
CSC 372, Spring 2016
Assignment 10

Due: Wednesday, May 4 at 23:59:59

The Usual Stuff

Make an a10 symlink that references /cs/www/classes/cs372/spring16/a10.  Test using
a10/tester (or a10/t).  Use SWI Prolog—swipl on lectura.  The rules about using if-then-
else and disjunction (;) are the same as for assignments 8 and 9.

General advice

If you think you need to use arithmetic or something like between on rotate, outin, and/or btw,
problems you're probably not understanding how Prolog naturally generates alternatives.  The slides have
code for a number of predicates that generate alternatives but sf_gen on 201-202 was included
specifically to help with outin and btw.

pipes.pl is the only problem on which using assert and retract is appropriate.

Problem 1. (2 points) rotate.pl

Write a Prolog predicate rotate(+L,?R) that instantiates R to each unique list that is a left rotation of
L.  For example, the list [1,2,3] can be rotated left to produce [2,3,1] which in turn can be rotated
left again to produce [3,1,2].

?- rotate([1,2,3],L), writeln(L), fail.
[1,2,3]
[2,3,1]
[3,1,2]
false.

?- rotate([a,b,c,d],R).
R = [a, b, c, d] ;
R = [b, c, d, a] ;
R = [c, d, a, b] ;
R = [d, a, b, c] ;
false.

?- rotate([1], R).
R = [1] ;
false.

?- rotate([], R).
false.

Additionally, rotate can be asked whether the second term is a rotation of the first term:

?- rotate([a,b,c],[c,a,b]).
true ;
false.

?- rotate([a,b,c],[c,b,a]).
false.
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Problem 2. (3 points) ints.pl

Write a Prolog predicate ints(-L) that instantiates L to successively longer lists of the integers. 

?- ints(L).
L = [0] ;
L = [0, 1] ;
L = [0, 1, -1] ;
L = [0, 1, -1, 2] ;
L = [0, 1, -1, 2, -2] ;
L = [0, 1, -1, 2, -2, 3] ;
L = [0, 1, -1, 2, -2, 3, -3] ;
...

Problem 3. (3 points) outin.pl

Write a Prolog predicate outin(+L,?R) that generates the elements of the list L in an "outside-in"
sequence: the first element, the last element, the second element, the next to last element, etc.  If the list
has an odd number of elements, the middle element is the last one generated.

Restriction: You may not use is/2.

?- outin([1,2,3,4,5],X).
X = 1 ;
X = 5 ;
X = 2 ;
X = 4 ;
X = 3 ;
false.

?- outin([1,2,3,4],X).
X = 1 ;
X = 4 ;
X = 2 ;
X = 3 ;
false.

?- outin([1],X).
X = 1 ;
false.

?- outin([],X).
false.

Problem 4. (3 points)  btw.pl

Write a Prolog predicate btw(+L,+X,?R) that instantiates R to copies of L with X inserted between
each element in turn.

Restriction: You may not use append or between.

?- btw([1,2,3,4,5],---,R).
R = [1, ---, 2, 3, 4, 5] ;
R = [1, 2, ---, 3, 4, 5] ;
R = [1, 2, 3, ---, 4, 5] ;
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R = [1, 2, 3, 4, ---, 5] ;
false.

?- btw([1,2],***,R).
R = [1, ***, 2] ;
false.

?- btw([1],***,R).
false.

?- btw([],x,R).
false.

Problem 5. (20 points)  fsort.pl

Imagine that you have a stack of pancakes of varying diameters that is represented by a list of integers. 
The list [3,1,5] represents a stack of three pancakes with diameters of 3", 1" and 5" where the 3"
pancake is on the top and the 5" pancake is on the bottom.  If a spatula is inserted below the 1" pancake
(putting the stack [3,1] on the spatula) and then flipped over, the resulting stack is [1,3,5].

In this problem you are to write a predicate fsort(+Pancakes,-Flips) that instantiates Flips to
a sequence of flip positions that will order Pancakes, an integer list, from smallest to largest, with the
largest pancake (integer) on the bottom (at the end of the list).  fsort stands for "flip sort".

fsort does not produce a sorted list—its only result is the flip sequence.

The flip position is defined as the number of pancakes on the spatula.  In the above example the flip
position is 2.  Flips would be instantiated to [2].

Below are some examples.  Note the use of a set of case facts to show a series of examples with one
query.

