numbered.

Lines with a length of zero (i.e., length line == 0) are discarded as a first step.

Another example:

$ cat a4/group.2
elemPos' _ [] = -1
elemPos' x ((val,pos):vps)
 | x == val = pos
 | otherwise = elemPos' x vps

f x y z = (x == chr y) == z

add_c x y = x + y

add_t(x,y) = x + y

fromToman 'I' = 1

Page 7 of 16

fromRoman 'V' = 5
fromRoman 'X' = 10

p 1 (x:xs) = 10
$ runghc group.hs a4/group.2
1 elemPos' _ [] = -1
2 elemPos' x ((val,pos):vps)

3 | x == val = pos
4 | otherwise = elemPos' x vps

5 f x y z = (x == chr y) == z

6 add_c x y = x + y
7 add_t(x,y) = x + y

8 fromToman 'I' = 1
9 fromRoman 'V' = 5
10 fromRoman 'X' = 10

11 p 1 (x:xs) = 10
$

Note that when the line numbers grow to two digits the line contents are shifted a column to the right.

That's ok.

If all lines start with the same character, no separators are printed.

$ cat a4/group.3
test
tests
testing
$ runghc group.hs a4/group.3
1 test
2 tests
3 testing
$

One final example:

$ cat a4/group.4
a
b
a
b
a
a
b
a
a
a
b
$ runghc group.hs a4/group.4
1 a

2 b

Page 8 of 16

3 a

4 b

5 a
6 a

7 b

8 a
9 a
10 a

11 b
$

The separator lines are six dashes (minus signs).

Assume that there is at least one line in the input file. (A one-line file will produce no separators, of

course.)

Implementation notes for group.hs

Unlike everything you've previously done with Haskell, this is a whole program, not just a function run at

the ghci prompt. Follow the example of longest on slide 292 and have a binding for main that has a

do block that sequences getting the command line arguments with getArgs, reading the whole file with

readFile, and then calling putStr with result of a function named group, which does all the

computation.

Your group.hs should look like this:

import System.Environment (getArgs)

main =
 do
 args <- getArgs
 bytes <- readFile $ head args
 putStr $ group bytes

...your functions here...

Yes, there's an import for something other than Data.Char. In this case we're asking for the

getArgs function from the System.Environment module. This exception is permitted.

Note that the $ operator, from slide 324, is being used to avoid some parentheses.

Remember: You can't write any recursive code!

Problem 11. (17 points) avg.hs

For this problem you are to write a Haskell program that computes some simple statistics for the hours

reported in observations.txt submissions.

Let's use a pipeline to get a few lines of data into the file avg.1.

Page 9 of 16

$ cat {...}/observations.txt | grep -i hours > a4/avg.1

Here's what we got:

$ cat a4/avg.1
Hours: 3-5
Hours: 10
I spent 8 hours on this.
Hours: 4-12

It looks like maybe somebody didn't read the instructions and wrote "I spent..." We'll ignore lines

that don't start with "Hours:", case-sensitive. That leaves three lines, two with ranges. There's merit in

being able to reflect uncertainty by reporting a range but we can't do simple arithmetic on a range. Let's

view a range as representing three values: a low, a midpoint, and a high. Let's also view a single value as

a range with low, midpoint, and high values that are equal. That gives us this view of the data:

Low Midpoint High

3-5 3 4 5

10 10 10 10

4-12 4 8 12

Let's run avg.hs and specify only an input file:

$ runghc avg.hs a4/avg.1
n = 3
mean = 7.333
median = 8.000

Ignored:
Line 3: I spent 8 hours on this.

We see that:

• Three valid data points were found.

• The mean is 7.333, which is (4+10+8)/3 reported to three decimal places.

• The median is the middle data point in a sequence of values and in this case is 8. As a

simplification we show the median with three decimal places. (If there are an even number of

values, and thus no middle value, the median is the mean of the two center-most values. For

example the median of the four values 1, 3, 7, 15 is 5 ((3+7)/2).)

• Line 3, whose contents are shown, was ignored.

If avg.hs is run with a -l (L) option, which must precede the file name, the low values (see the table)

are used instead. In order, those values are 3, 4, 10. We see this output:

$ runghc avg.hs -l avg.1
n = 3
mean = 5.667
median = 4.000

Page 10 of 16

Ignored:
Line 3: I spent 8 hours on this.

Similarly, there's a -h option to compute the statistics using the high values (5, 10, 12):

$ runghc avg.hs -h avg.1
n = 3
mean = 9.000
median = 10.000

Ignored:
Line 3: I spent 8 hours on this.

Here are some points to keep in mind:

• Lines that don't start with "Hours:" are not included in the calculation but are reported under

"Ignored:".

• Following "Hours:", discard all characters other than decimal digits, period (.), and dash (-).

Then, ASSUME that what's left will be either a number, like 10, or 7.5, or a range, like 5.5-

15. (The behavior of avg.hs is undefined for other cases, which in practical terms means that I

won't test with any such cases.) For ranges, the first value will always be less than the second.

• ASSUME that the command line arguments, which follow runghc avg.hs, are an optional -

l or -h, followed by a file name. That amounts to three potential cases:

runghc avg.hs FILENAME
runghc avg.hs -l FILENAME
runghc avg.hs -h FILENAME

Behavior is undefined in all other cases. (Again, that means I won't test with any other cases.)

• ASSUME there will always be at least one valid data point in the input file.

• The tester's student set of tests for this problem will be the grading set of tests, too. In other

words, if the tester shows your avg passing all tests and you don't violate any restrictions,

you are guaranteed full credit on this problem. The final set of tests will be in place by noon

on Saturday, Feburary 20.

Implementation notes for avg.hs

Here's a collection of implementation notes for avg.hs.

Some imports

In addition to the functions in the Prelude and Data.Char, you are permitted to use the following

functions on this problem, avg.hs:

System.Environment.getArgs
Text.Printf.printf

and all functions in the Data.List module.

Page 11 of 16

My solution starts by importing getArgs from System.Environment, printf from

Text.Printf, and then all functions in Data.List and Data.Char:

import System.Environment (getArgs)
import Text.Printf (printf)
import Data.List
import Data.Char

See https://hackage.haskell.org/package/base-4.5.0.0/docs/Data-List.html for documentation on the

functions in the Data.List module. Note: My solution uses only two functions from Data.List:

sort and partition.

main for avg.hs

Just like group.hs, avg.hs does I/O. Here's the binding for main that I recommend you use:

main = do
 args <- getArgs
 bytes <- readFile $ last args
 putStr $ averages bytes $ init args

Like shown on slides 291-292, the averages function computes a string with newlines that main

outputs with putStr. Note that the $ operator, from slide 324, is being used to avoid some

parentheses.

Double to fixed point conversion

Use the following function to convert Doubles to Strings with three places of precision, for mean and

median.

fmtDouble::Double -> String
fmtDouble x = printf "%.3f" x

Dividing a Double by an Int (or Integer)

You'll find that dividing a Double by an Int or an Integer produces a type error. A conversion can

be done with the fromIntegral function:

> let sum = read "10.4"::Double
> sum / (fromIntegral $ length [1,2])
5.2

The type of fromIntegral is interesting:

> :t fromIntegral
fromIntegral :: (Num b, Integral a) => a -> b

Rather than converting an Integral type to a specific type, like Double, it's treated as a more general

thing, a type that's an instance of Num. Then in turn, that type can be converted to a Double.

A starter file

As a convenience, a4/avg_starter.hs has the above imports and main, a stub for averages,

and fmtDouble from above.

Page 12 of 16

https://hackage.haskell.org/package/base-4.5.0.0/docs/Data-List.html

splitHours

Also in in a4/avg_starter.hs is splitHours, a function to split up specifications of hours:

> splitHours "10"
["10"]

> splitHours "3.4-10.3"
["3.4","10.3"]

Another development/debugging technique

One way to get a look at values bound in a where clause for a function is to temporarily have the

function return a tuple that comprises values of interest. Look at this mid-development snapshot of

averages:

averages bytes args = (validEntries, "values:", values,
 "selected:", selected, "errors:", errs, stats, errors)

 where ...
validEntries = ...
values = ...
selected = ...
errs = ...
stats = ...
errors = ...
...and more...

Instead of returning a fully-formatted final result, it just creates a tuple with the various intermediate

bindings like validEntries, values, selected, etc.

Let's try a call to it, passing in a string with embedded newlines, which might come from a two-line file,

and the list ["-h"], simulating a -h command-line argument:

> averages "Hours: 10\nI spent 2 hours\n" ["-h"]
([(1,True,"10")],"values:",[(10.0,10.0,10.0)],"selected:",[10.0],"er
rors:",[(2,False,"I spent 2 hours")],"n = 1\nmean = 10.000\nmedian =
10.000\n","\nIgnored:\nLine 2: I spent 2 hours\n")

Note that the literal strings like "values:" just serve as labels, to help us see what's what. Note also

that the "stats:" and "errors:" strings are the final output, in two pieces. You can learn a few

things about how I approached the problem by looking closely at that output.

Below is a main that works with the mid-development snapshot of averages above. Because the

version of averages above returns a tuple and putStr wants a string, I use show to turn that tuple

into a string:

main = do
 args <- getArgs
 bytes <- readFile $ last args
 putStr $ (show $ averages bytes (init args)) ++ "\n"

With the above averages and main, here's what I see with my version:

$ runghc avg.hs -h avg.1
([(1,True,"3-5"),(2,True,"10"),(4,True,"4-12")],"values:",

Page 13 of 16

[(3.0,4.0, 5.0), (10.0,10.0,10.0), (4.0,8.0,12.0)], "selected:",
[5.0,10.0,12.0], "errors:",[(3,False,"I spent 8 hours on this.")],"n
= 3\nmean = 9.000\nmedian = 10.000\n","\nIgnored:\nLine 3: I spent 8
hours on this.\n")

a4/tryall script

a4/tryall is a bash script that runs avg.hs on a given data file using each of the low, midpoint, and

high modes in turn. Do cat a4/tryall to get a look at it and then do this:

$ a4/tryall a4/avg.1
...output for each of the three modes in turn...

Finally, one last reminder

Remember: You can't write any recursive code!

Problem 12. (ZERO points) rmRanges.hs

This problem is worth no points. Try it if you wish.

Write a function rmRanges that accepts a list of ranges represented as 2-tuples and produces a function

that when applied to a list of values produces the values that do not fall into any of the ranges. Ranges

are inclusive, as the examples below demonstrate.

Note that rmRanges is typed in terms of the Ord type class, so rmRanges works with many different

types of values.

> :type rmRanges
rmRanges :: Ord a => [(a, a)] -> [a] -> [a]

> rmRanges [(3,7)] [1..10]
[1,2,8,9,10]

> rmRanges [(10,18), (2,5), (20,20)] [1..25]
[1,6,7,8,9,19,21,22,23,24,25]

> rmRanges [] [1..3]
[1,2,3]

> rmRanges [('0','9')] "Sat Feb 8 20:34:50 2014"
"Sat Feb :: "

> rmRanges [('A','Z'), (' ', ' ')] it
"ateb::"

> let f = rmRanges [(5,20),(-100,0)]

> f [1..30]
[1,2,3,4,21,22,23,24,25,26,27,28,29,30]

> f [-10,-9..21]
[1,2,3,4,21]

Assume for a range (x, y) that x <= y, i.e, you won't see a range like (10,1) or ('z', 'a').

Page 14 of 16

As you can see above, ranges are inclusive. The range (1,3) removes 1, 2, and 3.

Just for fun...Here's an instance declaration from the Prelude:

instance (Ord a, Ord b) => Ord (a, b)

It says that if the values in a 2-tuple are orderable, then the 2-tuple is orderable. With that in mind,

consider this rmRanges example:

> rmRanges [((3,'z'),(25,'a'))] (zip [1..] ['a'..'z'])
[(1,'a'),(2,'b'),(3,'c'),(25,'y'),(26,'z')]

Remember: You can't write any recursive code!

Problem 13. Extra Credit observations.txt

Submit a plain text file named observations.txt with...

(a) (1 point extra credit) An estimate of how long it took you to complete this assignment. To facilitate

programmatic extraction of the hours from all submissions have an estimate of hours on a line by itself,

more or less like one of the following three examples:

Hours: 6
Hours: 3-4.5
Hours: ~8

If you want the one-point bonus, be sure to report your total (estimated) hours on a line that starts with

"Hours:". There must be only one "Hours:" line in observations.txt. It's fine if you care to

provide per-problem times, and that data is useful to us, but report it in some form of your own invention,

not with multiple lines that contain "Hours:", in either upper- or lower-case.

Other comments about the assignment are welcome, too. Was it too long, too hard, too detailed? Speak

up! I appreciate all feedback, favorable or not.

(b) (1-3 points extra credit) Cite an interesting course-related observation (or observations) that you made

while working on the assignment. The observation should have at least a little bit of depth. Think of me

saying "Good!" as one point, "Excellent!" as two points, and "Wow!" as three points. I'm looking for

quality, not quantity.

Turning in your work

Use a4/turnin to submit your work. Each run creates a time-stamped "tar file" in your current

directory with a name like aN.YYYYMMDD.HHMMSS.tz You can run a4/turnin as often as you

want. We'll grade your final submission.

Note that each of the aN.*.tz files is essentially a backup, too, but perhaps mail to 372s16 if you

need to recover a file and aren't familiar with tar—it's easy to accidentally overwrite your latest copies

with a poorly specified extraction.

a4/turnin -l shows your submissions.

To give you an idea about the size of my solutions, here's what I see as of press time:

Page 15 of 16

$ wc $(grep -v txt a4/delivs)
 26 129 472 warmup.hs
 4 22 103 dezip.hs
 2 13 54 repl.hs
 2 12 58 doubler.hs
 2 9 68 revwords.hs
 7 30 131 cpfx.hs
 5 36 212 nnn.hs
 19 84 536 expand.hs
 16 81 551 pancakes.hs
 19 84 554 group.hs
 58 317 2022 avg.hs
 9 54 306 rmRange.hs
 169 871 5067 total

My code has few comments.

Miscellaneous

REMEMBER: Except for warmup.hs you are not permitted to write any recursive functions on

this assignment!

This assignment is based on the material on Haskell slides 1-354.

Point values of problems correspond directly to assignment points in the syllabus. For example, a 10-

point problem would correspond to 1% of your final grade in the course.

Feel free to use comments to document your code as you see fit, but note that no comments are required,

and no points will be awarded for documentation itself. (In other words, no part of your score will be

based on documentation.)

Remember that late assignments are not accepted and that there are no late days; but if circumstances

beyond your control interfere with your work on this assignment, there may be grounds for an extension.

See the syllabus for details.

My estimate is that it will take a typical CS junior from 10 to 15 hours to complete this assignment.

Our goal is that everybody gets 100% on this assignment AND gets it done in an amount of time

that is reasonable for them.

If you put ten hours into this assignment and don't seem to be close to

completing it, it's definitely time to touch base with us, regardless of whether

you have any questions. Specifically mention that you've reached ten hours.

Give us a chance to speed you up!

I hate to have to mention it but keep in mind that cheaters don't get a second chance. If you give your

code to somebody else and they turn it in, you'll both likely fail the class, get a permanent transcript

notation stating you cheated, and maybe more. See the syllabus for the details.

Page 16 of 16

CSC 372, Spring 2016

Assignment 5

Due: Tuesday, March 8 at 23:59:59

Game plan for the Ruby assignments and mid-term exam

Our mid-term exam will be on Thursday, March 10. It will be in our regular classroom, BIOW 208,

at our regular class time, 2:00pm. It will cover the Haskell material through slide 354, and the Ruby

material through what's needed for this assignment (Ruby slide 137). I'll be posting some details about

the exam on Piazza in the coming week.

Due to that mid-term exam on March 10 and Spring Break the following week, I'm spreading our Ruby

work across three assignments, with the following due dates:

Assignment 5 Tuesday, March 8 (date is definite)

Assignment 6 Friday, March 25 (date is tentative)

Assignment 7 Friday, April 8 (date is tentative)

I think of this assignment and the next assignment, Assignment 6, as being about a week of work each.

Restrictions on longest.rb and seqwords.rb

Problems 1 and 2 have some restrictions that will hopefully lead to some creative thinking about string-

based computations. I intend them to be a challenge and a learning experience, not a frustration. I

suggest that you start thinking about them as soon as possible and see what your subconscious comes up

with. I believe everyone can solve these problems on their own but if you start to get frustrated, or the

time you've budgeted starts to get short, ask us for some hints!

Problems 3 and 4, minmax and xfield, have no restrictions whatsoever.

Don't fall into the trap of thinking you must do these problems in sequence!

Use Ruby 2.2.4!

Ruby 2.2.4 is to be used for all Ruby assignments. Use rvm, as shown on Ruby slides 13-14, to select

version 2.2.4 on lectura.

The Usual Stuff

Make an a5 symlink that references /cs/www/classes/cs372/spring16/a5. Test using

a5/tester (or a5/t).

Output from command-line examples is followed by a blank line

Most of the programming problems on the Haskell assignments were functions that you tested inside

ghci. All of the Ruby problems are this assignment require you to create programs that can be run from

the command line, like group.hs and avg.hs on assignment 4.

A strong convention in the UNIX world is that programs do not output a trailing blank line. Observe

these interactions, and the absence of blank lines:

$ date

Page 1 of 15

Wed Feb 24 09:37:27 MST 2016
$ date | wc
 1 6 29
$ ls -ld .
drwxr-xr-x 266 whm staff 9044 Feb 24 09:19 .

$ (my prompt—bash is waiting for the next command)

However, for ease of reading in this write-up, output from command-line examples is followed by a

blank line. Instead of the above, you'll see this:

$ date
Wed Feb 24 09:37:27 MST 2016

$ date | wc
 1 6 29

$ ls -ld .
drwxr-xr-x 266 whm staff 9044 Feb 24 09:19 .

Problem 1. (6 points) longest.rb

Write a Ruby program that reads lines from standard input and upon end of file writes the longest line to

standard output. If there are ties for the longest line, longest writes out all the lines that tie. If there is

no input, longest produces no output.

Don't overlook the restrictions mentioned below.

Here are some examples.

$ cat a5/lg.1
a test
for
the program
here

$ ruby longest.rb < a5/lg.1
the program

$ cat a5/lg.2
xx
a
yy
b
zz

$ ruby longest.rb < a5/lg.2
xx
yy
zz

Let's use the null device and wc -c to demonstrate that if longest has no input, there's no output:

$ ruby longest.rb < /dev/null | wc -c
0

Page 2 of 15

Let's use longest and some greps to explore a list of words:

$ ruby longest.rb < /usr/share/dict/words
electroencephalograph's

$ grep ^q /usr/share/dict/words | ruby longest.rb
quadrilateral's
quadruplicate's
quadruplicating
qualification's
quartermaster's
questionnaire's

$ grep ^w /usr/share/dict/words | ruby longest.rb
whatchamacallit's
wrongheadedness's

$ grep ^wo /usr/share/dict/words | ruby longest.rb
woolgathering's
worthlessness's

Restrictions for longest.rb:

• NO COMPARISONS, such as <, ==, !=, <=>, between?, eql?, empty?, and

String#casecmp may be used. (As a rule, any method that ends with ? should be viewed

with suspicion.)

• The case statement may not be used.

• No arithmetic operations, such as addition, subtraction, negation (including negative

literals such as -1), or the pred and succ methods may be used. Imagine that arithmetic

was just never invented!

• The only types you may use are Fixnum, Bignum, String, along with the values nil,

true, and false (i.e., the values of the single-value classes NilClass, TrueClass, and

FalseClass). In particular, you may not use arrays.

Regarding that last restriction, about types, try to imagine that Ruby has only those six types, so

you've got to devise a solution using only values that are instances of those six types. As an example,

consider this expression, where s is a String;

x = s.split[0]

Splitting a String produces an Array, which we're imagining that Ruby doesn't have, so that's a

violation of the restrictions.

How about x = "abc"; y = x[1]? With Java in mind, you might think of x[1] as array indexing

but x is a String, so x[1] is an operation on a String that produces a String, and that's fine.

Don't worry about what types might be used inside Ruby library method calls. For example, a poor

implementation of String's reverse method might use an array. That is of no concern!

Important: Regarding comparisons, you are permitted to employ the comparison that's implicit in

Page 3 of 15

control structures. For example, statements like

while x do ... # OK
if f(x) then ... # OK

are permitted.

However, a statement such as

while x > 1 do # NOT PERMITTED!

is not permitted—it contains a comparison (x > 1).

Implementation note

The examples above show various combinations of redirection and piping with bash to supply

longest.rb with data on "standard input" but all you need to do in longest.rb is read lines with

line = gets (or whatever variable you want to use.)

Testing note

The testing machinery takes some steps to help you honor the restrictions but the approach is not

foolproof. It catches a number of violations but it doesn't catch everything.

Here's an example of what the tester does with longest.rb:

 (echo "load 'a5/check-longest.rb'"; cat longest.rb) >.longest-chk.rb
 ruby .longest-chk.rb < a5/lg.1

The first line uses a subshell to create a new file, .longest-chk.rb, that's a copy of your

longest.rb with an additional line, "load 'a5/check-longest.rb'", added at the

beginning. The Ruby code loaded by that additional line disables a number of disallowed operations like

the < and > comparison operators on Fixnums and Strings.

The name of the new file, .longest-chk.rb starts with a dot, making it a hidden file, so your

directory isn't cluttered with it. ls won't show it but ls -a will.

Let's imagine we've got a version of longest.rb that uses the < operator, which is not permitted.

Here's what the failure will look like:

$ a5/tester longest
...
Test: 'ruby .longest-chk.rb < a5/lg.1': FAILED
Differences (expected/actual):
*** a5/master/tester.out/longest.out.01 2016-02-22
--- tester.out/longest.out.01 2016-02-22

*** 1 ****
! the program
--- 1,2 ----
! (eval):1:in `<': oops -- can't use '<' for that type! (RuntimeError)
! from .longest-chk.rb:5:in `<main>'

Note that "...oops -- can't use '<' for that type!". The traceback shows the error

occurred at line 5 in .longest-chk.rb, so that corresponds to line 4 in longest.rb.

Page 4 of 15

Important: The code in a5/check-longest.rb will catch common violations of the restrictions but

it's not foolproof. The "safe harbor" is to mail your code to 372s16 and ask for a manual inspection.

Problem 2. (7 points) seqwords.rb

For this problem you are to write a Ruby program that reads a series of words from standard input, one

per line, and then prints lines with the words sequenced according to a series of specifications, also one

per line and read from standard input.

Don't overlook the restriction mentioned below.

Here is an example with four words and three sequencing specifications, which are simply integers, one

per line.

$ cat a5/sw.1
one
two
three
four
.
1
2
3
.
3
2
1
1
2
3
.
4
1

$ ruby seqwords.rb < a5/sw.1
one two three
three two one one two three
four one

Note that lines containing only a period (.) end the word list and also separate specifications. For output,

words are separated with a single blank. Here's another example:

$ cat a5/sw.2
tick
.
1
.
1
1

$ ruby seqwords.rb < a5/sw.2
tick
tick tick

Assume that there is at least one word and at least one sequencing specification. Assume that each

sequencing specification has at least one number. Assume that all entries in the sequencing

Page 5 of 15

specifications are integers and in range for the list of words. Because periods separate specifications, the

input will never end with a period.

Here is a key simplification: Assume that words are between 1 and 100,000 characters in length,

inclusive. (Note that 100_000 is a valid Fixnum literal in Ruby.)

Restriction: The only types you may use are Fixnum, Bignum, and String, along with the values

nil, true, and false (i.e., the values of the single-value classes NilClass, TrueClass, and

FalseClass). In particular, you may not use arrays.

The tester uses an approach like that used for longest.rb to look for violations of the restrictions,

combining a5/check-seqwords.rb with your seqwords.rb to create .seqwords-chk.rb,

which is then run. As with longest.rb, the process is not foolproof; don't hesitate to ask for a manual

inspection of your seqwords.rb.

Problem 3. (8 points) minmax.rb

Write a Ruby program that reads lines from standard input and determines which line(s) are the longest

and shortest lines in the file. The minimum and maximum lengths are output along with the line

numbers of the line(s) having that length.

$ cat a5/mm.1
just a
test
right here
x

$ ruby minmax.rb < a5/mm.1
Min length: 1 (4)
Max length: 10 (3)

The output indicates that the shortest line is line 4; it is one character in length. The longest line is line 3;

it is ten characters in length.

Another example:

$ cat a5/mm.2
xxx
XX
yyy
yy
zzz
qqq

$ ruby minmax.rb < a5/mm.2
Min length: 2 (2, 4)
Max length: 3 (1, 3, 5, 6)

In this case, lines 2 and 4 are tied for being the shortest line. Four lines are tied for maximum length.

If the input file is empty, the program should output a single line that states "Empty file":

$ ruby minmax.rb < /dev/null
Empty file

Page 6 of 15

Here are some examples with /usr/share/dict/words:

$ ruby minmax.rb < /usr/share/dict/words
Min length: 1 (1, 1229, 2448, 3799, 4500, 5076, 5514, 6213, 6951,
7266, 7757, 8316, 9129, 10654, 11149, 11482, 12369, 12426, 13108,
14502, 15288, 15415, 15729, 16171, 16207, 16346, 16484, 21151,
26000, 34170, 39292, 42567, 46256, 49013, 52079, 55431, 56202,
56806, 59393, 63790, 65313, 67250, 74022, 74432, 79106, 89039,
93338, 95154, 96416, 98713, 98730, 99012)
Max length: 23 (39886)

$ ruby minmax.rb < /usr/share/dict/words | wc -l
2

$ grep ^q /usr/share/dict/words | ruby minmax.rb
Min length: 1 (1)
Max length: 15 (27, 49, 52, 86, 162, 251)

Although output is shown wrapped across several lines the first invocation above produces only two lines

of output, demonstrated by piping that same output into wc -l.

IMPORTANT: DO NOT assume any maximum length for input lines.

You might be inclined to have some repetitious code in your minmax.rb, such as an if-then-else that

handles minimum lengths and a nearly identical if-then-else that handles maximum lengths. There are no

extra points for it for but I challenge you to produce a solution in which there is no repetitious code.

I consider even something like the following, albeit short, to be repetitious:

mins = [1]
maxs = [1]

If you think your solution has no repetition, include the following comment and I'll see if I agree.

Look! No repetition!

Problem 4. (16 points) xfield.rb

For this problem you are going to create your own version of a Ruby tool that I use every day: xfield.

xfield was inspired by the UNIX cut command but its behavior differs in various ways.

Here's a man-style description of xfield. Detailed examples follow.

SYNOPSIS:
xfield [-dC] [-sSEPARATOR] [FIELDNUM|TEXT]...

xfield extracts fields of data from standard input. Field numbers are one-based and may be

negative to specify counting from the right. If a field number is out of bounds, "<NONE>" is output

in place of actual data. Unlike cut(1), xfield allows fields to be specified in any order and

appear more than once.

Fields are delimited by one or more spaces by default but an alternate character to delimit fields can

be specified with -dC. Tabs separate output fields by default but -sSEPARATOR can be used to

Page 7 of 15

specify an alternate separator, which must be at least one character in length. There may be multiple

-d and -s specifications, in any order, but they must appear before any field number or text

specifications. If there are multiple specifications for either -d or -s, the last one of each "wins".

If a textual argument (not a number) falls between two field specifications (two numbers), that text is

used instead of the separator.

Input lines are assumed to end with a newline. If there are no input lines, xfield produces no

output.

If no fields are specified, the message "xfield: no fields specified" is printed, and

xfield calls exit 1 to terminate execution. (exit is a Kernel method.)

xfield is able to handle any number of input lines. (Hint: Don't do something like read all the

input lines into memory and then process them—they might not fit! Just process lines one at a time.)

The behavior of xfield is undefined in cases that are not specifically addressed by this write-up or

exercised with the tester. That means that any non-malicious behavior is ok—run-time errors,

curious results, etc., are not a surprise if the user misuses xfield.

Some detailed examples of xfield in operation follow. Here is an input file:

$ cat a5/xf.1
one 1 1.0
two 2 2.0
three 3 3.0
four 4 4.0
twenty 20 20.0

The English text and the real numbers can be extracted like this:

$ ruby xfield.rb 1 3 < a5/xf.1
one 1.0
two 2.0
three 3.0
four 4.0
twenty 20.0

xfield can be used to reorder fields:

$ ruby xfield.rb 3 2 1 < xf.1
1.0 1 one
2.0 2 two
3.0 3 three
4.0 4 four
20.0 20 twenty

xfield supports negative indexing, just like Ruby arrays:

$ ruby xfield.rb -1 1 < a5/xf.1
1.0 one
2.0 two
3.0 three
4.0 four
20.0 twenty

Page 8 of 15

$ ruby xfield.rb -1 1 2 -2 < a5/xf.1
1.0 one 1 1
2.0 two 2 2
3.0 three 3 3
4.0 four 4 4
20.0 twenty 20 20

If a field reference is out of bounds, the string "<NONE>" is output:

$ ruby xfield.rb 1 10 2 < a5/xf.1
one <NONE> 1
two <NONE> 2
three <NONE> 3
four <NONE> 4
twenty <NONE> 20

The -s flag specifies an output separator to use instead of tab.

$ ruby xfield.rb -s... 1 3 1 < a5/xf.1
one...1.0...one
two...2.0...two
three...3.0...three
four...4.0...four
twenty...20.0...twenty

To extract login ids and real names (and room/phone) from a5/oldpasswd, an excerpt from an ancient

/etc/passwd, one might use -d: to specify that a colon is the delimiter:

$ ruby xfield.rb -d: 1 5 < a5/oldpasswd
wnj Bill Joy,457E,7780
dmr Dennis Ritchie
ken Ken Thompson
mike Mike Karels
carl Carl Smith,508-21E,6258
joshua Josh Goldstein

Note that the -s and -d options are single arguments—there's no space between -s or -d and the

following string.

Non-numeric arguments other than the -s and -d flags are considered to be text to be included in

each output line. If a textual argument (not a number) falls between two field specifications (two

numbers), that text is used instead of the separator:

$ ruby xfield.rb int= 2 ", real=" 3 ", english=" 1 < a5/xf.1
int=1, real=1.0, english=one
int=2, real=2.0, english=two
int=3, real=3.0, english=three
int=4, real=4.0, english=four
int=20, real=20.0, english=twenty

Note the use of quotation marks to form an argument that contains blanks. The shell strips off the

quotation marks so that the resulting arguments passed to the program do not have quotes. See the

Implementation notes for xfield section below for more on this.

Here's that text-argument-overrides-separator rule again:

Page 9 of 15

If a textual argument (not a number) falls between two field specifications (two numbers), that text is

used instead of the separator:

Here are some more examples showing that rule in action:

$ cat a5/xf.2
one two three four

$ ruby xfield.rb -s. 1 2 3 < a5/xf.2
one.two.three

$ ruby xfield.rb -s. A 1 2 3 B C < a5/xf.2
Aone.two.threeBC

$ ruby xfield.rb -s. A 1 B C 2 3 D < a5/xf.2
AoneBCtwo.threeD

$ ruby xfield.rb -s. A 1 B C 2 D 3 E < a5/xf.2a5
AoneBCtwoDthreeE

Below are some cases that bring all the elements into play.

$ cat a5/xf.3
xxxxxxxAxxxxxxxxxxBxC
DxExF
xG1xG2
xxxxHIxxxJKxxxLMNxxxOPQRSx

$ ruby xfield.rb -dx -s- 1 2 3 < a5/xf.3
A-B-C
D-E-F
G1-G2-<NONE>
HI-JK-LMN

$ ruby xfield.rb -dx -s- -1 ... -2 -3 @ < a5/xf.3
C...B-A@
F...E-D@
G2...G1-<NONE>@
OPQRS...LMN-JK@

$ ruby xfield.rb -s/ -de 1 2 < a5/xf.1
on/ 1 1.0
two 2 2.0/<NONE>
thr/ 3 3.0
four 4 4.0/<NONE>
tw/nty 20 20.0

If there are no input lines, xfield produces no output:

$ ruby xfield.rb -s/ -d: 1 x 2 3 < /dev/null

Implementation notes for xfield

gets vs. STDIN.gets

The gets method does a little more than simply reading lines from standard input: If command line

Page 10 of 15

arguments are specified, gets will consider those arguments to be file names. It will then try to open

those files and produce the lines from each in turn. That's really handy in some cases but it gets in the

way for xfield. To avoid this behavior, don't use "line = gets" to read lines. Instead, do this:

while line = STDIN.gets do

That limits gets to the contents of standard input.

Delimiter-specific behavior in String#split

I'm astounded by it but the fact is that split behaves differently when the delimiter is a space:

>> " a b c ".split(" ")
=> ["a", "b", "c"]

>> ".a..b..c.".split(".")
=> ["", "a", "", "b", "", "c"]

Command line argument handling

The command line arguments specified when a Ruby program is run are made available as strings in

ARGV, an array. Here is echo.rb, a Ruby program that prints the command line arguments:

printf("%d arguments:\n", ARGV.length)
for i in 0...ARGV.length do # 0...N is 0..N-1
 printf("argument %d is '%s'\n", i, ARGV[i])
end

Execution:

$ ruby echo.rb -s -s2 -abc x y
5 arguments:
argument 0 is '-s'
argument 1 is '-s2'
argument 2 is '-abc'
argument 3 is 'x'
argument 4 is 'y'

Unescaped quotes and backslashes specified on the command line are processed and fully

consumed by the shell; the program doesn't "see" them. Example:

$ ruby echo.rb int= 2 ", real=" 3 ", english="
5 arguments:
argument 0 is 'int='
argument 1 is '2'
argument 2 is ', real='
argument 3 is '3'
argument 4 is ', english='

$ ruby echo.rb " " ' x ' \ \y\ ""
4 arguments:
argument 0 is ' '
argument 1 is ' x '
argument 2 is ' y '
argument 3 is ''

Page 11 of 15

The shell does provide some mechanisms to allow quotes and backslashes to be transmitted in arguments:

$ ruby echo.rb '"' \\x\\
2 arguments:
argument 0 is '"'
argument 1 is '\x\'

Additionally, the consumes I/O redirections with < and >—the program never sees those operators

or their accompanying filename argument. Here's some evidence of that:

$ ruby echo.rb 1 2 3 < lg.1
3 arguments:
argument 0 is '1'
argument 1 is '2'
argument 2 is '3'

$ ruby echo.rb 1 2 3 < lg.1 > out

$ cat out
3 arguments:
argument 0 is '1'
argument 1 is '2'
argument 2 is '3'

The above examples were produced with a UNIX shell; but you'll see similar behavior when working on

the Windows command line, although backslashes are handled differently.

BOTTOM LINE: Don't add code to your solution that attempts to process those shell

metacharacters—that's the job of the shell, not your program!

An admonishment/HINT about argument handling

I've seen many students turn command line argument handling into an incredibly complicated mess.

Don't do that! Here's an easy way to process arguments in xfield: Iterate over the elements in ARGV.

If the argument starts with "-s" or "-d" then save the rest of the string for later use. If

argument.to_i produces something other than zero, then add the value (as an integer) to an array

that specifies what's to be printed for each line. If argument.to_i produces zero, add argument to

that same array. That's about 15 lines of simple code.

Note that Ruby's ARGV is the counterpart to args in a Java declaration like void main(String

args[]), but unlike Java, the name ARGV is fixed.

A HINT on handling the textual argument/separator rule

One way to handle the textual argument/separator rule is to simply make a pass over the argument array

and if two consecutive numbers are encountered, put the separator between them, as if the user had done

that in the first place. For example, if the separator is ".", the specification

1 3 x 4 x -2 1

would be transformed into

1 . 3 x 4 x -2 . 1

Page 12 of 15

A hint in a hint: Think about representing the above specification with this Ruby array:

[0, ".", 2, "x", 3, "x", -2, ".", 0]

Note the combination of Fixnums and Strings.

A lesson in LHtLaL

Recall that xfield's output fields are separated by a single tab. (Use "\t".) Let's demonstrate that by

using a couple of ruby command line options:

% ruby xfield.rb 1 3 < a5/xf.1 | ruby -n -e 'puts $_.inspect'
"one\t1.0\n"
"two\t2.0\n"
"three\t3.0\n"
"four\t4.0\n"
"twenty\t20.0\n"

Use man ruby to learn about those -n and -e options! $_ is a predefined global variable that holds

"The last string read by the Kernel methods gets and readline." (from RPL)

Here's the lesson in LHtLaL: I could have used cat -A to see those tabs but I chose to build my Ruby

skills by learning about -n, -e, and $_.

