
Functional
Programming with

Haskell
CSC 372, Spring 2016

The University of Arizona
William H. Mitchell

whm@cs
!

CSC!372!Spring!2016,!Haskell!Slide!1!

Programming Paradigms

CSC!372!Spring!2016,!Haskell!Slide!2!

Thomas Kuhn's The Structure of Scientific Revolutions (1962)
describes a paradigm as a scientific achievement that is...

•  "...sufficiently unprecedented to attract an enduring group
of adherents away from competing modes of scientific
activity."

•  "...sufficiently open-ended to leave all sorts of problems
for the redefined group of practitioners to resolve."

Kuhn cites works such as Newton's Principia, Lavoisier's
Chemistry, and Lyell's Geology as serving to document
paradigms.

Paradigms

CSC!372!Spring!2016,!Haskell!Slide!3!

A paradigm provides a conceptual framework for
understanding and solving problems.

A paradigm has a world view, a vocabulary, and a set of
techniques that can be applied to solve a problem.

 (Another theme for us.)

A question to keep in mind:

What are the problems that programming paradigms
attempt to solve?

Paradigms, continued

CSC!372!Spring!2016,!Haskell!Slide!4!

From the early days of programming into the 1980s the
dominant paradigm was procedural programming:

Programs are composed of bodies of code (procedures) that
manipulate individual data elements or structures.

Much study was focused on how best to decompose a large
computation into a set of procedures and a sequence of calls.

Languages like FORTRAN, COBOL, Pascal, and C facilitate
procedural programming.

Java programs with a single class are typically examples of
procedural programming.

The procedural programming paradigm

CSC!372!Spring!2016,!Haskell!Slide!5!

In the 1990s, object-oriented programming became the
dominant paradigm. Problems are solved by creating systems
of objects that interact.

"Instead of a bit-grinding processor plundering data
structures, we have a universe of well-behaved objects that
courteously ask each other to carry out their various
desires."—Dan Ingalls

Study shifted from how to decompose computations into
procedures to how to model systems as interacting objects.

Languages like C++ and Java facilitate use of an object-
oriented paradigm.

The object-oriented programming paradigm

CSC!372!Spring!2016,!Haskell!Slide!6!

The programming paradigm(s) we know affect how we
approach problems.

If we use the procedural paradigm, we'll first think about
breaking down a computation into a series of steps.

If we use the object-oriented paradigm, we'll first think about
modeling the problem with a set of objects and then consider
their interactions.

The influence of paradigms

CSC!372!Spring!2016,!Haskell!Slide!7!

If a language makes it easy and efficient to use a particular
paradigm, we say that the language supports the paradigm.

What language features are required to support procedural
programming?
•  The ability to break programs into procedures.

What language features does OO programming require, for OO
programming as you know it?
•  Ability to define classes that comprise data and methods
•  Ability to specify inheritance between classes

Language support for programming paradigms

CSC!372!Spring!2016,!Haskell!Slide!8!

Paradigms in a field of science are often incompatible.
 Example: geocentric vs. heliocentric model of the universe

Can a programming language support multiple paradigms?

 Yes! We can do procedural programming with Java.

The programming language Leda fully supports the procedural,
imperative, object-oriented, functional, and logic programming
paradigms.

Wikipedia's Programming_paradigm cites 60+ paradigms!

But, are "programming paradigms" really paradigms by Kuhn's
definition or are they just characteristics?

Multiple paradigms

CSC!372!Spring!2016,!Haskell!Slide!9!

The imperative paradigm has its roots in programming at the
machine level.

Machine-level programming:
•  Instructions change memory locations or registers
•  Instructions alter the flow of control

Programming with an imperative language:
•  Expressions compute values based on memory contents
•  Assignments alter memory contents
•  Control structures guide the flow of control, perhaps

iterating to accumulate a result.

The imperative programming paradigm

CSC!372!Spring!2016,!Haskell!Slide!10!

Solutions using the procedural or object-oriented paradigms
typically make use of the imperative programming paradigm, too.

Two fundamental characteristics of languages that support the
imperative paradigm:

•  "Variables"—data objects whose values typically change as

execution proceeds.

•  Support for iteration—a “while” control structure, for

example.

The imperative programming paradigm

CSC!372!Spring!2016,!Haskell!Slide!11!

Here's an imperative solution in Java to sum the integers in an
array:

 int sum(int a[])
 {
 int sum = 0;
 for (int i = 0; i < a.length; i++)
 sum += a[i];

 return sum;
 }

The for loop causes i to vary over the indices of the array, as
the variable sum accumulates the result.

How can the above solution be improved?

Imperative programming, continued

CSC!372!Spring!2016,!Haskell!Slide!12!

With Java's "enhanced for", also known as a for-each loop, we
can avoid array indexing.

 int sum(int a[])
 {
 int sum = 0;
 for (int val: a)
 sum += val;

 return sum;
 }

Is this an improvement? If so, why?

Can we write sum in a non-imperative way?

Imperative programming, continued

CSC!372!Spring!2016,!Haskell!Slide!13!

We can use recursion to get rid of loops and assignments,
but...ouch!

 int sum(int a[]) { return sum(a, 0); }

 int sum(int a[], int i)
 {
 if (i == a.length)
 return 0;
 else
 return a[i] + sum(a, i+1);
 }

Wrt. correctness, which of the three versions would you bet
your job on?

Imperative programming, continued

CSC!372!Spring!2016,!Haskell!Slide!14!

Programming paradigms can apply at different levels:

•  Making a choice between procedural and object-oriented
programming fundamentally determines the high-level structure
of a program.

•  The imperative paradigm is focused more on the small aspects
of programming—how code looks at the line-by-line level.

Java combines the object-oriented and imperative paradigms.

The procedural and object-oriented paradigms apply to
programming in the large.

The imperative paradigm applies to programming in the small.

The level of a paradigm

CSC!372!Spring!2016,!Haskell!Slide!15!

Background:
Value, type, side effect

CSC!372!Spring!2016,!Haskell!Slide!16!

An expression is a sequence of symbols that can be evaluated to produce a
value.

Here are some Java expressions:

 'x'
 i + j * k
 f(args.length * 2) + n

There are three questions that are commonly considered when looking at
an expression in conventional languages like Java and C:

•  What value does the expression produce?

•  What's the type of that value?

•  Does the expression have any side effects?

Mnemonic aid: Imagine you're wearing a vest that's reversed.
 "vest" reversed is "t-se-v": type/side-effect/value.

Value, type, and side effect

CSC!372!Spring!2016,!Haskell!Slide!17!