% cat fsortcases.pl
case(a, [3,1,5]).
case(b, [5,4,3,2,1]).
case(c, [3,4,5,1,2]).
case(d, [5,1,3,1,4,2]).
case(e, [1,2,3,4]).
case(f, [5]).

% swipl
...
?- [fsortcases,fsort].
% fsortcases compiled 0.00 sec, 7 clauses
% fsort compiled 0.00 sec, 10 clauses
true.

?- case(_,L), fsort(L,Flips).
L = [3, 1, 5],
Flips = [2] ;

L = [5, 4, 3, 2, 1],
Flips = [5] ;

L = [3, 4, 5, 1, 2],
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Flips = [3, 5, 2] ;

L = [5, 1, 3, 1, 4, 2],
Flips = [6, 2, 5, 2, 4, 3] ;

L = [1, 2, 3, 4],
Flips = [] ;

L = [5],
Flips = [].

Your solution needs only to produce a sequence of flips that results in a sorted stack; the sequences it
produces do NOT need to match the sequences shown above.  There are some requirements on the flips,
however: (1) All flips must be between 2 and the number of pancakes, inclusive.  (2) There must be no
consecutive identical flips, like [5,3,3,4]. (3)  fsort must always generate exactly one solution.  

You may assume that stacks always have at least one pancake and that pancake sizes are always greater
than zero.

"Pancake sorting" is a well-known problem.  I first encountered it in 1993's Internet Programming
Contest.  There's even a Wikipedia article about pancake sorting.  (Read it!)  I debated whether to go with
this problem because it's so well known but it's a fun problem and it's interesting to solve in Prolog, so
here it is.  I did Google up one "solution" in Prolog but it's got some issues!  I strongly encourage you to
build your Prolog skills by solving this problem without Google's assistance.

The clauses in my current solution have a total of seventeen goals.  I don't use is/2 at all.  I do use
max_list.  You might find nth0 to be useful; if you look slide closely you'll see it can be used to both
extract values and find values, among other things.  There's an nth1, too, if you find one-based thinking
to be a better choice.

I've placed this problem, fsort.pl, early in the line-up in hopes of getting you thinking about it

early but don't get hung up on it.

Problem 6. (15 points)  pipes.pl

In this problem you are to write a simple command interpreter to perform manipulations on a set of pipes.
These are pipes like you buy at Home Depot, not UNIX pipes!  Each pipe has a name, length, and
diameter.

The commands for the interpreter are in the form of Prolog terms.  The calculator shown on slide 219 and
following is a good starting point for this problem.

The interpreter provides the following commands:

  pipes Show the current set of pipes.  The pipes are shown in alphabetical order by name.  

  weld(A, B)
The pipe named B is welded onto the pipe named A.  A and B must have the same
diameter.  After welding, A has the combined length of A and B.  Pipe B no longer exists.

  cut(A, L, B)
A section of length L is cut from the pipe named A.  The section cut off becomes a pipe
named B having the same diameter as A.  L must be less than the length of A.
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  trim(A,L) A section of length L is cut from the pipe named A and discarded. L must be less than the
length of A.

  help Print a help message with a brief summary of the commands.

  echo Toggle command echo and prompting.  (See below for details on this.)

Assume that all lengths are integers.

Use a predicate such as setN to establish a set of pipes to work with:

set1 :-
    retractall(pipe(_,_,_)),
    assert(pipe(a,10,1)),
    assert(pipe(b,5,1)),
    assert(pipe(c,20,2)).

The command interpreter is started with the predicate run/0.

A session with the interpreter is shown below.  No blank lines have been inserted or deleted.

% swipl -l pipes
...

?- set1.
true.

?- run.

Command? help.
pipes -- show the current set of pipes
weld(P1,P2) -- weld P2 onto P1
cut(P1,P2Len,P2) -- cut P2Len off P1, forming P2
trim(P,Length) -- trim Length off of P
echo -- toggle command echo
help -- print this message
q -- quit

Command? pipes.
a, length: 10, diameter: 1
b, length: 5, diameter: 1
c, length: 20, diameter: 2

Command? weld(a,b).
b welded onto a

Command? pipes.
a, length: 15, diameter: 1
c, length: 20, diameter: 2

Command? trim(a,12).
12 trimmed from a

Command? pipes.
a, length: 3, diameter: 1
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c, length: 20, diameter: 2

Command? cut(c,10,d).
10 cut from c to form d

Command? pipes.
a, length: 3, diameter: 1
c, length: 10, diameter: 2
d, length: 10, diameter: 2

Command? cut(c,6,c1).
6 cut from c to form c1

Command? pipes.
a, length: 3, diameter: 1
c, length: 4, diameter: 2
c1, length: 6, diameter: 2
d, length: 10, diameter: 2

Command? weld(d,c1).
c1 welded onto d

Command? pipes.
a, length: 3, diameter: 1
c, length: 4, diameter: 2
d, length: 16, diameter: 2

Command? q.
true.