MID-TERM HINT: I'll ask you what LHtLaL stands for. Answer: Learning How to Learn a Language.

Problem 5. (3 points) hudak.txt

In The Haskell School of Expression the late Paul Hudak wrote,

"The best news is that Haskell's type system will tell you if your program is well-typed before you

run it. This is a big advantage because most programming errors are manifested as typing errors."

Do agree or disagree with his claim that "most programming errors are manifested as typing errors"? For

ths problem you are to present an argument based on your full experience as a programmer that either

supports his claim or refutes it. (Do not argue both sides!) Take all your programming experience into

account, not just 372!

As usual, I'm looking for quality, not quantity but as a ballpark figure I imagine 200-400 words, as

reported by wc -w, will be needed for a thoughtful answer.

As always, the .txt suffix on hudak.txt should be enough to tell you that I'm wanting a plain ASCII

text file, not a Word document, PDF, etc.

Problem 6. Extra Credit observations.txt

Submit a plain text file named observations.txt with...

(a) (1 point extra credit) An estimate of how long it took you to complete this assignment. To facilitate

programmatic extraction of the hours from all submissions have an estimate of hours on a line by itself,

more or less like one of the following three examples:

Hours: 6

Page 13 of 15

Hours: 3-4.5
Hours: ~8

If you want the one-point bonus, be sure to report your total (estimated) hours on a line that starts with

"Hours:". There must be only one "Hours:" line in observations.txt. It's fine if you care to

provide per-problem times, and that data is useful to us, but report it in some form of your own invention,

not with multiple lines that contain "Hours:", in either upper- or lower-case.

Other comments about the assignment are welcome, too. Was it too long, too hard, too detailed? Speak

up! I appreciate all feedback, favorable or not.

(b) (1-3 points extra credit) Cite an interesting course-related observation (or observations) that you made

while working on the assignment. The observation should have at least a little bit of depth. Think of me

saying "Good!" as one point, "Excellent!" as two points, and "Wow!" as three points. I'm looking for

quality, not quantity.

Turning in your work

Use a5/turnin to submit your work. Each run creates a time-stamped "tar file" in your current

directory with a name like aN.YYYYMMDD.HHMMSS.tz You can run a4/turnin as often as you

want. We'll grade your final submission.

Note that each of the aN.*.tz files is essentially a backup, too, but perhaps mail to 372s16 if you

need to recover a file and aren't familiar with tar—it's easy to accidentally overwrite your latest copies

with a poorly specified extraction.

a5/turnin -l shows your submissions.

To give you an idea about the size of my solutions, here's what I see as of press time:

$ wc $(grep -v txt a5/delivs)
 13 36 237 longest.rb
 19 47 295 seqwords.rb
 37 89 760 minmax.rb
 60 150 1272 xfield.rb
 129 322 2564 total

My code has few comments.

Miscellaneous

Restrictions not withstanding, you can use any elements of Ruby that you desire, but the assignment is

written with the intention that it can be completed easily using only the material presented on Ruby slides

1-137.

If you're worried about whether a solution meets the restrictions, mail it to 372s16—we'll be happy to

look it over. But don't wait too long; there may be a crunch at the end. Remember: only longest.rb

and seqwords.rb have restrictions.

Point values of problems correspond directly to assignment points in the syllabus. For example, a 10-

point problem on this assignment corresponds to 1% of your final grade in the course.

Feel free to use comments to document your code as you see fit, but note that no comments are required,

Page 14 of 15

and no points will be awarded for documentation itself. (In other words, no part of your score will be

based on documentation.) A # is comment to end of line, unless in a string literal or regular expression.

There's no Ruby analog for /* ... */ in Java and {- ... -} in Haskell but you can comment out

multiple lines by making them an embedded document—lines bracketed with =begin/=end starting in

column 1. Example:

=begin
 Just some

comments here.
=end

Silly-looking, huh? I agree! (It looks like a construction that escaped from the 1960s.)

RPL 2.1.1 has more on comments.

Remember that late assignments are not accepted and that there are no late days; but if circumstances

beyond your control interfere with your work on this assignment, there may be grounds for an extension.

See the syllabus for details.

My estimate is that it will take a typical CS junior from 5 to 7 hours to complete this assignment.

Our goal is that everybody gets 100% on this assignment AND gets it done in an amount of time

that is reasonable for them.

If you put five hours into this assignment and don't seem to be close to

completing it, it's definitely time to touch base with us, regardless of whether

you have any questions. Specifically mention that you've reached five hours.

Give us a chance to speed you up!

I hate to have to mention it but keep in mind that cheaters don't get a second chance. If you give your

code to somebody else and they turn it in, you'll both likely fail the class, get a permanent transcript

notation stating you cheated, and maybe more. See the syllabus for the details.

Page 15 of 15

CSC 372, Spring 2016

Assignment 6

Due: Friday, March 25 at 23:59:59

The Usual Stuff

Make an a6 symlink that references /cs/www/classes/cs372/spring16/a6. Test using

a6/tester (or a6/t). Use Ruby 2.2.4.

A note about problems 1-4

Each of the first four problems ask you to write an iterator, which is a single method, rather than a

program. The write-up for the first iterator, eo, shows a couple of ways to approach edit-run cycle.

Each of the iterators has a "duck typing" specification that describes what the iterator requires of its

argument(s), such as being subscriptable or having a size or each method.

IMPORTANT: The first test for each iterator is a Ruby program with a name like ITERATOR-ap.rb.

The "ap" stands for all points—when grading, all the points for the problem will be based on whether

you pass the "ap" test. The "ap" tests use dumbed-down classes that provide only the capabilities that the

iterator is supposed to require. For example, eo-ap.rb uses a class named Dumb that provides only

subscripting with x[n] and a size method. If you're passing some cases for an iterator but failing the

"ap" test, then your implementation is requiring more capabilities of its argument(s) than it should be,

according to the duck typing specification.

Problem 1. (2 points) eo.rb

Write a Ruby iterator eo(x) that yields every other element in x. eo(x) returns x.

Duck typing: eo only requires x to be subscriptable with x[n] and have a size method.

Usage:

>> eo([10,20,30,40]) {|v| puts v }
10
30
=> [10, 20, 30, 40]

>> eo("testing") {|c| print "'#{c}' "}
't' 's' 'i' 'g' => "testing"

>> sum = 0; eo((1..10).to_a) {|v| sum += v}; sum
=> 25

>> eo([]) {|v| puts v }
=> []

Here's a way to approach the edit-run cycle with eo and the three iterators that follow, tkcycle,

vrepl and mirror:

Add the following line to your ~/.irbrc:

$eo="eo.rb"

Page 1 of 11

After restarting irb you can do this:

$ irb
>> load $eo
=> true
>> eo("abcd") {|c| puts c}
a
c
=> "abcd"

That works because load is a Ruby function. That contrasts with :load in ghci, which is an

operation provided by the REPL, not the Haskell language.

You can edit in another window and then do load $eo to load up the latest.

Another angle to save a little typing is add a method like this to to your .irbrc:

def ld s
 load s.to_s + ".rb"
end

Use it like this:

$ irb
>> ld :eo
=> true

By giving ld a symbol, it's sort of like using a string literal that needs a quote on only one end.

(Atoms in Lisp are similar.) ld converts its argument to a string, tacks on the ".rb" suffix, and

calls load with the result. Again, we get this sort of flexibility because load is a Ruby

method, but on the other hand, I still miss the filename completion that ghci provides.

Problem 2. (4 points) tkcycle.rb

Write a Ruby iterator tkcycle(x, sizes) that yields consecutive "slices" of x based on the integers

in sizes. tkcycle cycles through the sizes in sizes until it runs out of elements in x. tkcycle

always returns nil.

Duck typing: tkcycle only requires x to support a "slice" operation with x[start,length] and

have a size method. sizes is expected to be a non-empty array of integers.

Examples:

>> tkcycle((1..10).to_a,[1,2]) {|s| p s}
[1]
[2, 3]
[4]
[5, 6]
[7]
[8, 9]
[10]
=> nil

>> tkcycle("just a test", [3]) {|s| puts "slice = #{s}"}

Page 2 of 11

slice = jus
slice = t a
slice = te
=> nil

>> tkcycle("just a test", [30]) {|s| puts "slice = #{s}"}
=> nil

>> tkcycle("just a test", [3,0,2]) {|s| puts ">#{s}<"}
>jus<
><
>t <
>a t<
><
>es<

Note that tkcycle("just a test", [3]) above demonstrates that tkcycle never yields a

partial result: After the third block invocation, with s = " te", only "st" remains, and that's not

enough for the next three-element yield.

Problem 3. (4 points) vrepl.rb

Write a Ruby iterator vrepl(x) that produces an array consisting of varying numbers of repetitions of

values in x. The number of repetitions for an element is determined by the result of the block when the

iterator yields that element to the block.

Duck typing: vrepl only requires x to have an each method.

>> vrepl(%w{a b c}) { 2 }
=> ["a", "a", "b", "b", "c", "c"]

>> vrepl(%w{a b c}) { 0 }
=> []

>> vrepl((1..10).to_a) { |x| x % 2 == 0 ? 1 : 0 }
=> [2, 4, 6, 8, 10]

>> i = 0
=> 0

>> vrepl([7, [1], "4"]) { i += 1 }
=> [7, [1], [1], "4", "4", "4"]

If the block produces a negative value, zero repetitions are produced:

>> vrepl([7, 1, 4]) { -10 }
=> []

Problem 4. (4 points) mirror.rb

Write a Ruby iterator mirror(x) that yields a "mirrored" sequence of values based on the values that

x.each yields.

Duck typing: mirror only requires that x implement the iterator each.

Page 3 of 11

The value returned by mirror is always nil.

>> mirror(1..3) { |v| puts v }
1
2
3
2
1
=> nil

>> mirror([1, "two", {a: "b"}, 3.0]) { |v| p v }
1
"two"
{:a=>"b"}
3.0
{:a=>"b"}
"two"
1
=> nil

>> mirror({:a=>1, :b=>2, :c=>3}) {|x| p x}
[:a, 1]
[:b, 2]
[:c, 3]
[:b, 2]
[:a, 1]
=> nil

>> mirror([]) { |v| puts v }
=> nil

Like the previous three iterators, mirror is a freestanding method.

Problem 5. (12 points) calc.rb

Write in Ruby a simple four-function line-oriented calculator that evaluates expressions composed of

integer literals and variables, providing addition, subtraction, multiplication, and division. All operators

have equal precedence. Evaluation is done in a strict left to right order. Control-D exits the program.

Here are examples of expressions involving integer literals:

$ ruby calc.rb
? 3+4
7
? 3*4+5
17

? 3+4*5 Note that the addition is done first because it is the leftmost operator.
35
? 1/2*3+4
4
? 5/3
1
? 143243243243242323*342343443234324
49038385111943393068867603094652
? ^D
$

Page 4 of 11

Variables are created with assignments. Variables begin with a letter and are followed by zero or more

letters or digits. Variables have a default value of zero. The result of an assignment is the value

assigned.

$ ruby calc.rb
? x=7
7
? yval=10
10
? z
0
? x=x+yval+z
17
? yval=x+yval
27
? yval
27
? big=11111111111111111*11111111111111111
123456790123456787654320987654321
? big=big/big
1

Assignments only appear as the first operation on a line and consist of a variable followed by an equals

sign followed by an expression. You won't see something like x=y=3 or x+y=0.

Note that while the arithmetic operators are done in strict left-to-right order, the assignment, if any, is

done last.

Input lines consist solely of letters, digits, and these five symbols: +*-/=. Assume all expressions are

well formed; you won't see something like x==3 or +10/5+. If a string starts with a letter, it is a

variable; you won't see something like 15x. There is no negation; you won't see something like x=-10

or 3*-4. Division by zero is not supported. There will be no empty lines in the input.

Implementation notes

Regular expressions are handy in a couple of places in calc.rb. As of press time we're just getting

into regular expressions, so I'm going to give a couple of pieces of code to use as-is. The first is a

method that can be used to see if a string is a non-negative integer:

def isInt(s)
 !!(s =~ /^\d+$/)
end

The match simply requires that s consist of nothing but digits. I chose to use a couple of "not"s to

produce true or false rather than a truthy match position or a falsy nil, mainly for a prettier

example below.

The second piece of regular expression code is a particular invocation of String#scan, to break up an

input line:

>> line = "x2=3*val+40-500"

>> line.scan(/\w+|\W+/)
=> ["x2", "=", "3", "*", "val", "+", "40", "-", "500"]

Page 5 of 11

Just for fun, let's combine that with isInt:

>> line.scan(/\w+|\W+/).map {|s| isInt(s)}
=> [false, false, true, false, false, false, true, false, true]

WARNING: Kernel#eval might look like a quick shortcut to a solution for this problem but using it

can lead to some headaches. My recommendation is that you avoid eval for this problem. However, I

do recommend that you use Object#send! It works like this:

>> 4.send("+", 3)
=> 7

>> 10.send("-", 4)
=> 6

Problem 6. (25 points) switched.rb

The U.S. Social Security Administration makes available yearly counts of first names on birth certificates

back to 1885. Over time, some names change from predominantly male to predominantly female or

vice-versa. For this problem you are to create a Ruby program switched.rb to look for names that

change from predominantly male to predominantly female in given spans of years.

switched.rb takes two command-line arguments: a starting year and an ending year. Here's a run:

% ruby switched.rb 1951 1958
 1951 1952 1953 1954 1955 1956 1957 1958
Dana 1.19 1.20 1.26 1.29 1.00 0.79 0.67 0.64
Jackie 1.40 1.29 1.14 1.13 1.11 0.94 0.72 0.57
Kelly 4.23 2.74 3.73 2.10 2.32 1.77 0.98 0.51
Kim 2.58 1.82 1.47 1.08 0.61 0.30 0.17 0.12
Rene 1.43 1.32 1.15 1.24 1.13 0.88 0.87 0.89
Stacy 1.06 0.81 0.62 0.47 0.44 0.36 0.29 0.21
Tracy 1.51 1.14 1.02 0.73 0.56 0.55 0.59 0.59

First, note that all numbers in the leftmost column are greater than one and all numbers in the rightmost

column are less than one.

The 1.19 for Dana in 1951 indicates that in 1951 there were 1.19 times as many male babies named Dana

as there were female babies named Dana. We can see that in a6/yob/1951.txt, which has the 1951

data:

$ grep Dana, a6/yob/1951.txt
Dana,F,1076
Dana,M,1277

The format of the a6/yob/YEAR.txt dat files is simple: each line has the name, sex, and the

associated count, separated by commas.

Note that the argument to grep, "Dana," has a trailing comma so that "Danae" doesn't turn up, too.

By 1958 things had changed—there were only .64 males named Dana for every female named Dana:

$ grep Dana, a6/yob/1958.txt

Page 6 of 11

Dana,F,2388
Dana,M,1531

switched.rb reads the a6/yob/YEAR.txt files for all the years in the range specified by the

command line arguments and looks for names for which the male/female ratio is > 1.0 in the first year

and < 1.0 in the last year. For all the names it finds, it prints the male/female ratio for all the years from

the first year through the last year. Names are printed in alphabetical order.

As a specific example, Dana is included in the list for 1951 through 1958 because males/females in 1951

was 1.19 (> 1.0) and males/females in 1958 was 0.64 (<1.0). The ratios for the middle years are not

examined to decide whether to include a name; they are shown only to provide a more complete picture

of the data between the endpoints.

Note that there's a big shift for Kim from 1954 through 1957. I wonder if that's because the actress Kim

Novak had a breakout role in 1955's Picnic.

If no names meet the criteria, switched prints "no names found" and exits by calling exit.

$ ruby switched.rb 2011 2012
no names found

IMPORTANT: To eliminate the less significant results, a name is included only if both the male and

female counts in both the first and last year are greater than or equal to 100. By that criteria the name

Lavern is not included for 1949-1951, and no other names turn up, either:

% ruby switched.rb 1949 1951
no names found

Here's the underlying data:

$ grep Lavern, a6/yob/yob1949.txt
Lavern,F,93
Lavern,M,121

$ grep Lavern, a6/yob/yob1951.txt
Lavern,F,95
Lavern,M,86

There was a M/F shift from 121/93 in 1949 to 86/95 in 1951 but because not all four of those counts are

>= 100, Lavern is not included. There's no grep shown above for 1950 because that data is

inconsequential: inclusion is determined solely based on counts for the first and last year.

It's interesting to combine switched with a bash for-loop that runs the program with a gradually

shifting range. When your switched.rb is done, try this:

for i in $(seq 1940 2005); do ruby switched.rb $i $(($i+9)); echo ===; done

Two obvious extensions to switched would be command-line options to adjust the 100-baby minimum

and to look for female to male flips for a name. You might find those interesting to implement and

experiment with, but neither are required.

switched.rb does no error handling whatsoever. Behavior is only defined in the case of being given

two command line arguments in the range of 1885 to 2014, and the first must be less than the second.

Page 7 of 11

Implementation notes for switched

I intend this problem to be an exercise in using the Hash class. I encourage you to devise a data

structure yourself but in case you run into trouble, here are a few thoughts on my approach to the

problem: http://www.cs.arizona.edu/classes/cs372/spring16/a6/switched-hint.html

It's easy to drown in the data on a problem like this. You might start by having your code that reads the

YEAR.txt files discard data for everybody but "Dana" and then use "p x" (equivalent to "puts

x.inspect") to dump out your data structure. Then try adding in a male-only and a female-only name,

like "Delbert" and "Mimi" in 1951. Alternatively, you might edit down some data files to just a few lines

of interest. (After copying any of the a6/yob files into your directory, use chmod 600 FILE so that

you can edit it; cp will have left it as mode 444—read only.)

Watch out for bugs related to integer division. (Use .to_f to get a Float when needed.)

Use File.open to produce a File object whose gets method can be used to read lines. Example:

$ cat fileio.rb
year = ARGV[0]

f = File.open("a6/yob/#{year}.txt")

count = 0
while line = f.gets
 count += 1
end

f.close

puts "read #{count} lines"

$ ruby fileio.rb 2001
read 30258 lines

Alternatively, you could use f.readlines() to produce an array of all the lines in the file with a

single call or f.each { ... } to process each line with the associated block.

The M/F ratios are formatted using a %7.2f format with printf, demonstrated on the command line

with ruby -e:

 $ ruby -e 'printf("%7.2f\n", 1277.0/1076.0)'
 1.19

Names are left-justified in a 10-wide field using a printf format of %-10s.

You may have questions about the data files. Before mailing to us or posting on Piazza, take a look at the

data files and see if you can answer the question yourself. The files are in a6/yob. Those same files

will be used for testing when grading.

You can download http://www.cs.arizona.edu/classes/cs372/spring16/a6/yob.zip for testing on your

own machine. In the same directory as your switched.rb, make a directory named a6 and then unzip

yob.zip in that directory to produce a structure compatible with the File.open above.

Problem 7. (ZERO points) pancakes.rb

Page 8 of 11

http://www.cs.arizona.edu/classes/cs372/spring16/a6/switched-hint.html
http://www.cs.arizona.edu/classes/cs372/spring16/a6/yob.zip

Let's see who will write a Ruby version of the Haskell pancake printer from assignment 4 for zero points!

The Ruby version is a program that reads lines from standard input, one order per line, echoes the order,

and then shows the pancakes.

Example:

$ cat a6/pancakes.1
3 1 / 3 1 5
3 1 3
1 5/ 1 1 1/11 3 15 /3 3 3 3/1
1
$ ruby pancakes.rb < a6/pancakes.1
Order: 3 1 / 3 1 5

*** *
 * *****

Order: 3 1 3

 *

Order: 1 5/ 1 1 1/11 3 15 /3 3 3 3/1

 * *********** ***
 * * *** ***
***** * *************** *** *

Order: 1

*

$

A blank line is printed after the Order: line and again after the stacks.

Assume that input lines consist exclusively of integers, spaces, and slashes, which separate stacks.

Assume that there is at least one stack. Assume all stacks have at least one pancake. Assume all widths

are greater than zero. Assume the input is well-formed—you won't see something like "1 / / 3" or

"/ 3 /". Assume there are no empty lines in the input.

If an order specifies an even-width pancake, the message shown below is printed. Processing then

continues with the next order in the input, if any.

$ ruby pancakes.rb < a6/pancakes.2
Order: 1 3 1 / 1 2 3

Even-width pancake. Order ignored.

Order: 51 49

Page 9 of 11

$

In case you want to play "Beat the Teacher", I'll tell you that it took me about 25 minutes to write

pancakes.rb, sketching on paper included. If you care to, let me know how long it takes you. Think

about it all you want to but start the clock the moment a tangible artifact is produced, like a mark on a

piece of paper.

Problem 8. Extra Credit observations.txt

Submit a plain text file named observations.txt with...

(a) (1 point extra credit) An estimate of how long it took you to complete this assignment. To facilitate

programmatic extraction of the hours from all submissions have an estimate of hours on a line by itself,

more or less like one of the following three examples:

Hours: 6
Hours: 3-4.5
Hours: ~8

If you want the one-point bonus, be sure to report your total (estimated) hours on a line that starts with

"Hours:". There must be only one "Hours:" line in observations.txt. It's fine if you care to

provide per-problem times, and that data is useful to us, but report it in some form of your own invention,

not with multiple lines that contain "Hours:", in either upper- or lower-case.

Other comments about the assignment are welcome, too. Was it too long, too hard, too detailed? Speak

up! I appreciate all feedback, favorable or not.

(b) (1-3 points extra credit) Cite an interesting course-related observation (or observations) that you made

while working on the assignment. The observation should have at least a little bit of depth. Think of me

saying "Good!" as one point, "Excellent!" as two points, and "Wow!" as three points. I'm looking for

quality, not quantity.

Turning in your work

Use a6/turnin to submit your work. Each run creates a time-stamped "tar file" in your current

directory with a name like aN.YYYYMMDD.HHMMSS.tz You can run a6/turnin as often as you

want. We'll grade your final submission.

Note that each of the aN.*.tz files is essentially a backup, too, but perhaps mail to 372s16 if you

need to recover a file and aren't familiar with tar—it's easy to accidentally overwrite your latest copies

with a poorly specified extraction.

a6/turnin -l shows your submissions.

To give you an idea about the size of my solutions, with comments stripped, here's what I see as of press

time:

$ wc $(grep -v txt a6/delivs)
 8 17 93 eo.rb
 19 37 332 tkcycle.rb
 8 29 158 vrepl.rb

Page 10 of 11

 17 23 205 mirror.rb
 35 75 667 calc.rb
 57 142 1241 switched.rb
 39 112 851 pancakes.rb
 183 435 3547 total

Miscellaneous

You can use any elements of Ruby that you desire, but the assignment is written with the intention that it

can be completed easily using only the material presented on Ruby slides 1-200.

Point values of problems correspond directly to assignment points in the syllabus. For example, a 10-

point problem on this assignment corresponds to 1% of your final grade in the course.

Feel free to use comments to document your code as you see fit, but note that no comments are required,

and no points will be awarded for documentation itself. (In other words, no part of your score will be

based on documentation.)

Remember that late assignments are not accepted and that there are no late days; but if circumstances

beyond your control interfere with your work on this assignment, there may be grounds for an extension.

See the syllabus for details.

My estimate is that it will take a typical CS junior from 7 to 9 hours to complete this assignment.

Our goal is that everybody gets 100% on this assignment AND gets it done in an amount of time

that is reasonable for them.

If you put seven hours into this assignment and don't seem to be close to

completing it, it's definitely time to touch base with us, regardless of whether

you have any questions. Specifically mention that you've reached seven

hours. Give us a chance to speed you up!

I hate to have to mention it but keep in mind that cheaters don't get a second chance. If you give your

code to somebody else and they turn it in, you'll both likely fail the class, get a permanent transcript

notation stating you cheated, and maybe more. See the syllabus for the details.

Page 11 of 11

CSC 372, Spring 2016

Assignment 7

Due: Friday, April 8 at 23:59:59

Option: Make Your Own Assignment!

If you've got an idea for something you'd like to write in Ruby, you can propose that as a replacement for

some or all of the problems on this assignment. To pursue this option send me mail with a brief sketch of

your idea. We'll negotiate on points and details.

The Usual Stuff

Make an a7 symlink that references /cs/www/classes/cs372/spring16/a7. Test using

a7/tester (or a7/t). Use Ruby 2.2.4.

Don't hesitate to dig into the test programs

Most of the tests for the problems on this assignment are in the form of Ruby programs that exercise a

number of cases. For example, there's only one test for label.rb. It's this: ruby a7/label1.rb

The tests for vstring.rb look like this:

ruby a7/vstring1.rb 1r
ruby a7/vstring1.rb 1m
...

The command line argument specifies the block of tests to run.

In some cases you may need to dig around in those test programs to figure out exactly what code is being

executed for a failing test. In some cases it may be useful to copy the code into your directory and hack it

up, maybe adding Kernel#p calls or varying the amount of loop iterations to help narrow down a bug.

In various places in the output for the label and VString tests you'll see something like this:

Line 35 in a7/label1.rb:
label([a,b,c]):
 a1:[a2:[],a3:[a2,a2],a4:[a3,a3]]

That first line tells us that the test originates at line 35 in a7/label1.rb. Here's that line:

sv("label([a,b,c])", bb)

sv, standing for "show values" is a helper method that uses eval to evaluate the expression specified by

the first argument. The second argument, bb, is the current set of variable bindings, which are used by

eval.

Problem 1. (12 points) label.rb

Array#inspect, which is used by Kernel#p and by irb, does not accurately depict an array that

contains multiple references to the same array and/or references itself. Example:

>> a = []

Page 1 of 22

>> b = [a,a]

>> p b
[[], []]

By simply examining the output of p b we can't tell whether b references two distinct arrays or has two

references to the same array.

Another problem is that if an array references itself, Ruby "punts" and shows "[...]":

>> a = []

>> a << a

>> p a
[[...]]

The problems continue if we then get a Hash involved:

>> h = {}

>> h[a] = h

>> p h
{[[...]]=>{...}}

For this problem you are to write a method label(x) that produces a labeled representation of

x, where x is a string, number, array or hash. Arrays and hashes may in turn reference other arrays

and hashes, and be cyclic.

Here's what label shows for the first case above.

>> a = []; b = [a,a]

>> puts label(b)
a1:[a2:[],a2]

The outermost array is labeled as a1. Its first element is an empty array, labeled a2. The second

element is a reference to that same empty array. Its contents are not shown, only the label a2. For

reasons described later, we'll use puts label(...) to show the string that label produces.

Here's another step, and the result:

>> c = [b,b]

>> puts label(c)
a1:[a2:[a3:[],a3],a2]

Note that the label numbers are not preserved across calls. The array that this call labels as a3 was

labeled as a2 in the previous example.

To explore relationships between the contents of a, b, and c we could wrap them in an array:

>> puts label([a,b,c])
a1:[a2:[],a3:[a2,a2],a4:[a3,a3]]

Page 2 of 22

Here's a simple cyclic case. The third element in a is a reference to a; representing that reference with a

label lets us see the cycle.

>> a = []

>> a = [10,20]

>> a << a

>> puts label(a)
a1:[10,20,a1]

Let's try a simple hash:

>> h = {}

>> h["one"] = 1

>> h[2] = "two"

>> puts label(h)
h1:{"one"=>1,2=>"two"}

Note that hashes are labeled as "hN". The key/value pairs are shown with "thick" arrows. Pairs are

separated with commas, and curly braces surround the list of pairs.

Let's add some arrays into the mix:

>> h = {}

>> a = [2,2,2]

>> a << a

>> h["twos"] = a

>> h["words"] = %w{just a test}

>> puts label(h)
h1:{"twos"=>a1:[2,2,2,a1],"words"=>a2:["just","a","test"]}

Note that arrays and hashes have separate numbering: the above labeling shows both h1 and a1, for

example.

Let's try h[h] = h:

>> h[h] = h

>> puts label(h)
h1:{"twos"=>a1:[2,2,2,a1],"words"=>a2:["just","a","test"],h1=>h1}

label(h) eventually reaches the key/value pair made by h[h] = h. Because h has already been

labeled as h1, the presence of that key/value pair is shown as h1=>h1.

Page 3 of 22

Another example:

>> a = [1,2,3]

>> a << [[[a,[a]]]]

>> a << a

>> puts label(a)
a1:[1,2,3,a2:[a3:[a4:[a1,a5:[a1]]]],a1]

One more example:

>> a = [1,2,3]

>> b = {"lets" => "abc", 1 => a}

>> 3.times { a << b }

>> a << "end"

>> puts label([a,b,{100=>200}])
a1:[a2:[1,2,3,h1:{"lets"=>"abc",1=>a2},h1,h1,"end"],h1,h2:{100=>200}]

The trivial case for label(x) is that x is not an array or hash. If so, label returns x.inspect:

>> puts label(4)
4

>> puts label("testing")
"testing"

Here are some simple cases that are good for getting started:

>> puts label([7])
a1:[7]

>> puts label([[7]])
a1:[a2:[7]]

>> puts label([[70],[80,"90"]])
a1:[a2:[70],a3:[80,"90"]]

Keep in mind that your solution must be able to accommodate an arbitrarily complicated structure but

the only types you'll encounter are numbers, strings, arrays and hashes.

This routine is a simplified version of the Image procedure from the Icon library. I've looked around

and asked around for something similar in Ruby. I haven't found anything yet but it may well exist. If

you find such a routine, which would trivialize this problem, you may not use it. However, you may

study it and then, based on what you've learned, create your own implementation. And, tell me about

your discovery!

The above examples use puts label(...) rather than showing the result of label(...). Let's

look at a label call without puts:

>> label([1,"two",["3"]])

Page 4 of 22

=> "a1:[1,\"two\",a2:[\"3\"]]"

label returns a string and irb uses inspect to show an unambiguous representation of results, so

any quotes in the result are escaped. Using puts lets us avoid that clutter:

>> puts label([1,"two",["3"]])
a1:[1,"two",a2:["3"]]
=> nil

Implementation notes

I think of this as a fairly hard problem to solve given only the above and what you've seen in class, but

for those who wish to have a challenge, I'll say nothing here about how to approach it. If you have trouble

getting started, however, see http://www.cs.arizona.edu/classes/cs372/spring16/a7/label-hint.html

IMPORTANT: You must match the sequence of label numbers that my solution produces. That

essentially requires you to traverse the structure in the same order I do, which is depth-first. Here's an

example that evidences that depth-first traversal:

>> puts label([[[10]],[[21,22]]])
a1:[a2:[a3:[10]],a4:[a5:[21,22]]]

Note that the deeply nested [10] was labeled with a3 before the second element of the top-level list was

labeled with a4.

Also, note that I iterate through key/value pairs in a hash using h.each {|k,v| ... }

Problem 2. (15 points, unevenly distributed across four sub-problems) re.rb

In this problem you are to write several methods. Each returns a regular expression that matches the

specified strings (no more, no less) and, in some cases, creates named groups.

Here is an example specification:

Write a method letsdigs_re that produces a regular expression that matches strings that

consist of one or more letters followed by three or more digits. The named groups lets and

nums are set to the letters and digits, respectively. A dash may optionally appear between the

two. If so, the named group dash is non-empty (i.e., not nil and not the empty string).

Here's a solution: (See slide 231 if you don't recognize the {3,} construct.)

def letsdigs_re
 /^(?<lets>[a-z]+)(?<dash>-?)(?<digs>\d+{3,})$/
end

Because the regular expression is the last expression in letsdigs_re, it is the return value.

spring16/ruby/smg.rb has a variant of show_match (slide 213) that also shows named groups.

Maybe add that method to your ~/.irbrc. Let's test letsdigs_re with smg:

>> smg(letsdigs_re, "abc123")
"<<abc123>>"
lets = <<abc>>, dash = <<>>, digs = <<123>>

>> smg(letsdigs_re, "abc-12")

Page 5 of 22

http://www.cs.arizona.edu/classes/cs372/spring16/a7/label-hint.html

no match

>> smg(letsdigs_re, "abc-1234")
"<<abc-1234>>"
lets = <<abc>>, dash = <<->>, digs = <<1234>>

A great resource for developing regular expressions is rubular.com. Here's the example above on

Rubular: http://rubular.com/r/vPnFMgzPoB. Note that the "Your test string:" window has three test

cases, one per line. There is a little bad news: Rubular doesn't seem to provide any way to build up a

regular expression like shown on slide 246.

Here's an older resource: a video example of using show_match to gradually develop a regular

expression: http://screencast.com/t/FO7OOIScCR39. (Yes, I should produce a version of it that uses

Rubular!)

The set of tests used for grading re.rb will be the set of tests used by a7/tester, and that set

will be finalized by noon on March 26.

Here are the methods you are to write for this problem:

 (a) (1 point) Write a method phone_re that produces a regular expression that matches strings that

are phone number in any of these forms: 555-1212, 800-555-1212, and

(800) 555-1212.

 (b) (2 points) Write a method sentence_re that produces a regular expression that matches

sentences, as follows: Sentences must begin with a capital letter. Sentences are composed of one

or more words. Words are separated by exactly one blank. The sentence must end with a period,

question mark, exclamation mark, or one of the two strings "!?" and "?!".

Two good sentences: "I shall test this!", "Xserwr AAA x."

A bad sentence: "it works!" (Doesn't start with a capital.)

See http://www.cs.arizona.edu/classes/cs372/spring16/a7/sentence-hint.html if you have

trouble getting started with this problem.

 (c) (3 points) Write a method hours_re that produces a regular expression that matches a

specification of one or more office hours periods, like "MWF 12:00-13:00", or "T-H

9:30-12:30, F 19:00-0:00". Days are specified with one or more letters in the set

[MTWHF], or a range from one day to another. Hours are in the range 0:00-23:45, with 5-

minute resolution. Times before 10:00 can optionally specified with a leading zero, like

09:45. Multiple periods are separated by a comma and a space.

 (d) (3 points) Here are some examples of ls -l output:

-rw-r----- 1 whm whm 543 Mar 14 18:19 ttl.rb
-rw-r--r-- 1 whm whm 6555 Dec 10 2009 w.dat
lrwxrwxrwx 1 whm whm 6 Mar 19 20:56 a7/t -> tester
drwx------ 183 whm empty 1306 Mar 21 20:21 /home/whm/.
drwx--x--x 51 whm wheel 318 Jan 30 22:13 /x/closed

The first character indicates file type—d for directory, l for symbolic link, - for regular files.

There are other types, too.

Page 6 of 22

http://rubular.com
http://rubular.com/r/vPnFMgzPoB
http://screencast.com/t/FO7OOIScCR39
http://www.cs.arizona.edu/classes/cs372/spring16/a7/sentence-hint.html

The next nine characters, which are three three-character groups, show the permissions. The first

group of three characters is "user" permissions—what the owner of the file is permitted to do

with the file. The next three characters are the group permissions. The third group of three is

"other" permissions—what users who aren't the owner nor are in the appropriate group can do

with the file. Ignoring some special cases, the first letter of the three-character groups is always

either 'r' or '-'; the second is always 'w' or '-'; and the third is always 'x' or '-'. You'll never see

something like 'rrw' or 'w-w'.

For this problem you're to write a method perms_re that produces a regular expression that

matches lines of ls -l output for files whose "other" permissions (the third group of three) is

not "---" and the file is not a symbolic link. In the lines above, w.dat and /x/closed meet

that criteria.

When the match is successful, the named group perms should contain the three characters of

"other" permissions (like "r--", "rwx", or "--x"), and the named group name should contain

the file name, like "w.dat".

Assume that file names do not contain blanks, but you might find it interesting to consider

handling that case, too.

Note that the format of the first ten characters never varies for ls -l output, but field widths

for the rest of the line can vary. The upshot of this is that you can't assume that the file name

begins in any particular column.

 (e) (3 points) For this problem you're to write a method vr_re that matches a string if it is a Vim

range specification. A Vim range specification can be a single line specification or two line

specifications separated by a comma.

We'll handle the following line specifications

A simple line number, like 15

A dot (.) for the current line, or $ for the last line

A dot or $ followed by +N or -N, where N is a positive integer

A regular expression enclosed in slashes, like /abc/ or /^x/. Assume the regular

expression doesn't contain any escaped slashes, like in /a\/b/.

Here are some valid range specifications:

10
10,20
.,20
20,$
/abc/,.
.-5,.+10
/begin/,/end/

When a match succeeds, the named groups from and to should be set, if two line specifications

are present. If there's only one, then $~["to"] should be nil or the empty string.