What is the value of the following Java expressions?
3 + 4
 7

1 < 2
 true

"abc".charAt(1)
 'b'

s = "3" + 4
 "34"

"a,bb,c3".split(",")
 An array with three elements: "a", "bb" and "c3"

"a,bb,c3".split(",")[2]
 "c3"

"a,bb,c3".split(",")[2].charAt(0) == 'X'
 false

Value, type, and side effect, continued

CSC!372!Spring!2016,!Haskell!Slide!18!

What is the type of each of the following Java expressions?
3 + 4
 int

1 < 2
 boolean

"abc".charAt(1)
 char

s = "3" + 4
 String

"a,bb,c3".split(",")
 String []

"a,bb,c3".split(",")[2]
 String

"a,bb,c3".split(",")[2].charAt(0) == 'X'
 boolean

Value, type, and side effect, continued

When we ask,
"What's the type of this expression?"

we're actually asking this:
"What's the type of the value produced by this
expression?"

CSC!372!Spring!2016,!Haskell!Slide!19!

A "side effect" is a change to the program's observable data or
to the state of the environment in which the program runs.

Which of these Java expressions have a side effect?

x + 3 * y
 No side effect. A computation was done but no
evidence of it remains.

x += 3 * y
 Side effect: 3 * y is added to x.

s.length() > 2 || s.charAt(1) == '#'

 No side effect. A computation was done but no evidence
of it remains.

Value, type, and side effect, continued

CSC!372!Spring!2016,!Haskell!Slide!20!

More expressions to consider wrt. side effects:

"testing".toUpperCase()

 A string "TESTING" was created somewhere but we
can't get to it. No side effect.

L.add("x"), where L is an ArrayList

 An element was added to L. Definitely a side-effect!

System.out.println("Hello!")
 Side effect: "Hello!" went somewhere.

window.checkSize()
 We can't tell without looking at window.checkSize()!

Value, type, and side effect, continued

CSC!372!Spring!2016,!Haskell!Slide!21!

Side effects are the hallmark of imperative programing.

Programs written in an imperative style are essentially an
orchestration of side effects.

Recall:

 int sum = 0;
 for (int i = 0; i < a.length; i++)
 sum += a[i];

Can we program without side effects?

The hallmark of imperative programming

CSC!372!Spring!2016,!Haskell!Slide!22!

The Functional Paradigm

CSC!372!Spring!2016,!Haskell!Slide!23!

A key characteristic of the functional paradigm is writing
functions that are like pure mathematical functions.

Pure mathematical functions:

•  Always produce the same value for given input(s)

•  Have no side effects

•  Can be easily combined to produce more powerful
functions

Ideally, functions are specified with notation that's similar to
what you see in math books—cases and expressions.

The functional programming paradigm

CSC!372!Spring!2016,!Haskell!Slide!24!

Other characteristics of the functional paradigm:

•  Values are never changed but lots of new values are

created.

•  Recursion is used in place of iteration.

•  Functions are values. Functions are put into data
structures, passed to functions, and returned from
functions. Lots of temporary functions are created.

Based on the above, how well would Java support functional
programming? How about C?

Functional programming, continued

CSC!372!Spring!2016,!Haskell!Slide!25!

Haskell basics

CSC!372!Spring!2016,!Haskell!Slide!26!

Haskell is a pure functional programming language; it has no
imperative features.

Was designed by a committee with the goal of creating a
standard language for research into functional programming.

First version appeared in 1990. Latest version is known as
Haskell 2010.

Is said to be non-strict—it supports lazy evaluation.

It is not object-oriented in any way.

What is Haskell?

CSC!372!Spring!2016,!Haskell!Slide!27!

Website: haskell.org
 All sorts of resources!

Books: (on Safari, too)
 Learn You a Haskell for Great Good!, by Miran Lipovača
 http://learnyouahaskell.com (Known as LYAH.)

Programming in Haskell, by Hutton

 Note: See appendix B for mapping of non-ASCII chars!

Real World Haskell, by O'Sullivan, Stewart, and Goerzen
 http://realworldhaskell.org (I'll call it RWH.)

Haskell 2010 Report (I'll call it H10.)

 http://haskell.org/definition/haskell2010.pdf

Haskell resources

CSC!372!Spring!2016,!Haskell!Slide!28!

On lectura we can interact with Haskell by running ghci:

% ghci
GHCi, version 7.4.1: ...more... :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
>

With no arguments, ghci starts a read-eval-print loop (REPL)—
expressions that we type at the prompt (>) are evaluated and the
result is printed.

Note: the standard prompt is Prelude> but I've got

 :set prompt "> "
in my ~/.ghci file.

Interacting with Haskell

CSC!372!Spring!2016,!Haskell!Slide!29!

Let's try some expressions with ghci:

 > 3+4
7

> 3 * 4.5
13.5

> (3 > 4) || (5 < 7)
True

> 2 ^ 200
160693804425899027554196209234116260252220299378
2792835301376

> "abc" ++ "xyz"
"abcxyz"

Interacting with Haskell, continued

CSC!372!Spring!2016,!Haskell!Slide!30!

Go live!

We can use :help to see available commands:
> :help
 Commands available from the prompt:
 <statement> evaluate/run <statement>
 : repeat last command
 :{\n ..lines.. \n:}\n multiline command
 ...lots more...

Interacting with Haskell, continued

CSC!372!Spring!2016,!Haskell!Slide!31!

The command :set +t causes types to be shown:
> :set +t
> 3+4
7
it :: Integer

> 3 == 4
False
it :: Bool

"::" is read as "has type". The value of the expression is
"bound" to the name it.

Note that :set +t is not a Haskell expression––it's a command
recognized by ghci.

Interacting with Haskell, continued

CSC!372!Spring!2016,!Haskell!Slide!32!

We can use it in subsequent computations:

> 3+4
7
it :: Integer

> it + it * it
56
it :: Integer

> it /= it
False
it :: Bool

Interacting with Haskell, continued

CSC!372!Spring!2016,!Haskell!Slide!33!

For two assignment points of extra credit:

1.  Run ghci (or WinGHCi) somewhere and try ten Haskell

expressions with some degree of variety. (Not just ten
additions, for example!) Do a :set +t at the start.

2.  Capture the output and put it in a plain text file, eca1.txt. No
need for your name, NetID, etc. in the file. No need to edit out
errors.

3.  On lectura, turn in eca1.txt with the following command:
%!turnin!372Aeca1!eca1.txt!

Due: At the start of the next lecture after we hit this slide.

Needless to say, feel free to read ahead in the slides and show
experimentation with the following material, too.