Your implementation must handle four errors:

Cutting or welding a pipe that doesn't exist.

Cutting with a result pipe that does exist.

Cutting the full length (or more) of a pipe with cut or trim.

Welding pipes with differing diameters.

If an error is detected, the pipes are unchanged.  Here are examples of error handling:

Command? pipes.
a, length: 10, diameter: 1
b, length: 5, diameter: 1
c, length: 20, diameter: 2

Command? cut(x,10,y).
x: No such pipe

Command? weld(x,y).
x: No such pipe

Command? weld(a,x).
x: No such pipe
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Command? cut(a,5,b).
b: pipe already exists

Command? cut(a,10,a2).
Cut is too long!

Command? trim(a,15).
Cut is too long!

Command? weld(a,c).
Can't weld: differing diameters

Command? pipes.
a, length: 10, diameter: 1
b, length: 5, diameter: 1
c, length: 20, diameter: 2

Prompting, and the echo command

Don't use write('\nCommand? ') to prompt the user.  Instead, use the built-in prompt/2 to set
the prompt, like this: prompt(_, '\nCommand? ').  Then when read(X) is called,
'\nCommand? ' will automatically be printed first.

To make tester output more usable there is an echo command.  By default, the Command? prompt is
printed and the command entered is not echoed.  The echo command toggles both behaviors: entering
echo causes prompting to be turned off and echo to be turned on.  A subsequent echo command reverts
to the default behavior.  In the following example, the text typed by the user is in bold and underlined:

?- run.

Command? cut(a,1,a2).
1 cut from a to form a2

Command? echo.
Echo turned on; prompt turned off
cut(a,1,a3).

Command: cut(a,1,a3)
1 cut from a to form a3
pipes.

Command: pipes
a, length: 8, diameter: 1
a2, length: 1, diameter: 1
a3, length: 1, diameter: 1
b, length: 5, diameter: 1
c, length: 20, diameter: 2
weld(a,a2).

Command: weld(a,a2)
a2 welded onto a
echo.

Command: echo
Echo turned off; prompt turned on
Command? q.
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true.

?-
 

Implementing the toggling of echoing is a little tricky.  Here's a sketchy hint, for students who want a
challenge:

Manipulate an echo/0 fact with assert(echo) and retract(echo).   To produce no
prompt at all, use the built-in prompt/2 like this: prompt(_, '').

Important: to allow that manipulation of echo/0 with assert and retract you'll need to
declare echo as dynamic.  Have the following line as the first line in your pipes.pl:

:-dynamic(echo/0).

A more detailed hint is in http://www.cs.arizona.edu/classes/cs372/spring16/a10/echo-hint.html

TL;DR

The built-in help provides a quick summary:

?- run.

Command? help.
pipes -- show the current set of pipes
weld(P1,P2) -- weld P2 onto P1
cut(P1,P2Len,P2) -- cut P2Len off P1, forming P2
trim(P,Length) -- trim Length off of P
echo -- toggle command echo
help -- print this message
q -- quit

And, handle these errors:
     Cutting or welding a pipe that doesn't exist.
     Cutting with a result pipe that does exist.
     Cutting the full length (or more) of a pipe with cut or trim.
     Welding pipes with differing diameters.

I won't test with cases involving multiple errors, like a too-long cut that names an existing pipe as the
result.

Problem 7. (20 points)  connect.pl

In this problem you are to write a predicate connect that finds and displays a suitable sequence of
cables to connect two pieces of equipment that are some distance apart.  Each cable is specified by a
three element list.  Here is a list that represents a twelve-foot cable with a male connector on one end and
a female connector on the other:

[m,12,f]

Let's consider an example of using connect to produce a sequence of cables.  Imagine that to your left
is a piece of equipment with a male connector.  On your right, fifteen feet away, is a piece of equipment
with a female connector.  To connect the equipment you have two cables:
     •  A ten-footer with a male connector on one end and a female on the other.