 (f) (3 points) Write a method path_re that produces a regular expression that matches UNIX paths

and sets the named group dir to the directory name, base to the filename, minus extension, and

ext to the extension, which is defined as everything in the filename to the right of the leftmost

dot. If an element is not present, then $~[whatever-group] should be nil or the empty

string.

Page 7 of 22

Examples: (excerpt of output from ruby a7/re1.rb path < a7/re.path)

path: 'longest.java', dir = '', base = 'longest', ext = 'java'

path: '/etc/passwd', dir = '/etc/', base = 'passwd', ext = ''

path: '/cs/www/classes/cs372/spring16/tester/Test.rb',
dir = '/cs/www/classes/cs372/spring16/tester/', base = 'Test',
ext = 'rb'

path: '/home/whm/.bashrc', dir = '/home/whm/', base = '', ext =
'bashrc'

The above is skimpy on examples but you'll find plenty in a7/re.*. Those are input files for

a7/re1.rb.

To be clear, re.rb, should consist of six methods. It should look something like this:

def phone_re
...

end

...four more here...

def path_re
 ...
end

A note on testing re.rb

For testing, "a7/t re" will test all the regular expressions but you can use the tester's -t option to test

just one of the regular expressions. Example:

$ a7/t re -t phone

Along with "phone" there's "sen", "hours", "perms", "vr", and "path".

Problem 3. (22 points) vstring.rb

For this problem you are implement a hierarchy of four Ruby classes: VString, ReplString,

MirrorString, and IspString. VString stands for "virtual string"—these classes create the

illusion of very long strings but relatively little data is needed to create that illusion.

VString serves as an abstract superclass of ReplString, MirrorString, and IspString; it

simply provides some methods that are used by those subclasses.

ReplString represents strings that consist of zero or more replications of a specified string. Example:

$ irb
>> load "vstring.rb"

>> s1 = ReplString.new("abc", 2)
=> ReplString("abc",2)

Note that irb used s1.inspect to produce the string 'ReplString("abc",2)', that shows the

Page 8 of 22

type, base string, and replication count.

VString subclasses support only a handful of operations: size, [n], [n,m], inspect, to_s, and

each. The semantics of [n] and [n,m] are the same as for Ruby's String class with one exception,

described below.

Here are some examples:

>> s1.size => 6

>> s1.to_s => "abcabc"

>> s1.to_s.class => String

>> s1[0] => "a"

>> s1[2,4] => "cabc"

>> s1[-5,2] => "bc"

>> s1[-3,10] => "abc"

>> s1[10] => nil

A ReplString can represent a very long string:

>> s2 = ReplString.new("xy", 1_000_000_000_000)
=> ReplString("xy",1000000000000)

>> s2.size => 2000000000000

>> s2[-1] => "y"

>> s2[-2,2] => "xy"

>> s2[1_000_000_000] => "x"

>> s2[1_000_000_001] => "y"

>> s2[1_000_000_001,7] => "yxyxyxy"

Some operations are impractical on very long strings. For example, s2.to_s would require a vast

amount of memory; but if the user asked for it, we'd let it run. Similarly, s2[n,m] has the potential to

produce an impractically large result.

A MirrorString represents a string concatenated with a reversed copy of itself. Examples:

>> s3 = MirrorString.new("1234") => MirrorString("1234")

>> s3.size => 8

>> s3.to_s => "12344321"

>> s3[-1] => "1"

Page 9 of 22

>> s3[2,4] => "3443"

An IspString represents a string with instances of another string interspersed between each character:

>> s4 = IspString.new("xyz", "...") => IspString("xyz","...")

>> s4.to_s => "x...y...z"

>> s4[0] => "x"

>> s4[1] => "."

>> s4[s4.size-1] => "z"

In the above examples the strings used in the subclass constructors are instances of String but they can

be an arbitrary nesting of VStrings, too:

>> s5 = IspString.new(MirrorString.new("abc"),
ReplString.new(".",3))
=> IspString(MirrorString("abc"),ReplString(".",3))

>> s5.to_s
=> "a...b...c...c...b...a"

>> s6 = ReplString.new(s5,1_000_000_000_000_000)
=>ReplString(IspString(MirrorString("abc"),ReplString(".",3)),100000
0000000000)

>> s6.size
=> 21000000000000000

>> s6[s6.size-20,100]
=> "...b...c...c...b...a"

>> s6[(s5.size)*(1_000_000_000_000_000-2),50]
=> "a...b...c...c...b...aa...b...c...c...b...a"

To emphasize that the "V" in VString stands for "virtual", consider this interaction:

>>s=MirrorString.new(ReplString.new("abc",10000000000000000000000000
00
00
00))
=>MirrorString(ReplString("abc",100000000000000000000000000000000000
00
00))

>> s.size
=>6000
00
000000000000000000000000000000

>> s2 = IspString.new(s,s)
=>IspString(MirrorString(ReplString("abc",10000000000000000000000000
00
00

Page 10 of 22

00)),MirrorString(ReplString("abc",100000000000000000000000000000000
00
000)))

>> s2.size.to_s.size
=> 328

The iterator each is available for ReplString, MirrorString, and IspString. It produces all

the characters in turn, as one-character strings. It returns the VString it was invoked on.

>> s1 = ReplString.new("abc",2) => ReplString("abc",2)

>> s1.each {|x| puts x}
a
b
c
a
b
c
=> ReplString("abc",2)

Be sure to 'include Enumerable' in VString, so that methods like map, sort, and all? work:

>> MirrorString.new("abc").map { |c| c }
=> ["a", "b", "c", "c", "b", "a"]

>> MirrorString.new(ReplString.new("abc",2)).sort
=> ["a", "a", "a", "a", "b", "b", "b", "b", "c", "c", "c", "c"]

>> MirrorString.new(
 ReplString.new("a", 100000)).all? { |c| c == "a" }
=> true

Using Ranges to subscript VStrings is not supported:

>> s1 = MirrorString.new("ab") => MirrorString("ab")
>> s1[0..-1]
NoMethodError: ...

I won't test with ranges.

TL;DR

Here's a quick summary of what's required of the VString subclasses and their constructors:

• ReplString.new(s, n) where s is a non-empty String or a VString and n > 0.

• MirrorString.new(s) where s is a non-empty String or a VString.

• IspString.new(s1,s2) where s1 and s2 are non-empty Strings or are VStrings.

• size, inspect, and to_s methods

• Subscripting with [n] and [start,len], with the same semantics as for Ruby's String

class.

• Subscripting with [Range] is not supported.

• VString implements the iterator each and includes Enumerable.

There is one exception to matching the semantics of String when subscripting with [start,len].

Note this behavior of String:

Page 11 of 22

>> s="abc" => "abc"

>> s[3] => nil

>> s[3,1] => ""

>> s[4,1] => nil

You might find it interesting to think about why Strings have that behavior but we won't match it with

VString. Instead, if start is out of bounds, nil is produced:

>> s = ReplString.new("abc",2) => ReplString("abc",2)

>> s[5,10] => "c"

>> s[6,10] => nil

Implementation Notes

VERY IMPORTANT: Implement as much functionality as possible in VString

It may help to imagine that there will eventually be dozens of VString subclasses instead of just the

three specified here. Having that mindset, and wanting to write as little code as possible to implement

those dozens of subclasses, should motivate you to do as much as possible in VString and as little as

possible in the subclasses.

My implementations of ReplString, MirrorString, and IspString have only FOUR methods:

initialize, size, inspect, and char_at(n). All of those methods are tiny—one or two short

lines of code (with one exception).

Implementation of subscripting

VString itself should have this method:

def [](start, len = 1)
 ...
end

That defaulted second argument allows this one method to handle both s[n] and s[start,len].

Implement this method in terms of calls to size and char_at, which in turn will resolve to the

implementation of those methods in the three subclasses.

With deeply nested constructions of VString subclasses there's a potential of producing exponential

behavior with subscripting if your [] method contains more than one call to char_at. Limit your []

method to one char_at call. (Save the value with c = char_at(...) if you need to use it in

multiple places.)

Don't get tangled up considering various cases of nesting

Watch out for thinking like this: "What if I've got a ReplString that holds a MirrorString of a

MirrorString of a ReplString of an IspString made of ..."

Page 12 of 22

Instead, just keep in mind that what you can count on is that the values used in the VString

constructors support size, s[n], s[start,len], and inspect. Have a duck-typing mindset and

write code that uses those operations. (Yes, there's to_s, too, but it's problematic with long strings;

avoid using it.)

Those double-quotes in inspect

Getting the double-quotes right for inspect can be a little tricky. Start by getting the following

examples working:

>> s = ReplString.new("a\nb", 2)
=> ReplString("a\nb",2)

>> s2 = MirrorString.new("x\ty")
=> MirrorString("x\ty")

>> s3 = ReplString.new(s2,10)
=> ReplString(MirrorString("x\ty"),10)

When grading, tests will only exercise the VString subclasses; VString will not be tested directly.

(Note that none of the examples above do anything with VString itself.)

Saving a little typing when testing

To save myself some typing when testing, I've got these lines at the end of my vstring.rb:

if !defined? RS
 RS=ReplString
 MS=MirrorString
 IS=IspString
end

With those in place, I can do something like this:

>> s = IS.new(MS.new(RS.new("abc",2)),"-")
=> IspString(MirrorString(ReplString("abc",2)),"-")

Implementing each

In retrospect, I believe the slides don't say enough how to put an each method in a class like VString.

I considered dropping it altogether but it's a useful example for VString in general, so here is

VString#each, for you to drop into your vstring.rb as-is:

def each
 for i in 0...size
 yield self[i]
 end
 self
end

Note that self[i] will call VString#[], which will in turn use the char_at implementation in the

subclass for the instance at hand.

Put all four classes in vstring.rb

Page 13 of 22

Put the code for all four classes in vstring.rb. VString needs to be first.

Problem 4. (12 points) gf.rb

Here's something I saw in a book:

class Fixnum
 def hours; self*60 end # 60 minutes in an hour
end

>> 2.hours => 120

>> 24.hours => 1440

You are to write a Ruby method gf(spec) that dynamically adds (i.e., "monkey patches") a number of

such methods into Fixnum, as directed by spec. Example:

gf("foot/feet=1,yard(s)=3,mile(s)=5280")

Using Kernel#eval, the above call to gf adds nine methods to Fixnum. Here are six of them:

foot, feet, yard, yards, mile, miles. Respectively, on a pair-wise basis, those methods produce

the Fixnum (which is self) multiplied by 1, 3, and 5280.

% irb -r ./gf.rb
>> gf("foot/feet=1,yard(s)=3,mile(s)=5280") => true

>> 1.foot => 1

>> 10.feet => 10

>> 5.yards => 15

>> 3.miles => 15840

>> 8.mile => 42240

>> 1.feet => 1

It would perhaps be useful to detect plurality mismatches like 8.mile and 1.feet and produce an

error but that is not done.

In addition to the six methods mentioned above, these three are added to Fixnum, too: in_feet,

in_yards, and in_miles:

>> (30.feet+10.yards).in_yards => 20.0

>> 10_000.feet.in_miles => 1.89393939393939

Two more examples:

>> gf("second(s)=1,minute(s)=60,hour(s)=3600,day(s)=86400")=> true

>> (12.hours+30.minutes).in_days => 0.520833333333333

>> gf("inch(es)=1,foot/feet=12") => true

Page 14 of 22

>> 18.inches.in_feet => 1.5

>> 1.foot => 12

>> 1.foot.in_inches => 12.0

Note that methods later generated by gf simply replace earlier methods of the same name. After the two

calls gf("foot/feet=1")and gf("foot/feet=12"), 1.foot is 12.

An individual mapping must be in the form singular/plural=integer or

singular(pluralSuffix)=integer. None of the parts may be empty. Mappings are separated

by commas. Only lowercase letters are permitted in the names. No whitespace is allowed. If any part of

a specification is invalid, a message is printed and false is returned; but the result is otherwise

undefined. Here is an example of the output in the case of an error:

>> gf("foot/feet=1,yards=3")
bad spec: 'foot/feet=1,yards=3'
=> false

Note that the error is not pin-pointed—the specification as a whole is cited as being invalid.

Here are more examples of errors:

gf("foot/feet=1,") # trailing comma
gf("foot/feet=1.5") # non-integer
gf("foot/=1") # empty plural
gf("inch()=12") # empty plural suffix
gf("foot/feet=1,Yard(s)=3") # capital letter

This is NOT a restriction but to get more practice with regular expressions I recommend that your

solution not use any string comparisons; use matches (=~) to break up the specification. And, using

regular expressions will probably increase the likelihood that you accept exactly what's valid.

For this problem you are to use eval (slide 261+) to add the methods to Fixnum, but as the slides

show, using eval to generate code based on data supplied by another person can be perilous! eval is a

powerful tool but you've got to be careful when using it. Googling for ruby eval turns a lot of

discussion about it, but be wary of those who say, "Never use eval!" Instead, recognize that eval is a

powerful tool and use it with caution, weighing risks and benefits, and ALWAYS being careful to

consider the source of all data that can possibly contribute directly or indirectly to a string that is passed

to eval.

Keep in mind that you're writing a method named gf, not a program. Helper methods are permitted.

In assignment 3's write-up for editstr it was mentioned that the bindings for x, len, etc. are the

beginnings of a simple internal DSL (Domain Specific Language). The list [x 2, len, x 3, rev,

xlt "1" "x"] uses the facilities of Haskell to specify computation in a new language that's

specialized for string manipulation. Similarly, this problem provides another example of an internal DSL

by using the facilities of Ruby to express computations involving unit conversions.

Page 15 of 22

Problem 5. (24 points) optab.rb

When writing this problem one of my favorite quotes came to mind:

"Far better is it to dare mighty things, to win glorious triumphs, even though

checkered by failure, than to take rank with those poor spirits who neither enjoy

much nor suffer much because they live in the gray twilight that knows neither

victory nor defeat."—Theodore Roosevelt

One way to learn about a language is to manually create tables that show what type results from applying

a binary operator to various pairs of types. For this problem you are to write a Ruby program,

optab.rb, that generates such tables for Java, Ruby, and Haskell.

Here's a run of optab.rb:

% ruby optab.rb ruby "*" ISA
 * | I S A
---+---------
 I | I * *
 S | S * *
 A | A S *

The first argument, ruby, specifies Ruby as the language of interest for this run.

The second argument, "*", specifies the operator of interest. We'll make a practice of putting quotes

around the operator because some operators, like * and <, are shell metacharacters. * would work, too.

The third argument, ISA, specifies types of interest. The letters I, S, and A stand for Fixnum (I for

integer), String, and Array, respectively.

optab's output is a table showing the type that results from applying the operator to various pairs of

types. The row headings on the left specify the type of the left-hand operand. The column headings

along the top specify the type of the right-hand operand.

The upper-left entry, an I, shows that Fixnum * Fixnum produces a Fixnum. (Remember that we're

using I, not F, to stand for integers.) The lower-left entry, A, shows that Array * Fixnum produces

an Array. The S in the bottom of the middle row shows that Array * String produces a String.

The *'s indicate that Fixnum * String, String * String, and three other type combinations

produce an error.

Here's an example with Java:

% ruby optab.rb java "*" IFDCS
 * | I F D C S
---+---------------
 I | I F D I *
 F | F F D F *
 D | D D D D *
 C | I F D I *
 S | * * * * *

I, F, D, C, and S stand for int, float, double, char, and String, respectively.

Page 16 of 22

Here's how optab is intended to work:

For the specified operator and types, try each pairwise combination of types with the operator by

executing that expression in the specified language and seeing what type is produced, or if an error is

produced. Collect the results and present them in a table.

The table just above was produced by generating and then running each of twenty-five different Java

programs and analyzing their output. Here's what the first one looked like:

% cat checkop.java
public class checkop {
 public static void main(String args[]) {
 f(1 * 1);
 }
 private static void f(Object o) {
 System.out.println(o.getClass().getName());
 }
 }

Note the third line, f(1 * 1); That's an int times an int because the first operation to test is

I * I.

Remember: Ruby code wrote that Java program!

In Ruby, the expression `some-command-line` is called command expansion. It causes the shell to

execute that command line. The complete output of the command is collected, turned into a string,

possibly with many newlines, and is the result of `...`. (Note that ` is a "back quote".)

Here's a demonstration of using `...` to compile and execute checkop.java:

>> result = `bash -c "javac checkop.java && java checkop" 2>&1`
=> "java.lang.Integer\n"

The extra stuff with bash -c ... 2>&1 is to cause error output, if any, to be collected too.

Here's the checkop.java that's generated for I * S:

public class checkop {
 public static void main(String args[]) {
 f(1 * "abc");
 }
 private static void f(Object o) {
 System.out.println(o.getClass().getName());
 }
 }

Note that it is identical to the checkop.java generated for I * I with one exception: the third line is

different: instead of being 1 * 1 it's 1 * "abc".

Let's try compiling and running the checkop.java just above, generated for I * S:

% irb
>> result = `bash -c "javac checkop.java && java checkop" 2>&1`
=> "checkop.java:3: error: bad operand types for binary operator
'*'\n f(1 * \"abc\");\n
^\n first type: int\n second type: String\n1 error\n"

Page 17 of 22

javac detects incompatible types for * in this case and notes the error. java checkop is not

executed because the shell conjunction operator, &&, requires that its left operand (the first command)

succeed in order for execution to proceed with its right operand (the second command).

That output, "checkop.java:3: ..." can be analyzed to determine that there was a failure. Then,

code maps that failure into a "*" entry in the table.

Let's try Haskell with the / operator. "D" is for Double.

% ruby optab.rb haskell "/" IDS
 / | I D S
---+---------
 I | * * *
 D | * D *
 S | * * *

For the first case, I / I, Ruby generated this file, checkop.hs:

% cat checkop.hs
(1::Integer) / (1::Integer)
:type it

Note that just a plain 1 was good enough for Java since the literal 1 has the type int but with Haskell

we use (1::Integer) to be sure the type is Integer. (Yes; Integer, not Int.)

Let's try running it. For Java we used javac and java. We'll use ghci for Haskell and redirect from

checkop.hs. Be sure to specify the -ignore-dot-ghci option, too!

% irb
>> result = `bash -c "ghci -ignore-dot-ghci < checkop.hs" 2>&1`
=> "GHCi, version 7.4.1: http://www.haskell.org/ghc/ :? for
help\n[lots more]... linking ... done.\nLoading package base ...
linking ... done.\nPrelude> \n<interactive>:2:14:\n No instance
for (Fractional Integer)\n arising from a use of `/'\n[lots
more]\n"

Ouch—an error! That's going to be a "*".

Here's the checkop.hs file generated for D * D:

% cat checkop.hs
(1.0::Double) * (1.0::Double)
:type it

Let's try it:

>> result = `bash -c "ghci < checkop.hs" 2>&1`
>> result = `bash -c "ghci -ignore-dot-ghci < checkop.hs" 2>&1`
=> "GHCi, version 7.4.1: http://www.haskell.org/ghc/ :? for
help\nLoading package ghc-prim ... linking ... done.\nLoading
package integer-gmp ... linking ... done.\nLoading package base ...
linking ... done.\nPrelude> 1.0\nPrelude> it :: Double\nPrelude>
Leaving GHCi.\n"

Page 18 of 22

If we look close we see it, with a type: it :: Double

In pseudo-code, here's what optab needs to do:

 For each pairwise combinations of types specified on the command line...

Generate a file in the appropriate language to test the combination at hand.

Run the file using command expansion (`...`).

Analyze the command expansion result, determining either the type produced or that an error was

produced.

Add an appropriate entry for the combination to the table—either a single letter for the type or an

asterisk to indicate an error.

The examples above show Java and Haskell testing programs and their execution. You'll need to figure

out how to do the same for Ruby, but let us know if you have trouble with that. The obvious route with

Ruby is creating and running a file but you can use Kernel#eval instead. If you take the eval route,

you'll probably need to do a bit of reading and figure out how to catch a Ruby exception using rescue.

I chose the names checkop.java and checkop.hs but you can use any names you want.

Below is an example of a complete program that generates a file named hello.java and runs it. Note

that the program's command-line argument is interpolated into the "here document", which is a multi-line

string literal. (See slide 79.)

% cat a7/mkfile.rb
prog = <<X
public class hello {
 public static void main(String args[]) {
 System.out.println("Hello, #{ARGV[0]}!");
 }
 }
X
IMPORTANT: That X just above MUST BE IN THE FIRST COLUMN!

f = File.new("hello.java","w")
f.write(prog)
f.close
result = `bash -c "javac hello.java && java hello" 2>&1`
puts "Program output: (#{result.size} bytes)", result

% ruby mkfile.rb whm
Program output: (12 bytes)
Hello, whm!

Here's the file that was created:

% cat hello.java
public class hello {
 public static void main(String args[]) {
 System.out.println("Hello, whm!");
 }
 }

Page 19 of 22

Copy a7/mkfile.rb into your a7 directory on lectura and try it, to help you get the idea of generating

a program, running it, and then doing something with its output.

If you like to be tidy, you can use File's delete class method to delete hello.java:
File.delete("hello.java")

Here's a table that shows what types must be supported in each language, and a good expression to use

for testing with that type.

Letter Haskell Java Ruby

I (1::Integer) 1 1

F (1.0::Float) 1.0F 1.0

D (1.0::Double) 1.0 not supported

B True true true

C 'c' 'c' not supported

S "abc" "abc" "abc"

O not supported new Object() not supported

A not supported not supported [1]

optab.rb is not required to do any error checking at all. It assumes the first argument is haskell,

java, or ruby. It assumes the second argument is a valid operator in the language specified. It

assumes the third argument is a string of single-letter type specifications and that those types are

supported for the language at hand. Behavior is undefined for all other cases. I won't test any error

cases.

I hope that everybody recognizes that there needs to be language-specific code for running the

Java, Haskell, and Ruby tests but ONE body of code can be used to process command-line

arguments, launch the language-specific tests, and build the result table.

Think in terms of an object-oriented solution, perhaps with an OpTable class that handles the language-

independent elements of the problem. OpTable would have subclasses JavaOpTable,

HaskellOpTable, and RubyOpTable with language-specific code.

For example, my solution has a method OpTable#make_table that handles table generation. It calls

a subclass method tryop(op, lhs, rhs) to try an operator with a pair of operands and report

what's produced (a type or an error). With Java a call might be tryop("+", "1", '"abc"'); it

would return "S". In contrast, RubyOpTable#tryop("+", "1", '"abc"') produces "*".

Note that testing the Java cases can be slow. With my version, ruby optab.rb java "*" IFDCS

takes almost 30 seconds to run on lectura. The same test for Haskell takes about seven seconds.

Ruby's command expansion (`...`) works on Windows but I haven't tried to work out command lines

that'll behave as well as the examples above, which were done on lectura. The bottom line is that you'll

probably need to do much of your testing on lectura. However, if you use an eval-based approach for

Ruby, you can easily get that working on Windows. If you want to write code that runs on both

Windows and UNIX, you can use RUBY_PLATFORM as a simple way to see what sort of system you're

Page 20 of 22

running on.

For three points of extra credit per language, have your optab.rb support up to three additional

languages of your choice. PHP, Python, and Perl come to mind as easy possibilities. (For Python, you

can do either Python 2 or Python 3, but not both for credit.) At least three types must be supported for

each language. You may introduce types in addition to those shown above. Submit a plain text file

optab.txt, that shows your extended version in action. Demonstrate at least three operators for each

language. The burden of proof for this extra credit is on you, not me!

Problem 6. Extra Credit vstring-extra.txt

For three points of extra credit, devise and implement another subclass for VString. For example, a

fourth subclass I considered having you implement for VString was to be created like this:

XString.new("a","bb", 10)

It represents the following sequence of characters, which ends with 10 "a"s and 20 "b"s:

abbaabbaaabbb...aaaaaaaaaabbbbbbbbbbbbbbbbbbbb

You can't implement XString for credit but I'll be impressed if you do it for fun.

Add whatever new VString subclass you come up with to your vstring.rb and create vstring-

extra.txt, a plain text file that talks about your creation and shows it action with irb.

Turning in your work

Use a7/turnin to submit your work.

To give you an idea about the size of my solutions, here's what I see as of press time, with comments

stripped:

$ wc $(grep -v txt a7/delivs)
 21 53 573 label.rb
 29 47 599 re.rb
 104 216 1821 vstring.rb
 35 88 870 gf.rb
 148 328 3440 optab.rb
 337 732 7303 total

Miscellaneous

You can use any elements of Ruby that you desire, but the assignment is written with the intention that it

can be completed easily using only the material in the full set of Ruby slides.

Point values of problems correspond directly to assignment points in the syllabus. For example, a 10-

point problem on this assignment corresponds to 1% of your final grade in the course.

Feel free to use comments to document your code as you see fit, but note that no comments are required,

and no points will be awarded for documentation itself. (In other words, no part of your score will be

based on documentation.)

Remember that late assignments are not accepted and that there are no late days; but if circumstances

Page 21 of 22

beyond your control interfere with your work on this assignment, there may be grounds for an extension.

See the syllabus for details.

My estimate is that it will take a typical CS junior from 10 to 15 hours to complete this assignment.

Our goal is that everybody gets 100% on this assignment AND gets it done in an amount of time

that is reasonable for them.

If you put ten hours into this assignment and don't seem to be close to

completing it, it's definitely time to touch base with us, regardless of whether

you have any questions. Specifically mention that you've reached ten hours.

Give us a chance to speed you up!

I hate to have to mention it but keep in mind that cheaters don't get a second chance. If you give your

code to somebody else and they turn it in, you'll both likely fail the class, get a permanent transcript

notation stating you cheated, and maybe more. See the syllabus for the details.

Page 22 of 22

CSC 372, Spring 2016

Assignment 8

Due: Friday, April 15 at 23:59:59

Game plan for the Prolog assignments

Our work with Prolog will be distributed across three assignments, with the following due dates:

Assignment 8 Friday, April 15

Assignment 9 Friday, April 22

Assignment 10 Wednesday, May 4

Remember that the video assignment is also due on May 4.

The Usual Stuff

Make an a8 symlink that references /cs/www/classes/cs372/spring16/a8. Test using

a8/tester (or a8/t).

Use SWI Prolog!

We'll be using SWI Prolog for the Prolog assignments. On lectura that's swipl.

About the if-then-else structure (->) and disjunction (;)

To encourage thinking in Prolog, you are strictly prohibited from using the if-then-else structure,

which is represented with ->. (Section 4.7 in Covington talks about it.)

Disjunction, represented with a semicolon (;), is occasionally very appropriate but it's easy to misuse and

make a mess. Section 1.10 in Covington talks about it. Here's the rule for us: If you think you've found a

good place to use disjunction, ask me about it; but unless I grant you a specific exemption, you are not

allowed to use disjunction. (My general rule is this: don't use disjunction unless it avoids significant

repetition.)

Easy Money!

Due to the time frame for this assignment and not wanting to underweight problems on assignments 9 and

10, I think you'll find that the time required to do this assignment is a bit low with respect to the points

assigned.

Problem 1. (7 points, ½ point each) queries.pl

For this problem you are to write a number of queries, packaged up as rules. Some are easier than their

half-point and some are harder, but they're all worth a half-point.

a8/queries-starter.pl starts like this:

% What foods are green?
q0(Food) :- thing(Food,green,yes).

% What are all the things?

Page 1 of 15

q1(Thing) :- true.

% What are the colors of non-foods?
q2(Color) :- true.

q0 above is a completed example. The comment just prior specifies a question, "What foods are green?"

Following that comment is a query that will answer that question. Let's load up the file and try q0:

$ swipl a8/queries-starter.pl
[...lots of singleton warnings due to the uncompleted queries...]
...
?- q0(F).
F = broccoli ;
F = lettuce.

Your task is to replace the dummy bodies (just true) for all the rules. The first few use the facts in

a8/things.pl; the rest use the facts in a8/fcl.pl. Begin by copying a8/queries-
starter.pl to queries.pl, and then edit queries.pl.

When your queries.pl is complete you should see behavior like this:

$ swipl queries.pl
...

?- q1(T).
T = apple ;
T = broccoli ;
...
T = stopsign ;
T = bagel.

?- q2(NF).
NF = brown ;
NF = green ;
NF = blue ;
NF = red.

Leave the sample rule q0 in place—the tester uses it.

The :-QUERY. construct

You'll see that a8/queries-starter.pl ends like this:

:-[a8/fcl].
:-[a8/things].

When consulting a file, Prolog assumes that it contains clauses that constitute the knowledgebase but

sometimes we want to execute queries when consulting a file. The construct :-QUERY. indicates that

QUERY is to be performed.

The two lines above cause a8/fcl.pl and a8/things.pl to be consulted, providing the facts to be

used by this problem's queries.

Grading

Page 2 of 15

When grading I'll use altered versions of a8/things.pl and a8/fcl.pl, with facts added,

deleted, and changed. Write queries to be general, rather than "wired" for current data. For example, if

something involves the cost of an orange, use a goal like cost(orange, OC) to get the cost of an

orange rather than visually inspecting a8/fcl.pl, seeing cost(orange,3), and using 3 for the cost

of an orange.

Important: The usual guarantee of 75% of the points for passing all supplied test cases does not apply for

this problem.

A note about the tester

You'll see that the tester uses a Prolog query with several goals for the rules in queries.pl:

findall(X,q1(X),L), sort(L,Results), writeln('Results:'),
member(X,Results), writeln(X), fail.

We'll be learning about findall, sort, and member soon, but briefly, here is what's happening:

findall makes a list of all results produced by q1(X) and then sort sorts them, removing duplicates.

The member(X,Results), writeln(X), fail sequence causes the results to be written out,

one per line.

Problem 2. (1 point) altrules.pl

The first examples we saw with Prolog involved food/1 and color/2 facts. Then on slide 48 we saw

an alternate representation of the same data using thing/3.

For this problem you are to implement food/1 and color/2 as rules that use the thing/3 facts.

Your solution should look like this:

:-[a8/things].

food(F) :- ...
color(T,C) :- ...

The first line consults a8/things.pl.

Your task is to simply fill in the bodies for the food and color rules.

Usage:

$ swipl altrules.pl
...
?- food(X).
X = apple ;
X = broccoli ;
...

?- color(apple,red).
true.

?- color(F,green).
F = broccoli ;

Page 3 of 15

F = grass ;
F = lettuce.

?-

Problem 3. (2 points) sequence.pl

Write a predicate sequence/0 that outputs the sequence below.

?- sequence.
10101000
10101001
10101010
10101011
10111000
10111001
10111010
10111011
true.

Be sure that sequence produces true when done, as shown above.

Two notes: (1) Don't over think this one. (2) Don't just "wire-in" the output verbatim, like

writeln(10101000), writeln(10101001), ...—that'll be a zero!

Problem 4. (7 points) rect.pl

In this problem you are to implement several simple predicates that work with rect(width,height)
structures that represent position-less rectangles having only a width and height.

square(+Rect) asks whether a rectangle is a square.

?- square(rect(3,4)).
false.

?- square(rect(5,5)).
true.

landscape(+Rect) is true iff (if and only if) a rectangle is wider than it is high. portrait tests the

opposite—whether a rectangle is higher than wide. A square is neither landscape nor portrait.

?- landscape(rect(16,9)).
true.

?- landscape(rect(3,4)).
false.

?- portrait(rect(3,4)).
true.

?- portrait(rect(10,1)).
false.

?- landscape(rect(3,3)).
false.

Page 4 of 15

?- portrait(rect(3,3)).
false.

classify(+Rect,-Which) instantiates Which to portrait, landscape or square,

depending on the width and height. If Rect is not a two-term rect structure, then Which is instantiated

to wat.

?- classify(rect(3,4),T).
T = portrait.

?- classify(rect(10,1),T).
T = landscape.

?- classify(rect(3,3),T).
T = square.

?- classify(rect(3),T).
T = wat.

?- classify(10,T).
T = wat.

You may need to use some cuts (slide 109+) to prevent classify from producing bogus alternatives.

Here is an example of BUGGY behavior:

?- classify(rect(5,7),T).
T = portrait ; First answer is correct but there should be no alternatives!
T = square ;
T = wat.

Needless to say, use your portrait/1, landscape/1, and square/1 predicates to write

classify/2.

rotate(?R1,?R2) has three distinct behaviors:

(1) If R1 is instantiated and R2 is not, rotate instantiates R2 to the rotation of R1.

(2) If R2 is instantiated and R1 is not, rotate instantiates R1 to the rotation of R2.

(3) If both are instantiated, rotate succeeds iff R1 is the rotation of R2.

Examples:

?- rotate(rect(3,4),R).
R = rect(4, 3).

?- rotate(R,rect(3,4)).
R = rect(4, 3).

?- rotate(rect(5,7),rect(7,5)).
true.

?- rotate(rect(3,3),R).
R = rect(3, 3).

rotate should also handle cases like these:

?- rotate(rect(3,4),rect(W,H)).

Page 5 of 15

W = 4,
H = 3.

?- rotate(rect(3,X),rect(Y,4)).
false.

smaller(+R1,+R2) succeeds iff both the width and height of R1 are respectively less than the width

and height of R2. Rotations are not considered.

?- smaller(rect(3,5), rect(5,7)).
true.

?- smaller(rect(3,5), rect(7,5)).
false.

add(+R1, +R2, ?RSum) follows the idea of "adding" rectangles that was shown on the Ruby slides

on operator overloading.

?- add(rect(3,4),rect(5,6),R).
R = rect(8, 10).

?- add(rect(3,4),rect(5,6),rect(W,H)).
W = 8,
H = 10.

?- add(rect(3,4),rect(5,6),rect(10,10)).
false.

?- X = 10, add(rect(3,4),rect(5,6),rect(X,X)).
false.

Assume both terms of rect structures are non-negative integers.

If you need more than ten mostly short lines of Prolog to implement all the above, you're probably

not making good use of unification.

Problem 5. (3 points) consec.pl

Write a predicate consec(?A, ?B, ?C) that expresses the relationship that A, B, and C are

consecutive integers. A, B, and C can be any combination of integers and uninstantiated variables.

Examples:

?- consec(6,B,C).
B = 7,
C = 8.

?- consec(3,4,5).
true.

?- consec(X,Y,-3).
X = -5,
Y = -4.

?- consec(X,0,Y).

Page 6 of 15

X = -1,
Y = 1.

?- consec(A,2,A).
false.

If none of the three terms are instantiated, we see this:

?- consec(A,B,C).
A = 1,
B = 2,
C = 3.

Implementation notes

integer/1 can be used to see if a term is an integer or uninstantiated:

?- integer(5).
true.

?- integer(A).
false.

?- A = 5, integer(A).
A = 5.

Also, note this behavior of is/2:

?- X = 2, 3 is X + 1.
X = 2.

?- X = 2, 3 is X + 10.
false.

My solution has four clauses.

Problem 6. (3 points) bases.pl

Write a predicate bases/2 such that bases(+Start,+End) prints the integers from Start
through End in decimal, hex, and binary. Assume that Start is non-negative and that End is greater

than Start. Examples:

$ swipl bases.pl
...

?- bases(0,5).
 Decimal Hex Binary
 0 0 0
 1 1 1
 2 2 10
 3 3 11
 4 4 100
 5 5 101
true.

?- bases(1022,1027).

Page 7 of 15

 Decimal Hex Binary
 1022 3FE 1111111110
 1023 3FF 1111111111
 1024 400 10000000000
 1025 401 10000000001
 1026 402 10000000010
 1027 403 10000000011
true.

Be sure that your predicate succeeds, showing true, not false.

Below is a predicate fmttest/0 that shows almost exactly the specifications to use with format/2.

However, you'll need to do help(format/2) and figure out how to output numbers in hex and binary.

?- listing(fmttest).
fmttest :-
 format('~tDecimal~t~10|~tHex~t~20|~tBinary~t~35|\n'),
 format('~t~d~6|~t~d~16|~t~d~30|\n', [10, 20, 30]).

true.

?- fmttest.
 Decimal Hex Binary
 10 20 30
true.

Problem 7. (12 points) grid.pl

Write a predicate grid(+Rows,+Cols) that prints an ASCII representation of a grid based on a

specification of rows and columns in English.

Here's an example of a grid with three rows and four columns:

?- grid(three,four).
+--+--+--+--+
| | | | |
+--+--+--+--+
| | | | |
+--+--+--+--+
| | | | |
+--+--+--+--+
true.

The grid is built with plus signs, minus signs, vertical-bars ("or" bars), and spaces. Lines have no trailing

whitespace.

Unless a specification is invalid, grid always succeeds, producing the true that follows the output.

Here are two more examples:

?- grid(three,twenty-one).
+--+
| |
+--+
| |
+--+

Page 8 of 15

| |
+--+
true.