Extra Credit Assignment 1

CSC!372!Spring!2016,!Haskell!Slide!34!

lectura has version 2012.1.0.0 of the Haskell Platform, which
has version 7.4.1 of ghci but the latest version is 7.10.3.

In 7.10.x a number of functions that operate on lists were
switched to operating on "Foldable"s instead. IMO, this extra
level of abstraction makes the language harder to learn, so I
plan to avoid 7.10.x this semester.

If you want to install Haskell on your own machine, I
recommend that you get the Haskell Platform 2014.2.0.0,
which has version 7.8.3 of ghci. (URLs on next slide.)

As far as I know, there are no significant compatibility issues
between 7.8.3 and lectura's 7.4.1 that will impact our usage.

CSC!372!Spring!2016,!Haskell!Slide!35!

Haskell version issues

https://www.haskell.org/platform/prior.html has prior
versions of the Haskell Platform.

Under 2014, on the line 2014.2.0.0, August 2014 ⟹ ...

 For OS X, get "Mac OS X, 64bit".

For Windows, "Windows, 32bit" should be fine, but if
you have trouble, (1) let us know and (2) go ahead and try
the 64-bit version.

CSC!372!Spring!2016,!Haskell!Slide!36!

Haskell downloads

When ghci starts up on Linux or OS X it looks for the file
~/.ghci – a .ghci file in the user's home directory.

I have these two lines in my ~/.ghci file on both my Mac and
on lectura:

 :set prompt "> "
 :m +Text.Show.Functions

The first line simply sets the prompt to something I like.

The second line is very important:

It loads a module that allows functions to be printed as
values, although just showing <function> for function
values. Without it, lots of examples in these slides won't
work!

The ~/.ghci file

CSC!372!Spring!2016,!Haskell!Slide!37!

Goofy fact: ~/.ghci must not be group- or world-writable!

If you see something like this,

*** WARNING: /p1/hw/whm/.ghci is writable by
someone else, IGNORING!

Fix it at the shell prompt with this:
 % chmod og-w ~/.ghci

Details on .ghci and lots more can be found in

 downloads.haskell.org/~ghc/latest/docs/users_guide.pdf

CSC!372!Spring!2016,!Haskell!Slide!38!

~/.ghci, continued

On Windows, ghci and WinGHCi use a different initialization
file:

 %APPDATA%\ghc\ghci.conf
 (Note: the file is named ghci.conf, not .ghci!)

%APPDATA% represents the location of your Application
Data directory. You can find that path by typing set appdata
in a command window, like this:

C:\>set appdata
APPDATA=C:\Users\whm\Application Data

Combing the two, the full path to the file for me would be

 C:\Users\whm\Application Data\ghc\ghci.conf

~/.ghci, continued

CSC!372!Spring!2016,!Haskell!Slide!39!

Functions and function types

CSC!372!Spring!2016,!Haskell!Slide!40!

In Haskell, juxtaposition indicates a function call:

> negate 3
-3
it :: Integer

> even 5
False
it :: Bool

> pred 'C'
'B'
it :: Char

> signum 2
1
it :: Integer

Calling functions

Note: These functions and many
more are defined in the Haskell
"Prelude", which is loaded by
default when ghci starts up.

CSC!372!Spring!2016,!Haskell!Slide!41!

Function call with juxtaposition is left-associative.

signum negate 2 means (signum negate) 2

> signum negate 2
<interactive>:40:1: -- It's an error!
 No instance for (Num (a0 -> a0)) arising from a
use of `signum'
...

We add parentheses to call negate 2 first:

> signum (negate 2)
-1
it :: Integer

Calling functions, continued

CSC!372!Spring!2016,!Haskell!Slide!42!

Function call with juxtaposition has higher precedence than any
operator.

> negate 3+4
1
it :: Integer

negate 3 + 4 means (negate 3) + 4. Use parens to force + first:

> negate (3 + 4)
-7
it :: Integer

> signum (negate (3 + 4))
-1
it :: Integer

Calling functions, continued

CSC!372!Spring!2016,!Haskell!Slide!43!

Haskell's Data.Char module has a number of functions for working
with characters. We'll use it to start learning about function types.

> :m +Data.Char (:m(odule) loads a module)

> isLower 'b'
True
it :: Bool

> toUpper 'a'
'A'
it :: Char

> ord 'A'
65
it :: Int

> chr 66
'B'
it :: Char

Function types

We can also reference a function in a
module with a qualified name:

% ghci
...
> Data.Char.ord 'G'
71

CSC!372!Spring!2016,!Haskell!Slide!44!

We can use ghci's :type command to see what the type of a
function is:

> :type isLower
isLower :: Char -> Bool (read -> as "to")

The type Char -> Bool means that isLower is a function that
takes an argument of type Char and produces a result of type
Bool.

Using ghci, what are the types of toUpper, ord, and chr?

We can use :browse Data.Char to see everything in the
module.

Function types, continued

CSC!372!Spring!2016,!Haskell!Slide!45!

Like most languages, Haskell requires that expressions be type-
consistent (or well-typed).

Here is an example of an inconsistency:

> chr 'x'
<interactive>:32:5:
 Couldn't match expected type Int with actual type Char
 In the first argument of `chr', namely 'x'

> :type chr
chr :: Int -> Char

> :type 'x'
'x' :: Char

chr requires its argument to be an Int but we gave it a Char. We
can say that chr 'x' is ill-typed.

Type consistency

CSC!372!Spring!2016,!Haskell!Slide!46!

State whether each expression is well-typed and if so, its type.

'a'

isUpper

isUpper 'a'

not (isUpper 'a')

not not (isUpper 'a')

toUpper (ord 97)

isUpper (toUpper (chr 'a'))

isUpper (intToDigit 100)

Type consistency, continued

'a' :: Char

chr :: Int -> Char

digitToInt :: Char -> Int

intToDigit :: Int -> Char

isUpper :: Char -> Bool

not :: Bool -> Bool

ord :: Char -> Int

toUpper :: Char -> Char

CSC!372!Spring!2016,!Haskell!Slide!47!

ghci uses the haskeline package to provide line-editing.

A few handy bindings:

 TAB completes identifiers
 ^A Start of line
 ^E End of line
 ^R Incremental search backwards

More:

 http://trac.haskell.org/haskeline/wiki/KeyBindings

CSC!372!Spring!2016,!Haskell!Slide!48!

Sidebar: Key bindings in ghci

As we've seen, ghci provides a REPL (read-eval-print loop)
for Haskell.

What are some other languages that have a REPL available?

How does a REPL help us learn a language?

Is there a REPL for Java?

 javarepl.com

What characteristics does a language need to support a REPL?

If there's no REPL for a language, how hard is it to write one?