Page 8 of 15

http://www.cs.arizona.edu/classes/cs372/spring16/a10/echo-hint.html


     •  A seven-footer with a female connector on one end and a male on the other.

The following query represents the situation described above.

?- connect([ [m,10,f], [f,7,m] ], m, 15, f).

connect's first argument is a list with the two cables.  The second, third, and fourth arguments
respectively represent the gender of the connector of the equipment on the left (male—m), the distance
between the equipment (15 feet), and the gender of the connector of the equipment on the right
(female—f).

Here's the query and its result:

?- connect([ [m,10,f], [f,7,m] ], m, 15, f).
F----------MF-------M
true.

We see that a connection is possible in this case; a valid sequence of connections is shown.  Observe that
the first cable was reversed to make the connection. The number of dashes is the length of the cable. 
There's some slack in the connection—only fifteen feet needs to be spanned but the total length of the
tables is seventeen feet.  That's fine.

Note that the output has no representation of the pieces of equipment on the left and right that we're
connecting with the cables.

Only male/female connections are valid in the world of connect.pl.

In some cases a connection cannot be made, but connect always succeeds:

?- connect([[m,10,f], [f,7,m] ], m, 25, f).
Cannot connect
true.

?- connect([[m,10,f], [f,7,m] ], m, 15, m).
Cannot connect
true.

More examples:

?- connect([[m,1,m],[f,1,f],[m,10,m],[f,5,f],[m,3,f]], m, 20, f).
F-FM-MF-----FM----------MF---M
true.

?- connect([[m,1,m],[f,1,f],[m,10,m],[f,5,f],[m,3,f]], m, 20, m).
Cannot connect
true.

?- connect([[m,1,m],[f,1,f],[m,10,m],[f,5,f],[m,3,f]], m, 10, f).
F-FM-MF-----FM----------M
true.

?- connect([[m,10,f]], m, 1, f).
F----------M
true.
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IMPORTANT: The ordering of cables your solution produces for a particular connection need NOT
match that shown above.  Any valid ordering is suitable.  (A Ruby program, a10/pc.rb, analyzes the
output.)

Assume the arguments to connect are valid—you won't see two-element lists, non-numeric or non-
positive lengths, ends other than f and m, etc.  Assume that all lengths are integers.  Assume that the
distance to span is greater than zero.

You can approach this problem using an approach similar to that in the pit-crossing example in the slides. 

Note that you do not need to use all the cables or exactly span the distance.

My current solution is around 25 goals; about a third of those are related to producing the required
output.

Problem 8. (8 points)  buy.pl

In this problem the task is to print a bill of sale for a collection of items.  Several predicates provide
information about the items.  The first is item/2, which associates an item name with a description:

item(toaster, 'Deluxe Toast-a-matic').
item(antfarm, 'Ant Farm').
item(dip, 'French Onion Dip').
item(twinkies, 'Twinkies').
item(lips, 'Chicken Lips').
item(hamster, 'Hamster').
item(rocket, 'Model rocket w/ payload bay').
item(scissors, 'StaySharp Scissors').
item(rshoes, 'Running Shoes').
item(tiger, 'Sumatran tiger').
item(catnip, '50-pound bag of catnip').

The second predicate is price/2, which associates an item name with a price in dollars:

price(toaster, 14.00).
price(antfarm, 7.95).
price(dip, 1.29).
price(twinkies, 0.75).
price(lips, 0.05).
price(hamster, 4.00).
price(rocket, 12.49).
price(scissors, 2.99).
price(rshoes, 59.99).
price(tiger, 749.95).

The third is discount/2, which associates a discount percentage with some, possibly none, of the
items:

discount(antfarm, 20).
discount(lips, 40).
discount(rshoes, 10).

Finally, state law prohibits same-day purchase of some items.  dontmix/2 specifies prohibitions.  Here
are some examples:
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dontmix(scissors,rshoes).
dontmix(hamster,rocket).
dontmix(tiger,catnip).

You can only ensure that any prohibited pairings are not included in a single purchase; the well-
intentioned prohibitions can be thwarted by making multiple trips to the store!

You are to write a predicate buy(+Items) that prints a bill of sale for the specified items.  If any
mutually prohibited items are in the list, that should be noted and no bill printed.

?- buy([hamster,twinkies,hamster,toaster]).
Hamster.............................4.00
Twinkies............................0.75
Hamster.............................4.00
Deluxe Toast-a-matic...............14.00
----------------------------------------
Total                             $22.75
true.