?- grid(one,one).
+--+
| |
+--+
true.

Widths and heights, in English, from one through ninety-nine are recognized; numbers are one word

or two hyphen-separated words.

If a number is used for either dimension instead of an English specification, the user is reminded to use

English:

?- grid(3,four).
Use English, please!
true.

Hint: Use number/1 to see if a value is a number rather than a structure.

Invalid specifications produce Huh?:

?- grid(testing,this).
Huh?
true.

?- grid(one-hundred,twenty-five). one-hundred is out of range
Huh?
true.

?- grid(---,+++).
Huh?
true.

Be careful not to accept invalid combinations of words representing numbers, like ten-four, twenty-
twenty, and one-fifty; they, too, should produce the Huh? diagnostic. Example:

?- grid(ten-four,twenty-twenty).
Huh?
true.

a8/grid-hint.html shows a solution for a simplified version of this problem, a predicate box that

prints a rectangle of asterisks. To provide a little extra challenge for those who want it, I'm not showing

that code here but please don't hesitate to take a look if you're stumped by grid.

Note that terms like ninety-nine, thirty-seven, fifty-two are simply two-atom structures

with the functor '-'. Here's a predicate that prints the terms of such a structure:

parts(First-Second) :-
format('First word: ~w; second word: ~w\n', [First,Second]).

?- parts(twenty-one).
First word: twenty; second word: one

Page 9 of 15

true.

a8/numbers.txt might save you a little typing. (Think about using a keyboard macro/keystroke

recorder in your editor or maybe a Ruby program to turn the text in that file into Prolog facts.)

Problem 8. (4 points) rsg.pl

"rsg" stands for "random sentence generator".

Overall, this problem has three parts:

(1) Decide what sort of "sentences" you'd like to generate.

(2) Create a predicate rsg that outputs a single random sentence.

(3) Create a predictate rsg(+N) that calls rsg/0 N times.

Here's an example of an rsg that generates trivial English sentences:

?- rsg.
The boy sat.
true.

?- rsg.
A girl ran.
true.

?- rsg.
The girl spoke.
true.

Here's the Prolog code for the rsg above:

rsg :- article, b, noun, b, verb, write(.), !.

article :- p(0.5), w('The').
article :- p(_), w('A').

noun :- p(0.33), w('boy').
noun :- p(0.5), w('girl').
noun :- p(_), w('dog').

verb :- p(0.4), w('ran').
verb :- p(0.66), w('sat').
verb :- p(_), w('spoke').

w(X) :- write(X).

b :- w(' ').

p(P) :- number(P), !, random(100) < P * 100.
p(_).

w/1 and b/0 are convenience predicates that let us save a little typing.

p(X) is a predicate that succeeds with a probability equal to X. For example, p(0.5) succeeds half the

time, on average. If p is not called with a number, it succeeds.

Page 10 of 15

Let's consider the procedure (the clauses) for article, which output The or A with equal probability:

article :- p(0.5), w('The').
article :- p(_), w('A').

The first clause succeeds half the time. If the first clause fails, which it will half the time, the second clause

is tried, and it always succeeds. Effectively, its probability is also 0.5 but it's important that one always

succeeds, so we'll use the convention of using p(_) on the last clause to stand for "otherwise". (Yes, we

could just omit it, too, but having a p goal on each clause seems more aesthetically appealing at the

moment.)

And now, a confession: I made a dopey mistake when writing this problem. Here was my first version of

noun:

noun :- p(0.33), w('boy').
noun :- p(0.33), w('girl').
noun :- p(_), w('dog').

My thinking was that I'd get an even three-way distribution between boy, girl, and dog but for 10,000

calls to noun I found that I was getting counts like these:

 3297 boy
 4524 dog
 2179 girl

What's happening is that a third of the time, the first clause succeeds and we get boy. In the two-thirds of

the time that the first clause fails, we then pick girl one third of the time, which is 2/9 overall. We reach

the always succeed p(_) case 4/9 of the time overall and produce dog. Oops!

My press deadline was looming and I couldn't think of a simple way to produce an even distribution with

the Prolog we've seen. (In particular, without using lists and/or some higher-order predicates.) I thought

about dropping this problem altogether but I like it because it gives you a chance to be creative. Thus it

remains, along with this story.

To get an even three-way split, we can do this:

noun :- p(0.33), w('boy').
noun :- p(0.5), w('girl').
noun :- p(_), w('dog').

One third of the time we get boy. In half of the remaining two-thirds, we get girl. In the remaining

third overall, we get dog.

If you do the math for the verb procedure shown above, I believe you'll find that we should get ran 40%

of the time, sat 40% of the time, and spoke 20% of the time.

If you want to work through the math or maybe write a Ruby method to generate p values that produce a

particular distribution, that's fine, but if you want to just plop in some numbers and see if they produce

results you like, that's fine, too!

(End of confession and emergency problem salvage operation.)

Let's use a flexible definition for "sentence" and now say that a sentence is an array of integers and nested

Page 11 of 15

arrays of integers. Here are some random "sentences" of that sort:

?- rsg.
[[17,91,30,31,38,40],85,48,96,[79,62]]
true.

?- rsg.
[61]
true.

?- rsg.
[[3,58,[1,[21,95,6,85,9,92,38,79,27,24,2,10,47,[6,[96,58,62],57,56]
],44],[83,48,14,60,79,[29,6,49,93,55,24]],2,96,23,64,69,97,[[37,32,
66,12],41,9],36,[[33,76],45],74,37,[5],72,55,86,[16,9,30],41],[[[92
,3],90,39],64,18,22,19],47,65,57,49]
true.

A fourth result, that's not shown above, was 23,424 characters long.

Here's the code that generated the arrays above:

rsg :- array, !.

array :- w('['), elems, w(']').

elems :- p(0.2), elem.
elems :- p(_), elem, w(','), elems.

elem :- p(0.8), X is random(100), w(X).
elem :- p(_), array.

Note the procedure for elems. 20% of the time it outputs a single element. 80% of the time it outputs an

element (elem) followed by a comma and more elements (elems—a recursive call).

The procedure for elem outputs a random number between 0 and 99 on 80% of the calls, but on the

remaining 20%, it outputs an array.

Note that the body for rsg should end with a cut, to prevent backtracking that would in turn produce some

malformed results.

Possibilities for "sentence"

If you want to stick to English sentences, you might have some fun with a Mad Libs style involving popular

culture or current events, especially the election season.

There are lots of possibilities in the symbolic realm, like expressions for some language you know, or even

simple whole programs. Various possibilities with ASCII pictures come to mind. You might consider an

HTML document to be a sentence. It's fine to have multi-line "sentences".

I hope I'll be dazzled by some creativity but something as simple as English sentences with three or more

fields with varying content is sufficient for full credit.

I'll compile a sampling of random sentences generated by all solutions and post it on Piazza. I won't show

authorship.

Page 12 of 15

The approach shown above lets you be fairly creative using only material presented on slides 1-131 but you

are free to implement rsg/0 in any way you want. In particular, when we get into lists you'll see

additional ways to randomly choose from several things.

Incidentally, another of the many things I learned from Ralph Griswold is that processing machine-

generated input, like the random arrays above, often turns up bugs that have long been dormant while

processing human-generated input.

Along with rsg/0 you'll need to write rsg(+N), which generates N random sentences using rsg/0.

N is assumed to be an integer greater than zero. A line with three dashes is output after each sentence.

?- rsg(3).
[69,72]

[55,11,[18,83,80,57,1,54,13,57,[59],68,25],1]

[4,[[47,41,98,96]]]

true.

Testing note

Because of the nature of this problem there's no simple way to test rsg/0 in an automated fashion. For

this problem the tester only confirms that rsg/1 produces the right number of "---" lines. Passing that

simple test doesn't guarantee 75% of the points on this problem.

Problem 9. Extra Credit observations.txt

Submit a plain text file named observations.txt with...

(a) (1 point extra credit) An estimate of how long it took you to complete this assignment. To facilitate

programmatic extraction of the hours from all submissions have an estimate of hours on a line by itself,

more or less like one of the following three examples:

Hours: 6
Hours: 3-4.5
Hours: ~8

If you want the one-point bonus, be sure to report your total (estimated) hours on a line that starts with

"Hours:". There must be only one "Hours:" line in observations.txt. It's fine if you care to

provide per-problem times, and that data is useful to us, but report it in some form of your own invention,

not with multiple lines that contain "Hours:", in either upper- or lower-case.

Other comments about the assignment are welcome, too. Was it too long, too hard, too detailed? Speak up!

I appreciate all feedback, favorable or not.

(b) (1-3 points extra credit) Cite an interesting course-related observation (or observations) that you made

while working on the assignment. The observation should have at least a little bit of depth. Think of me

saying "Good!" as one point, "Excellent!" as two points, and "Wow!" as three points. I'm looking for

quality, not quantity.

Turning in your work

Page 13 of 15

Use a8/turnin to submit your work.

Line counts are often good for ballpark measurements of program size for many languages but they're

sometimes misleading with Prolog. For example, I'll sometimes write procedures with one goal per line.

With Prolog I'm going to give you a different measure of my solutions: the number of left parentheses and

commas that appear. I'll use this bash script:

$ cat a8/plsize
for i in $*
do
 echo $i: $(tr -dc "(," < $i | wc -c)
done

Here's what I see as of press time, with comments stripped:

$ a8/plsize $(grep -v txt a8/delivs)
queries.pl: 129
altrules.pl: 9
sequence.pl: 17
rect.pl: 46
consec.pl: 24
bases.pl: 13
grid.pl: 131
rsg.pl: 39

Miscellaneous

Aside from -> and ; you can use any elements of Prolog that you desire, but the assignment is written

with the intention that it can be completed easily using only the material presented on Prolog slides 1-131.

Point values of problems correspond directly to assignment points in the syllabus. For example, a 10-point

problem on this assignment corresponds to 1% of your final grade in the course.

Feel free to use comments to document your code as you see fit, but note that no comments are required,

and no points will be awarded for documentation itself. (In other words, no part of your score will be based

on documentation.) In Prolog, % is comment to end of line. Comments with /* ... */, just like in

Java, are supported, too.

Remember that late assignments are not accepted and that there are no late days; but if circumstances

beyond your control interfere with your work on this assignment, there may be grounds for an extension.

See the syllabus for details.

My estimate is that it will take a typical CS junior from 4 to 6 hours to complete this assignment.

Our goal is that everybody gets 100% on this assignment AND gets it done in an amount of time that

is reasonable for them.

If you put six hours into this assignment and don't seem to be close to

completing it, it's definitely time to touch base with us, regardless of whether

you have any questions. Specifically mention that you've reached six hours.

Give us a chance to speed you up!

Page 14 of 15

I hate to have to mention it but keep in mind that cheaters don't get a second chance. If you give your code

to somebody else and they turn it in, you'll both likely fail the class, get a permanent transcript notation

stating you cheated, and maybe more. See the syllabus for the details.

Page 15 of 15

CSC 372, Spring 2016

Assignment 9

Due: Friday, April 22 at 23:59:59

The Usual Stuff

Make an a9 symlink that references /cs/www/classes/cs372/spring16/a9. Test using

a9/tester (or a9/t). Use SWI Prolog—swipl on lectura.

About the if-then-else structure (->) and disjunction (;)

The rules about using if-then-else and disjunction are the same as for assignment 8.

once/1

Various tests run by the tester use the higher-order predicate once(Goal), which limits Goal to

producing one result. Example:

?- once(nth0(Pos, [a,b,a,c,a], a)).
Pos = 0.

Potential alternatives that don't materialize

The tester is not sensitive to potential alternatives that don't materialize. Consider this behavior for last,

from the first problem below.

?- last([1,2,3],X).
X = 3 ;
false.

It prompts because somewhere there's at least one more clause that can be tried. The tester won't

distinguish between the above behavior and the following behavior:

?- last([1,2,3],X).
X = 3.

Problem 1. (5 points) append.pl

Note: This problem has restrictions!

The purpose of this problem is to help you see that append/3 can be used for lots more than

concatenating two lists. You are to write several simple predicates that heed this restriction: the only

predicates you can use are length/2 and append/3. For some predicates, like head, a single

append goal will be all you need:

head(List,Elem) :- append(...).

Additionally, you may use the [E1, E2, ..., EN] list syntax, like in append([X,Y],[],Z),

but you may not use the [E1, E2, ..., EN | Tail] notation, introduced on slide 192.

Here are the predicates you are to implement:

Page 1 of 15

head(?List, ?Elem) expresses the relationship that the first element of List is Elem. It fails if

the list is empty.

?- head([a,b,c],H).
H = a.

?- head([a,b,c],x).
false.

last(?List, ?Elem) expresses the relationship that the last element of List is Elem. It fails if the

list is empty.

?- last([1,2,3],X).
X = 3 ;
false.

?- last(L,4).
L = [4] ;
L = [_G2199, 4] ;
L = [_G2199, _G2205, 4] ;
...keeps going...

init(?List, ?Init) expresses the relationship that Init is all but the last element of List. It

fails if List is empty.

?- init([a,b,c,d],I).
I = [a, b, c] ;
false.

tail(?List, ?Tail) expresses the relationship that Tail is all but the first element of List. It

fails if List is empty.

?- tail([a,b,c],T).
T = [b, c].

min2(+List) fails if List is not at least two elements long.

?- min2([1]).
false.

?- min2([1,2]).
true.

mem(?Elem, ?List) behaves just like the built-in member/2:

?- mem(2,[1,2,3]).
true ;
false.

?- mem(E,[1,2,3]).
E = 1 ;
E = 2 ;
E = 3 ;
false.

contains(+List,?SubList) expresses the relationship that List contains SubList.

Page 2 of 15

?- contains([1,2,3,4,5],[3,4,5]).
true ;
false.

?- contains([1,2,3,4,5],[10,20]).
false.

?- contains([1,2,3],S), S \== [].
S = [1] ;
S = [1, 2] ;
S = [1, 2, 3] ;
S = [2] ;
S = [2, 3] ;
S = [3] ;
false.

firstlast(?List,?FL) expresses the relationship that FL is a list containing the first and last

elements of List. It fails if List is empty.

?- firstlast(L,[1,2]).
L = [1, 2] ;
L = [1, _G3410, 2] ;
L = [1, _G3410, _G3416, 2] ;
...keeps going...

halves(?List, ?First, ?Last) expresses the relationship that the first half of List is First
and the second half is Last. It fails if the length of List is odd.

?- halves([1,2,3,4],F,S).
F = [1, 2],
S = [3, 4] ;
false.

?- halves([1,2,3,4,5],F,S).
false.

?- halves([],F,S).
F = S, S = [] ;
false.

?- halves(L,[a,b],S).
L = [a, b, _G4635, _G4638],
S = [_G4635, _G4638].

Remember the restriction: you may only use append and length in these predicates!

Testing note

Use a9/t append.pl -t PREDICATE to test an individual predicate. As you've seen before, the

-t follows the problem name.

Page 3 of 15

Problem 2. (2 points) middle.pl

Write a predicate middle(+List,+N,?Middle) that expresses the relationship that the middle N

elements of List are Middle.

Restriction: Just like problem 1, you may only use append and length in this predicate.

?- middle([a,b,c,d,e],3,M).
M = [b, c, d] ;
false.

?- middle([a,b,c,d,e],5,M).
M = [a, b, c, d, e] .

?- middle([a,b,c,d,e],2,M).
false.

?- middle([a,b,c,d,e,f],2,M).
M = [c, d] ;
false.

?- middle([a,b,c],1,M).
M = [b] ;
false.

?- middle([a,b,c],2,M).
false.

As the above examples imply, an even-length list has an even-length middle, and an odd-length list has an

odd-length middle.

Assume that N (the length of the middle) is greater than zero.

Don't forget the restriction!

Problem 3. (2 points) splits.pl

This problem reprises splits.hs from assignment 3. In Prolog it is to be a predicate

splits(+List,-Split) that unifies Split with each "split" of List in turn. Example:

?- splits([1,2,3],S).
S = [1]/[2, 3] ;
S = [1, 2]/[3] ;
false.

Note that Split is not an atom. It is a structure with the functor /. Observe:

?- splits([1,2,3], A/B).
A = [1],
B = [2, 3] ;
A = [1, 2],
B = [3] ;
false.

Here are additional examples. Note that splitting a list with less than two elements fails.

Page 4 of 15

?- splits([],S).
false.

?- splits([1],S).
false.

?- splits([1,2],S).
S = [1]/[2] ;
false.

?- atom_chars('splits',Chars), splits(Chars,S).
Chars = [s, p, l, i, t, s],
S = [s]/[p, l, i, t, s] ;
Chars = [s, p, l, i, t, s],
S = [s, p]/[l, i, t, s] ;
Chars = [s, p, l, i, t, s],
S = [s, p, l]/[i, t, s] ;
Chars = [s, p, l, i, t, s],
S = [s, p, l, i]/[t, s] ;
Chars = [s, p, l, i, t, s],
S = [s, p, l, i, t]/[s] ;
false.

My solution uses only two predicates: append and \==.

Problem 4. (3 points) posints.pl

Write a predicate posints(+List) that succeeds iff all elements in List are positive (>0) integers.

Restriction: Your solution must not be recursive!

?- posints([1,2,3,4,5]).
true.

?- posints([1,2,3,-4,5]).
false.

?- posints([1,xyz,3,4,5]).
false.

?- posints([]).
true.

I hope you'll ponder this one for a little while but here's a hint:

http://www.cs.arizona.edu/classes/cs372/spring16/a9/posints-hint.html

Problem 5. (3 points) repl.pl

Write a predicate repl(?E, +N, ?R) that unifies R with a list that is N replications of E. If N is less

than 0, repl fails.

?- repl(x,5,L).
L = [x, x, x, x, x].

Page 5 of 15

?- repl(1,3,[1,1,1]).
true.

?- repl(X,2,L), X=7.
X = 7,
L = [7, 7].

?- repl(a,0,X).
X = [].

?- repl(a,-1,X).
false.

Problem 6. (3 points) pick.pl

Write a predicate pick(+From, +Positions, -Picked) that unifies Picked with an atom

consisting of the characters in From at the zero-based, non-negative positions in Positions.

?- pick('testing', [0,6], S).
S = tg.

?- pick('testing', [1,1,1], S).
S = eee.

?- pick('testing', [10,2,4], S).
S = si.

?- between(0,6,P), P2 is P+1, pick('testing', [P,P2], S),
writeln(S), fail.
te
es
st
ti
in
ng
g
false.

?- pick('testing', [], S).
S = ''.

If a position is out of bounds, it is silently ignored. My solution uses atom_chars, findall,

member, and nth0.

Problem 7. (5 points) polyperim.pl

Write a predicate polyperim(+Vertices,-Perim) that unifies Perim with the perimeter of the

polygon described by the sequence of Cartesian points in Vertices, a list of pt structures.

?- polyperim([pt(0,0),pt(3,4),pt(0,4),pt(0,0)],Perim).
Perim = 12.0.

?- polyperim([pt(0,0),pt(0,1),pt(1,1),pt(1,0),pt(0,0)],Perim).
Perim = 4.0.

Page 6 of 15

?- polyperim([pt(0,0),pt(1,1),pt(0,1),pt(1,0),pt(0,0)],Perim).
Perim = 4.82842712474619.

There is no upper bound on the number of points but at least four points are required, so that the minimal

path describes a triangle. (Think of it as ABCA, with the final A "closing" the path.) If less than four

points are specified, polyperim fails with a message:

?- polyperim([pt(0,0),pt(3,4),pt(0,4)],Perim).
At least a four-point path is required.
false.

The last point must be the same as the first. If not, polyperim fails with a message:

?- polyperim([pt(0,0),pt(3,4),pt(0,4),pt(0,1)],Perim).
Path is not closed.
false.

Note: check first for the minimum number of points and then a closed path.

This is not a course on geometric algorithms so keep things simple! Calculate the perimeter by simply

summing the lengths of all the sides; don't worry about intersecting sides, coincident vertices, etc.

Be sure that polyperim produces only one result.

Problem 8. (14 points) switched.pl

This problem is a reprise of switched.rb from assignment 6. a9/births.pl has a subset of the

baby name data, represented as facts. Here are the first five lines:

% head -5 a9/births.pl
births(1950,'Linda',f,80437).
births(1950,'Mary',f,65461).
births(1950,'Patricia',f,47942).
births(1950,'Barbara',f,41560).
births(1950,'Susan',f,38024).

births.pl holds data for only 1950-1959. Names with less than 70 births are not included.

Your task is to write a predicate switched(+First,+Last) that prints a table much like that

produced by the Ruby version. To save a little typing, switched assumes that the years specified are in

the 20th century.

?- switched(51,58).
 1951 1952 1953 1954 1955 1956 1957 1958
Dana 1.19 1.20 1.26 1.29 1.00 0.79 0.67 0.64
Jackie 1.40 1.29 1.14 1.13 1.11 0.94 0.72 0.57
Kelly 4.23 2.74 3.73 2.10 2.32 1.77 0.98 0.51
Kim 2.58 1.82 1.47 1.08 0.61 0.30 0.17 0.12
Rene 1.43 1.32 1.15 1.24 1.13 0.88 0.87 0.89
Stacy 1.06 0.81 0.62 0.47 0.44 0.36 0.29 0.21
Tracy 1.51 1.14 1.02 0.73 0.56 0.55 0.59 0.59
true.

If no names are found, switched isn't very smart; it goes ahead and prints the header row:

Page 7 of 15

?- switched(52,53).
 1952 1953
true.

If you want to make your switched smarter, that's fine—I won't test with any spans that produce no

names. Also, I'll only test with spans where the first year is less than the last year.

Names are left-justified in a ten-wide field. Below is a format call that does that. Note that the dollar

sign is included only to clearly mark the end of the output.

?- format("~w~t~10|$", 'David').
David $
true.

Outputting the ratios is a little more complicated. I use sformat, like this:

?- sformat(Out, '~t~2f~6|', 2.32754), write(Out).
 2.33
Out = " 2.33".

The call above instantiates Out to a six-character string (a list of integers that are character codes) and

write(Out) outputs it.

See help(format/2) if you're curious about the details of using ~t but the essence is that you can use

~N| to specify that a field extend to column N, and then put a ~t on the left, right, or both sides of a

specifier like ~w or ~f to get right, left, or center justification, respectively.

To consult a9/births.pl when you consult switched.pl, put the following line in your

switched.pl.

:-[a9/births].

As mentioned in the assignment 8 write-up for queries.pl, that construction, :- followed by a query,

causes the query to be executed when the file is consulted.

Note that :-[a9/births.pl]. fails with an error. For an extra point on this assignment, add a note

to observations.txt with a speculative but sound explanation of why [a9/births] works but

[a9/births.pl] doesn't. No Googling, etc., please!

You might also use that :- ... mechanism to cause a couple of tests to be run when the file is loaded.

Below I define test/0 to do a couple of switched queries, putting a line of dashes between them. I

then invoke it with :-test.

test :- switched(51,58), writeln('-----'), switched(51,52).

:-test.

That invocation of test must follow the definition of switched and consulting a9/births.pl.

You'll see that with swipl switched.pl the output from test appears before "Welcome to
SWI-Prolog..."

Be sure to comment out lines like :-test. before turning in your solution. (That output will cause

Page 8 of 15

a9/tester failures, too, as you'd expect.)

My Prolog solution is significantly smaller than my Ruby solution but it's easy to get sideways on this

problem if you don't come up with a good set of helper predicates. I suggest that you give it a try on your

own but if it starts to get ugly, http://www.cs.arizona.edu/classes/cs372/spring16/a9/switched-hints.pdf

shows how I broke it down. The points assigned to this problem are based on the assumption that you will

take a look at the hints. Without the hints, and based on your current level of Prolog knowledge, I might

assign this problem 25-30 points.

Problem 9. (14 points) iz.pl

In this problem you are to write a predicate iz/2 that evaluates expressions involving atoms and a set of

operators and functions. Let's start with some examples:

?- S iz abc+xyz. % + concatenates two atoms.
S = abcxyz.

?- S iz (ab + cd)*2. % *N produces N replications of the atom.
S = abcdabcd.

?- S iz -cat*3. % - is a unary operator that produces a reversed copy of the atom.
S = tactactac.

?- S iz -cat+dog.
S = tacdog.

?- S iz abcde / 2. % / N produces the first N characters of the atom.
S = ab.

?- S iz abcde / -3. % If N is negative, / produces last N characters
S = cde.

?- N is 3-5, S iz (-testing)/N.
N = -2,
S = et.

The functions len and wrap are also supported. len(E) evaluates to an atom (not a number!) that

represents the length of E.

?- N iz len(abc*15).
N = '45'.

?- N iz len(len(abc*15)).
N = '2'.

wrap adds characters to both ends of its argument. If wrap is called with two arguments, the second

argument is concatenated on both ends of the string:

?- S iz wrap(abc, ==).
S = '==abc=='.

?- S iz wrap(wrap(abc, ==), '*' * 3).
S = '***==abc==***'.

Page 9 of 15

If wrap is called with three arguments, the second and third arguments are concatenated to the left and

right ends of the string, respectively:

?- S iz wrap(abc, '(', ')').
S = '(abc)'.

?- S iz wrap(abc, '>' * 2, '<' * 3).
S = '>>abc<<<'.

It is important to understand that len(xy), wrap(abc, ==), and wrap(abc, '(', ')')

are simply structures. If iz encounters a two-term structure whose functor is wrap (like wrap(abc,
==)) its value is the concatenation of the second term, the first term, and the second term. iz evaluates

len and wrap like is evaluates random and sqrt.

The atoms comma, dollar, dot, and space do not evaluate to themselves with iz but instead

evaluate to the atoms ',', '$', '.', and ' ', respectively. (They are similar to e and pi in arithmetic

expressions evaluated with is/2.) In the following examples note that swipl (not me!) is adding some

additional wrapping on the comma and the dollar sign that stand alone. That adornment disappears when

those characters are used in combination with others.

?- S iz comma.
S = (',').

?- S iz dollar.
S = ($).

?- S iz dot.
S = '.'.

?- S iz space.
S = ' '.

?- S iz comma+dollar*2+space+dot*3.
S = ',$$...'.

?- S iz wrap(wrap(space+comma+space,dot),dollar).
S = '$. , .$'.

?- S iz dollarcommadotspace.
S = dollarcommadotspace.

The final example above demonstrates that these four special atoms don't have special meaning if they

appear in a larger atom.

Here is a summary for iz/2:

-Atom iz +Expr unifies Atom with the result of evaluating Expr, a structure representing a

calculation involving atoms. The operators (functors) are as follows:

E1+E2 Concatenates the atoms produced by evaluating E1 and E2 with iz.

E*N Concatenates E (evaluated with iz) with itself N times. (Just like Ruby.)

N is a term that can be evaluated with is/2 (repeat, is/2). Assume N
>= 0.

Page 10 of 15

E/N Produces the first (last) N characters of E if N is greater than (less than) 0.

If N is zero, an empty atom is produced. (An empty atom is shown as two

single quotes with nothing between them.) N is a term that can be

evaluated with is/2. The behavior is undefined if abs(N) is greater

than the length of E.

-E Produces reversed E.

len(E) Produces an atom, not a number, that represents the length of E.

wrap(E1,E2) Produces E2+E1+E2.

wrap(E1,E2,E3) Produces E2+E1+E3.

The behavior of iz is undefined for all cases not covered by the above. Things like 1+2,

abc*xyz, etc., simply won't be tested.

Here are some cases that demonstrate that the right-hand operand of * and / can be an arithmetic

expression:

?- X = 2, Y= 3, S iz 'ab' * (X+Y*3).
X = 2,
Y = 3,
S = ababababababababababab .

?- S = '0123456789', R iz S + -S, End iz R / -(2+3).
S = '0123456789',
R = '01234567899876543210',
End = '43210' .

Implementation notes

One of the goals of this problem is to reinforce the idea that for an expression like -a+b*3 Prolog creates

a tree structure that reflects the precedence and associativity of the operators. is/2 evaluates a tree as an

arithmetic expression. iz/2 evaluates a tree as a "string expression". Note the contrast when the same

tree is evaluated by is and iz:

?- X is pi + e*3. % using is
X = 11.296438138966929.

?- X iz pi + e*3. % using iz
X = pieee .

It's important to understand Prolog itself parses the expression and builds a corresponding structure that

takes operator precedence into account. display/1 shows the tree:

?- display(pi + e*3).
+(pi,*(e,3))
true.

Processing of syntactically invalid expressions like abc + + xyz never proceeds as far as a call to iz.

Below is some code to get you started. It fully implements the + operation.

Page 11 of 15

% cat a9/iz0.pl
:-op(700, xfx, iz). % Declares iz to be an infix operator. (Remember that leading :-

% causes the code to be evaluated as a goal, not consulted as a

% clause.)

A iz A :- atom(A), !.
R iz E1+E2 :- R1 iz E1, R2 iz E2, atom_concat(R1, R2, R).

Here are examples that use the version of iz just above.

?- [a9/iz0]. % Note: no ".pl"
true.

?- X iz abc+def.
X = abcdef.

?- X iz abc+def, Y iz X+'...'+X.
X = abcdef,
Y = 'abcdef...abcdef'.

?- X iz a+b+(c+(de+fg)+hij+k)+l.
X = abcdefghijkl.

Let's look at the code provided above. Let's first talk about the second clause:

R iz E1 + E2 :- R1 iz E1, R2 iz E2, atom_concat(R1, R2, R).

The first thing you may notice is that the head (R iz E1 + E2) doesn't match the

functor(term,term,...) form we've always seen. That's because the op(700, xfx, iz)
call above lets us use iz as an infix operator, and that applies in both the head and body of a rule. Here is

a completely equivalent version that doesn't take advantage of the op specification:

iz(R,E1+E2) :- iz(R1,E1), iz(R2,E2), atom_concat(R1, R2, R).

With that equivalence explained, lets focus on the version in a9/iz0.pl, which uses the infix form:

R iz E1 + E2 :- R1 iz E1, R2 iz E2, atom_concat(R1, R2, R).

Consider the goal "X iz ab+cd". That goal unifies with the head of the above rule like this:

?- (X iz ab+cd) = (R iz E1+E2).
X = R,
E1 = ab,
E2 = cd.

If E1 is instantiated to ab then the first goal in the body of the rule would be equivalent to R1 iz ab.

That goal unifies with the head of this rule:

A iz A :- atom(A), !.

This rule represents the base case for the recursive evaluation performed by iz. It says, "If A is an atom

then the result of evaluating that atom is A." Another way to read it is, "An atom evaluates to itself." The

result is that "R1 iz ab" instantiates R1 to ab. Note that atoms always lie at the leaves of the

expression's tree.

Page 12 of 15

It's important to recognize that because the iz(R, E1+E2) rule is recursive, it'll handle every tree

composed of + operations.

Here are the heads (and necks) for all the iz rules that I've got in my solution:

R iz E1+E2 :-

R iz E1*NumExpr :-

R iz -E :-

R iz E1 / NumExpr :-

R iz len(E) :-

R iz wrap(E,Wrap) :-

R iz wrap(E,First,Last) :-

Via recursion, those heads handle all possible combinations of operations, like this one:

?- X iz wrap((-(ab+cde*4)/6+xyz), 'Start>','<'+(end*3+zz*2)).
X = 'Start>edcedcxyz<endendendzzzz'.

If you find yourself wanting to add a bunch of rules like

R iz (E1+E2+E2) :- ...

R iz (E1*E2) / NumExpr :- ...

then STOP! You're not recognizing that a set of rules based on the heads

above will cover ALL the operations.

atomic_list_concat

iz0.pl above uses concat_atom but atomic_list_concat(+List, -Atom) is a more

general predicate:

?- atomic_list_concat([ab,c,def,ghij], S).
S = abcdefghij.

We'll later see in the slides that it can be used to split atoms, too.

A minor parsing problem

On the slides I fail to mention that Prolog requires some sort of separation between operators. Consider

this:

?- X iz abc+-abc. % No space between + and -
ERROR: Syntax error: Operator expected
ERROR: X iz abc
ERROR: ** here **

Page 13 of 15

ERROR: +-abc .

To make it work, add a space or parenthesize:

?- X iz abc+ -abc.
X = abccba.

?- X iz abc+(-abc).
X = abccba.

This issue only arises with unary operators, of course.

Problem 10. Extra Credit iz-extra.txt

For up to three points of extra credit, devise and implement three more operations for iz to handle. They

can be operators or functions (like len and wrap). Perhaps use op/3 to define a new operator!

Include the required clauses in iz.pl and create iz-extra.txt, a plain text file that talks about your

creation(s) and also shows them in action with swipl.

Problem 11. Extra Credit observations.txt

Submit a plain text file named observations.txt with...

(a) (1 point extra credit) An estimate of how long it took you to complete this assignment. To facilitate

programmatic extraction of the hours from all submissions have an estimate of hours on a line by itself,

more or less like one of the following three examples:

Hours: 6
Hours: 3-4.5
Hours: ~8

If you want the one-point bonus, be sure to report your total (estimated) hours on a line that starts with

"Hours:". There must be only one "Hours:" line in observations.txt. It's fine if you care to

provide per-problem times, and that data is useful to us, but report it in some form of your own invention,

not with multiple lines that contain "Hours:", in either upper- or lower-case.

Other comments about the assignment are welcome, too. Was it too long, too hard, too detailed? Speak up!

I appreciate all feedback, favorable or not.

(b) (1-3 points extra credit) Cite an interesting course-related observation (or observations) that you made

while working on the assignment. The observation should have at least a little bit of depth. Think of me

saying "Good!" as one point, "Excellent!" as two points, and "Wow!" as three points. I'm looking for

quality, not quantity.

Turning in your work

Use a9/turnin to submit your work.

Just like on assignment 8 I'll use my plsize script to show you the "sizes" of my solutions. (Recall that

the script counts left parentheses and commas, which I claim is a reasonable proxy for program size for

Prolog source code.)

Page 14 of 15

Here's what I see as of press time, with comments stripped:

$ a9/plsize $(grep -v txt a9/delivs)
append.pl: 65
middle.pl: 19
splits.pl: 7
repl.pl: 15
posints.pl: 9
pick.pl: 19
polyperim.pl: 53
switched.pl: 106
iz.pl: 76

Miscellaneous

Aside from -> and ;, and any per-problem restrictions notwithstanding, you can use any elements of

Prolog that you desire, but the assignment is written with the intention that it can be completed easily using

only the material presented on Prolog slides 1-185.

Point values of problems correspond directly to assignment points in the syllabus. For example, a 10-point

problem on this assignment corresponds to 1% of your final grade in the course.

Feel free to use comments to document your code as you see fit, but note that no comments are required,

and no points will be awarded for documentation itself. (In other words, no part of your score will be based

on documentation.) In Prolog, % is comment to end of line. Comments with /* ... */, just like in

Java, are supported, too.

Remember that late assignments are not accepted and that there are no late days; but if circumstances

beyond your control interfere with your work on this assignment, there may be grounds for an extension.

See the syllabus for details.

My estimate is that it will take a typical CS junior from 5 to 7 hours to complete this assignment.

Our goal is that everybody gets 100% on this assignment AND gets it done in an amount of time that

is reasonable for them.

If you put seven hours into this assignment and don't seem to be close to

completing it, it's definitely time to touch base with us, regardless of whether

you have any questions. Specifically mention that you've reached seven hours.

Give us a chance to speed you up!

I hate to have to mention it but keep in mind that cheaters don't get a second chance. If you give your code

to somebody else and they turn it in, you'll both likely fail the class, get a permanent transcript notation

stating you cheated, and maybe more. See the syllabus for the details.

Page 15 of 15

CSC 372, Spring 2016

Assignment 10

Due: Wednesday, May 4 at 23:59:59

The Usual Stuff

Make an a10 symlink that references /cs/www/classes/cs372/spring16/a10. Test using

a10/tester (or a10/t). Use SWI Prolog—swipl on lectura. The rules about using if-then-

else and disjunction (;) are the same as for assignments 8 and 9.

General advice

If you think you need to use arithmetic or something like between on rotate, outin, and/or btw,

problems you're probably not understanding how Prolog naturally generates alternatives. The slides have

code for a number of predicates that generate alternatives but sf_gen on 201-202 was included

specifically to help with outin and btw.

pipes.pl is the only problem on which using assert and retract is appropriate.

Problem 1. (2 points) rotate.pl

Write a Prolog predicate rotate(+L,?R) that instantiates R to each unique list that is a left rotation of

L. For example, the list [1,2,3] can be rotated left to produce [2,3,1] which in turn can be rotated

left again to produce [3,1,2].