Sidebar: Using a REPL to help learn a language

CSC!372!Spring!2016,!Haskell!Slide!49!

Type classes

CSC!372!Spring!2016,!Haskell!Slide!50!

Recall the negate function:

> negate 5
-5
it :: Integer

> negate 5.0
-5.0
it :: Double

What's the type of negate? (Is it both Integer -> Integer
and Double -> Double??)

What's the type of negate?

CSC!372!Spring!2016,!Haskell!Slide!51!

Bool, Char, and Integer are examples of Haskell types.

Haskell also has type classes. A type class specifies the
operations must be supported on a type in order for that type to
be a member of that type class.

Num is one of the many type classes defined in the Prelude.

:info Num shows that for a type to be a Num, it must support
addition, subtraction, multiplication and four functions:
negate, abs, signNum, and fromInteger. (The Num club!)

The Prelude defines four instances of the Num type class: Int
(word-size), Integer (unlimited size), Float and Double.

Type classes

CSC!372!Spring!2016,!Haskell!Slide!52!

Here's the type of negate:
> :type negate
negate :: Num a => a -> a

The type of negate is specified using a type variable, a.

The portion a -> a specifies that negate returns a value having
the same type as its argument.

 "If you give me an Int, I'll give you back an Int."

The portion Num a => is a class constraint. It specifies that the
type a must be an instance of the type class Num.

How can we state the type of negate in English?

negate accepts any value whose type is an instance of Num.
It returns a value of the same type.

Type classes, continued

CSC!372!Spring!2016,!Haskell!Slide!53!

What type do integer literals have?
> :type 3
3 :: Num a => a

> :type (-27) -- Note: Parens needed!
(-27) :: Num a => a

Literals are typed with a class constraint of Num, so they can
be used by any function that accepts Num a => a.

Type classes, continued

CSC!372!Spring!2016,!Haskell!Slide!54!

Let's check the type of a decimal fraction:

> :type 3.4
3.4 :: Fractional a => a

Will negate 3.4 work?

> :type negate
negate :: Num a => a -> a

> negate 3.4
-3.4

Speculate: Why does it work?

Type classes, continued

CSC!372!Spring!2016,!Haskell!Slide!55!

Type classes, continued

Adapted!from!hGp://en.wikibooks.org/wiki/Haskell/Classes_and_types!

Haskell type classes form a hierarchy. The Prelude has these:

X

CSC!372!Spring!2016,!Haskell!Slide!56!

Type classes, continued
Num$

Int,!Integer,!
Float,!Double!

Frac)onal$
Float,!
Double!

The arrow from Num to Fractional means that a Fractional can
be used as a Num. (What does that remind you of?)

Given

 negate :: Num a => a -> a
and

 5.0 :: Fractional a => a
then

 negate 5.0 is valid.

Note that the bubbles also show the types that are instances of the
type class. (Do :info Num again, and :info Fractional, too.)

Excerpt:

CSC!372!Spring!2016,!Haskell!Slide!57!

What's meant by the type of truncate?
truncate :: (Integral b, RealFrac a) => a -> b

truncate accepts a type whose type class is an instance
of RealFrac but produces a type whose type class is an
instance of Integral.

LYAH pp. 27-33 has a good description of the Prelude's
type classes. ("Type Classes 101")

Note that type classes are not required for functional
programming but because Haskell makes extensive use of
them, we must learn about them.

CSC!372!Spring!2016,!Haskell!Slide!58!

Type classes, continued

In essence, negate :: Num a => a -> a describes many
functions:

 negate :: Integer -> Integer
 negate :: Int -> Int
 negate :: Float -> Float
 negate :: Double -> Double
 ...and more...

negate is a polymorphic function. It handles values of many
forms.

If a function's type has any type variables, it's a polymorphic
function.

How does Java handle this problem? How about C? C++?

negate is polymorphic

CSC!372!Spring!2016,!Haskell!Slide!59!

:set +t, :type and :info are three introspective tools that we can use
to help learn Haskell.

When learning a language, look for such tools early on.

Some type-related tools in other languages:

 Python: type(expr) and repr(expr)

 JavaScript: typeof(expr)

 PHP: var_dump(expr1, expr2, ...)

 C: sizeof(expr)

 Java: getClass()

What's a difference between ghci's :type and Java's getClass()?

CSC!372!Spring!2016,!Haskell!Slide!60!

Sidebar: LHtLaL––introspective tools

Here's a Java program that makes use of the "boxing" mechanism to show
the type of values, albeit with wrapper types for primitives.

public class exprtype {
 public static void main(String args[]) {
 int n = 1;
 showtype(n++, 3 + 'a');
 showtype(n++, 3 + 4.0);
 showtype(n++, "a,b,c".split(","));
 showtype(n++, new HashMap<String,Integer>());
 }
 private static void showtype(int num, Object o) {
 System.out.format("%d: %s\n", num, o.getClass());
 }
}

Output:
1: class java.lang.Integer
2: class java.lang.Double
3: class [Ljava.lang.String;
4: class java.util.HashMap (Note: no String or Integer––type erasure!)

Sidebar, continued

CSC!372!Spring!2016,!Haskell!Slide!61!

More on functions

CSC!372!Spring!2016,!Haskell!Slide!62!

A function can be defined in the REPL by using let. Example:

> let double x = x * 2
double :: Num a => a -> a

> double 5
10
it :: Integer

> double 2.7
5.4
it :: Double

> double (double (double 1111111111111))
8888888888888
it :: Integer

Writing simple functions

CSC!372!Spring!2016,!Haskell!Slide!63!

More examples:

> let neg x = -x
neg :: Num a => a -> a

> let isPositive x = x > 0
isPositive :: (Num a, Ord a) => a -> Bool

> let toCelsius temp = (temp - 32) * 5/9
toCelsius :: Fractional a => a -> a

The determination of types based on the operations performed is
known as type inferencing. (More on it later!)

Note: function and parameter names must begin with a lowercase
letter or _. (If capitalized they're assumed to be data constructors.)

Simple functions, continued

CSC!372!Spring!2016,!Haskell!Slide!64!

We can use :: type to constrain a function's type:

> let neg x = -x :: Integer
neg :: Integer -> Integer

> let toCelsius temp = (temp - 32) * 5/9 :: Double
toCelsius :: Double -> Double

:: type has low precedence; parentheses are required for this:
> let isPositive x = x > (0::Integer)
isPositive :: Integer -> Bool

Note that :: type applies to an expression, not a function.

We'll use :: type to simplify some following examples.

Simple functions, continued

CSC!372!Spring!2016,!Haskell!Slide!65!

We can put function definitions in a file. When we do, we
leave off the let!