?- buy([lips,lips,lips,dip]).
Chicken Lips........................0.03
Chicken Lips........................0.03
Chicken Lips........................0.03
French Onion Dip....................1.29
----------------------------------------
Total                              $1.38
true.

?- buy([scissors,dip,rshoes]).
State law prohibits same-day purchase of "Running Shoes" and
"StaySharp Scissors".
true.

You may assume that all items named in a buy are valid and that a price exists for every item.

Prohibited items are shown in alphabetical order.  If several mutually prohibited items are named in the
same buy only the first conflict is noted.

Here's the format/2 specification I use to produce the per-item lines: '~w~`.t~2f~40|~n'.  The
backquote-period sequence causes the enclosing tab to fill with periods.

A set of facts for testing is in a10/buyfacts.pl .  Include the line

:-[a10/buyfacts].

in your buy.pl to consult the file.  For grading I may tests with other sets of facts, too.

Problem 9. (8 points)  mishaps.pl

The following logic puzzle, "Rural Mishaps", was written by Margaret Shoop.  It was published in The
Dell Book of Logic Problems #2.

"A butt by the family cow was one of the five different mishaps that befell Farmer Brown, his
wife, his daughter, his teenage son, and his farmhand one summer morning.  From the rhyme that
follows, can you determine the mishap that happened to each of the five, and the order in which
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the events occurred?

"The garter snake was surprised in a patch
And bit a grown man's finger.
One person who weeded a flower bed
Received a nasty stinger.
The farmer's mishap happened first;
Son Johnny's happened third.
When Mr. Reston was kicked by the mule,
He said, "My word! My word!"
The sting of the bee was the fourth mishap
To befall our rural cast.
Neither it nor the wasp attacked Mrs. Brown
Whose mishap wasn't the last."

For mishaps.pl you are to encode as Prolog goals the pertinent information in the above rhyme and
then write a predicate mishaps/0 that uses those goals to solve the puzzle.

a10/mishaps.out shows a run of mishaps/0 with the exact output you are to produce, but you
might enjoy the challenge of solving the puzzle using Prolog before looking at the expected output or
trying the tester.

The challenge of this problem is of course the encoding of the information as Prolog goals.  Solutions
must both produce the correct output and accurately encode the information as stated in the
rhyme to earn full credit.  The tester will check for correct output; we'll check manually for accurate
encoding.

Implementation notes

Obviously, this problem is in the style of The Zebra Puzzle, which starts on slide 254.  The code for the
Zebra Puzzle establishes a number of constraints for the list Houses.  In this problem you'll want to
establish constraints for a list of mishaps instead of a list of houses.

You might start like this:

mishaps(Mishaps) :- Mishaps = [ ... ].

A similar start for the Zebra puzzle would be this:

zebra(Houses) :- Houses = [house(norwegian, _, _, _, _), _, 
house(_, _, _, milk, _), _, _].

Querying zebra(H) produces only one possible value for H, the list of houses:

?- zebra(H).
H = [house(norwegian, _G1222, _G1223, _G1224, _G1225), _G1227,
house(_G1233, _G1234, _G1235, milk, _G1237), _G1239, _G1242].

Let's add a member goal that encodes the statement that the Englishman lives in the red house:

zebra(Houses) :- Houses = [house(norwegian, _, _, _, _), _,
                           house(_, _, _, milk, _), _, _],
                 member(house(englishman, _, _, _, red), Houses).
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Now we get four possible values for H: (blank lines added)

?- zebra(H).
H = [house(norwegian, _G2194, _G2195, _G2196, _G2197),
house(englishman, _G2218, _G2219, _G2220, red), house(_G2205,
_G2206, _G2207, milk, _G2209), _G2211, _G2214] ;

H = [house(norwegian, _G2194, _G2195, _G2196, _G2197), _G2199,
house(englishman, _G2206, _G2207, milk, red), _G2211, _G2214] ;

H = [house(norwegian, _G2194, _G2195, _G2196, _G2197), _G2199,
house(_G2205, _G2206, _G2207, milk, _G2209), house(englishman,
_G2218, _G2219, _G2220, red), _G2214] ;

H = [house(norwegian, _G2194, _G2195, _G2196, _G2197), _G2199,
house(_G2205, _G2206, _G2207, milk, _G2209), _G2211,
house(englishman, _G2218, _G2219, _G2220, red)].