?- rotate([1,2,3],L), writeln(L), fail.
[1,2,3]
[2,3,1]
[3,1,2]
false.

?- rotate([a,b,c,d],R).
R = [a, b, c, d] ;
R = [b, c, d, a] ;
R = [c, d, a, b] ;
R = [d, a, b, c] ;
false.

?- rotate([1], R).
R = [1] ;
false.

?- rotate([], R).
false.

Additionally, rotate can be asked whether the second term is a rotation of the first term:

?- rotate([a,b,c],[c,a,b]).
true ;
false.

?- rotate([a,b,c],[c,b,a]).
false.

Page 1 of 15

Problem 2. (3 points) ints.pl

Write a Prolog predicate ints(-L) that instantiates L to successively longer lists of the integers.

?- ints(L).
L = [0] ;
L = [0, 1] ;
L = [0, 1, -1] ;
L = [0, 1, -1, 2] ;
L = [0, 1, -1, 2, -2] ;
L = [0, 1, -1, 2, -2, 3] ;
L = [0, 1, -1, 2, -2, 3, -3] ;
...

Problem 3. (3 points) outin.pl

Write a Prolog predicate outin(+L,?R) that generates the elements of the list L in an "outside-in"

sequence: the first element, the last element, the second element, the next to last element, etc. If the list

has an odd number of elements, the middle element is the last one generated.

Restriction: You may not use is/2.

?- outin([1,2,3,4,5],X).
X = 1 ;
X = 5 ;
X = 2 ;
X = 4 ;
X = 3 ;
false.

?- outin([1,2,3,4],X).
X = 1 ;
X = 4 ;
X = 2 ;
X = 3 ;
false.

?- outin([1],X).
X = 1 ;
false.

?- outin([],X).
false.

Problem 4. (3 points) btw.pl

Write a Prolog predicate btw(+L,+X,?R) that instantiates R to copies of L with X inserted between

each element in turn.

Restriction: You may not use append or between.

?- btw([1,2,3,4,5],---,R).
R = [1, ---, 2, 3, 4, 5] ;
R = [1, 2, ---, 3, 4, 5] ;
R = [1, 2, 3, ---, 4, 5] ;

Page 2 of 15

R = [1, 2, 3, 4, ---, 5] ;
false.

?- btw([1,2],***,R).
R = [1, ***, 2] ;
false.

?- btw([1],***,R).
false.

?- btw([],x,R).
false.

Problem 5. (20 points) fsort.pl

Imagine that you have a stack of pancakes of varying diameters that is represented by a list of integers.

The list [3,1,5] represents a stack of three pancakes with diameters of 3", 1" and 5" where the 3"

pancake is on the top and the 5" pancake is on the bottom. If a spatula is inserted below the 1" pancake

(putting the stack [3,1] on the spatula) and then flipped over, the resulting stack is [1,3,5].

In this problem you are to write a predicate fsort(+Pancakes,-Flips) that instantiates Flips to

a sequence of flip positions that will order Pancakes, an integer list, from smallest to largest, with the

largest pancake (integer) on the bottom (at the end of the list). fsort stands for "flip sort".

fsort does not produce a sorted list—its only result is the flip sequence.

The flip position is defined as the number of pancakes on the spatula. In the above example the flip

position is 2. Flips would be instantiated to [2].

Below are some examples. Note the use of a set of case facts to show a series of examples with one

query.

% cat fsortcases.pl
case(a, [3,1,5]).
case(b, [5,4,3,2,1]).
case(c, [3,4,5,1,2]).
case(d, [5,1,3,1,4,2]).
case(e, [1,2,3,4]).
case(f, [5]).

% swipl
...
?- [fsortcases,fsort].
% fsortcases compiled 0.00 sec, 7 clauses
% fsort compiled 0.00 sec, 10 clauses
true.

?- case(_,L), fsort(L,Flips).
L = [3, 1, 5],
Flips = [2] ;

L = [5, 4, 3, 2, 1],
Flips = [5] ;

L = [3, 4, 5, 1, 2],

Page 3 of 15

Flips = [3, 5, 2] ;

L = [5, 1, 3, 1, 4, 2],
Flips = [6, 2, 5, 2, 4, 3] ;

L = [1, 2, 3, 4],
Flips = [] ;

L = [5],
Flips = [].

Your solution needs only to produce a sequence of flips that results in a sorted stack; the sequences it

produces do NOT need to match the sequences shown above. There are some requirements on the flips,

however: (1) All flips must be between 2 and the number of pancakes, inclusive. (2) There must be no

consecutive identical flips, like [5,3,3,4]. (3) fsort must always generate exactly one solution.

You may assume that stacks always have at least one pancake and that pancake sizes are always greater

than zero.

"Pancake sorting" is a well-known problem. I first encountered it in 1993's Internet Programming

Contest. There's even a Wikipedia article about pancake sorting. (Read it!) I debated whether to go with

this problem because it's so well known but it's a fun problem and it's interesting to solve in Prolog, so

here it is. I did Google up one "solution" in Prolog but it's got some issues! I strongly encourage you to

build your Prolog skills by solving this problem without Google's assistance.

The clauses in my current solution have a total of seventeen goals. I don't use is/2 at all. I do use

max_list. You might find nth0 to be useful; if you look at slide 151 closely you'll see it can be used

to both extract values and find values, among other things. There's an nth1, too, if you find one-based

thinking to be a better choice.

I've placed this problem, fsort.pl, early in the line-up in hopes of getting you thinking about it

early but don't get hung up on it.

Problem 6. (15 points) pipes.pl

In this problem you are to write a simple command interpreter to perform manipulations on a set of pipes.

These are pipes like you buy at Home Depot, not UNIX pipes! Each pipe has a name, length, and

diameter.

The commands for the interpreter are in the form of Prolog terms. The calculator shown on slide 219 and

following is a good starting point for this problem.

The interpreter provides the following commands:

 pipes Show the current set of pipes. The pipes are shown in alphabetical order by name.

 weld(A, B)

The pipe named B is welded onto the pipe named A. A and B must have the same

diameter. After welding, A has the combined length of A and B. Pipe B no longer exists.

 cut(A, L, B)

A section of length L is cut from the pipe named A. The section cut off becomes a pipe

named B having the same diameter as A. L must be less than the length of A.

Page 4 of 15

 trim(A,L) A section of length L is cut from the pipe named A and discarded. L must be less than the

length of A.

 help Print a help message with a brief summary of the commands.

 echo Toggle command echo and prompting. (See below for details on this.)

Assume that all lengths are integers.

Use a predicate such as setN to establish a set of pipes to work with:

set1 :-
 retractall(pipe(_,_,_)),
 assert(pipe(a,10,1)),
 assert(pipe(b,5,1)),
 assert(pipe(c,20,2)).

The command interpreter is started with the predicate run/0.

A session with the interpreter is shown below. No blank lines have been inserted or deleted.

% swipl -l pipes
...

?- set1.
true.

?- run.

Command? help.
pipes -- show the current set of pipes
weld(P1,P2) -- weld P2 onto P1
cut(P1,P2Len,P2) -- cut P2Len off P1, forming P2
trim(P,Length) -- trim Length off of P
echo -- toggle command echo
help -- print this message
q -- quit

Command? pipes.
a, length: 10, diameter: 1
b, length: 5, diameter: 1
c, length: 20, diameter: 2

Command? weld(a,b).
b welded onto a

Command? pipes.
a, length: 15, diameter: 1
c, length: 20, diameter: 2

Command? trim(a,12).
12 trimmed from a

Command? pipes.
a, length: 3, diameter: 1

Page 5 of 15

c, length: 20, diameter: 2

Command? cut(c,10,d).
10 cut from c to form d

Command? pipes.
a, length: 3, diameter: 1
c, length: 10, diameter: 2
d, length: 10, diameter: 2

Command? cut(c,6,c1).
6 cut from c to form c1

Command? pipes.
a, length: 3, diameter: 1
c, length: 4, diameter: 2
c1, length: 6, diameter: 2
d, length: 10, diameter: 2

Command? weld(d,c1).
c1 welded onto d

Command? pipes.
a, length: 3, diameter: 1
c, length: 4, diameter: 2
d, length: 16, diameter: 2

Command? q.
true.

Your implementation must handle four errors:

Cutting or welding a pipe that doesn't exist.

Cutting with a result pipe that does exist.

Cutting the full length (or more) of a pipe with cut or trim.

Welding pipes with differing diameters.

If an error is detected, the pipes are unchanged. Here are examples of error handling:

Command? pipes.
a, length: 10, diameter: 1
b, length: 5, diameter: 1
c, length: 20, diameter: 2

Command? cut(x,10,y).
x: No such pipe

Command? weld(x,y).
x: No such pipe

Command? weld(a,x).
x: No such pipe

Page 6 of 15

Command? cut(a,5,b).
b: pipe already exists

Command? cut(a,10,a2).
Cut is too long!

Command? trim(a,15).
Cut is too long!

Command? weld(a,c).
Can't weld: differing diameters

Command? pipes.
a, length: 10, diameter: 1
b, length: 5, diameter: 1
c, length: 20, diameter: 2

Prompting, and the echo command

Don't use write('\nCommand? ') to prompt the user. Instead, use the built-in prompt/2 to set

the prompt, like this: prompt(_, '\nCommand? '). Then when read(X) is called,

'\nCommand? ' will automatically be printed first.

To make tester output more usable there is an echo command. By default, the Command? prompt is

printed and the command entered is not echoed. The echo command toggles both behaviors: entering

echo causes prompting to be turned off and echo to be turned on. A subsequent echo command reverts

to the default behavior. In the following example, the text typed by the user is in bold and underlined:

?- run.

Command? cut(a,1,a2).
1 cut from a to form a2

Command? echo.
Echo turned on; prompt turned off
cut(a,1,a3).

Command: cut(a,1,a3)
1 cut from a to form a3
pipes.

Command: pipes
a, length: 8, diameter: 1
a2, length: 1, diameter: 1
a3, length: 1, diameter: 1
b, length: 5, diameter: 1
c, length: 20, diameter: 2
weld(a,a2).

Command: weld(a,a2)
a2 welded onto a
echo.

Command: echo
Echo turned off; prompt turned on
Command? q.

Page 7 of 15

true.

?-

Implementing the toggling of echoing is a little tricky. Here's a sketchy hint, for students who want a

challenge:

Manipulate an echo/0 fact with assert(echo) and retract(echo). To produce no

prompt at all, use the built-in prompt/2 like this: prompt(_, '').

Important: to allow that manipulation of echo/0 with assert and retract you'll need to

declare echo as dynamic. Have the following line as the first line in your pipes.pl:

:-dynamic(echo/0).

A more detailed hint is in http://www.cs.arizona.edu/classes/cs372/spring16/a10/echo-hint.html

TL;DR

The built-in help provides a quick summary:

?- run.

Command? help.
pipes -- show the current set of pipes
weld(P1,P2) -- weld P2 onto P1
cut(P1,P2Len,P2) -- cut P2Len off P1, forming P2
trim(P,Length) -- trim Length off of P
echo -- toggle command echo
help -- print this message
q -- quit

And, handle these errors:

 Cutting or welding a pipe that doesn't exist.

 Cutting with a result pipe that does exist.

 Cutting the full length (or more) of a pipe with cut or trim.

 Welding pipes with differing diameters.

I won't test with cases involving multiple errors, like a too-long cut that names an existing pipe as the

result.

Problem 7. (20 points) connect.pl

In this problem you are to write a predicate connect that finds and displays a suitable sequence of

cables to connect two pieces of equipment that are some distance apart. Each cable is specified by a

three element list. Here is a list that represents a twelve-foot cable with a male connector on one end and

a female connector on the other:

[m,12,f]

Let's consider an example of using connect to produce a sequence of cables. Imagine that to your left

is a piece of equipment with a male connector. On your right, fifteen feet away, is a piece of equipment

with a female connector. To connect the equipment you have two cables:

 • A ten-footer with a male connector on one end and a female on the other.

Page 8 of 15

http://www.cs.arizona.edu/classes/cs372/spring16/a10/echo-hint.html

 • A seven-footer with a female connector on one end and a male on the other.

The following query represents the situation described above.

?- connect([[m,10,f], [f,7,m]], m, 15, f).

connect's first argument is a list with the two cables. The second, third, and fourth arguments

respectively represent the gender of the connector of the equipment on the left (male—m), the distance

between the equipment (15 feet), and the gender of the connector of the equipment on the right

(female—f).

Here's the query and its result:

?- connect([[m,10,f], [f,7,m]], m, 15, f).
F----------MF-------M
true.

We see that a connection is possible in this case; a valid sequence of connections is shown. Observe that

the first cable was reversed to make the connection. The number of dashes is the length of the cable.

There's some slack in the connection—only fifteen feet needs to be spanned but the total length of the

tables is seventeen feet. That's fine.

Note that the output has no representation of the pieces of equipment on the left and right that we're

connecting with the cables.

Only male/female connections are valid in the world of connect.pl.

In some cases a connection cannot be made, but connect always succeeds:

?- connect([[m,10,f], [f,7,m]], m, 25, f).
Cannot connect
true.

?- connect([[m,10,f], [f,7,m]], m, 15, m).
Cannot connect
true.

More examples:

?- connect([[m,1,m],[f,1,f],[m,10,m],[f,5,f],[m,3,f]], m, 20, f).
F-FM-MF-----FM----------MF---M
true.

?- connect([[m,1,m],[f,1,f],[m,10,m],[f,5,f],[m,3,f]], m, 20, m).
Cannot connect
true.

?- connect([[m,1,m],[f,1,f],[m,10,m],[f,5,f],[m,3,f]], m, 10, f).
F-FM-MF-----FM----------M
true.

?- connect([[m,10,f]], m, 1, f).
F----------M
true.

Page 9 of 15

IMPORTANT: The ordering of cables your solution produces for a particular connection need NOT

match that shown above. Any valid ordering is suitable. (A Ruby program, a10/pc.rb, analyzes the

output.)

Assume the arguments to connect are valid—you won't see two-element lists, non-numeric or non-

positive lengths, ends other than f and m, etc. Assume that all lengths are integers. Assume that the

distance to span is greater than zero.

You can approach this problem using an approach similar to that in the pit-crossing example in the slides.

Note that you do not need to use all the cables or exactly span the distance.

My current solution is around 25 goals; about a third of those are related to producing the required

output.

Problem 8. (8 points) buy.pl

In this problem the task is to print a bill of sale for a collection of items. Several predicates provide

information about the items. The first is item/2, which associates an item name with a description:

item(toaster, 'Deluxe Toast-a-matic').
item(antfarm, 'Ant Farm').
item(dip, 'French Onion Dip').
item(twinkies, 'Twinkies').
item(lips, 'Chicken Lips').
item(hamster, 'Hamster').
item(rocket, 'Model rocket w/ payload bay').
item(scissors, 'StaySharp Scissors').
item(rshoes, 'Running Shoes').
item(tiger, 'Sumatran tiger').
item(catnip, '50-pound bag of catnip').

The second predicate is price/2, which associates an item name with a price in dollars:

price(toaster, 14.00).
price(antfarm, 7.95).
price(dip, 1.29).
price(twinkies, 0.75).
price(lips, 0.05).
price(hamster, 4.00).
price(rocket, 12.49).
price(scissors, 2.99).
price(rshoes, 59.99).
price(tiger, 749.95).

The third is discount/2, which associates a discount percentage with some, possibly none, of the

items:

discount(antfarm, 20).
discount(lips, 40).
discount(rshoes, 10).

Finally, state law prohibits same-day purchase of some items. dontmix/2 specifies prohibitions. Here

are some examples:

Page 10 of 15

dontmix(scissors,rshoes).
dontmix(hamster,rocket).
dontmix(tiger,catnip).

You can only ensure that any prohibited pairings are not included in a single purchase; the well-

intentioned prohibitions can be thwarted by making multiple trips to the store!

You are to write a predicate buy(+Items) that prints a bill of sale for the specified items. If any

mutually prohibited items are in the list, that should be noted and no bill printed.

?- buy([hamster,twinkies,hamster,toaster]).
Hamster.............................4.00
Twinkies............................0.75
Hamster.............................4.00
Deluxe Toast-a-matic...............14.00
--
Total $22.75
true.

?- buy([lips,lips,lips,dip]).
Chicken Lips........................0.03
Chicken Lips........................0.03
Chicken Lips........................0.03
French Onion Dip....................1.29
--
Total $1.38
true.

?- buy([scissors,dip,rshoes]).
State law prohibits same-day purchase of "Running Shoes" and
"StaySharp Scissors".
true.

You may assume that all items named in a buy are valid and that a price exists for every item.

Prohibited items are shown in alphabetical order. If several mutually prohibited items are named in the

same buy only the first conflict is noted.

Here's the format/2 specification I use to produce the per-item lines: '~w~`.t~2f~40|~n'. The

backquote-period sequence causes the enclosing tab to fill with periods.

A set of facts for testing is in a10/buyfacts.pl . Include the line

:-[a10/buyfacts].

in your buy.pl to consult the file. For grading I may tests with other sets of facts, too.

Problem 9. (8 points) mishaps.pl

The following logic puzzle, "Rural Mishaps", was written by Margaret Shoop. It was published in The

Dell Book of Logic Problems #2.

"A butt by the family cow was one of the five different mishaps that befell Farmer Brown, his

wife, his daughter, his teenage son, and his farmhand one summer morning. From the rhyme that

follows, can you determine the mishap that happened to each of the five, and the order in which

Page 11 of 15

the events occurred?

"The garter snake was surprised in a patch

And bit a grown man's finger.

One person who weeded a flower bed

Received a nasty stinger.

The farmer's mishap happened first;

Son Johnny's happened third.

When Mr. Reston was kicked by the mule,

He said, "My word! My word!"

The sting of the bee was the fourth mishap

To befall our rural cast.

Neither it nor the wasp attacked Mrs. Brown

Whose mishap wasn't the last."

For mishaps.pl you are to encode as Prolog goals the pertinent information in the above rhyme and

then write a predicate mishaps/0 that uses those goals to solve the puzzle.

a10/mishaps.out shows a run of mishaps/0 with the exact output you are to produce, but you

might enjoy the challenge of solving the puzzle using Prolog before looking at the expected output or

trying the tester.

The challenge of this problem is of course the encoding of the information as Prolog goals. Solutions

must both produce the correct output and accurately encode the information as stated in the

rhyme to earn full credit. The tester will check for correct output; we'll check manually for accurate

encoding.

Implementation notes

Obviously, this problem is in the style of The Zebra Puzzle, which starts on slide 254. The code for the

Zebra Puzzle establishes a number of constraints for the list Houses. In this problem you'll want to

establish constraints for a list of mishaps instead of a list of houses.

You might start like this:

mishaps(Mishaps) :- Mishaps = [...].

A similar start for the Zebra puzzle would be this:

zebra(Houses) :- Houses = [house(norwegian, _, _, _, _), _,
house(_, _, _, milk, _), _, _].

Querying zebra(H) produces only one possible value for H, the list of houses:

?- zebra(H).
H = [house(norwegian, _G1222, _G1223, _G1224, _G1225), _G1227,
house(_G1233, _G1234, _G1235, milk, _G1237), _G1239, _G1242].

Let's add a member goal that encodes the statement that the Englishman lives in the red house:

zebra(Houses) :- Houses = [house(norwegian, _, _, _, _), _,
 house(_, _, _, milk, _), _, _],
 member(house(englishman, _, _, _, red), Houses).

Page 12 of 15

Now we get four possible values for H: (blank lines added)

?- zebra(H).
H = [house(norwegian, _G2194, _G2195, _G2196, _G2197),
house(englishman, _G2218, _G2219, _G2220, red), house(_G2205,
_G2206, _G2207, milk, _G2209), _G2211, _G2214] ;

H = [house(norwegian, _G2194, _G2195, _G2196, _G2197), _G2199,
house(englishman, _G2206, _G2207, milk, red), _G2211, _G2214] ;

H = [house(norwegian, _G2194, _G2195, _G2196, _G2197), _G2199,
house(_G2205, _G2206, _G2207, milk, _G2209), house(englishman,
_G2218, _G2219, _G2220, red), _G2214] ;

H = [house(norwegian, _G2194, _G2195, _G2196, _G2197), _G2199,
house(_G2205, _G2206, _G2207, milk, _G2209), _G2211,
house(englishman, _G2218, _G2219, _G2220, red)].

?- findall(r, zebra(H), Results), length(Results,N).
Results = [r, r, r, r],
N = 4.

If we add a goal that states that the Spaniard owns the dog, we go up to twelve possible values for H:

zebra(Houses) :- Houses = [house(norwegian, _, _, _, _), _,
 house(_, _, _, milk, _), _, _],
 member(house(englishman, _, _, _, red), Houses),
 member(house(spaniard, dog, _, _, _), Houses).

?- findall(r, zebra(H), Results), length(Results,N).
Results = [r, r, r, r, r, r, r, r, r|...],
N = 12.

Some goals will make the number of possible values for the list of houses go up, and other goals will

make the number of possible values go down. If we properly encode all the information, we'll end up

with only one possible value for the list of houses.

Follow a similar process when adding goals to represent information about the mishaps. That is,

add goals to mishaps/1 one at a time. Query mishaps(M) after each addition.

If we inadvertently introduce a contradiction, like length(Houses,6), we'd see this:

?- zebra(H).
false.

If you add a goal and find that mishaps(M)then fails, you'll need to step back and consider why that

new goal creates a situation with no possible solutions. You might try leaving the new goal in place and

commenting one or more earlier goals to find the conflict.

When you've got mishaps/1 working—producing a single possibility for the list of mishaps—use it to

write mishaps/0.

Page 13 of 15

Problem 10. Extra Credit observations.txt

Submit a plain text file named observations.txt with...

(a) (1 point extra credit) An estimate of how long it took you to complete this assignment. To facilitate

programmatic extraction of the hours from all submissions have an estimate of hours on a line by itself,

more or less like one of the following three examples:

Hours: 6
Hours: 3-4.5
Hours: ~8

If you want the one-point bonus, be sure to report your total (estimated) hours on a line that starts with

"Hours:". There must be only one "Hours:" line in observations.txt. It's fine if you care to

provide per-problem times, and that data is useful to us, but report it in some form of your own invention,

not with multiple lines that contain "Hours:", in either upper- or lower-case.

Other comments about the assignment are welcome, too. Was it too long, too hard, too detailed? Speak

up! I appreciate all feedback, favorable or not.

(b) (1-3 points extra credit) Cite an interesting course-related observation (or observations) that you made

while working on the assignment. The observation should have at least a little bit of depth. Think of me

saying "Good!" as one point, "Excellent!" as two points, and "Wow!" as three points. I'm looking for

quality, not quantity.

Turning in your work

Use a10/turnin to submit your work.

Here's what I see as of press time for the sizes of my solutions, with comments stripped:

$ a10/plsize $(grep -v txt a10/delivs)
rotate.pl: 10
ints.pl: 22
outin.pl: 9
btw.pl: 13
fsort.pl: 54
pipes.pl: 262
connect.pl: 100
buy.pl: 65
mishaps.pl: 77

Miscellaneous

Aside from -> and ;, and any per-problem restrictions notwithstanding, you can use any elements of

Prolog that you desire, but the assignment is written with the intention that it can be completed easily

using only the material presented on Prolog slides 1-272.

Point values of problems correspond directly to assignment points in the syllabus. For example, a 10-

point problem on this assignment corresponds to 1% of your final grade in the course.

Feel free to use comments to document your code as you see fit, but note that no comments are required,

and no points will be awarded for documentation itself. (In other words, no part of your score will be

based on documentation.) In Prolog, % is comment to end of line. Comments with /* ... */, just

Page 14 of 15

like in Java, are supported, too.

Remember that late assignments are not accepted and that there are no late days; but if circumstances

beyond your control interfere with your work on this assignment, there may be grounds for an extension.

See the syllabus for details.

My estimate is that it will take a typical CS junior from 10 to 12 hours to complete this assignment.

Our goal is that everybody gets 100% on this assignment AND gets it done in an amount of time

that is reasonable for them.

If you put twelve hours into this assignment and don't seem to be close to

completing it, it's definitely time to touch base with us, regardless of whether

you have any questions. Specifically mention that you've reached twelve

hours. Give us a chance to speed you up!

I hate to have to mention it but keep in mind that cheaters don't get a second chance. If you give your

code to somebody else and they turn it in, you'll both likely fail the class, get a permanent transcript

notation stating you cheated, and maybe more. See the syllabus for the details.

Page 15 of 15

CSC 372, Spring 2016

Assignment "V" (for video!)

Due: Wednesday, May 4 at 23:59:59

In a nutshell

The essence of this assignment is simple:

 (1) Find in some programming language an interesting element or aspect that you know little about.

 (2) Experiment with that interesting thing and see what you can learn about it.

 (3) Make a 7-minute video of yourself talking about that interesting thing.

This assignment is worth 50 points—5% of your final grade.

The final Prolog assignment will also be due on May 4, so budget your time accordingly.

Finding a language

A key requirement is that you pick a topic that you know little about. If you don't know anything about a

language then any aspect of that language would qualify, although many might not be very interesting,

like straightforward analogs of Java control structures and data types. I wouldn't want you talking about

iterators in Ruby, but Ruby threads are certainly fair game. If you feel like taking on a beast, you might

try monads in Haskell. If you want to do something in Prolog, ok the topic with me first, to be sure it

won't be something we'll be covering.

If you want to work with a language that's new to you, there are thousands to choose from! You'll

probably want to choose a language that has an implementation available for your machine or is installed

on lectura so that you can experiment with it. A language with a REPL makes experimentation easier, of

course.

Slide 24 in the intro set lists a number of prominent langauges. Lots of choices, maybe too many, can be

found at http://en.wikipedia.org/wiki/List_of_programming_languages. Some older languages have

quite a few features that are fairly different from what we commonly see today and might present some

low hanging fruit. COBOL, Forth, MUMPS, and (my favorite old language) SNOBOL4 come to mind.

Finding an interesting thing

In elementary school you might have written a report on "The Civil War". By the time you got to college

you probably realized that "The Civil War" was a hopelessly big topic to cover in a single report. But

maybe "The Battle of Picacho Peak" would have been about the right size.

Similarly here, the task is not to cover the full language but just one single aspect or element. Had

we not covered these topics in class, each of the following would make a fine seven-minute topic:

Type inferencing in Haskell

Curried functions and partial evaluation in Haskell

Computations with map, filter, and fold

Ruby strings, arrays, or hashes

Ruby iterators contrasted with conventional iteration

Page 1

http://en.wikipedia.org/wiki/List_of_programming_languages

Here are some seven-minute topic ideas:

Functors or monoids in Haskell

Ruby's ObjectSpace

Contrast regular expressions in Java vs. Ruby

Explore some elements of Ruby regular expressions that we didn't talk about

method_missing in Ruby

List comprehensions in Python

"Globals" in MUMPS

PICTURE in COBOL

Lambda expression support in Java 8
java.util.stream

Prototypes in JavaScript

Ruby's Matrix class (I've seen enough of these to last a lifetime, so this topic is banned!)

Control structures in bash

Arrays in bash (only for those with a strong stomach!)

Typeless-ness in BCPL

Pattern matching in SNOBOL4

"magic methods" in Python

Channels in Go

PHP arrays

String scanning in Icon

Stack-based programming in PostScript or Forth

Using C's sizeof to explore the language

Fun with the C preprocessor (beyond what's covered in 352)

One way to look for topic ideas is to browse tables of contents of books on Safari. For high-bandwith

browsing, go to the library.

Think of your goal as being technical entertainment. Your challenge is to find some interesting

aspect or element on which you think you can create material that will hold somebody's attention for

seven minutes.

You can make any assumptions you want about your audience. For example, you might assume that your

audience is your 372 classmates, implying that they know Java, Ruby, Haskell, and, by the end, Prolog.

If you want to talk about the C preprocessor, you should assume the audience knows some C.

It's fine to use examples you discover on the web and in books; just take a moment to verbally cite the

source, like the author's name, the name of the book, or the website. It's fine to watch videos to help find

a topic or learn more about your topic.

You don't need to get your topic approved in advance but we'll be happy to offer advice on your ideas, or

help you find an idea.

The video

If your language has a REPL, your video might just be a screen recording of you demonstrating a feature

and narrating what you're doing.

If you're inclined to write slides with PowerPoint, Keynote, or whatever, and record a presentation,

perhaps even projected on a screen in a classroom, that's fine.

You can work with pencil and paper, writing out examples by hand, as one might when working on an

Elmo, and shoot video with a cell phone or a camcorder.

Page 2

Any mix of the above modes or additional modes is fine.

Try a test video well before the deadline. For example, if you're planning to use your cell phone to

shoot video, be sure the resolution is adequate to make text legible and that your phone has enough space

for whatever length segments you plan to shoot.

Between screen recordings, cell phones, and digital cameras I imagine most everybody will already have

the equipment they need but if not, http://www.library.arizona.edu/services/equipment-lending and

http://www.uits.arizona.edu/departments/oscr/locations/gtg have loaner cameras and tripods.

I don't expect you to spend time editing video to make it perfect, or anywhere near perfect. You're

certainly free to edit if you want, but I'm fine with a single "take".

It's fine to run a little past seven minutes, but keep it under eight minutes. If you're significantly under

seven minutes there will be a proportional deduction in your grade. I'll stop watching at eight minutes.

Turning in your work

Park your video somewhere on the web and then submit a plain text file named video.txt using

/cs/www/classes/cs372/spring16/av/turnin. (Just run that script in whatever directory

your video.txt resides.) The file should be structured as follows:

First line: A title for your video

Second line: The URL for your video

Third line: "Post: yes" or "Post: no"

Following lines: Any sort of comments or observations you'd like to make, if any.

I'll collect the URLs for the videos that are "Post: yes" and post that list on Piazza. I'll use exactly

the title you specify. If you want your name or a pseudonym shown, include it in the title, maybe with

"... by John Smith" or "The Amazing Haskellon Explores Monads", for example.

Specifying "Post: yes" earns you a five-point bonus. You can remain anonymous, except to those

who might recognize your voice, for example.

Late submissions accepted

Unlike other assignments, late submissions will be accepted on this assignment, with a penalty of two

points per 24 hours or any fraction thereof, with a maximum of five days (5*24 hours) late.

Expectations

I'm picturing that a typical student will spend 6-8 hours on this assignment.

I don't expect you to achieve full understanding of your topic; you just need to know enough to fill seven

minutes. It's fine to point out some things that you were unable to figure out.

If you have a disability that makes this assignment difficult for you, please let me know; we'll work out

an accommodation.

Page 3

http://www.library.arizona.edu/services/equipment-lending
http://www.uits.arizona.edu/departments/oscr/locations/gtg

QUIZ!

Quiz Stuff

Use a full sheet of 8½x11" paper. (Half sheet? Half credit!)

Put your last name and first initial in the far upper left hand

corner of the paper, where a staple would hit it. (It helps when

sorting quizzes!)

Mitchell, W.

..

No need to write out questions.

Numbering responses may help you avoid overlooking a question;

it's ok to go ahead and pre-number your sheet.

Two minutes; five questions, plus one extra credit question.

Can everybody see this line?

Quiz 1, January 14, 2016

 2 minutes; ½ point/answer; 2½ points total

1. What is the name of any one programming language created before

1975?

2. How many programming languages are there? (pick one: dozens,

hundreds, thousands)

3. Who founded the UA CS department and in what year?

4. Name an area of research for which the UA CS department was

recognized worldwide in the 1970s and 1980s.

5. Ideally, what percentage of your classmates will get an "A" in this

course?

EC ½ point: What's the name of the most recently created language here in

UA CS?

Quiz 2, January 21, 2016

3 minutes; 3 points

1. Write a Java expression that has a side effect.

2. Write a Haskell function that computes the area of a rectangle

given its width and height. Append ::Int to force it to operate

on Ints.

3. What's the type of the function you wrote in the previous

problem?

4. What does REPL stand for? Or, what's the essential functionality

provided by a REPL?

5. What's a characteristic of the functional programming paradigm?

6. Imagine that :type f shows this: Foo a => a -> Char

What does that type mean?

Solutions

1. Write a Java expression that has a side effect. x++

2. Write a Haskell function that computes the area of a rectangle

given its width and height. Append ::Int to force it to operate

on Ints. area w h = w * h :: Int

3. What's the type of the function you wrote in the previous problem?
Int -> Int -> Int

4. What does REPL stand for? Or, what's the essential functionality

provided by a REPL? Read-Eval-Print Loop

5. What's a characteristic of the functional programming paradigm?

See slides 24-25. My quick answer: "functions are values"

6. Imagine that :type f shows this: Foo a => a -> Char

What does that type mean?

f is a function that requires a value whose type is a member

of the type class Foo. f produces a Char.

Quiz 3, February 2, 2016

3 minutes; ½ + ½ + 2 points

1. Add parentheses to the following expression to show the order of

operations: a b + x y z

2. The length function produces the length of a list. What's the

type of length?

3. Write a function nzs that returns the number of zeroes in a list.

(2 points!)

> nzs [5,0,0,5]
2

EC ½ point:

Write a function f whose type is inferred to be a -> a -> a. Be

sure that a doesn't have a class constraint, like Eq a.

Solutions

1. Add parentheses to the following expression to show the order of

operations: a b + x y z

 (a b) + ((x y) z)

2. The length function produces the length of a list. What's the type of

length? [a] -> Int

3. Write a function nzs that returns the number of zeroes in a list.

Two solutions:
nzs [] = 0

nzs (0:t) = 1 + nzs t

nzs (_:t) = nzs t

nzs [] = 0

nzs (h:t)

 | h == 0 = 1 + nzs t

 | otherwise = nzs t

EC ½ point: Write f whose type is inferred to be a -> a -> a.

f x y = head [x, y]

Quiz 4, February 9, 2016

3 minutes; ½ + ½ + 2 points

1. Give a simple definition for "higher order function".

2. What's the type of map? Here's a reminder of how map works:

> map (add 2) [1..5]

[3,4,5,6,7]

3. Write a function atb f x y that calls the function f with the

larger of x and y. (2 points!)

> atb negate 7 2

-7

> atb length "aa" "zzz"

3

EC ½ point: In Haskell, what's a "section"? (Ok to just show an

example.)

Solutions

1. Give a simple definition for "higher order function".

A function that has one or more arguments that are functions.

2. What's the type of map?

(a -> b) -> [a] -> [b]

3. Write a function atb f x y that calls the function f with the

larger of x and y. (2 points!)

Two solutions:
atb f x y = f (if x > y then x else y)

atb f x y

 | x > y = f x

 | otherwise = f y

EC ½ point: In Haskell, what's a "section"? (Ok to just show an

example.)

Short answer: (+3) is a section.

Long answer: A syntactic mechanism that allows creation of a partial

application of a binary operator by supplying either operand.

Quiz 5, February 18, 2016

3 minutes; 2 + ½ + ½ points

1. Consider folding a list of strings into the total length of the

strings:
> foldl f 0 ["just", "a", "test"]

9

> foldl f 0 ["abc"]

3

For this problem you are to write a folding function f that would

work as shown with the foldl calls above

2. What's a difference between foldl and foldr?

3. What's a difference between foldr and foldr1?

Solutions

1. > let f acm elem = acm + length elem

> foldl f 0 ["just", "a", "test"]

9

> foldl f 0 ["abc"]

3

2. What's a difference between foldl and foldr?

foldl folds the list from left to right but foldr folds from

right to left.

3. What's a difference between foldr and foldr1?

foldr needs a "zero" value, for the case of an empty list.

Quiz 6, February 25, 2016

3 minutes; 1 + (½ * 6) points

1. What's a fundamental characteristic of a statically typed

language? (one point)

2. Name a language that uses static typing.

3. Name a language that uses dynamic typing.

4. Assuming s = "abcdef", what's the value of s[1,3]?

5. Assuming s = "abcd", what's the value of s[1..-1]?

6. What's a key difference between Ruby arrays and Haskell lists?

7. What program provides a REPL for Ruby?

EC: Who invented Ruby?

Solutions

1. What's a fundamental characteristic of a statically typed language?

(one point)

The type of every expression can be determined without running the

code.

2. Name a language that uses static typing. Java, Haskell, C

3. Name a language that uses dynamic typing. Ruby, Python, Icon

4. Assuming s = "abcdef", what's the value of s[1,3]? "bcd"

5. Assuming s = "abcd", what's the value of s[1..-1]? "bcd"

6. What's a key difference between Ruby arrays and Haskell lists?

Ruby arrays are heterogeneous—they can hold a mix of types.