I've got four function definitions in the file simple.hs, as
shown with the UNIX cat command:

% cat simple.hs
double x = x * 2 :: Integer -- Note: no "let"!
neg x = -x :: Integer
isPositive x = x > (0::Integer)
toCelsius temp = (temp - 32) * 5/(9::Double)

The .hs suffix is required.

Sidebar: loading functions from a file

CSC!372!Spring!2016,!Haskell!Slide!66!

Assuming simple.hs is in the current directory, we can load it
with :load and see what we got with :browse.

% ghci
> :load simple
[1 of 1] Compiling Main (simple.hs, interpreted)
Ok, modules loaded: Main.

> :browse
double :: Integer -> Integer
neg :: Integer -> Integer
isPositive :: Integer -> Bool
toCelsius :: Double -> Double

Note the colon in :load, and that the suffix .hs is assumed.

We can use a path, like :load ~/372/hs/simple, too.

Sidebar, continued

CSC!372!Spring!2016,!Haskell!Slide!67!

ghci is clumsy to type! I've got an hs alias in my ~/.bashrc:
alias hs=ghci

I specify the file I'm working with as an argument to hs.

% hs simple
GHCi, version 7.8.3 ...
[1 of 1] Compiling Main (simple.hs, interpreted)
Ok, modules loaded: Main.
> ... experiment ...

After editing in a different window, I use :r to reload the file.

> :r
[1 of 1] Compiling Main (simple.hs, interpreted)
Ok, modules loaded: Main.
> ...experiment some more...

Lather, rinse, repeat.

Sidebar: My usual edit-run cycle

CSC!372!Spring!2016,!Haskell!Slide!68!

Here's a function that produces the sum of its two arguments:
 > let add x y = x + y :: Integer

Here's how we call it: (no commas or parentheses!)

> add 3 5
8

Here is its type:

> :type add
add :: Integer -> Integer -> Integer

The operator -> is right-associative, so the above means this:

 add :: Integer -> (Integer -> Integer)

But what does that mean?

Functions with multiple arguments

CSC!372!Spring!2016,!Haskell!Slide!69!

Recall our negate function:
> let neg x = -x :: Integer
neg :: Integer -> Integer

Here's add again, with parentheses added to show precedence:

> let add x y = x + y :: Integer
add :: Integer -> (Integer -> Integer)

add is a function that takes an integer as an argument and
produces a function as its result!

add 3 5 means (add 3) 5

Call add with the value 3, producing a nameless function.
Call that nameless function with the value 5.

Multiple arguments, continued

CSC!372!Spring!2016,!Haskell!Slide!70!

When we give a function fewer arguments than it requires, the
resulting value is called a partial application. It is a function.

We can bind a name to a partial application like this:

> let plusThree = add 3
plusThree :: Integer -> Integer

The name plusThree now references a function that takes an
Integer and returns an Integer.

What will plusThree 5 produce?

> plusThree 5
8
it :: Integer

Partial application

CSC!372!Spring!2016,!Haskell!Slide!71!

At hand:
> let add x y = x + y :: Integer
add :: Integer -> (Integer -> Integer) -- parens added

> let plusThree = add 3
plusThree :: Integer -> Integer

Let's picture add and plusThree as boxes with inputs and outputs:

An analogy: plusThree is like a calculator where you've clicked 3,
then +, and handed it to somebody.

Partial application, continued

plusThree

3
add

CSC!372!Spring!2016,!Haskell!Slide!72!

At hand:
> let add x y = x + y :: Integer
add :: Integer -> (Integer -> Integer) -- parens added

Another: (with parentheses added to type to aid understanding)

> let add3 x y z = x + y + z :: Integer
add3 :: Integer -> (Integer -> (Integer -> Integer))

These functions are said to be defined in curried form, which allows
partial application of arguments.

The idea of a partially applicable function was first described by
Moses Schönfinkel. It was further developed by Haskell B. Curry.
Both worked wtih David Hilbert in the 1920s.

What prior use have you made of partially applied functions?

Partial application, continued

log2 n

CSC!372!Spring!2016,!Haskell!Slide!73!

REPLACEMENTS

Put a big "X" on slides 74-76 in
the 1-76 set and continue with

this set.

CSC!372!Spring!2016,!Haskell!Slide!74!

Note: Next set of slides!

•  The general form of a function definition (for now):
name param1 param2 ... paramN = expression
––At the ghci prompt, use let ...

•  A function with a type like Integer -> Char -> Char takes two
arguments, an Integer and a Char. It produces a Char.

•  Remember that -> is a right-associative type operator.
Integer -> Char -> Char means Integer -> (Char -> Char)

•  A function call like

 f x y z
means
 ((f x) y) z
and (conceptually) causes two temporary, unnamed functions to
be created.

Some key points

CSC!372!Spring!2016,!Haskell!Slide!75!

• Calling a function with fewer arguments than it requires
creates a partial application, a function value.

•  There's really nothing special about a partial application––
it's just another function.

Some key points, continued

CSC!372!Spring!2016,!Haskell!Slide!76!

Consider this function:
 let!f!x!y!z!=!x!+!y!+!y!*!z!

 let!f1!=!f!3!

is equivalent to
 let!f1!y!z!=!3!+!y!+!y!*!z!

 let!f2!=!f1!5!

is equivalent to
 let!f2!z!=!3!+!5!+!5!*!z!

!
!let!val!=!f2!7!

is equivalent to
!let!val!=!f!3!5!7!

and
!let!val!=!f1!5!7!

 CSC!372!Spring!2016,!Haskell!Slide!77!

Another view of partial application

One way to think of partial
application is that as each argument is
provided, a parameter is dropped and
the argument's value is "wired" into
the expression for the function,
producing a new function with one
less parameter.

Add parentheses to show the order of operations for the
following expression:

 f g 3 4 + x f 3 g(5*x)

Note that the expression is function calls and an addition.

Recall that function call is the highest precedence operation
and is left-associative.

Let's first note that the addition is lowest precedence, and last:

(f g 3 4) + (x f 3 g (5*x))

Let's now reflect the left-associativity of function call:

(((f g) 3) 4) + ((((x f) 3) g) (5*x))

CSC!372!Spring!2016,!Haskell!Slide!78!

Exercise

Problem: Define a function min3 that computes the minimum
of three values. The Prelude has a min function.

> min3 5 2 10
2

Solution:
> let min3 a b c = min a (min b c)
min3 :: Ord a => a -> a -> a -> a

What are some types that min3 can be used with?

Exercise

CSC!372!Spring!2016,!Haskell!Slide!79!

A fundamental characteristic of a functional language: functions are
values that can be used as flexibly as values of other types.