?- findall(r, zebra(H), Results), length(Results,N).
Results = [r, r, r, r],
N = 4.

If we add a goal that states that the Spaniard owns the dog, we go up to twelve possible values for H:

zebra(Houses) :- Houses = [house(norwegian, _, _, _, _), _,
                       house(_, _, _, milk, _), _, _],
                 member(house(englishman, _, _, _, red), Houses),
                 member(house(spaniard, dog, _, _, _), Houses).

?- findall(r, zebra(H), Results), length(Results,N).
Results = [r, r, r, r, r, r, r, r, r|...],
N = 12. 

Some goals will make the number of possible values for the list of houses go up, and other goals will
make the number of possible values go down.  If we properly encode all the information, we'll end up
with only one possible value for the list of houses.

Follow a similar process when adding goals to represent information about the mishaps.  That is,
add goals to mishaps/1 one at a time.  Query mishaps(M) after each addition.

If we inadvertently introduce a contradiction, like length(Houses,6), we'd see this:

?- zebra(H).
false.

If you add a goal and find that mishaps(M)then fails, you'll need to step back and consider why that
new goal creates a situation with no possible solutions.  You might try leaving the new goal in place and
commenting one or more earlier goals to find the conflict.

When you've got mishaps/1 working—producing a single possibility for the list of mishaps—use it to
write mishaps/0.
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Problem 10. Extra Credit  observations.txt

Submit a plain text file named observations.txt with...

(a) (1 point extra credit) An estimate of how long it took you to complete this assignment. To facilitate
programmatic extraction of the hours from all submissions have an estimate of hours on a line by itself,
more or less like one of the following three examples:

Hours: 6
Hours: 3-4.5
Hours: ~8

If you want the one-point bonus, be sure to report your total (estimated) hours on a line that starts with
"Hours:".  There must be only one "Hours:" line in observations.txt.  It's fine if you care to
provide per-problem times, and that data is useful to us, but report it in some form of your own invention,
not with multiple lines that contain "Hours:", in either upper- or lower-case.

Other comments about the assignment are welcome, too. Was it too long, too hard, too detailed?  Speak
up!  I appreciate all feedback, favorable or not.

(b) (1-3 points extra credit) Cite an interesting course-related observation (or observations) that you made
while working on the assignment. The observation should have at least a little bit of depth. Think of me
saying "Good!" as one point, "Excellent!" as two points, and "Wow!" as three points. I'm looking for
quality, not quantity.

Turning in your work

Use a10/turnin to submit your work.

Here's what I see as of press time for the sizes of my solutions, with comments stripped:

$ a10/plsize $(grep -v txt a10/delivs)
rotate.pl: 10
ints.pl: 22
outin.pl: 9
btw.pl: 13
fsort.pl: 54
pipes.pl: 262
connect.pl: 100
buy.pl: 65
mishaps.pl: 77

Miscellaneous

Aside from -> and ;, and any per-problem restrictions notwithstanding, you can use any elements of
Prolog that you desire, but the assignment is written with the intention that it can be completed easily
using only the material presented on Prolog slides 1-272.

Point values of problems correspond directly to assignment points in the syllabus.  For example, a 10-
point problem on this assignment corresponds to 1% of your final grade in the course.

Feel free to use comments to document your code as you see fit, but note that no comments are required,
and no points will be awarded for documentation itself. (In other words, no part of your score will be
based on documentation.)   In Prolog, % is comment to end of line.  Comments with /* ... */, just

Page 14 of 15



like in Java, are supported, too.

Remember that late assignments are not accepted and that there are no late days; but if circumstances
beyond your control interfere with your work on this assignment, there may be grounds for an extension. 
See the syllabus for details.

My estimate is that it will take a typical CS junior from 10 to 12 hours to complete this assignment.

Our goal is that everybody gets 100% on this assignment AND gets it done in an amount of time
that is reasonable for them.

If you put twelve hours into this assignment and don't seem to be close to
completing it, it's definitely time to touch base with us, regardless of whether
you have any questions.   Specifically mention that you've reached twelve
hours.  Give us a chance to speed you up!

I hate to have to mention it but keep in mind that cheaters don't get a second chance.  If you give your
code to somebody else and they turn it in, you'll both likely fail the class, get a permanent transcript
notation stating you cheated, and maybe more.  See the syllabus for the details.
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