7. What program provides a REPL for Ruby? irb

EC: Who invented Ruby? Yukihiro Matsumoto ("Matz" ok!)

Quiz 7, March 8, 2016

3 minutes; ½ + ½ + ½ + ½ + 1 points

1. How can we quickly tell whether an identifier is a global variable?

2. In Ruby's world, what is an iterator?

3. What keyword does an iterator use to invoke a block?

4. What element of Haskell is a Ruby block most like?

5. Assuming x is an array, print the elements in x, one per line,

using the iterator each with an appropriate block.

E.C. ½ point: Write a trivial iterator.

Solutions

1. How can we quickly tell whether an identifier is a global

variable? Starts with a dollar sign, like $x.

2. In Ruby's world, what is an iterator?

An iterator is a method that can invoke a block.

3. What keyword does an iterator use to invoke a block? yield

4. What element of Haskell is a Ruby block most like?

An anonymous function, I'd say.

5. Assuming x is an array, print the elements in x, one per line,

using the iterator each with an appropriate block.

x.each {|e| puts e}

E.C. ½ point: Write a trivial iterator.
def itr

yield 7

end

Quiz 8, March 22, 2016

3 minutes; ½ point each

1. What Ruby operator looks to see if a string contains a match for

a regular expression?

2. When that matching operator is successful, what value does it

produce?

3. After a successful match, what does the predefined global

$` hold? (dollar-backquote)

4. What's the longest string that can be matched by the RE /a..z/?

5. Languages vary in their level of support for regular expressions.

What level of support does Ruby provide—library support or

syntactic support?

6. Support your answer for the previous question with a brief

explanation.

Solutions

1. What Ruby operator looks to see if a string contains a match for a

regular expression? =~ is the "match" operator.

2. When that matching operator is successful, what value does it

produce? The starting position of the first match

3. After a successful match, what does the predefined global

$` hold? (dollar-backquote)

The portion of the string preceding the match

4. What's the longest string that can be matched by the RE /a..z/?

Four characters

5. Languages vary in their level of support for regular expressions.

What level of support does Ruby provide—library support or

syntactic support? Syntactic support

6. Support your answer for the previous question with a brief

explanation.

The expression /text/ designates a regular expression.

Quiz 9, March 22, 2016

4 minutes; 2 + 1½ + ½ points

1. In English, describe strings that are matched by this Ruby regular

expression: /^[xyz]+[abc]?\d{2,3}/

2. Write a definition for a Ruby class named X. Instances of X are

created by specifying a string, like X.new("abc"). X has one

method, named f, that returns the length of the string that the

instance was created with.

3. The line "attr_reader :x" in a class definition specifies that

there should be a getter for the instance variable x. What's

especially interesting about attr_reader?

EC ½ point: Briefly, what's the difference between a language being

extensible vs. being mutable?

Solutions

1. Describe strings matched by /^[xyz]+[abc]?\d{2,3}/

Starts with one or more occurrences of x, y, or z; followed by an

optional a, b, or c; followed by two or three digits.

2. Write a definition for a Ruby class named X. ...

class X
 def initialize s
 @f = s.size
 end
 attr_reader :f
end

3. The line "attr_reader :x" in a class definition specifies that there

should be a getter for the instance variable x. What's especially

interesting about attr_reader?

attr_reader is a method that generates a getter method.

EC ½ point: If a language is mutable, the meanings of operations can be

changed, where extensibility only allows for providing meaning for

previously undefined operations.

Quiz 10, March 29, 2016

45 seconds; ½ point each

With Prolog in mind...

1. Write an example of an atom.

2. Write an example of a fact.

3. Write an example of a query.

EC: What's the command to run SWI Prolog on lectura?

Solutions

1. Write an example of an atom. food

2. Write an example of a fact. food(apple).

3. Write an example of a query. food(apple).

Shorter:
a

a(b).

a(b).

EC: What's the command to run SWI Prolog on lectura?
swipl

Quiz 11, April 12, 2016

4 minutes; ½ + 1 + ½ + 1 + ½ + ½ points

1. Write an example of a structure with two terms.

2. What are two distinct computations that can be done with the

predicate food/1 that we've been using?

3. What does the notation f/3 mean?

4. Draw and label the ports of the four-port model.

5. What is the output of the following query?
?- A=1, B=2, write(A), A=B, write(B).

6. Given these facts, a(1). a(1,2). a(2).

what is output by the following query?

 ?- a(X), writeln(X), fail.

Solutions

1. Write an example of a structure with two terms. x(1,2)

2. What are two distinct computations that can be done with the

predicate food/1 that we've been using?

(1) Ask if something is food. (2) Enumerate all foods.

3. What does the notation f/3 mean? f is a three-term predicate.

4. Draw and label the ports of the four-port model.

5. What is the output of the following query?
?- A=1, B=2, write(A), A=B,

write(B).

1

false.

6. Given these facts, a(1). a(1,2). a(2).

what is output by the following query?

 ?- a(X), writeln(X), fail.

1

2

false.

Quiz 12, April 19, 2016

3 minutes; 1 + 2 points

1. Write a predicate same(?A, ?B, ?C) that expresses the

relationship that A, B, and C are equal.

?- same(1,1,1).
true.

?- same(a,X,a).
X = a.

2. Write a predicate p(+L) that prints the elements of L that are

integers, one per line. (Use integer(?X) to test.) Be sure it

always succeeds!
?- p([10,b,c,2,4]).
10
2
4
true.

Solutions

1. Write a predicate same(?A, ?B, ?C) that expresses the

relationship that A, B, and C are equal.

same(X,X,X).

2. Write a predicate p(+L) that prints the elements of L that are

integers, one per line.

p(L) :- member(E,L), integer(E),
 writeln(E), fail.

p(_).

Quiz 13, April 26, 2016

4 minutes; 4 points

1. What would Prolog show for A and B for the folllowing query?

?- [_,A|B] = [1,2,3,4].

2. Without using append, write head(List, Elem).

3. Without using append, write last(List, LastElem).

4. What are two predicates that can be used, respectively, to add or

remove facts?

EC ½ point: Write g(L,E) that generates each element of L twice:

?- g([a,b],E).
E = a ;
E = a ;
E = b ;
E = b ;
false.

Solutions

1. What would Prolog show for A and B for the folllowing query?

?- [_,A|B] = [1,2,3,4].
A = 2, B = [3, 4].

2. Without using append, write head(List,Elem).

head([H|_],H).

3. Without using append, write last(List, LastElem).

last([X],X).
last([_|T],X) :- last(T,X).

4. What are two predicates that can be used, respectively, to add

or remove facts? assert and retract

EC: Write g(L,E) that generates each element of L twice.

g([H|_],H).
g([H|_],H).
g([_|T],E) :- g(T,E).

Quiz 14, April 28, 2016

4 minutes; 4 points

1. Briefly describe the general approach used to solve the

pit-crossing puzzle in the slides.

2. Write a predicate inc that uses assert and retract to

increment a counter maintained as a count/1 fact. It reports the

new value.
?- count(N).
N = 0.

?- inc.
Count is 1

true.

?- inc.
Count is 2

true.

?- count(N).
N = 2.

Solutions

1. Briefly describe the general approach used to solve the

pit-crossing puzzle in the slides.

Pick a plank from the supply. See if it can be placed

without ending over a pit. If so, solve it from there using

the remaining planks. If not, pick a different plank and try

again.

2. Write a predicate inc that uses assert and retract to

increment a counter maintained as a count/1 fact. It reports

the new value.
inc :-

count(N0),
retract(count(_)),
N is N0+1,
assert(count(N)),
format('Count is ~w~n', N).

CSC 372 Mid-term Exam

Thursday, March 10, 2016

READ THIS FIRST

Read this page now but do not turn this page until you are told to do so. Go ahead and fill in your last

name in the box above.

This is a 60-minute exam with a total of 100 points of regular questions and an extra credit section.

The last five minutes of the exam is a "seatbelts required" period, to avoid distractions for those who are

still working. If you finish before the "seatbelts required" period starts, you may turn in your exam and

leave. If not, you must stay quietly seated—no "packing up"— until time is up for all.

You are allowed no reference materials whatsoever.

If you have a question, raise your hand. I will come to you. DO NOT leave your seat.

If you have a question that can be safely resolved with a minor assumption, like the name of a function or

the order of function arguments, state the assumption and proceed.

Feel free to use abbreviations, like "otw" for "otherwise".

It's fine to use helper functions unless a specific form, such as point-free style, is specifically requested.

Don't make problems hard by assuming that they need to do more than is specifically mentioned in the

write-up or that the solution that comes to mind is "too easy."

If you're stuck on a problem, please ask for a hint. Try to avoid leaving a problem completely

blank—that's a sure zero.

It is better to put forth a solution that violates stated restrictions than to leave it blank—a solution with

violations may still be worth partial credit.

When told to begin, double-check that your name is at the top of this page, and then put your initials in

the lower right hand corner of the top side of each sheet, checking to be sure you have all six sheets.

BE SURE to enter your last name on the sign-out log when turning in your completed exam.

Last name

Page 1 of 12

Problem 1: (8 points)

What is the type of each of the following values? If the expression is invalid, briefly state why.

Assume numbers have the type Int. Remember that String is a type synonym for [Char]; those two

can be used interchangeably.

Important: Remember that the type of a function includes the type of the arguments as well as the

type of the value returned.

"abc"

('4', 52, [5,2])

last

[[True]]

filter even

map head

[head, head . tail]

(++"x")

Page 2 of 12

Problem 2: (10 points) (two points each)

This problem is like warmup.hs on the assignments—write the following Haskell Prelude functions.

Instances of poor style or needlessly using other Prelude or helper functions will result in

deductions.

Remember this order of preference for handling cases: patterns, guards, if-else. Be sure to use the

wildcard pattern (underscore) when appropriate.

There's no need to specify function types.

snd (Returns second element of a two-tuple)

head (Ignore empty-list case)

last (Ignore empty-list case)

map

zipWith (Reminder: zipWith (+) [1,2,3] [10,20,30] is [11,22,33])

DID YOU REMEMBER TO USE WILDCARDS WHEN APPROPRIATE?

Page 3 of 12

Problem 3: (16 points) (8 points each)

For this problem you are to write both recursive and non-recursive versions of a function numlist,

with type [[Char]] -> IO (), that outputs a numbered list of the strings in a list:

> numlist ["just", "testing", "this"]
1. just
2. testing
3. this

> numlist []
[no items]

Just as you did with street and other problems on the Haskell assignments that produced output, build

up a string containing newlines and output it with putStr as a final step.

Just like on assignment 3, the recursive version must not use any higher-order functions. Just like on

assignment 4, write the non-recursive version imagining that you just don't know to how to write a

recursive function.

unlines and/or concat may be useful:

> unlines ["a","b","c"]
"a\nb\nc\n"

> concat ["a","bc","d"]
"abcd"

Page 4 of 12

Problem 4: (4 points)

Consider the following interaction with ghci:

> map count [10,20,30]
[1,2,3]

> map count [7,8,9,10]
[1,2,3,4]

For this problem you are to either (1) write a function count that behaves as shown above or (2) explain

why it is impossible to write such a function.

Problem 5: (8 points)

The following function, revtups, takes a list of two-tuples and produces a new list with the tuples'

elements swapped and the order of the tuples reversed:

revtups list = foldl ff [] list

Usage:

> revtups [(1,'a'),(2,'b'),(3,'c')]
[('c',3),('b',2),('a',1)]

> revtups [("one",[1]), ("two",[2])]
[([2],"two"),([1],"one")]

For this problem you are to:

1. State the type of revtups (1 point)

2. Write a folding function ff that will work with revtups as shown above.

Page 5 of 12

Problem 6: (12 points)

Write a Haskell function co chars string, with type [Char] -> [Char] -> Int, that counts

how many times the characters in chars occur in string.

Usage:

> co "aeiou" "just a test"
3

> co ['0'..'9'] "12:15pm"
4

> co "xyz" ""
0

> co "" "12:15pm"
0

You may use only Prelude functions on this problem but there are no other restrictions.

Remember that the Prelude has a sum function: sum [3,1,5] produces 9.

Assume the characters to count are unique; you won't see something like co "aaa"

Page 6 of 12

Problem 7: (22 points)

Write a Ruby program adjcols.rb that makes specified adjustments to columns of numeric values in a

CSV (comma-separated values) file.

Adjustments are specified as command-line arguments. Here's a sample invocation:

ruby adjcols.rb 2:+10 3:=7 5:-1 < x.csv

Adjustments have the form COLUMN-NUMBER:CHANGE. Examples:

 2:+10 means to add 10 to all values in column 2 (column numbers are 1-based and positive)

 3:=7 means to change all values in column 3 to 7

 5:-1 means to subtract 1 from all values in column 5

Here's a CSV file:

% cat x.csv
name,q1,q2,q3,q4
whm,2,5,20,5
jmc,7,6,18,10
chris,5,0,10,15

adjcols reads lines from standard input (use STDIN.gets to read lines) and writes the lines to

standard output. adjcols assumes the first line is a header row and outputs it unchanged.

Execution:

% ruby adjcols.rb 2:+10 3:=7 5:-1 < x.csv
name,q1,q2,q3,q4
whm,12,7,20,4
jmc,17,7,18,9
chris,15,7,10,14

Columns can be specified in any order. Changes are cumulative. An example of both:

% ruby adjcols.rb 2:+100 3:=1 2:+1000 < x.csv
name,q1,q2,q3,q4
whm,1102,1,20,5
jmc,1107,1,18,10
chris,1105,1,10,15

The CSV file may have any number of lines, and lines may have any number of columns. Assume that

adjustments are well-formed and that the specified column is always present and contains an integer value.

Any number of adjustments may be present.

Ruby note: "+3".to_i produces 3 and "-5".to_i produces -5.

THERE'S SPACE FOR YOUR SOLUTION ON THE NEXT PAGE

Page 7 of 12

For reference:
% ruby adjcols.rb 2:+10 3:=7 5:-1 < x.csv
name,q1,q2,q3,q4
whm,12,7,20,4
jmc,17,7,18,9
chris,15,7,10,14

% cat x.csv
name,q1,q2,q3,q4
whm,2,5,20,5
jmc,7,6,18,10
chris,5,0,10,15

Page 8 of 12

Problem 8: (5 points) (one point each unless otherwise indicated)

The following questions and problems are related to Haskell.

(1) Add parentheses to the following type to explicitly show the associativity of the -> operator.

[Int] -> (Int -> Bool) -> [Bool]

(2) Fully parenthesize the following expression to show the order of operations.

f 2 g 3 + x f g [a b c * 1]

(3) Rewrite the following function binding to use point-free style:

f1 x = f (g x)

(4) Briefly, how does Haskell's pattern matching contribute to the readability of Haskell code?

(5) Once upon a time I had this line of code in a file:

f x y = x*3 + y

I wanted to produce an error on that line, so I typed some junk into the line:

asdsf sdfs 3 3 3 f x y = x*3 + y

But, that goofy code loaded without error! Why? (Hint: Be sure your answer is more than

something like "It's still valid code.")

Page 9 of 12

Problem 9: (5 points) (one point each unless otherwise indicated)

The following questions and problems are related to Ruby.

(1) Aside from the fact that strings are mutable in Ruby and are immutable in Java, what's an

important difference between the string-handling facilities in Ruby and Java?

(2) Imagine that a Ruby class has methods named mudge and mudge!. What does that imply?

(3) What's a fundamental semantic (i.e., non-syntactic) difference between if-else in Ruby and

if-else in Java?

(4) Aside from syntax, what's a fundamental difference between :load x.hs in ghci and

load "x.rb" in irb?

(5) What's the value of each of the two following Ruby expressions?

"abc"[5] && false

0 || 1

Page 10 of 12

Problem 10: (10 points) (one point each unless otherwise indicated)

Briefly answer the following general questions.

(1) Who founded The University of Arizona's Computer Science department and when?

(2) What are two aspects of a "paradigm", as described in Kuhn's The Structure of Scientific

Revolutions? Here are two wrong answers: "functional" and "object-oriented". (Two points!)

(3) What's a fundamental characteristic of a language that uses static typing?

(4) What's a fundamental characteristic of a language that uses dynamic typing?

(5) Show an example of syntactic sugar in any language you know.

(6) Aside from the intrinsic elements of a language, like its design and performance, what are two

factors that can influence the popularity of a language?

(7) whm often says "In Haskell we never change anything; we only make new things." What's an

example of that?

(8) When a new graduate research assistant wanted to add a bunch of new features to Icon, what did

the project's wise leader say?

(9) What's one way in which having a REPL available makes it easier to learn a programming

language?

Page 11 of 12

Extra Credit Section (½ point each unless otherwise noted)

(1) whm believes the abbreviation LHtLaL appears nowhere on the web except in his slides. What does

it stand for?

(2) To whom does whm attribute the following quote?

"When you hit a problem you can lean forward and type or sit back and think."

(3) Consider this Haskell function: add x y = x + y. What is the exact type of add?

(4) Double tricky: What is the exact type of the Haskell list[foldl, foldr]?

(5) The Haskell expression[FROM..TO]produces an empty list if FROM > TO. Write a non-recursive

function range from to that's a little smarter: range 1 5 returns [1,2,3,4,5], and

range 5 1 returns [5,4,3,2,1].

(6) Suppose the second example for problem 4 (page 5) had been this:
> map count [6,7,8,9]
[1,2,3,4]

Briefly, how would that have changed your answer for that question?

(7) If you only remember one thing about the Haskell segment of 372, what will it be? (Ok to be

funny!)

(8) What is "duck typing"?

(9) With Ruby in mind, define the term "iterator".

(10) Name a language other than Icon that was created at The University of Arizona.

Page 12 of 12

CSC 372 Mid-term Exam

Thursday, March 10, 2016

Solutions

Problem 1: (8 points) (mean = 5.6, median = 5.5)

What is the type of each of the following values? If the expression is invalid, briefly state why.

"abc"
[Char]

('4', 52, [5,2])

(Char, Int, [Int])

last
[a] -> a

[[True]]
[[Bool]]

filter even
[Int] -> [Int]

map head
[[a]] -> [a]

[head, head . tail]
[[a] -> a]

(++"x")
[Char] -> [Char]

Problem 2: (10 points) (two points each) (mean = 8.3, median = 8.5)

snd (Returns second element of a two-tuple)
snd (_,x) = x

head (Ignore empty-list case)
head (h:_) = h

last (Ignore empty-list case)
last [x] = x
last (_:t) = last t

map
map _ [] = []
map f (h:t) = f h : map f t

zipWith (Reminder: zipWith (+) [1,2,3] [10,20,30] is [11,22,33])
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
zipWith _ _ _ = []

Note the ordering of the clauses: The first clause handles the case that both lists have at least one element.

If that's not true, we're done, and that's handled by the second clause.

Page 1 of 8

Problem 3: (16 points) (8 points each) (recursive: mean = 6.2, median = 7; non-recursive: mean = 5.0, median = 6)

For this problem you are to write both recursive and non-recursive versions of a function numlist, with type [[Char]]
-> IO (), that outputs a numbered list of the strings in a list:

> numlist ["just", "testing", "this"]
1. just
2. testing
3. this

> numlist []
[no items]

Solutions:

numlist [] = putStr "[no items]\n"
numlist items = putStr $ unlines $ helper 1 items
 where
 helper _ [] = []
 helper n (item:items) =

(show n ++ ". " ++ item) : helper (n+1) items

numlist [] = putStr "[no items]\n"
numlist items = putStr $ unlines $ zipWith f [1..] items
 where
 f num s = show num ++ ". " ++ s

Problem 4: (4 points) (mean = 3.3, median = 4)

Consider the following interaction with ghci:

> map count [10,20,30]
[1,2,3]

> map count [7,8,9,10]
[1,2,3,4]

For this problem you are to either (1) write a function count that behaves as shown above or (2) explain why it is

impossible to write such a function.

It's impossible. Functions always produce the same output for a given input but in the first case, count 10
produces 1 and in the second case, count 10 produces 4.

Problem 5: (8 points) (mean = 5.7, median = 7)

The following function, revtups, takes a list of two-tuples and produces a new list with the tuples' elements swapped and

the order of the tuples reversed:

revtups list = foldl ff [] list

Usage:

> revtups [(1,'a'),(2,'b'),(3,'c')]
[('c',3),('b',2),('a',1)]

> revtups [("one",[1]), ("two",[2])]
[([2],"two"),([1],"one")]

Page 2 of 8

For this problem you are to:

1. State the type of revtups (1 point)

2. Write a folding function ff that will work with revtups as shown above.

1. revtups :: [(a,b)] -> [(b,a)]
2. ff acm (a,b) = (b,a):acm

Problem 6: (12 points) (mean = 8.2, median = 10)

Write a Haskell function co chars string, with type [Char] -> [Char] -> Int, that counts how many times the

characters in chars occur in string.

Usage:

> co "aeiou" "just a test"
3

> co ['0'..'9'] "12:15pm"
4
...

My first solution was this:

co chars str = sum $ map (f str) chars
 where
 f str c = length $ filter (\e -> e == c) str

Of the non-recursive solutions I saw, I felt that Ms. McCabe's was the best:

co chars string = length $ filter (\x -> x `elem` chars) string

Several students wrote a non-recursive solution that was something like this:

co chars (c:cs)
 | c `elem` chars = 1 + co chars cs
 | otherwise = co chars cs
co _ _ = 0

Problem 7: (22 points) (mean = 14.4, median = 18)

Write a Ruby program adjcols.rb that makes specified adjustments to columns of numeric values in a CSV (comma-

separated values) file.

Adjustments are specified as command-line arguments. Here's a sample invocation:

ruby adjcols.rb 2:+10 3:=7 5:-1 < x.csv

Adjustments have the form COLUMN-NUMBER:CHANGE. Examples:

 2:+10 means to add 10 to all values in column 2 (column numbers are 1-based and positive)

 3:=7 means to change all values in column 3 to 7
 5:-1 means to subtract 1 from all values in column 5

This is my solution:

puts STDIN.gets

while line = STDIN.gets

Page 3 of 8

 parts = line.split ","

 for adj in ARGV
 col, delta = adj.split ":"
 col = col.to_i - 1
 if delta[0] == "="
 newval = delta[1..-1].to_i
 else
 newval = parts[col].to_i + delta.to_i
 end
 parts[col] = newval.to_s
 end

 puts parts * ","

end

I'd hoped that it would be quickly observed that lines could processed one at a time, but a number of students read all

the lines into an array and then iterated over the elements of that array. An attribute that I've found to be common

among many long and/or wrong solutions on assignments and exams is this: creation of unnecessary data structures.

It takes code to build those unnecessary structures and then code to get data out of those structures. For this problem

it also turns a program that could process a file of unlimited size to one that's limited by available memory.

A minor thing that made me groan during grading was the use of a flag to indicate whether the input line at hand

was the first line. It seems far simpler to just read and write that first line.

Problem 8: (5 points) (one point each unless otherwise indicated) (mean = 2.9, median = 3)

The following questions and problems are related to Haskell.

(1) Add parentheses to the following type to explicitly show the associativity of the -> operator.

[Int] -> (Int -> Bool) -> [Bool]

[Int] -> ((Int -> Bool) -> [Bool])

(2) Fully parenthesize the following expression to show the order of operations.

f 2 g 3 + x f g [a b c * 1]

(((f 2) g) 3) + (((x f) g) [(((a b) c) * 1)])

(3) Rewrite the following function binding to use point-free style:

f1 x = f (g x)

f1 = f . g

(4) Briefly, how does Haskell's pattern matching contribute to the readability of Haskell code?

Patterns let us bind names to various elements of data structures, so that instead of writing code that digs

into data structures, like
f x = g (head x) ++ h (tail x)

we can write
f (h:t) = g h ++ h t

(5) Once upon a time I had this line of code in a file:

f x y = x*3 + y

Page 4 of 8

I wanted to produce an error on that line, so I typed some junk into the line:

asdsf sdfs 3 3 3 f x y = x*3 + y

But, that goofy code loaded without error! Why? (Hint: Be sure your answer is more than something like "It's still

valid code.")

The junk I typed turned the two-argument function f into a seven-argument function named asdsf. Three

of the arguments are literal pattern matches for the number 3.

Problem 9: (5 points) (one point each unless otherwise indicated) (mean = 2.3, median = 2)

The following questions and problems are related to Ruby.

(1) Aside from the fact that strings are mutable in Ruby and are immutable in Java, what's an important difference

between the string-handling facilities in Ruby and Java?

Ruby lets us specify portions of strings with s[n], s[start,length], and s[Range]. Additionally,

those expressions can be targets of an assignment. Many other answers are valid, too.

(2) Imagine that a Ruby class has methods named mudge and mudge!. What does that imply?

mudge has both an applicative and an imperative form. mudge, the applicative form returns a result but

doesn't modify its receiver. mudge!, the imperative form modifies its receiver.

(3) What's a fundamental semantic (i.e., non-syntactic) difference between if-else in Ruby and if-else in Java?

if-else is a statement in Java but in Ruby it's an expression. In Ruby I can say something like val =
if a > b then c end.

(4) Aside from syntax, what's a fundamental difference between :load x.hs in ghci and

load "x.rb" in irb?

:load is implemented by the REPL that ghci provides; it's not Haskell code. Ruby's load is a method;

load "x.rb" is a Ruby expression that has a side effect of loading the code in x.rb.

(5) What's the value of each of the two following Ruby expressions?

"abc"[5] && false
nil

0 || 1
0

I was surprised by the number of students that missed this one.

Problem 10: (10 points) (one point each unless otherwise indicated) (mean = 6.1, median = 7)

Briefly answer the following general questions.

(1) Who founded The University of Arizona's Computer Science department and when?

Ralph Griswold, in 1971.

(2) What are two aspects of a "paradigm", as described in Kuhn's The Structure of Scientific Revolutions? Here are two

wrong answers: "functional" and "object-oriented". (Two points!)

See Haskell slide 4.

Page 5 of 8

(3) What's a fundamental characteristic of a language that uses static typing?

Type errors can be detected without running any code or knowing what specific input values are.

(4) What's a fundamental characteristic of a language that uses dynamic typing?

In the general case, type errors can't be detected until code is run.

(5) Show an example of syntactic sugar in any language you know.

In Haskell, "abc" is syntatic sugar for ['a', 'b', 'c'].

(6) Aside from the intrinsic elements of a language, like its design and performance, what are two factors that can

influence the popularity of a language?

See intro slide 34.

(7) whm often says "In Haskell we never change anything; we only make new things." What's an example of that?

If the first element of a list of integers was to be changed to zero, we'd do that by making a new list whose

head is zero and whose tail is the of the list at hand.

(8) When a new graduate research assistant wanted to add a bunch of new features to Icon, what did the project's wise

leader say?

Ralph said I could all the features I wanted but for every feature I wanted to add, I first had to find a feature

to remove.

(9) What's one way in which having a REPL available makes it easier to learn a programming language?

It makes it easy to experiment with things.

Extra Credit Section (½ point each unless otherwise noted) (mean = 1.9, median = 2)

(1) whm believes the abbreviation LHtLaL appears nowhere on the web except in his slides. What does it stand for?

Learning How to Learn a Language

(2) To whom does whm attribute the following quote?

"When you hit a problem you can lean forward and type or sit back and think."

Dr. Proebsting

(3) Consider this Haskell function: add x y = x + y. What is the exact type of add?
Num a => a -> a -> a

(4) Double tricky: What is the exact type of the Haskell list[foldl, foldr]?

My first thought was that it would be a type error because the functions don't have the same type but when I saw

that it worked, I realized that the types of the two can be unified:
[(b -> b -> b) -> b -> [b] -> b]

(5) The Haskell expression[FROM..TO]produces an empty list if FROM > TO. Write a non-recursive function range
from to that's a little smarter: range 1 5 returns [1,2,3,4,5], and range 5 1 returns [5,4,3,2,1].

range from to
 | from <= to = [from..to]
 | otherwise = reverse [to..from]

(6) Suppose the second example for problem 4 (page 5) had been this:

> map count [6,7,8,9]
[1,2,3,4]

Briefly, how would that have changed your answer for that question?

It would now be possible to implement count.

Note: This question was ill-conceived—virtually any answer could be argued as being correct but it was only

Page 6 of 8

marked as correct if you said that count could now be implemented. Consider a half-point of the 8-point

adjustment as being compensation for any injustice on this question.

(7) If you only remember one thing about the Haskell segment of 372, what will it be? (Ok to be funny!)

Presented anonymously and in random order, here's what was said:

Haskell has no debugger, and thus sucks.

functional programming can be very useful

That recursion is occasionally ok

maps & folds are useful!

Partial application

The power of cons.

I need to watch my types...

unhelpful error messages :(

It was (fun)ctional!

recursion is easier with patterns

Anonymous functions are beautiful.

The Friday Night Club isn't as fun as it sounds

Don't over think it!

I'm not good at it.

Patterns.

pancakes on the stack

Haskell functions seem to be redundant to death (having to write the function name again for every possibility of

input)

I can't eat pancakes any more

putting the fun in FUNctional programming

So much recursion

mapping

You never change anything. Only make new things.

Haskell is short for HaskHell

higher order functions

expected [Char], was instead [[Char]]

A whole lot of time spent to find a solution with very little code

Iteration is for the weak!

Recursion isn't complete hell

Pancake

Crying tears of blood when forgetting to add a base case in recursion problems

Type error everywhere

functions are values

higher order function

Matt Gautreau was right. Don't tell him I said that.

Patterns over guards over if-else.

Pancakes Toyota

There's probably a Prelude function to do something for you if you look hard enough

f this f that f it

variable state, why don't you change!

maps are crazy useful

Recursion is now my best friend haha

Know your recursion!

anonymous functions

recursion!

(8) What is "duck typing"?

A style of programming/mindset for typing where we're only concerned about the operations provided by objects

rather than their types.

Page 7 of 8

(9) With Ruby in mind, define the term "iterator".

An iterator is a method that can invoke a block.

(10) Name a language other than Icon that was created at The University of Arizona.

See intro slide 38.

Statistics

Here are all scores:
98.5, 95.5, 94.5, 94, 94, 93, 92.5, 91, 91, 90, 89.5, 89.5, 88, 87.5, 87.5,
84.5, 84, 82.5, 81.5, 81, 81, 79.5, 79.5, 78, 77.5, 76, 75, 74.5, 73.5, 73,
71.5, 71.5, 69.5, 68.5, 68, 67.5, 63, 61.5, 61, 60.5, 60, 59, 58.5, 58.5, 58.5,
53.5, 53.5, 53, 53, 49.5, 48.5, 48, 47.5, 46, 40.5, 37, 34.5, 22.5, 18.5

n = 59
mean = 69.8
median = 73

Here's a histogram of all scores. The five-point wide bins cover the interval [X-2.5,X+2.5), where X is the label for a

bin.
+--+
| |
| * * |
| * * * |
| * * * * * |
| * * * * * * |
| * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * * |
| * * * * * * * * * * * * * * * * |
| 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 |
| |
+--+

The mean and median were lower than I expected, so eight points were added to all scores before loading them on D2L.

Page 8 of 8

CSC 372 Final Exam

Monday, May 9, 2016

READ THIS FIRST
Read this page now but do not turn this page until you are told to do so. Go ahead and fill in your last name in the

box above.

This is a 100-minute exam with a total of 100 points of regular questions and an extra credit section.

The last five minutes of the exam is a "seatbelts required" period to avoid distractions for those who are still

working. If you finish before the "seatbelts required" period starts, you may turn in your exam and leave. If not,

you must stay quietly seated—no "packing up"— until time is up for all.

You are allowed no reference materials whatsoever.

If you have a question, raise your hand. One of us will come to you. DO NOT leave your seat.

If you have a question that can be safely resolved with a minor assumption, like the name of a function or the order

of function arguments, state the assumption and proceed.

Don't make problems hard by assuming that they need to do more than is specifically mentioned in the write-up or

that the solution that comes to mind is "too easy."

If you're stuck on a problem, please ask for a hint. Try to avoid leaving a problem completely blank—that's a sure

zero.

It is better to put forth a solution that violates stated restrictions than to leave it blank—a solution with violations

may still be worth partial credit.

When told to begin, double-check that your name is at the top of this page, and then put your initials in the lower

right hand corner of the top side of each sheet, checking to be sure your copy of the exam has all the pages.

BE SURE to enter your last name on the sign-out log when turning in your completed exam.

I believe that at least one student will be taking a make-up exam, so I won't be posting solutions on Piazza. I'll

instead park a copy in this directory: http://cs.arizona.edu/~whm/more-pancakes-please/

Write it down! Note the ~ in ~whm.

Last name

Page 1 of 18

Problem 1: (6 points)

Cite three things about programming languages you learned by watching your classmates' video projects. Each of

the three should be about a different language and have a bit of depth, as described in the Piazza post that

announced this problem.

Problem 2: (1 point)

Write a Haskell function doflip pancakes flip that performs an fsort-style flip. Examples:

> doflip [3,5,4,2] 2
[5,3,4,2]

> doflip it 4
[2,4,3,5]

Assume the stack has at least one pancake and that flip is in range.

Problem 3: (3 points)

Write a recursive Haskell function totlen list that returns the total length of the strings in list.

> totlen ["just", "a", "test"]
9

> totlen []
0

Page 2 of 18

Problem 4: (4 points)

Write a Haskell function xout string that replaces every letter (a-z) in string with an "x" of the same case.

Non-letters are unchanged. Example:

> xout "Don't get stuck! Keep moving!"
"Xxx'x xxx xxxxx! Xxxx xxxxxx!"

> xout ""
""

Recall isUpper and isLower in Data.Char:

> isUpper 'A'
True

> map isLower "A t!"
[False,False,True,False]

You may assume Data.Char has been imported. It also has isLetter.

Problem 5: (2 points)

Write a folding function f such that the foldr call below behaves as shown, returning a list of the odd numbers

in its last argument.

> foldr f [] [5,2,9,4,4,3,1]
[5,9,3,1]

Hint: The operation being performed is the same as filter odd [5,2,9,4,4,3,1] but you definitely don't

want to use filter in your folding function!

Page 3 of 18

Problem 6: (5 points)

Write a Ruby iterator sbl(a, max) ("strings by length") that first yields each one-character string in the array

a. It then yields each two-character string in a. The process continues up through strings of length max. Strings

are yielded in the order they appear in a. sbl always returns nil.

Assume that the array a contains only strings.

Restriction: You may not use sort. (If you did, you'd probably find that the sequence produced wouldn't be

fully correct.)

The second example below demonstrates that a max of 2 limits results to one- and two-character strings.

>> sbl(["ab","b","a","aaa","test","bc","a"],10) { |s| p s }
"b"
"a"
"a"
"ab"
"bc"
"aaa"
"test"
=> nil

>> sbl(["ab","b","a","aaa","test","bc","a"],2) { |s| puts s.size }
1
1
1
2
2
=> nil

Remember: Don't use a sort method.

Page 4 of 18

Problem 7: (4 points)

Write a Ruby method pages_re that returns a regular expression that matches a string iff the string consists of

one or more comma-separated page specifications. A page specification is one of these three:

• A number, such as "12".

• Two numbers separated by a dash, such as "1-3".

• A number followed by a dash, such as "2500-".

A "number" is a sequence of one or more digits.

Examples:

>> pages_re =~ "1-10,15,20-,75"
=> 0

>> pages_re =~ "1,2,"
=> nil (Has trailing comma)

>> pages_re =~ "5,ten"
=> nil ("ten" is invalid)

>> pages_re =~ "Pages: 5,7-9"
=> nil (Has "Pages: " at the beginning)

Page 5 of 18

Problem 8: (11 points)

Write a Ruby program mostfreq.rb that reads lines on standard input and writes out each line followed by an

annotation that shows which non-space character appears most frequently on the line, and how many times it

appears. Input lines are right-padded with spaces to a length of 30. (Assume no line is longer than 30.)

% cal | ruby mostfreq.rb
 May 2016 ('6': 1)
Su Mo Tu We Th Fr Sa ('S': 2)
 1 2 3 4 5 6 7 ('7': 1)
 8 9 10 11 12 13 14 ('1': 6)
15 16 17 18 19 20 21 ('1': 6)
22 23 24 25 26 27 28 ('2': 8)
29 30 31 ('3': 2)

%

Important: Lines with no non-space characters, such as the last line of cal output above, have no annotation but

are still padded to a length of 30.

In case of a tie, pick any one of the tying characters. (Note that the first line above has a six-way tie, for example.)

You may imagine that Hash has a sort_by_value method:

>> h = {"x" => 5, "y" => 10, "z" => 3}

>> h.sort_by_value
=> [["z", 3], ["x", 5], ["y", 10]]

Recall that String#ljust can be used to pad a string with blanks on the right:

>> "ab".ljust 5
=> "ab "

Write your solution here, or on the next page.