This let creates a function value and binds the name add to it.

 > let add x y = x + y

This let binds the name plus to the value of add, whatever it is.

 > let plus = add

Either name can be used to reference the function value:

> add 3 4
7
> plus 5 6
11

Functions are values

...code...

add , plus

CSC!372!Spring!2016,!Haskell!Slide!80!

(Diagram here
merged w/ above)

What does the following suggest to you?
> :info add
add :: Num a => a -> a -> a

> :info +
class Num a where
 (+) :: a -> a -> a
 ...
infixl 6 +

Operators in Haskell are simply functions that have a symbolic
name bound to them.

infixl 6 + shows that the symbol + can be used as a infix operator
that is left associative and has precedence level 6.

Use :info to explore these operators: ==, >, +, *,||, ^, ^^ and **.

CSC!372!Spring!2016,!Haskell!Slide!81!

Functions as values, continued

To use an operator like a function, enclose it in parentheses:
> (+) 3 4
7

Conversely, we can use a function like an operator by
enclosing it in backquotes:

> 3 `add` 4
7

> 11 `rem` 3
2

Speculate: do `add` and `rem` have precedence and
associativity?

Function/operator equivalence

CSC!372!Spring!2016,!Haskell!Slide!82!

Haskell lets us define custom operators.

Example: (loaded from a file)

(+%) x percentage = x + x * percentage / 100
infixl 6 +%

Usage:

> 100 +% 1
101.0
> 12 +% 25
15.0

The characters ! # $ % & * + . / < = > ? @ \ ^ | - ~ : and
non-ASCII Unicode symbols can be used in custom operators.

Modules often define custom operators.

Sidebar: Custom operators

CSC!372!Spring!2016,!Haskell!Slide!83!

Precedence Left associative
operators

Non associative
operators

Right associative
operators

9 !! .

8 ^, ^^, **

7 *, /, `div`, `mod`,
`rem`, `quot`

6 +, -

5 :, ++

4 ==, /=, <, <=,
>, >=, `elem`,
`notElem`

3 &&

2 ||

1 >>, >>=

0 $, $!, `seq`

Reference: Operators from the Prelude

Note: From page 51 in Haskell 2010 report
CSC!372!Spring!2016,!Haskell!Slide!84!

Type Inferencing

CSC!372!Spring!2016,!Haskell!Slide!85!

It was briefly mentioned that Haskell performs type
infererencing: the types of values are inferred based on the
operations performed.

Example:

> let isCapital c = c >= 'A' && c <= 'Z'
isCapital :: Char -> Bool

Because c is being compared to 'A' and 'Z', both of which are
type Char, c is inferred to be a Char.

CSC!372!Spring!2016,!Haskell!Slide!86!

Type inferencing

Recall ord in the Data.Char module:
> :t ord
ord :: Char -> Int

What type will be inferred for the following function?

 f x y = ord x == y

1.  The argument of ord is a Char, so x must be a Char.

2.  The result of ord, an Int, is compared to y, so y must be
an Int.

Let's try it:

> let f x y = ord x == y
f :: Char -> Int -> Bool

CSC!372!Spring!2016,!Haskell!Slide!87!

Type inferencing, continued

Recall this example:
> let isPositive x = x > 0
isPositive :: (Num a, Ord a) => a -> Bool

:info shows that > operates on types that are instances of Ord:

> :info >
class Eq a => Ord a where
 (>) :: a -> a -> Bool
 ...

Because x is an operand of >, Haskell infers that the type of x must be
a member of the Ord type class.

Because x is being compared to 0, Haskell also infers that the type of x
must be a member of the Num type class.

 CSC!372!Spring!2016,!Haskell!Slide!88!

Type inferencing, continued

If a contradiction is reached during type inferencing, it's an error.

The function below uses x as both a Num and a Char.

> let g x y = x > 0 && x > '0'

<interactive>:20:17:
 No instance for (Num Char) arising from the literal `0'
 Possible fix: add an instance declaration for (Num Char)
 In the second argument of `(>)', namely `0'
 In the first argument of `(&&)', namely `x > 0'
 In the expression: x > 0 && x > '0'

Note that Haskell's suggested fix, making Char be an instance of
the Num type class, isn't very good.

CSC!372!Spring!2016,!Haskell!Slide!89!

Type inferencing, continued

Type Specifications

CSC!372!Spring!2016,!Haskell!Slide!90!

It's a good practice to specify the type of a function along with
its definition in a file.

Examples, using cat to make it clear that they're in a file:

% cat typespecs.hs
min3::Ord a => a -> a -> a -> a
min3 x y z = min x (min y z)

isCapital :: Char -> Bool
isCapital c = c >= 'A' && c <= 'Z'

isPositive :: (Num a, Ord a) => a -> Bool
isPositive x = x > 0

Type specifications for functions

CSC!372!Spring!2016,!Haskell!Slide!91!

Sometimes type specifications can backfire. What's the
ramification of the difference in these two type specifications?

add1::Num a => a -> a -> a
add1 x y = x + y

add2::Integer -> Integer -> Integer
add2 x y = x + y

add1 can operate on Nums but a2 requires Integers.

Challenge: Without using ::type, show an expression that
works with add1 but fails with add2.

CSC!372!Spring!2016,!Haskell!Slide!92!

Type specifications, continued

There are two pitfalls for Haskell novices related to type specifications for
functions:

1.  Specifying a type, such as Integer, rather than a type class, such as
Num, may make a function's type needlessly specific, like add2 on
the previous slide.

2.  In some cases the type can be plain wrong without the mistake being
obvious, leading to a baffling problem. (An "Ishihara".)

Recommendation:

Try writing functions without a type specification and see what type
gets inferred. If the type looks reasonable, and the function works as
expected, add a specification for that type.

Type specifications can prevent Haskell's type inferencing mechanism
from making a series of bad inferences that lead one far away from the
actual source of an error.

CSC!372!Spring!2016,!Haskell!Slide!93!

Type specification for functions, continued

A Haskell source file is a series of declarations. Here's a file with two
declarations:

% cat indent1.hs
add::Integer -> Integer -> Integer
add x y = x + y

A declaration can be continued across multiple lines by indenting
subsequent lines more than the first line of the declaration. These
weaving declarations are poor style but are valid:

add
 ::
 Integer-> Integer-> Integer
add x y
 =
 x
 + y

Continuation with indentation

CSC!372!Spring!2016,!Haskell!Slide!94!

A line that starts in the same column as the previous declaration
ends that previous declaration and starts a new one.

% cat indent2.hs
add::Integer -> Integer -> Integer
add x y =
x + y

% ghci indent2
...
indent2.hs:3:1:
 parse error (possibly incorrect indentation or
mismatched brackets)
Failed, modules loaded: none.

Note that 3:1 indicates line 3, column 1.

Indentation, continued

CSC!372!Spring!2016,!Haskell!Slide!95!

Guards

CSC!372!Spring!2016,!Haskell!Slide!96!

Recall this characteristic of functional programming:
"Ideally, functions are specified with notation that's similar
to what you see in math books—cases and expressions."

This function definition uses guards to specify three cases:
sign x | x < 0 = -1
 | x == 0 = 0
 | otherwise = 1

Notes:
• No let—this definition is loaded from a file with :load
•  sign x appears just once. First guard might be on next line.
•  The guard appears between | and =, and produces a Bool
• What is otherwise?

Guards

CSC!372!Spring!2016,!Haskell!Slide!97!

Problem: Using guards, define a function smaller, like min:
> smaller 7 10
7

> smaller 'z' 'a'
'a'

Solution:

smaller x y
 | x <= y = x
 | otherwise = y

Guards, continued

CSC!372!Spring!2016,!Haskell!Slide!98!

Problem: Write a function weather that classifies a given
temperature as hot if 80+, else nice if 70+, and cold otherwise.

> weather 95
"Hot!"
> weather 32
"Cold!"
> weather 75
"Nice"

A solution that takes advantage of the fact that guards are tried
in turn:

weather temp | temp >= 80 = "Hot!"
 | temp >= 70 = "Nice"
 | otherwise = "Cold!"

Guards, continued

CSC!372!Spring!2016,!Haskell!Slide!99!

if-else

CSC!372!Spring!2016,!Haskell!Slide!100!

Here's an example of Haskell's if-else:

> if 1 < 2 then 3 else 4
3

How does this compare to the if-else in Java?

Haskell's if-else

CSC!372!Spring!2016,!Haskell!Slide!101!

Java's if-else is a statement. It cannot be used where a value is
required.

Java's conditional operator is the analog to Haskell's if-else.

 1 < 2 ? 3 : 4 (Java conditional, a.k.a ternary operator)

It's an expression that can be used when a value is required.

Java's if-else statement has an else-less form but Haskell's if-else
does not. Why doesn't Haskell allow it?

Java's if-else vs. Java's conditional operator provides a good
example of a statement vs. an expression.

Pythoners: Is there an if-else expression in Python?

 3 if 1 < 2 else 4

Sidebar: Java's if-else

CSC!372!Spring!2016,!Haskell!Slide!102!

What's the type of these expressions?

> :type if 1 < 2 then 3 else 4
if 1 < 2 then 3 else 4 :: Num a => a

> :type if 1 < 2 then '3' else '4'
if 1 < 2 then '3' else '4' :: Char

> if 1 < 2 then 3 else '4'
 <interactive>:12:15:
 No instance for (Num Char) arising from the literal `3'

> if 1 < 2 then 3

<interactive>:13:16:
parse error (possibly incorrect indentation or
mismatched brackets)

Haskell's if-else, continued

CSC!372!Spring!2016,!Haskell!Slide!103!

Which of the versions of sign below is better?

sign x
 | x < 0 = -1
 | x == 0 = 0
 | otherwise = 1

sign x = if x < 0 then -1
 else if x == 0 then 0

 else 1

We'll later see that patterns add a third possibility for
expressing cases.

Guards vs. if-else

CSC!372!Spring!2016,!Haskell!Slide!104!

A Little Recursion

CSC!372!Spring!2016,!Haskell!Slide!105!

A recursive function is a function that calls itself either directly or
indirectly.

Computing the factorial of a integer (N!) is a classic example of
recursion. Write it in Haskell (and don't peek below!) What is its
type?

factorial n
 | n == 0 = 1 -- Base case, 0! is 1
 | otherwise = n * factorial (n - 1)

> :type factorial
factorial :: (Eq a, Num a) => a -> a

> factorial 40
815915283247897734345611269596115894272000000000

Recursion

CSC!372!Spring!2016,!Haskell!Slide!106!

One way to manually trace through a recursive computation is
to underline a call, then rewrite the call with a textual
expansion.

factorial 4

4 * factorial 3

4 * 3 * factorial 2

4 * 3 * 2 * factorial 1

4 * 3 * 2 * 1 * factorial 0

4 * 3 * 2 * 1 * 1

Recursion, continued

factorial n
 | n == 0 = 1
 | otherwise = n * factorial (n – 1)

CSC!372!Spring!2016,!Haskell!Slide!107!

Consider repeatedly dividing a number until the quotient is 1:
> 28 `quot` 3 (Note backquotes to use quot as infix op.)
9
> it `quot` 3 (Remember that it is previous result.)
3
> it `quot` 3
1

Problem: Write a recursive function numDivs divisor x that
computes the number of times x must be divided by divisor to
reach a quotient of 1.

> numDivs 3 28
3
> numDivs 2 7
2

Recursion, continued

CSC!372!Spring!2016,!Haskell!Slide!108!

A solution:
numDivs divisor x
 | (x `quot` divisor) < 1 = 0
 | otherwise =

 1 + numDivs divisor (x `quot` divisor)

What is its type?

 numDivs :: (Integral a, Num a1) => a -> a -> a1

Will numDivs 2 3.4 work?

> numDivs 2 3.4
<interactive>:93:1:
 No instance for (Integral a0) arising from a use of
`numDivs'

Recursion, continued
Example:

> numDivs 3 28
3

CSC!372!Spring!2016,!Haskell!Slide!109!

Let's compute two partial applications of numDivs, using let to
bind them to identifiers:

> let f = numDivs 2
> let g = numDivs 10
> f 9
3
> g 1001
3

What are more descriptive names than f and g?

> let floor_log2 = numDivs 2
> floor_log2 1000
9

> let floor_log10 = numDivs 10
> floor_log10 1000
3

Sidebar: Fun with partial applications

CSC!372!Spring!2016,!Haskell!Slide!110!

Lists

CSC!372!Spring!2016,!Haskell!Slide!111!

In Haskell, a list is a sequence of values of the same type.

Here's one way to make a list. Note the type of it for each.

> [7, 3, 8]
[7,3,8]
it :: [Integer]

> [1.3, 10, 4, 9.7] -- note mix of literals
[1.3,10.0,4.0,9.7]
it :: [Double]

> ['x', 10]
<interactive>:20:7:
 No instance for (Num Char) arising from the literal `10'

It is said that lists in Haskell are homogeneous.

List basics

CSC!372!Spring!2016,!Haskell!Slide!112!