Page 6 of 18

(space for mostfreq.rb solution)

For reference:

% cal | ruby mostfreq.rb
 May 2016 ('6': 1)
Su Mo Tu We Th Fr Sa ('S': 2)
 1 2 3 4 5 6 7 ('7': 1)
 8 9 10 11 12 13 14 ('1': 6)
...

%

>> {"x" => 5, "y" => 10, "z" => 3}.sort_by_value
=> [["z", 3], ["x", 5], ["y", 10]]

Page 7 of 18

Problem 9: (8 points)

In this problem you are to implement a Ruby class named Seq that represents a sequence of values with a

maximum length. The maximum length is specified when an instance is created.

Values are added to the end of the sequence using an overloaded << operator. If a value is added to a sequence

that is already at maximum length, the first value in the sequence is discarded. The << operation returns nil.

Seq#inspect returns a string consisting of the values in the sequence separated by dashes. Vertical bars

surround the full sequence.

Here's an example of interaction. Remember that irb uses inspect to display the result of each expression.

>> s = Seq.new 3
=> ||

>> s << 10
=> |10|

>> s << 20; s << 30
=> |10-20-30|

>> s << 40
=> |20-30-40|

>> s2 = Seq.new 10
=> ||

>> "this is a test of Seq".each_char {|c| s2 << c }
=> "this is a test of Seq"

>> s2
=> |e-s-t- -o-f- -S-e-q|

Implementation note: Array#shift discards the first element of an array.

Write your solution here, or on the next page.

Page 8 of 18

(space for Seq solution)

>> s = Seq.new 3
=> ||

>> s << 10
=> |10|

>> s << 20; s << 30
=> |10-20-30|

>> s << 40
=> |20-30-40|

>> s2 = Seq.new 10
=> ||

Page 9 of 18

Problem 10: (6 points)

Write the following simple Prolog predicates. There will be a half-point deduction for each occurrence of a

singleton variable or failing to take full advantage of unification.

There are no restrictions.

(a) fl_same(?L) expresses the relationship that the first and last elements of L are identical. It should able

to handle all possible combinations of instantiated and uninstantiated variables. fl_same fails if the list

is empty. Examples:

?- fl_same([a,b,a]).
true.

?- fl_same(L).
L = [_G1191] ;
L = [_G1191, _G1191] ;
L = [_G1191, _G1194, _G1191] ;
L = [_G1191, _G1194, _G1197, _G1191] ;
...

?- fl_same([X,Y,5]).
X = 5.

(b) revgen(+L,-X) generates the elements of the list L in reverse order.

?- revgen([a,b,c,d], X).
X = d ;
X = c ;
X = b ;
X = a.

(c) Write the library predicate member/2. Examples:

?- member(X,[1,2]).
X = 1 ;
X = 2.

?- member(3,[1,2]).
false.

Page 10 of 18

Problem 11: (6 points)

In this problem you are to write a Prolog predicate that is similar to the earlier Ruby problem "sbl" (strings by

length).

abl(+Atoms,+Max,-A) first instantiates A to each one-character atom in Atoms, then each two-character

atom in Atoms, etc. abl continues for atoms of lengths up through Max, if any are that long.

?- abl([abc,b,ab,zzz,a,zzzz,aa,c],10,A).
A = b ;
A = a ;
A = c ;
A = ab ;
A = aa ;
A = abc ;
A = zzz ;
A = zzzz ;
false.

?- abl([abc,b,ab,zzz,a,zzzz,aa,c],1,A).
A = b ;
A = a ;
A = c.

Similar to sbl's restriction, you may not use any built-in sorting predicate, like msort.

Recall atom_chars(+Atom, ?List_of_chars):

?- atom_chars(test,L).
L = [t, e, s, t].

Page 11 of 18

Problem 12: (8 points)

Write a Prolog predicate findrun(+L,+N,+X,-Pos) that looks for N-long runs of X in L, instantiating Pos to

 the zero-based starting position of each run. Assume N is greater than zero.

?- findrun([a,b,b,c,d,b,b],2,b,Pos).
Pos = 1 ;
Pos = 5 ;
false.

?- findall(Pos,findrun([a,a,a,a,a,a],3,a,Pos),Positions).
Positions = [0, 1, 2, 3].

?- findall(Pos,findrun([a,b,a,a,b],1,a,Pos),Positions).
Positions = [0, 2, 3].

You may assume you have the repl(+N,+Elem,-List) predicate you wrote on assignment 9:

?- repl(a,5,L).
L = [a, a, a, a, a].

Please ask for a hint if you have trouble with this one!

Problem 13: (7 points)

Write a predicate expand(+List,-Expanded) that takes a list of (1) atoms and (2) structures of the form

Atom*N and produces an "expanded" list. Assume the N terms are >= 0.

?- expand([a*2, b, test*3, none*0, here], L).
L = [a, a, b, test, test, test, here].

?- expand([],L).
L = [].

Page 12 of 18

Problem 14: (11 points)

Write a Prolog predicate reach(+Destination, +Jumps, +Fences, -Solution) that finds a

sequence of "jumps" on a Cartesian plane from (0,0) to the Destination (a pos/2 structure), being sure that

no jump lands on a fence.

Fences is a list of fence structures, like [fence(x,3),fence(y,1)]. The first element indicates there is

a fence at x = 3. The second indicates there is a fence at y = 1. There may be any number of fences. Here's a

representation of those two fences, and a destination of pos(5,3), marked as D.

4 | +
 | +
3 | + D
 | +
2 | +
 | +
1 |+++++++++++++++++++++++
 | +
 +-----------------------
 1 2 3 4 5

Jumps is a list of two-term jump structures that specify x and y distance, like

[jump(0,3),jump(1,1),jump(-3,2)]. There may be any number of jumps.

The final jump must land exactly on the destination. Each jump can be used only once.

Here's a call of reach that produces two solutions:

?- reach(pos(5,3), [jump(1,1),jump(3,0),jump(1,2),jump(2,2)],

 [fence(x,3),fence(y,1)], Sol). % Note: query is wrapped around

Sol = [jump(1, 2), jump(1, 1), jump(3, 0)] ;
Sol = [jump(1, 2), jump(3, 0), jump(1, 1)] ;
false.

Note that from pos(0,0), doing jump(1,1) would land on the fence at y = 1.

Similarly, from pos(0,0), doing jump(2,2) then jump(1,1) would land on the fence at x = 3.

Recall how select/3 was used in the pit crossing example: select(Plank, Planks, Remaining).

Note that the terms in a jump structure can be accessed by unifying it with a jump structure with uninstantiated

variables:

?- Jumps = [jump(3,4)], Jumps = [H|_], H = jump(X,Y).
Jumps = [jump(3, 4)],
H = jump(3, 4),
X = 3,
Y = 4.

reach produces all possible solutions in turn. (Just don't use any cuts and things should be fine!)

There's space for your solution on the next page.

Page 13 of 18

(space for solution for reach)

For reference:

4 | +
 | +
3 | + D
 | +
2 | +
 | +
1 |+++++++++++++++++++++++
 | +
 +-----------------------
 1 2 3 4 5

The final jump must land exactly on the destination. Each jump can be used only once.

?- reach(pos(5,3), [jump(1,1),jump(3,0),jump(1,2),jump(2,2)],

 [fence(x,3),fence(y,1)], Sol). % Note: query is wrapped around

Sol = [jump(1, 2), jump(1, 1), jump(3, 0)] ;
Sol = [jump(1, 2), jump(3, 0), jump(1, 1)] ;
false.

Page 14 of 18

Problem 15: (4 points) (one point each)

The following questions and problems are related to Prolog.

(1) When writing documentation for Prolog predicates, arguments are often prefixed with the symbols +, -,

and ?, such as p(+X,?Y,-Z). What does each of those three symbols mean?

(2) Write a sentence that expresses the relationship between the terms "fact", "clause", and "rule".

(3) Consider the following goal written by a novice Prolog programmer:

X is X + length(List)

What are two misunderstandings evidenced by that goal?

(4) What's the most important fundamental difference between a Prolog predicate like append/3 and a

function/method of the same name in Haskell, Ruby, or Java?

Page 15 of 18

Problem 16: (7 points) (one point each unless otherwise indicated)

Below is a transcript of interaction with Standard ML of New Jersey, a functional programming language.

Annotate the transcript with seven significant observations about Standard ML. Excellent or additional

observations may earn up to a total of three points of extra credit. Here's an example of an insignificant

observation: "There's a map function."

$ sml
Standard ML of New Jersey v110.69 [built: Mon Jun 8 23:24:21 2009]

- 5 + ~7;
val it = ~2 : int

- (1, 2.0, "three");
val it = (1,2.0,"three") : int * real * string

- explode "test";
val it = [#"t",#"e",#"s",#"t"] : char list

- implode it;
val it = "test" : string

- map (fn(n) => n * 3) [3, 1, 5, 9]; {- See above re map -}
val it = [9,3,15,27] : int list

- it::[];
val it = [(1,2.0,"three")] : (int * real * string) list

- fun f1 a b = [a,b];
val f1 = fn : 'a -> 'a -> 'a list

- fun f2 a b = [a = b];
val f2 = fn : ''a -> ''a -> bool list

- 3 + 4.5;
stdIn:1.1-1.6 Error: operator and operand don't agree [literal]
 operator domain: int * int
 operand: int * real

- (hd [1,2,3], tl [1,2,3]);
val it = (1,[2,3]) : int * int list

Page 16 of 18

Problem 17: (7 points) (one point each unless otherwise indicated)

Answer the following general questions.

(1) What's something significant related to programming languages that you remember from the JarWars video

we viewed and discussed during the second-to-last class?

(2) Ralph Griswold said, "If you're going to invent a language, be sure to invent a language that you

________________________________."

(3) What is the fundamental characteristic of a dynamically typed language?

(4) How does Icon avoid the "to versus through" problem that plagues string indexing in many languages and

libraries?

(5) What's something significant about Icon you recall from the Icon by Observation exercise during the last

class? (Hint: Don't cite your answer for the previous question!)

(6) With programming languages in general, what's the fundamental difference between a statement and an

expression?

(7) Which of the three languages we covered this semester are you most glad we covered, and why?

Page 17 of 18

Extra Credit Section (½ point each unless otherwise noted)

(1) In as few words as possible, what is "The Cathedral and the Bazaar"? (Mentioned in a7 solutions.)

(2) In what month of the year 1891 were classes first held at The University of Arizona?

(3) With Prolog in mind, why is "camelcase variable" an oxymoron?

(4) The technology known as Leda was mentioned on Piazza. What is Leda?

(5) Draw an appropriate avatar for any one of the three languages we covered.

(6) Name a language that was once studied in depth in 372 but isn't any more.

(7) Who do you think whm will vote for in November's presidential election?

(8) Why did whm's solution for pipes.pl have the following line? do(p) :- do(pipes).

(9) (1 point) mostfreq.rb says to assume that Hash has a sort_by_value method. Write Ruby code that

makes that be true.

(10) What did Knuth say about premature optimization?

(11) (1 point) Using only append and length, and no recursion, write a Prolog predicate longer(A,B), which

is true iff list A is longer than list B.

(12) (1 point) In SNOBOL4, how do you indicate where control should go if a statement fails?

(13) whm hates writing up Piazza posts with suggested readings! They usually don't align well with his slides and he

wonders if anybody actually does any of the readings. Over the course of the full semester, how many hours do

you estimate you spent doing the suggested readings? (This is just data collection, no right/wrong.)

(14) Write a joke about programming languages.

(15) Finish this sentence: "If I only remember one thing about 372 it will be ...".

Page 18 of 18

CSC 372 Final Exam

Monday, May 9, 2016

Solutions
Problem 1: (6 points) (mean: 5.6, median: 6)

Cite three things about programming languages you learned by watching your classmates' video projects. Each of

the three should be about a different language and have a bit of depth, as described in the Piazza post that

announced this problem.

When grading I tallied the video topics that were cited and came up with the counts below, with a cut-off of five.

In some cases I lumped together all topics for a language into a single count.

Magic Methods in Python 20

Ruby's method_missing 17

PHP 17

JavaScript 10

Character sets in Icon 9

R 9

Swift 9

Lambdas in Java 8 8

Threads in Ruby 8

Functors in Haskell 7

Arrays in Go 6

Randomness in Haskell 6

List comprehensions in Python 6

Hotswapping in Java 5

Videos excelled in different dimensions but if I had to pick an overall winner, it would be K. Taylor's APL - The

Implications of Unicode.

Here are some others that I felt were particularly outstanding for one reason or another. Authors are not cited

because I promised the potential of anonymity.

Closures in JavaScript

Introduction to Common Lisp: S-Expressions and list/quote/eval

Haskell Monads in 8 Minutes

Control Structures in bash

Page 1 of 11

https://www.youtube.com/watch?v=k3mk2RNbPrU
https://www.youtube.com/watch?v=k3mk2RNbPrU
https://drive.google.com/file/d/0B9XBW5hoM6L7LU9MYkdzUFdDVmc/view?usp=sharing
https://www.dropbox.com/s/347dugmgy19e44p/lispproj.mp4?dl=0
https://youtu.be/gEoruozy3mk
https://drive.google.com/a/email.arizona.edu/file/d/0BzMPFggEI2ADeTNGR1pNUG1SdVE/view?usp=sharing

Magic Methods in Python

Introduction to Monoids

An Exploration of Channels in Go

A Little on Functors

"Globals" in MUMPS

Python Asterisk(*) usage

Why Nobody Uses Go Arrays

Problem 2: (1 point) (mean: 0.3, median: 0)

Write a Haskell function doflip pancakes flip that performs an fsort-style flip.

doflip pancakes n = reverse (take n pancakes) ++ (drop n pancakes)

I intended this one to be a dead-simple list-manipulation problem that leveraged a concept from fsort but only

about a third of you attempted it. The rest perhaps instinctively recoiled as soon as they saw "pancakes".

Problem 3: (3 points) (mean: 2.3, median: 3)

Write a recursive Haskell function totlen list that returns the total length of the strings in list.

totlen [] = 0
totlen (h:t) = length h + totlen t

Problem 4: (4 points) (mean: 2.7 median: 4)

Write a Haskell function xout string that replaces every letter (a-z) in string with an "x" of the same case.

Non-letters are unchanged.

xout = map f
 where
 f c
 | isLower c = 'x'
 | isUpper c = 'X'
 | otherwise = c

Problem 5: (2 points) (mean: 1, median: 0.75)

Write a folding function f such that the foldr call below behaves as shown, returning a list of the odd numbers

in its last argument.

> foldr f [] [5,2,9,4,4,3,1]
[5,9,3,1]

f elem acm
 | odd elem = elem:acm
 | otherwise = acm

Page 2 of 11

https://youtu.be/MSsADyOP1x4
https://youtu.be/lmN_I-TsId0
https://youtu.be/p9kS5luialE
https://www.youtube.com/watch?v=tDH5c5mRL2E
https://youtu.be/CtWndoy--Zc
https://youtu.be/kU1w0yba7VY
https://youtu.be/TsHMDXsBz4w

Problem 6: (5 points) (mean: 4.6, median: 5)

Write a Ruby iterator sbl(a, max) ("strings by length") that first yields each one-character string in the array

a. It then yields each two-character string in a. The process continues up through strings of length max. Strings

are yielded in the order they appear in a. sbl always returns nil.

def sbl(a,max)
 for i in 1..max
 for s in a
 if s.size == i
 yield s
 end
 end
 end
 nil
end

Problem 7: (4 points) (mean: 2.9, median: 3)

Write a Ruby method pages_re that returns a regular expression that matches a string iff the string consists of

one or more comma-separated page specifications. A page specification is one of these three:

• A number, such as "12".

• Two numbers separated by a dash, such as "1-3".

• A number followed by a dash, such as "2500-".

def pages_re
 num = /\d+|\d+-\d*/
 /^#{num}(,#{num})*$/
end

Problem 8: (11 points) (mean: 8.8, median: 10)

Write a Ruby program mostfreq.rb that reads lines on standard input and writes out each line followed by an

annotation that shows which non-space character appears most frequently on the line, and how many times it

appears.

def main
 while line = gets
 line.chomp!
 puts "#{line.ljust(30)}#{count line}"
 end
end

def count s
 counts = Hash.new(0)

 s.each_char {|c| counts[c] += 1 if c != " "}
 first = counts.sort_by_value[-1]

 if first
 " ('#{first[0]}': #{first[1]})"
 else
 ""

Page 3 of 11

 end
end

main

Problem 9: (8 points) (mean: 5.6, median: 6.5)

In this problem you are to implement a Ruby class named Seq that represents a sequence of values with a

maximum length.

class Seq
 def initialize n
 @n = n
 @vals = []
 end

 def << rhs
 @vals << rhs
 if @vals.size > @n
 @vals.shift
 end
 self
 end

 def inspect
 "|" + @vals * "-" + "|"
 end
end

Problem 10: (6 points) (mean: 4.1, median: 5)

Write the following simple Prolog predicates. There will be a half-point deduction for each occurrence of a

singleton variable or failing to take full advantage of unification.

(a) fl_same(?L) expresses the relationship that the first and last elements of L are identical. It should

able to handle all possible combinations of instantiated and uninstantiated variables. fl_same fails if

the list is empty. Examples:

fl_same(L) :- L = [H|_], last(L,H).

(b) revgen(+L,-X) generates the elements of the list L in reverse order.

revgen(L,X) :- reverse(L,RL), member(X,RL).

(c) Write the library predicate member/2. Examples:

member(X,[X|_]).
member(X,[_|T]) :- member(X,T).

Problem 11: (6 points) (mean: 3.2, median: 3)

abl(+Atoms,+Max,-A) first instantiates A to each one-character atom in Atoms, then each two-character

atom in Atoms, etc. abl continues for atoms of lengths up through Max, if any are that long.

abl(Atoms,Max,A) :- between(1,Max,N), member(A,Atoms),

Page 4 of 11

atom_chars(A,Chars), length(Chars,N).

Problem 12: (8 points) (mean: 4.1, median: 5)

Write a Prolog predicate findrun(+L,+N,+X,-Pos) that looks for N-long runs of X in L, instantiating Pos

to the zero-based starting position of each run. Assume N is greater than zero.

findrun(L,N,X,Pos) :-
 repl(X,N,Mid), append(Pre,Rest,L), append(Mid,_,Rest),
length(Pre,Pos).

Problem 13: (7 points) (mean: 5.1, median: 5.5)

Write a predicate expand(+List,-Expanded) that takes a list of (1) atoms and (2) structures of the form

Atom*N and produces an "expanded" list. Assume the N terms are >= 0.

expand([],[]).
expand([Atom*N|T],R)

:- repl(Atom,N,Rep), expand(T,More), append(Rep,More,R), !.
expand([H|T],[H|R]) :- expand(T,R).

Problem 14: (11 points) (mean: 6.6, median: 8)

Write a Prolog predicate reach(+Destination, +Jumps, +Fences, -Solution) that finds a

sequence of "jumps" on a Cartesian plane from (0,0) to the Destination (a pos/2 structure), being sure

that no jump lands on a fence.

reach(Dest, Jumps, Fences, Solution) :-
reach0(Dest, Jumps, Fences, pos(0,0), Solution).

reach0(pos(X,Y),_,_,pos(X,Y),[]).

reach0(Dest, Jumps, Fences, pos(CX,CY), [Jump|MoreJumps]) :-
 select(Jump,Jumps,Remaining),

Jump = jump(X,Y),
NX is CX+X, NY is CY+Y,
\+on_fence(pos(NX, NY), Fences),
reach0(Dest, Remaining, Fences, pos(NX,NY), MoreJumps).

on_fence(pos(X,Y),Fences) :-
 (member(fence(x,X),Fences);member(fence(y,Y),Fences)).

Problem 15: (4 points) (one point each) (mean: 2.5, median: 2.5)

The following questions and problems are related to Prolog.

(1) When writing documentation for Prolog predicates, arguments are often prefixed with the symbols +, -,

and ?, such as p(+X,?Y,-Z). What does each of those three symbols mean?

plus: should be instantiated

minus: will be instantiated

question mark: either instantiated or uninstantiated

(2) Write a sentence that expresses the relationship between the terms "fact", "clause", and "rule".

Page 5 of 11

Facts and rules are clauses.

(3) Consider the following goal written by a novice Prolog programmer:

X is X + length(List)

What are two misunderstandings evidenced by that goal?

(1) Seems to be treating is as assignment, not unification. X is X + anything won't succeed unless

anything is zero.

(2) Seems to be thinking of length not as a predicate but an arithmetic function that is/2 knows about.

(4) What's the most important fundamental difference between a Prolog predicate like append/3 and a

function/method of the same name in Haskell, Ruby, or Java?

Prolog's append/3 can be used to perform many operations, like taking a list apart.

Problem 16: (7 points) (mean: 6.2, median: 7)

Below is a transcript of interaction with Standard ML of New Jersey, a functional programming language.

Annotate the transcript with seven significant observations about Standard ML. Excellent or additional

observations may earn up to a total of three points of extra credit.

$ sml
Standard ML of New Jersey v110.69 [built: Mon Jun 8 23:24:21 2009]

A few students said, "sml starts a REPL". That was a little thin, but good enough!

- 5 + ~7;
val it = ~2 : int

Tilde is the unary negation operator.

Some said that tilde indicates an approximate value, and although 5 plus around 7 wouldn't be

around 2, we took it, on grounds of creativity.

int is SML's name for an integer type.

The name it is bound to the last value produced.

Semicolons are required after an expression.

- (1, 2.0, "three");
val it = (1,2.0,"three") : int * real * string

There are tuples.

Tuples can be heterogenous.

real and string are names for types.

The type of tuples is shown as TYPE1 * TYPE2 * ... * TYPEN.

Page 6 of 11

An ML programmer would read that type as "int cross real cross string", by the way.

- explode "test";
val it = [#"t",#"e",#"s",#"t"] : char list

string and char are distinct types. (Worth two points.)

char literals are #"c".

List types are shown with the suffix list, in contrast to Haskell's [TYPE] notation.

Juxtaposition is function call.

- implode it;
val it = "test" : string

implode and explode are inverses.

- map (fn(n) => n * 3) [3, 1, 5, 9]; {- See above re map -}
val it = [9,3,15,27] : int list

Anonymous functions are supported.

Higher-order functions are supported.

{- ... -} is a comment

[...] is a list literal

- it::[];
val it = [(1,2.0,"three")] : (int * real * string) list

:: is a "cons" operation.

- fun f1 a b = [a,b];
val f1 = fn : 'a -> 'a -> 'a list

fun is used to declare a function.

An equals sign separates the "parameters" (which could be patterns, just like Haskell) from

the expression that specifies the value.

Functions are curried.

Type variables are denoted with an apostrophe. (An ML programmer would read 'a as

"alpha" and 'b as "beta". You might have occasionally heard me inadvertently use "alpha"

and "beta" when reading a type variable in Haskell.)

- fun f2 a b = [a = b];
val f2 = fn : ''a -> ''a -> bool list

The boolean type is named bool.

= is an equality operator.

If memory serves, only 2-3 students observed that the type variables for f2 are preceded with

two apostrophes instead of only one. I believe only student went further and correctly

guessed that the double apostrophes rose from the comparison. That observation was surely

Page 7 of 11

worth two points.

Background: Standard ML doesn't have the notion of type classes like Eq, but it does

distinguish types whose values can be compared for equality, and ''a would be recogized as

an equality type.

- 3 + 4.5;
stdIn:1.1-1.6 Error: operator and operand don't agree [literal]
 operator domain: int * int
 operand: int * real

"Mixed-mode" arithmetic is not allowed.

- (hd [1,2,3], tl [1,2,3]);
val it = (1,[2,3]) : int * int list

hd and tl are "head" and "tail"

I last taught Standard ML in 372 in Fall 2006. My slides are here:

http://cs.arizona.edu/classes/cs372/fall06/sml.sli.pdf You'll see that a lot of ML examples translate well into

Haskell examples...

Problem 17: (7 points) (one point each unless otherwise indicated) (mean: 3.1, median: 3.5)

Answer the following general questions.

(1) What's something significant related to programming languages that you remember from the JarWars

video we viewed and discussed during the second-to-last class?

Tiger was the code name for Java 5, which introduced generics.

(2) Ralph Griswold said, "If you're going to invent a language, be sure to invent a language that you want to

use."

(3) What is the fundamental characteristic of a dynamically typed language?

In general, the type of an expression can't be known without executing the code.

(4) How does Icon avoid the "to versus through" problem that plagues string indexing in many languages and

libraries?

String positions are considered to be between characters.

(5) What's something significant about Icon you recall from the Icon by Observation exercise during the last

class? (Hint: Don't cite your answer for the previous question!)

*x produces the number of elements in x.

(6) With programming languages in general, what's the fundamental difference between a statement and an

expression?

Expressions produce a value; statements don't. Typically the only reason to execute a statement is to produce

a side-effect.

Page 8 of 11

http://www.cs.arizona.edu/classes/cs372/fall06/sml.sli.pdf

(7) Which of the three languages we covered this semester are you most glad we covered, and why?

Haskell 22

Prolog 20

Ruby 9

Extra Credit Section (½ point each unless otherwise noted) (mean: x, median: y)

(1) In as few words as possible, what is "The Cathedral and the Bazaar"? (Mentioned in a7 solutions.)

Book

(2) In what month of the year 1891 were classes first held at The University of Arizona?

October. See also

http://www.arizona.edu/topics/about-university/about-university-arizona/ua-history-and-traditions

(3) With Prolog in mind, why is "camelcase variable" an oxymoron?

Something like maxValue would be an atom!

(4) The technology known as Leda was mentioned on Piazza. What is Leda?

A multi-paradigm programming language created by Tim Budd.

(5) Draw an appropriate avatar for any one of the three languages we covered.

My favorite was Mr. Ferra's "Haskell-Guy", but I'm inclined to call him Lambda Man.

(6) Name a language that was once studied in depth in 372 but isn't any more.

C++, Icon, Standard ML, Lisp, Emacs Lisp are five I know of.

(7) Who do you think whm will vote for in November's presidential election?

There was a lot of variety here, including "nobody", "not Trump", Ralph Griswold, Mickey Mouse (an always

popular write-in, election after election), and "self".

Popular guesses were these:

Bernie 9

Hillary 12

Trump 6

Early on I liked Fiorina, Cruz, Rubio, and Trump; I later came to like Kasich. But Trump's getting my vote in

November!

(8) Why did whm's solution for pipes.pl have the following line? do(p) :- do(pipes).

So the pipes could be shown with just p..

(9) (1 point) mostfreq.rb says to assume that Hash has a sort_by_value method. Write Ruby code that

makes that be true.

class Hash
 def sort_by_value
 self.sort {|a,b| a[1] <=> b[1]}

Page 9 of 11

http://www.arizona.edu/topics/about-university/about-university-arizona/ua-history-and-traditions

 end
end

(10) What did Knuth say about premature optimization?

It's the root of all evil.

(11) (1 point) Using only append and length, and no recursion, write a Prolog predicate longer(A,B), which

is true iff list A is longer than list B.

longer(A,B) :- length(A,N), length(X,N), append(B,[_|_],X).
% by Patrick

(12) (1 point) In SNOBOL4, how do you indicate where control should go if a statement fails?
... :F(LABEL)

(13) whm hates writing up Piazza posts with suggested readings! They usually don't align well with his slides and

he wonders if anybody actually does any of the readings. Over the course of the full semester, how many hours

do you estimate you spent doing the suggested readings? (This is just data collection, no right/wrong.)

N = 43
mean = 3.670
median = 1.000

(14) Write a joke about programming languages.

A number of students expressed their true feelings about various languages with these one-word offerings:

C, Java, JavaScript, Perl, and Prolog.

I believe these are original and worth repeating:

"Prolog was invented by aliens, it's more logical than life."

"I just made a new programming language called FUN (Fantastically Underachieving Newbie!)"

"It won't right on the first run, or the second, or the third, but it might eventually."

 "Prolog should be called Prolonger than Haskell."

"What did Ruby say to her boyfriend Prolog on Valentine's Day? You better HAS something good for me or

I'll KELL you!"

"Why are Java programmers wealthy? Inheritance. [crickets]"

"Knock, knock.

Who's there?

Haskell.

Go away."

"My love for Prolog is TRUE."

Page 10 of 11

(15) Finish this sentence: "If I only remember one thing about 372 it will be ...".

Here are a few:

"To start early."

"the FRIDAY NIGHT CLUB"

"That logic programming is virtually impossible."

"Pancakes" [several of these]

"The day you almost lost your voice during the first week of lecture." [almost?]

"Ruby is a cool language and to stay away from Prolog."

"If you are looking for a job, everyone should know [you are looking for a job]."

"append in Prolog is amazing"

"Programming problems are better when they have pancakes/food in them."

"p a n c a k e s"

"The horror of pancakes."

"Prolog programmers think Haskell is a cute toy."

"How much I love quizzes."

"1000+ slides"

"Haskell sucks"

"Ralph Griswold founded the CS department in 1971."

Statistics

All scores, in order:
104.00, 95.50, 95.00, 92.00, 92.00, 92.00, 91.50, 90.50, 88.50, 88.50,
87.50, 87.50, 87.50, 86.50, 86.00, 86.00, 85.00, 83.00, 81.50, 81.00, 80.50,
80.50, 79.50, 79.00, 79.00, 77.50, 77.00, 76.50, 75.00, 74.50, 74.00, 72.00,
71.50, 71.00, 70.50, 70.00, 69.50, 69.00, 68.50, 68.50, 67.50, 62.50, 62.50,
62.50, 61.00, 58.00, 58.00, 58.00, 57.50, 57.25, 57.00, 56.50, 55.50, 54.00,
50.50, 39.00, 39.00, 31.00

N = 58
mean = 73.306
median = 74.75

Page 11 of 11

Using the Tester

CSC 372

Last updated: January 29, 2016 17:00

The syllabus says,

For programming problems great emphasis will be placed on the ability to deliver code whose

output exactly matches the specification. Failing to achieve that will typically result in large

point deductions, sometimes the full value of the problem.

Whenever possible I'll use an automated testing tool, "the Tester", to test your solutions for

programming problems. For each assignment I'll make available a "student set" of tests that you can run

yourself using the Tester. The set of tests used when grading (the "grading set") will often have

additional tests. Unless otherwise specified for a problem or an entire assignment, passing all the tests in

the student set will guarantee at least 75% of the points for a given problem. It some cases it will be

higher, or even 100%, with the student set used as the grading set. I'll call that 75% minimum the

"student set guarantee".

Test cases in the grading set are weighted. Those weights are not supplied in the student set but a rule of

thumb is that cases for basic functionality are weighted more than edge cases.

Sometimes I'll give you a break for bonehead mistakes but there's no excuse for not using the

Tester. If a student says, "I spent many hours on this and it works great, but it failed every test because I

had an extra space at the of a line.", I'll ask, "Why didn't you use the Tester?"

The Tester is on lectura

The Tester is a collection of bash scripts, Ruby programs, an Icon program, and assorted files that are all

on lectura. The instructions in this document assume that you're working on lectura.

You'll use the Tester by running aN/tester, where N is the assignment number. For assignment 3

you'll be using a3/tester. Note that the path, a3/tester, assumes that you've made an a3

symlink, as described in the a3 write-up.

When to use the Tester

If you're doing TDD with an xUnit tool like JUnit, it's appropriate to run tests frequently, typically after

almost every change, but that's not the intention with the Tester. I recommend that you first manually

test your code with examples from the write-up and other cases that come to mind. When things are look

right to the naked eye, then that's the time to run the Tester.

There is an HUnit for Haskell, as well as Hspec, QuickCheck and more, but I haven't seen anything that

looks likely to provide more benefit than trouble for our modest needs in 372.

Quick summary of usage, for the TL;DR crowd

With the a3 symlink in place and your solution for warmup.hs in the current directory, you can test it

like this:

% a3/tester warmup.hs

To stop it early, use ^C (control+C). It might take more than one ^C, too.

Page 1

You can also name multiple problems to be tested:

% a3/tester join cpfx warmup

The above also shows that the .hs suffix is not required.

It's a tedious time-killer to scroll back looking for the start of the Tester's output. One approach is to pipe

into less:

% a3/tester warmup | less

An alternative on OS X with Terminal and iTerm is to do cmd-K before running the Tester—that clears

the scrollback, so when you scroll back, you'll be at the start of the Tester output. I don't know of a

keyboard shortcut to clear the scrollback with PuTTY but spring16/bin/clr is a two-line script that

clears PuTTY's scrollback. (Let me know if you know a simpler way to do that.)

You'll probably want to test problems one at a time, as you develop them, but to test all problems you can

run the tester with no arguments. We can combine that with grep to simply look for failures:

% a3/tester | grep FAIL

Be sure to capitalize FAIL, or use grep -i fail, to ignore case.

GREAT IDEA: Do a3/tester | grep FAIL as a final double-check before running

a3/turnin.

More detail on running the tester

For the purpose of this example we'll imagine that there are two more problems on a3: hello.hs and

letters.hs.

Let's work with a simple "hello" function, whose code is correct and is in the file hello.hs:

% cat hello.hs
hello s = "Hello, " ++ s ++ "!"

% ghci hello.hs
...

> :type hello
hello :: [Char] -> [Char]

> hello "whm"
"Hello, whm!"

 Here's a test run with no failures:

% a3/tester hello

--
| |
| hello |

Page 2

--
| |
| Test Execution |

Test: 'ulimit -t 2; a3/tesths hello.hs ':type hello'': PASSED

Test: 'ulimit -t 2; a3/tesths hello.hs 'hello "world"'': PASSED

Those two lines starting with "Test: " indicate that two tests were run. Both passed. I've underlined

and bolded the text that shows what's actually being tested. The first test, :type hello, checks the

type of the function hello. The second test runs the function, with hello "world".

The Test: lines start with ulimit -t 2;, which limits the CPU time for the test to two seconds.

The text that follows that semicolon, up to the final apostrophe, is the exact command that's run for that

test. You can do a copy/paste to run it yourself. Let's try both of them:

% a3/tesths hello.hs ':type hello'
*Main> > > "TESTING START"
> hello :: [Char] -> [Char]
> Leaving GHCi.

% a3/tesths hello.hs 'hello "world"'
*Main> > > "TESTING START"
> "Hello, world!\n"
> Leaving GHCi.

a3/tesths is a bash script that loads the named file with ghci and then feeds the third argument, such

as ":type hello", into ghci.

Note: If you include the ulimit -t 2; when trying a test, like this,

% ulimit -t 2; a3/tesths hello.hs 'hello "world"'

you'll set the CPU time limit to two seconds for all future commands in that instance of bash. If you

inadvertently do that, you'll need to log out and log in again to clear it. (An ordinary user can decrease

their CPU time limit, but cannot raise it.)

Understanding differences reported by the Tester

If a test fails, the diff command is to used to show the differences between the expected output and the

actual output. "diffs" can sometimes be hard to understand. Googling for "understanding diffs" or

"deciphering diffs" turns up a lot of stuff, but here are a couple of Tester-specific examples.

Let's intentionally break hello by removing the comma in "Hello, ". Here's what the Tester

produces, with line numbers added for reference. Line 5 is long and is shown wrapped around.

% a3/tester hello.hs

[...header lines not shown...]

1. Test: 'ulimit -t 2; a3/tesths hello.hs ':type hello'': PASSED

2.

Page 3

3. Test: 'ulimit -t 2; a3/tesths hello.hs 'hello "world"'': FAILED

4. Differences (expected/actual):

5. *** a3/master/tester.out/hello.out.02 2016-01-28
12:52:52.292586244 -0700

6. --- tester.out/hello.out.02 2016-01-28 23:22:41.190616251 -0700

7. ***************

8. *** 1,3 ****

9. *Main> > > "TESTING START"

10. ! > "Hello, world!"

11. > Leaving GHCi.

12. --- 1,3 ----

13. *Main> > > "TESTING START"

14. ! > "Hello world!"

15. > Leaving GHCi.

The type of hello is unaffected by removing that comma but the output differs, so the first test still

passes but the second test now fails.

Lines 5 and 6 name the two files that are being "diffed" (compared). I've underlined and bolded the file

names. The first is the file that contains the expected output,

a3/master/tester.out/hello.out.02. The second, tester.out/hello.out.02,

contains the output produced by running a3/tesths hello.hs 'hello "world"' in the

current directory. That directory, tester.out, was created in the current directory by the Tester, to

hold various files created by the testing process. Needless to say, you can look at both files with cat,

less, editors, or any other tool.

The names of the files being compared are preceded by *** and --- , which are used later, on lines 8

and 12, to identify the files those blocks of text come from. Line 8's "*** 1,3 ****" means that

what follows are lines 1-3 from the expected output. Line 12's "--- 1,3 ----" means that what

follows are lines 1-3 from the actual output. (Diffs in tester output always follow the convention of

showing the expected output first and the actual output second.)

The exclamation marks on lines 10 and 14 indicate that those lines differ between the expected and

actual output. If we didn't already know what we did to break it, we might need to look close to see that

the lines differ by only a single comma.

For a more interesting "diff", let's work with a function named letters that prints the first N lower-

case letters, one per line. Like the examples on slides 136-148, and the street problem on a3, this

function directly produces printed output using putStr rather than producing a value that is in turn

displayed by ghci. Here's an example of expected behavior:

> letters 4
a
b
c
d

Here's what the Tester shows with our buggy version, with line numbers added to aid explanation:

% a3/tester letters.hs

[...header lines not shown...]

1. Test: 'ulimit -t 2; a3/tesths letters.hs 'letters 4'': FAILED

Page 4

2. Differences (expected/actual):

3. *** a3/master/tester.out/letters.out.01 2016-01-28
12:58:44.406350815 -0700

4. --- tester.out/letters.out.01 2016-01-28 23:25:53.772537760 -0700

5. ***************

6. *** 1,6 ****

7. *Main> > > "TESTING START"

8. ! > a

9. b

10. - c

11. d

12. > Leaving GHCi.

13. --- 1,8 ----

14. *Main> > > "TESTING START"

15. ! >

16. ! a

17. ! x

18. b

19. d

20. + Done!

21. > Leaving GHCi.

We see in line 1 that letters 4 is the Haskell expression that's being tested.

Lines 3 and 4 identify the two files being diffed. Note that line 3 wraps around. Blocks from the

expected output will be identified with ***; blocks from the actual output will be identified with ---.

The exclamation marks on line 8 and lines 15-17 show that those sections apparently correspond to each

other but their content differs.

The minus sign on line 10 shows that there's a line in the expected output, with just a "c", that doesn't

appear in the actual output.

The plus sign on line 20 shows that there's a line in the actual output, "Done!", that doesn't appear in the

expected output.

If we have trouble understanding a diff, it often helps to directly examine the files being diffed. Here's

the file with the expected output:

% cat a3/master/tester.out/letters.out.01
*Main> > > "TESTING START"
> a
b
c
d
> Leaving GHCi.

Here's what was actually output when tested:

% cat tester.out/letters.out.01
*Main> > > "TESTING START"
>
a

Page 5

x
b
d
Done!
> Leaving GHCi.

Of course, instead of looking at the file with the actual output, we could try manually running the exact

command the tester ran:

% a3/tesths letters.hs 'letters 4'
*Main> > > "TESTING START"
>
a
x
b
d
Done!
> Leaving GHCi.

For complex differences you might open the expected and actual files in side-by-side windows in an

editor. A simple form of that is provided by vimdiff: (type :q<ENTER> TWICE to get out!)

% vimdiff a3/master/tester.out/letters.out.01 tester.out/letters.out.01

It's not shown in the examples above but following the diff output is a line showing the names of the

files that were diffed:

Test: 'ulimit -t 2; a3/tesths letters.hs 'letters 4'': FAILED
Differences (expected/actual):
...
+ Done!
 > Leaving GHCi.

Files diffed:
a3/master/tester.out/letters.out.01 tester.out/letters.out.01

That's provided so you can select the whole line with multiple clicks, type vimdiff or some other

command and then paste both file names onto that line.

pr -mT provides a simple side-by-side display of two files:

% pr -mT a3/master/tester.out/letters.out.01 tester.out/letters.out.01

*Main> > > "TESTING START" *Main> > > "TESTING START"

> a >

b a

c x

d b

> Leaving GHCi. d

 Done!

 > Leaving GHCi.

diff -y, which produces a side-by-side diff, is sometimes useful.

If diff is claiming a difference but the text looks identical, the problem might be trailing whitespace or

embedded non-printable characters, like NULs (ASCII code 0). Problems like that can be turned up by

piping into cat -A:

Page 6

% a3/tester hello | cat -A
...

Exceeding the time limit—handled poorly...

A bug in a recursive function can produce infinite recursion. Infinite recursion will cause the test's time

limit to be exceeded and the test will be killed. Sadly, the Tester doesn't provide any clear evidence of

the time limit being exceeded. Here's what we see for a diff with a version of hello that infinitely

recurses:

Test: 'ulimit -t 2; a3/tesths hello.hs 'hello "world"'': FAILED
Differences (expected/actual):
*** a3/master/tester.out/hello.out.02 2016-01-28
12:52:52.292586244 -0700
--- tester.out/hello.out.02 2016-01-28 23:36:23.020876709 -0700

*** 1,3 ****
 *Main> > > "TESTING START"
! > "Hello, world!\n"
! > Leaving GHCi.
--- 1,2 ----
 *Main> > > "TESTING START"
! >
\ No newline at end of file

Note two things: (1) The actual output doesn't end with "Leaving GHCi." (2) diff says there's no

newline at the end of the file. The combination of those two things typically indicates the time limit was

exceeded.

A good next step is to try the command yourself, without a time limit. Let's try it outside the Tester:

 % a3/tesths hello.hs 'hello "world"'
...wait a while...give up...hit ^C

The time limits set for tests are usually far more than what's needed but in rare cases you may find that

your solution is simply slow, and that it does complete when run outside the Tester. If so, let us know. If

it's not outrageously slow, we might just bump up the time limit on the test.

Page 7

Icon
CSC#372,#Spring#2015#

The#University#of#Arizona#

William#H.#Mitchell#

whm@cs#

#
CSC#372#Spring#2015,#Icon#Slide#1#

Icon is a descendent of SNOBOL4 and SL5.

Icon was designed at the University of Arizona in the late 1970s by a team lead by

Ralph Griswold. The first implementation was in Ratfor (rational FORTRAN), to

facilitate porting Icon to a variety of machines. It was later reimplemented in C.

The last major upheaval in the language itself was in 1982, but a variety of minor

elements have been added in the years since.

Idol, an object-oriented derivative was developed in 1988 by Clint Jeffery.

Graphics extensions evolved from 1990 through 1994.

Unicon (Unified Extended Icon) evolved from 1997 through 1999 and

incremental change continues. Unicon has support for object-oriented

programming, systems programming, and programming-in-the-large.

The development of Icon was supported by about a decade of funding by the

National Science Foundation.

CSC#372#Spring#2015,#Icon#Slide#2#

A little history

Compared to today, computing resources were very limited when Icon was

developed.

The Ratfor implementation of Icon was developed on PDP-10 mainframe

with perhaps 1.5 MIPS and maybe a megabyte or two of virtual address

space. However, that was a timesharing system that supported users

campus-wide and was quite slow at times.

The UNIX implementation of Icon was developed on a PDP-11/70 owned

by the CS department. It limited programs to 64k bytes of program code

and 64k bytes of data. Its speed was perhaps 1 MIP.

Due to these limits Icon's implementation was required to be small and

efficient.

CSC#372#Spring#2015,#Icon#Slide#3#

Efficiency by virtue of limited resources

% /cs/www/classes/cs372/spring15/bin/ie -nn

Icon Evaluator, Version 1.1, ? for help

][3+4

 r := 7 (integer)

]["abc" || (3 + 4.5)

 r := "abc7.5" (string)

][type(r)

 r := "string" (string)

][type(type)

 r := "procedure" (string)

][*r

 r := 9 (integer)

CSC#372#Spring#2015,#Icon#Slide#4#

A little Icon by observation

][s := "testing"

 r := "testing" (string)

][s[1]

 r := "t" (string)

][s[-1]

 r := "g" (string)

][s * 3

Run-time error 102, numeric expected

offending value: "testing"

{"testing" * 3} from line 40 in ._ie_tmp.icn

][repl(s,3)

 r := "testingtestingtesting" (string)

CSC#372#Spring#2015,#Icon#Slide#5#

Icon by observation, continued

]['testing this'

 r := ' eghinst' (cset)

][&digits

 r := &digits (cset)

][split("Thursday, 4/29/2015", &digits)

 r := L1:["Thursday, ","/","/"] (list)

][split("Thursday, 4/29/2015", ~&digits)

 r := L1:["4","29","2015"] (list)

][*(&letters ++ &digits)

 r := 62 (integer)

CSC#372#Spring#2015,#Icon#Slide#6#

Icon by observation, continued

][line := read()

here's some input!

 r := "here's some input!" (string)

][write("just",2,"test")

just2test

 r := "test" (string)

][x := [1, [2], "three"]

 r := L1:[1,L2:[2],"three"] (list)

][x[1]

 r := 1 (integer)

][*(x ||| x)

 r := 6 (integer)

CSC#372#Spring#2015,#Icon#Slide#7#

Icon by observation, continued

][t := table("Go fish!")

 r := T1:[] (table)

][t["one"] := 1

 r := 1 (integer)

][t['two'] := 2

 r := 2 (integer)

][t

 r := T1:["one"->1,'otw'->2] (table)

][t["three"]

 r := "Go fish!" (string)

][table()[1]

 r := &null (null)

CSC#372#Spring#2015,#Icon#Slide#8#

Icon by observation, continued

In Icon, positions in a string are between characters and run in both directions.

 1 2 3 4 5 6 7 8
 | | | | | | | |
 t o o l k i t
 | | | | | | | |
 -7 -6 -5 -4 -3 -2 -1 0

Several forms of subscripting are provided.

][s[3:-1]
 r := "olki" (string)

][s[1+:4]
 r := "tool" (string)

s[i] is a shorthand for s[i:i+1]

][s[5]
 r := "k" (string)

What problem does between-based positioning avoid?
 It avoids the "to" vs. "through" problem.

CSC#372#Spring#2015,#Icon#Slide#9#

String indexing

Assignment of string values does not cause sharing of data:

][s1 := "Knuckles"
 r := "Knuckles" (string)

][s2 := s1
 r := "Knuckles" (string)

][s1[1:1] := "Fish "
 r := "Fish " (string)

][s1
 r := "Fish Knuckles" (string)

][s2
 r := "Knuckles" (string)

Any substring can be the target of an assignment.

CSC#372#Spring#2015,#Icon#Slide#10#

Strings use "value semantics"

A key design feature of Icon is that an expression can fail to produce a
result. A simple example of an expression that fails is an out of bounds
string subscript:

][s := "testing"
 r := "testing" (string)

][s[5]
 r := "i" (string)

][s[50]
Failure

We say, "s[50] fails"—it produces no value.

If an expression produces a value it is said to have succeeded.

When an expression is evaluated it either succeeds or fails.

CSC#372#Spring#2015,#Icon#Slide#11#

Failure

An important rule:

An operation is performed only if a value is present for all operands. If due

to failure a value is not present for all operands, the operation fails.

Another way to say it:

If evaluation of an operand fails, the operation fails. And, failure propagates.

][s := "testing"

 r := "testing" (string)

]["x" || s[50]

Failure

][reverse("x" || s[50])

Failure

][s := reverse("x" || s[50]) # s is unchanged

Failure

CSC#372#Spring#2015,#Icon#Slide#12#

Failure, continued

When working in Icon,

unexpected failure is the

root of madness.

Another example of an expression that fails is a comparison whose

condition does not hold:

][3 = 0

Failure

][4 < 3

Failure

A comparison that succeeds produces the value of the right hand operand

as the result of the comparison:

][1 < 2

 r := 2 (integer)

][10 ~= 20

 r := 20 (integer)

CSC#372#Spring#2015,#Icon#Slide#13#

Failure, continued

What do these expressions do?

write(a < b)

f(a < b, x = y, 0 ~= *s)

max := max < n

max <:= 30

How do Java exceptions compare to Icon's failure mechanism?

CSC#372#Spring#2015,#Icon#Slide#14#

Failure, continued

Here's a string that represents a hierarchical data structure:

 /a:b/apple:orange/10:2:4/xyz/

Major elements are delimited by slashes; minor elements are delimited by colons.

Imagine an Icon procedure to access an element given a major and minor:

][extract("/a:b/apple:orange/10:2:4/xyz/", 2, 1)

 r := "apple" (string)

][extract("/a:b/apple:orange/10:2:4/xyz/", 3, 4)

Failure

Implementation:

procedure extract(s,m,n)

 return split(split(s, '/')[m], ':')[n]

end

How does extract make use of failure?

CSC#372#Spring#2015,#Icon#Slide#15#

Failure, continued

Icon has several traditionally-named control structures, but they are driven

by success and failure.

Here's the general form of the while expression:

while expr1 do

 expr2

If expr1 succeeds, expr2 is evaluated. This continues until expr1 fails.

Here is a loop that reads lines and prints them:

while line := read() do

 write(line)

CSC#372#Spring#2015,#Icon#Slide#16#

The while expression

At hand:

while line := read() do

 write(line)

If no body is needed, the do clause can be omitted.

Here's a more concise way to write the loop above.

 while write(read())

What causes termination of this more compact version?

read() fails at end of file.

That failure propagates outward, causing the write() to fail.

The while terminates because its control expression, write(...),

failed.

CSC#372#Spring#2015,#Icon#Slide#17#

The while expression

The general form of the & operator:

 expr1 & expr2

expr1 is evaluated first. If expr1 succeeds, expr2 is evaluated. If expr2
succeeds, the entire expression succeeds and produces the result of expr2. If
either expr1 or expr2 fails, the entire expression fails.

Example:

while line := read() & line[1] ~== "." do
 write(line)

Here is pseudo-code for the implementation of &:

Value andOp(Value expr1, Value expr2) { return expr2 }

How does it work?

andOp only gets called if evaluation of both operands succeeded, so all it
needs to do is to return the value of the right-hand operand!

CSC#372#Spring#2015,#Icon#Slide#18#

The & operator

All executable code in an Icon program is contained in procedures. A
procedure may take arguments. It may return a value of interest.

Execution of an Icon program begins by calling the procedure main.

A simple program with two procedures:

procedure main()
 while n := read() do
 write(n, " doubled is ", double(n))
end

procedure double(n)
 return 2 * n
end

Use icont to compile and run. -s suppresses some chatty stuff. -x says to
execute; without it, icont would only produce the executable double.

 % icont –s double.icn –x

CSC#372#Spring#2015,#Icon#Slide#19#

Procedures

A procedure may produce a result or it may fail. Here's a more flexible version of
double:

procedure double(x)
 if type(x) == "string" then
 return x || x
 else if numeric(x) then
 return x + x
 else
 fail
end

][double(5)
 r := 10 (integer)

][double("xyz")
 r := "xyzxyz" (string)

][double([1,2])
Failure

CSC#372#Spring#2015,#Icon#Slide#20#

Procedures, continued

Does double exemplify duck typing?

Here is the Ruby counterpart:

def double x

 x * 2

end

Is Icon duck-challenged? If so, why?

What are tradeoffs in having different operators for addition and

concatenation?

CSC#372#Spring#2015,#Icon#Slide#21#

Procedures, continued

procedure double(x)

 if type(x) == "string" then

 return x || x

 else if numeric(x) then

 return x + x

 else

 fail

end

>> s = "abc"; n = 123

>> s + n

TypeError: ...

>> s + n.to_s

=> "abc123"

][s := "abc"; n := 123

][s || n

 r := "abc123" (string)

One of Icon's debugging facilities is call tracing. Tracing is activated by

setting the keyword &trace or the TRACE environment variable.

% TRACE=-1 icont –s sum.icn -x
 : main()
sum.icn: 2 | sum(3)
sum.icn: 7 | | sum(2)
sum.icn: 7 | | | sum(1)
sum.icn: 7 | | | | sum(0)
sum.icn: 6 | | | | sum returned 0
sum.icn: 6 | | | sum returned 1
sum.icn: 6 | | sum returned 3
sum.icn: 6 | sum returned 6
6
sum.icn: 3 main failed
%

CSC#372#Spring#2015,#Icon#Slide#22#

Call tracing in procedures

% cat -n sum.icn

1 procedure main()

2 write(sum(3))

3 end

4

5 procedure sum(n)

6 return if n = 0 then 0

7 else n + sum(n-1)

8 end

In most languages, evaluation of an expression produces either a result or
an exception.

We've seen that Icon expressions can fail, producing no result.

Some expressions in Icon are generators, and can produce many results.

Here's a generator:

 1 to 3

1 to 3 has the result sequence {1, 2, 3}.

The .every directive of ie can be used to show the result sequence of a
generator:

][.every 1 to 3
 1 (integer)
 2 (integer)
 3 (integer)

CSC#372#Spring#2015,#Icon#Slide#23#

Generator basics

Some languages allow generative constructs in particular contexts, like a

"for" control structure but an Icon generator can appear at any place in any

expression.

][.every repl("*", 1 to 3)

 "*" (string)

 "**" (string)

 "***" (string)

][s := "abcd"

][.every write(reverse(s[1:2 to *s]))

a

 "a" (string)

ba

 "ba" (string)

cba

 "cba" (string)

CSC#372#Spring#2015,#Icon#Slide#24#

Generator basics, continued

If an expression fails to produce a result, Icon resumes the last generator to

produce a result.

][i := 1 to 10 & i % 2 = 0 & write(i) & 1 = 2

2

4

6

8

10

Failure

Icon backtracks through previous expressions to find an active generator.

If one is found, it starts evaluating the following expressions again.

What does this back and forth movement remind you of?

The above is an example of goal-directed evaluation.

CSC#372#Spring#2015,#Icon#Slide#25#

Generator basics, continued

The every control structure drives a generator to failure, making it

produce all its results. Example:

every i := 1 to 5 do

 write(repl("*", i))

Output:

*

**

Here's a more concise version:

every write(repl("*", 1 to 5))

CSC#372#Spring#2015,#Icon#Slide#26#

Generator basics, continued

Another built-in generator is the unary exclamation mark, called "bang".

It is polymorphic, as is the size operator (*). For character strings it
generates the characters in the string one at a time.

][every write(!"abc") Note: using every control structure
a
b
c
Failure

The result sequence of !"abc" is {"a", "b", "c"}.

For lists, ! generates the elements:

][every write(![&lcase,&ucase,&digits])
abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
Failure

CSC#372#Spring#2015,#Icon#Slide#27#

The generator "bang" (!)

A program to count vowels appearing on standard input:

procedure main()

 vowels := 0

 while line := read() do

 every c := !line do

 if c == !"aeiouAEIOU" then

 vowels +:= 1

 write(vowels, " vowels")

end

Execution:

% echo "testing" | icont -s vowels.icn -x

2 vowels

CSC#372#Spring#2015,#Icon#Slide#28#

"bang", continued

Speculate: What does the following program do?

procedure main()

 lines := []

 every push(lines, !&input)

 every write(!lines)

end

Execution:

% seq 3 | icont -s tac.icn -x

3

2

1

CSC#372#Spring#2015,#Icon#Slide#29#

"bang", continued

The alternation control structure looks like an operator:

expr1 | expr2

This creates a generator whose result sequence is the result sequence of
expr1 followed by the result sequence of expr2.

For example, the expression

 3 | 7

has the result sequence {3, 7}.

The expression

 (1 to 5) | (5 to 1 by -1)

has the result sequence {1, 2, 3, 4, 5, 5, 4, 3, 2, 1}.

CSC#372#Spring#2015,#Icon#Slide#30#

Alternation

Alternation used in goal-directed evaluation:

procedure main()
 while time := (writes("Time? ") & read()) do {
 if time = (10 | 2 | 4) then
 write("It's Dr. Pepper time!")
 }
end

A program to read lines from standard input and write out the first twenty
characters of each line:

procedure main()
 while line := read() do
 write(line[1:(21|0)])
end

Would it work with line[1:21] instead?

CSC#372#Spring#2015,#Icon#Slide#31#

Alternation, continued

An expression may contain any number of generators:

][every write(!"ab", !"+-", !"cd")

a+c

a+d

a-c

a-d

b+c

b+d

b-c

b-d

Failure

Generators are resumed in a LIFO manner: the generator that most

recently produced a result is the first one resumed.

What does every write(!x == !y) do?

CSC#372#Spring#2015,#Icon#Slide#32#

Multiple generators

Recall this vowel counter:

procedure main()

 vowels := 0

 while line := read() do

 every c := !line do

 if c == !"aeiouAEIOU" then

 vowels +:= 1

 write(vowels, " vowels")

end

Here is a more concise version, using multiple generators:

procedure main()

 vowels := 0

 every !!&input == !"aeiouAEIOU" do

 vowels +:= 1

 write(vowels, " vowels")

end

CSC#372#Spring#2015,#Icon#Slide#33#

Multiple generators, continued

A program to show the distribution of the sum of three dice:

procedure main()

 every N := 1 to 18 do {

 writes(right(N,2), " ")

 every (1 to 6) + (1 to 6) + (1 to 6) = N do

 writes("*")

 write()

 }

end

CSC#372#Spring#2015,#Icon#Slide#34#

Multiple generators, continued

 1
 2
 3 *
 4 ***
 5 ******
 6 **********
 7 ***************
 8 *********************
 9 *************************
10 ***************************
11 ***************************
12 *************************
13 *********************
14 ***************
15 **********
16 ******
17 ***
18 *

The SNOBOL4 programming language has a very powerful string pattern

matching facility but it shares a problem with regular expressions in Ruby: you're

either doing regular computation or you're matching a pattern—the operations

can't be interleaved smoothly, like they can be in Prolog.

A design goal for Icon was to integrate string pattern matching with regular

computation—match a little, compute a little, match a little, compute a little, etc.

The end result was a handful of string scanning functions that can be used in

conjunction with Icon's other facilities to achieve the desired full integration of

string pattern matching with regular computation.

In the end, Icon's string scanning facility turned to be a disappointment. It is

small and powerful but the techniques involved are non-trivial. Too often, the

first version of code using string scanning is not correct. Ditto for the second

version.

The following slides provide a very brief look at Icon's string scanning facility.

(About 50-60 slides are required for an in-depth study of the facility.)

CSC#372#Spring#2015,#Icon#Slide#35#

String scanning

String scanning is initiated with ?, the scanning operator:

 expr1 ? expr2

The value of expr1 is established as the subject of the scan (&subject).

The scanning position in the subject (&pos) is set to 1. expr2 is then

evaluated.

A trivial example:

]["testing" ? { write(&subject); write(&pos) }

testing

1

 r := 1 (integer)

The result of the scanning expression is the result of expr2.

CSC#372#Spring#2015,#Icon#Slide#36#

The scanning operator

There are two string scanning functions that change &pos—the current

position in &subject:

 move(n) Move forwards or backwards by n characters.

 (&pos +:= n)

 tab(n) Move to position n. (&pos := n)

Both move and tab return the string between the old and new values of

&pos.

CSC#372#Spring#2015,#Icon#Slide#37#

String scanning functions

There is a group of functions that produce positions to be used in

conjunction with tab:

 many(cs) produces position after run of characters in cs

 upto(cs) generates positions of characters in cs

 find(s) generates positions of s

 match(s) produces position after s, if s is next

 any(cs) produces position after a character in cs

 bal(s, cs1, cs2, cs3)

 similar to upto(cs), but used with "balanced" strings.

There is one other string scanning function:

 pos(n) tests if &pos is equivalent to n

The string scanning facility consists of only the above functions (including

move and tab), the ? operator, and the &pos and &subject keywords.

Nothing more.

CSC#372#Spring#2015,#Icon#Slide#38#

String scanning functions, continued

Here's a procedure that sums the integers it finds in a string:

procedure sumnums(s)

 sum := 0

 s ? while tab(upto(&digits)) do

 sum +:= integer(tab(many(&digits)))

 return sum

end

upto(&digits) produces the position of the next digit after &pos, the current

position. The wrapping tab(...) advances &pos to that position.

tab(many(&digits)) advances over the digits and returns them as a string.

][sumnums("values: 10, 20 and 30")

 r := 60 (integer)

A goal of string scanning was to be able to interleave scanning operations with

ordinary computation. Does sumnums exemplify that?

CSC#372#Spring#2015,#Icon#Slide#39#

upto, many, and tab

Here's a procedure that generates matches for strings of the form aNbNcN:

procedure aNbNcN()

 tab(upto('a')) &

 start := &pos &

 as := tab(many('a')) &

 bs := tab(many('b')) &

 cs := tab(many('c')) &

 *as = *bs = *cs &

 suspend [start, as || bs || cs]

end

A main to test with:

procedure main()

 while writes("Line? ") & line := read() do {

 line ? every m := aNbNcN() do

 printf("At %d: '%s'\n", m[1], m[2])

 }

end

CSC#372#Spring#2015,#Icon#Slide#40#

Line? aabbcc abbc aaabbbccc ab abc

At 1: 'aabbcc'

At 13: 'aaabbbccc'

At 26: 'abc'

The &s are needed to produce

procedure-wide backtracking.

Facilities for graphical programming in Icon evolved in the period

1990-1994.

A philosophy of Icon is to insulate the programmer from details and place

the burden on the language implementation. The graphics facilities were

designed with same philosophy.

Icon's graphical facilities are built on the X Window System on UNIX

machines. On Microsoft Windows platforms the facilities are built on the

Windows API.

CSC#372#Spring#2015,#Icon#Slide#41#

Graphics in Icon

Here is a program that draws a "crosshair" of dots in a window:

link graphics

procedure main() # g1.icn

 WOpen("size=300,200")

 every x := 0 to 300 by 3 do

 DrawPoint(x, 100) # horizontal

 every y := 0 to 200 by 7 do

 DrawPoint(150, y) # vertical

 WDone() # wait for a "q" to be typed

end

CSC#372#Spring#2015,#Icon#Slide#42#

Graphics, continued

Here is a program that randomly draws points.

link graphics

$define Height 700 # symbolic constants

$define Width 900 # via preprocessor

procedure main() # g2.icn

 WOpen("size=" || Width ||","||Height)

 repeat {

 DrawPoint(?Width-1, ?Height-1)

 }

end

Speculate: How long will it take it to black out every single point?

CSC#372#Spring#2015,#Icon#Slide#43#

Graphics, continued

$define Width 500
$define Height 500
procedure main() # g3.icn
 WOpen("size="||Width||","||Height, "drawop=reverse")

 x := ?Width; y := ?Height; r := 50
 repeat {
 DrawCircle(x, y, r)
 hit := &null
 every 1 to 80 do {
 WDelay(10)
 while *Pending() > 0 do {
 if Event()=== &lpress then {
 if sqrt((x-&x)^2+(y-&y)^2) < r then {
 FillCircle(x,y, r)
 WDelay(500)
 FillCircle(x,y,r)
 hit := 1
 break break
 }}}}
 DrawCircle(x,y,r)
 if \hit then r *:= .9 else r *:= 1.10
 x := ?Width; y := ?Height
 }
end

CSC#372#Spring#2015,#Icon#Slide#44#

Simple game

This program draws a circular target at

random location If the player clicks inside

the target within 800ms, the radius shrinks

by 10%. If not, the radius grows by 10%.

Steve Kobes wrote this very elegant curve editor in 2003:
procedure main()
 WOpen("height=500", "width=700", "label=Curve Editor")
 pts := []
 repeat case Event() of {
 &lpress: if not(i := nearpt(&x, &y, pts)) then

 { pts |||:= [&x, &y]; draw(pts)}
 &ldrag: if \i then { pts[i] := &x; pts[i + 1] := &y; draw(pts) }
 !"Qq": break
 }
end

procedure draw(pts)
 EraseArea()
 DrawCurve!(pts ||| [pts[1], pts[2]])
 every i := 1 to *pts by 2 do
 FillCircle(pts[i], pts[i + 1], 3)
end

procedure nearpt(x, y, pts)
 every i := 1 to *pts by 2 do
 if abs(x - pts[i]) < 4 & abs(y - pts[i + 1]) < 4 then return i
end
 CSC#372#Spring#2015,#Icon#Slide#45#

Kobes' Curve Editor

http://www.cs.arizona.edu/icon is the Icon home page.

http://www.cs.arizona.edu/~whm/451 has the materials from a full-semester
course I taught on Icon in 2003.

On the home page, under "Books About Icon", I recommend three:

The Icon Programming Language, 3rd edition
A comprehensive treatment of the language, with numerous examples of
non-numerical applications.

The Implementation of the Icon Programming Language

 For a time, Ralph taught a course that covered the implementation of Icon's
run-time system. This book rose out of that course. If you're interested in
how dynamic languages are implemented, this book is definitely worth a
look.

Graphics Programming in Icon

Some parts are dated but lots of interesting stuff, like Lindenmayer systems
and a caricature algorithm.

unicon.org is the home page for Unicon, a derivative of Icon that supports object-
oriented programming, systems programming, and programming-in-the-large.

CSC#372#Spring#2015,#Icon#Slide#46#

Icon resources

UNIX Stuff for 372

William H. Mitchell

Last Revised: February 7, 2015 at 3:45pm

I've talked to a few students that are having trouble dealing with some of the mechanics of UNIX. Here are a few

things that may help.

My old 352 slides

A set of my 352 UNIX slides is in http://cs.arizona.edu/~whm/352/unix.sli.pdf. Those slides represent a basic

set of things that I think are important/useful/handy to know when working with UNIX. Whether you've had 352

or not, I bet you'll learn at least a few things if you just flip through those slides. Additional 352 stuff is in that

same directory.

Dead simple, low-tech backup

Here's a one-line, low-tech backup that you can run on lectura, in your a2 directory:

$ pr *.hs | mail -s 372 your-netid@email.arizona.edu

The pr command writes the content of each of your .hs files in turn to standard output, and that output is piped

into mail, a command line mailer. (Try man mail.) You'll get a message with the subject "372". For a more

descriptive subject you could use -s "372 a2 backup" instead, but note that quotes are used in that case to

get the spaces embedded in the string. pr generates some page headers that you'll have to hack out if you need to

recover files, but your source code will all be there.

Like any backup procedure, try some recoveries for practice to possibly discover omissions or flaws in the

procedure.

Package that low-tech backup in a script!

The easier it is to do a backup the more likely you are to do it.

Put that "pipeline" with pr above into a file. I like short names for commands I'm going to run frequently, so I'll

suggest the name bk. Here's what that file should look like, as shown by cat:

$ cat bk
pr *.hs | mail -s "372 a2 backup" whm@email.arizona.edu

We could run it right now with bash bk but let's make it executable, to save a little typing:

$ chmod +x bk

We should now be able to run bk by simply typing ./bk. Depending on how your path is configured you might

be able to type just bk. (For more details on bk vs. ./bk, search for PATH in my 352 slides and also see

http://cs.arizona.edu/~whm/352/Spring05/dotornot.pdf.)

You're now able to ship off a copy of your .hs files with 3-5 keystrokes. If you want to send your backups to two

locations, maybe a Yahoo mail account, too, just duplicate that line and change the email address, or see slide 88

in my UNIX set to learn about the for statement in bash.

Things like Dropbox and Google Drive give you instaneous backup and that's great but I really hate to pay for the

same real estate twice, so I supplement those with some low-tech backups. If Dropbox were to have a catastrophic

failure, I'm sure they'd put out a well-written note expressing their regret and a rededication to ensuring data

integrity but I doubt they'd be mailing any checks to help say how sorry they are that all your files are gone.

Page 1

~/.snapshot has periodic snapshots of all your files on lectura

Let's look at my ~/.snapshot directory on lectura. We'll use -1 (dash-one) to force single-column output:

$ ls -1 ~/.snapshot
hourly.0
hourly.1
hourly.2
...
nightly.0
nightly.1
...
weekly.0
weekly.1
...

Each of those is a directory that's a "copy" of my directory tree on lectura at those particular times. You can see

that the frequency of retention decreases for older copies but the latest snapshots are four hours apart. If you want

to see and/or recover a file from some point in the past, just cd into the appropriate snapshot directory and copy

the file out. Example:

$ cd ~/.snapshot/hourly.2/372/a2
$ ls -l
[...lots...]

$ cat join.hs
--this version compiles!
x = 1
$ cp join.hs ~/372/a2/join-compiles.hs

See http://faq.cs.arizona.edu/index.php?action=artikel&cat=5&id=58 and

http://www.cs.arizona.edu/computing/accounts/snapshots.html for more details on ~/.snapshot. See also

slide 55 in my UNIX set.

What does tilde (~) mean in a path?

bash, like many shells, interprets a path like ~/xyz to mean "xyz in my home directory".

The echo command can be used to see what a command line looks like after the shell does its various expansions

and substitutions on a command line. Here

$ echo ~/.ghci
/home/whm/.ghci
$ echo ~/372/a2/cpfx.hs
/home/whm/372/a2/cpfx.hs

Tilde substitution done only if the tilde is at the start of a line:

$ echo ~/x~x/y~
/home/whm/x~x/y~

Try echo ~postgres/x.

See slide 62+ in my UNIX set for more on tilde expansion.

Although unrelated to ~, here are some examples of exploring with echo:

$ echo $HOME
/home/whm

Page 2

$ echo $PATH
/home/whm/sbin:/home/whm/3bin:/home/whm/bin:/usr/local/bin:...lots
more...
$ echo $RANDOM $RANDOM
2344 16797
$ echo *.hs
join-compiles.hs join.hs x.hs

See slide 82+ in my UNIX set for more on variables ($...); 64+ covers wildcards.

A little more with symlinks

The a2 writeup recommends creating this symlink in your assignment 2 directory,

$ ln -s /cs/www/classes/cs372/spring15/a2 .

so you can then run the tester with a2/tester. Here's a symlink that lets you run the tester with ./t (or maybe

just t—see dotornot.pdf above.)

 $ ln -s a2/tester t

That creates a symlink named t that uses the a2 symlink.

For future assignments you might do something more general, like this for a3:

$ cd ~/372
$ ln -s /cs/www/classes/cs372/spring15 www
$ cd a3
$ ln -s ../www/a3 a3
$ ln -s a3/tester t

That creates a symlink www in ~/372 that references the root directory for the 372 materials parked on the web.

Then, in a3, you make a symlink named a3 that uses the ~/372/www symlink, saving the trouble of having to

type out /cs/www/.... In turn, the symlink t uses the a3 symlink—triple indirection!

See slide 58+ in my UNIX set for more on symlinks.

In WinSCP use Commands > Keep Remote Directory up to Date... (!)

If I had a dollar for every time I've seen a student drag a file between WinSCP windows to copy the latest from

their machine to lectura, I might be able to pay for a class trip to Hawaii for Spring Break.

Instead of that per-save dragging, just get the source and target directories open in WinSCP and do Commands >
Keep Remote Directory up to Date... It'll ask if you want to perform full synchronization of the remote

directory first. You do, unless you've been editing some files directly on lectura. (If that's the case, just get the

latest, greatest versions back to your Windows machine before you activate this automatic synchronization.)

WinSCP has good help about this facility.

Cyberduck is a WinSCP equivalent for the Mac that I've heard good things about but have never experimented

with.

Remote editing

I typically use Emacs' remote editing facilities for editing files on lectura from my Mac.

Students last Spring seemed to have good luck using http://wbond.net/sublime_packages/sftp for remote editing

with Sublime. I've got a dim memory of some remote editing package for Sublime having a race condition that

Page 3

would occasionally result in another user getting your code when they tried to open their file but I can't find any

trace of that of that incident now. If you should see anything remotely like that (no pun intended!), let me know

ASAP.

If you'd rather type just lec instead of lectura.cs.arizona.edu...

On OS X, Linux and Windows, host names are looked up in /etc/hosts before consulting DNS. This lets you

add a short name for a host, like lec for lectura.cs.arizona.edu. Here's the line for lectura from my

/etc/hosts:

192.12.69.186 lec

It'd be an unusual situation for the IP address for lectura to be changed but if it ever should, you'd need to update

that /etc/hosts entry.

I use sudo vi /etc/hosts to edit that file on my Mac but you can use any editor.

Windows has a corresponding file but it's a longer story. Here's a link for what looks to be a pretty good how-to:

http://www.rackspace.com/knowledge_center/article/how-do-i-modify-my-hosts-file

Once you've done this, just about everywhere you used to type lectura.cs.arizona.edu you can type just

lec instead. That works in PuTTY, WinSCP, Emacs, on the command line, and lots more.

If you're doing web development, a handy addition to the 127.0.0.1 entry is just an "l" (L).

127.0.0.1 localhost l

With that you can hit l://... instead of localhost://...

Page 4

	q1
	q2
	q3
	q4
	q5
	q6
	q7
	q8
	q9
	q10
	q11
	q12
	q13
	q14