The function length returns the number of elements in a list:
> length [3,4,5]
3

> length []
0

What's the type of length?

> :type length
length :: [a] -> Int

With no class constraint specified, [a] indicates that length
operates on lists containing elements of any type.

List basics, continued

CSC!372!Spring!2016,!Haskell!Slide!113!

The head function returns the first element of a list.
> head [3,4,5]
3

What's the type of head?

head :: [a] -> a

Here's what tail does. How would you describe it?

> tail [3,4,5]
[4,5]

What's the type of tail?

tail :: [a] -> [a]

Important: head and tail are good for learning about lists but we'll
almost always use patterns to access list elements!

List basics, continued

CSC!372!Spring!2016,!Haskell!Slide!114!

The ++ operator concatenates two lists, producing a new list.

> [3,4] ++ [10,20,30]
[3,4,10,20,30]

> it ++ it
[3,4,10,20,30,3,4,10,20,30]

> let f = (++) [1,2,3]
> f [4,5]
[1,2,3,4,5]

> f [4,5] ++ reverse (f [4,5])
[1,2,3,4,5,5,4,3,2,1]

List basics, continued

What are the types of ++ and
reverse?!

> :type (++)
(++) :: [a] -> [a] -> [a]

> :type reverse
reverse :: [a] -> [a]

CSC!372!Spring!2016,!Haskell!Slide!115!

A range of values can be specified with a dot-dot notation:
> [1..20]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
it :: [Integer]

> [-5,-3..20]
[-5,-3,-1,1,3,5,7,9,11,13,15,17,19]

> length [-1000..1000]
2001

> [10..5]
[]
it :: [Integer]

List basics, continued

CSC!372!Spring!2016,!Haskell!Slide!116!

This is known as the arithmetic sequence
notation, described in H10 3.10.

The !! operator produces a list's Nth element, zero-based:

> :type (!!)
(!!) :: [a] -> Int -> a

> [10,20..100] !! 3
40

Sadly, we can't use a negative value to index from the right.

> [10,20..100] !! (-2)
*** Exception: Prelude.(!!): negative index

Should that be allowed?

Important: Extensive use of !! might indicate you're writing a Java
program in Haskell!

List basics, continued

CSC!372!Spring!2016,!Haskell!Slide!117!

Haskell lists are values and can be compared as values:
> [3,4] == [1+2, 2*2]
True

> [3] ++ [] ++ [4] == [3,4]
True

> tail (tail [3,4,5,6]) == [last [4,5]] ++ [6]
True

Conceptually, how many lists are created by each of the above?

A programmer using a functional language writes complex
expressions using lists (and more!) as freely as a Java
programmer might write f(x) * a == g(a,b) + c.

Comparing lists

CSC!372!Spring!2016,!Haskell!Slide!118!

Lists are compared lexicographically: Corresponding elements
are compared until an inequality is found. The inequality
determines the result of the comparison.

Example:

> [1,2,3] < [1,2,4]
True

 Why: The first two elements are equal, and 3 < 4.

More examples:

> [1,2,3] < [1,1,1,1]
False
> [1,2,3] > [1,2]
True

Comparing lists, continued

CSC!372!Spring!2016,!Haskell!Slide!119!

We can make lists of lists.
> let x = [[1], [2,3,4], [5,6]]
x :: [[Integer]]

Note the type: x is a list of Integer lists.

length counts elements at the top level.

> length x
3

Recall that length :: [a] -> Int Given that, what's the type of
a for length x?

What's the value of length (x ++ x ++ [3])?

Lists of Lists

CSC!372!Spring!2016,!Haskell!Slide!120!

More examples:
> let x = [[1], [2,3,4], [5,6]]

> head x
[1]

 > tail x
[[2,3,4],[5,6]]

> x !! 1 !! 2
4

> head (head (tail (tail x)))
5

Lists of lists, continued

CSC!372!Spring!2016,!Haskell!Slide!121!

Strings in Haskell are simply lists of characters.

> "testing"
"testing"
it :: [Char]

> ['a'..'z']
"abcdefghijklmnopqrstuvwxyz"
it :: [Char]

> ["just", "a", "test"]
["just","a","test"]
it :: [[Char]]

What's the beauty of this?

Strings are [Char]

CSC!372!Spring!2016,!Haskell!Slide!122!

All list functions work on strings, too!

> let asciiLets = ['A'..'Z'] ++ ['a'..'z']
asciiLets :: [Char]

> length asciiLets
52

> reverse (drop 26 asciiLets)
"zyxwvutsrqponmlkjihgfedcba"

> :type elem
elem :: Eq a => a -> [a] -> Bool

> let isAsciiLet c = c `elem` asciiLets
isAsciiLet :: Char -> Bool

Strings, continued

CSC!372!Spring!2016,!Haskell!Slide!123!

The Prelude defines String as [Char] (a type synonym).
> :info String
type String = [Char]

A number of functions operate on Strings. Here are two:
> :type words
words :: String -> [String]

> :type unwords
unwords :: [String] -> String

What's the following doing?
> unwords (tail (words "Just some words!"))
"some words!"

Strings, continued

CSC!372!Spring!2016,!Haskell!Slide!124!

Like most functional languages, Haskell's lists are "cons" lists.

A "cons" list has two parts:

 head: a value
 tail: a list of values (possibly empty)

The : ("cons") operator creates a list from a value and a list of
values of that same type (or an empty list).

> 5 : [10, 20,30]
[5,10,20,30]

What's the type of the cons operator?

> :type (:)
(:) :: a -> [a] -> [a]

"cons" lists

CSC!372!Spring!2016,!Haskell!Slide!125!

The cons (:) operation forms a new list from a value and a list.

> let a = 5
> let b = [10,20,30]
> let c = a:b
[5,10,20,30]

> head c
5

> tail c
[10,20,30]

> let d = tail (tail c)
> d
[20,30]

"cons" lists, continued

10

20

30

a
5

b

5

c

d

CSC!372!Spring!2016,!Haskell!Slide!126!

A cons node can be referenced by multiple cons nodes.

> let a = 5
> let b = [10,20,30]
> let c = a:b
> let d = tail (tail c)
[20,30]

> let e=2:d
[2,20,30]

> let f=1:c
[1,5,10,20,30]

"cons" lists, continued

10

20

30

a
5

b

5

c

d

2

e

1

f

CSC!372!Spring!2016,!Haskell!Slide!127!

What are the values of the following expressions?
> 1:[2,3]
[1,2,3]

> 1:2
...error...

> chr 97:chr 98:chr 99:[]
"abc"

> []:[]
[[]]

> [1,2]:[]
[[1,2]]

> []:[1]
...error...

"cons" lists, continued

cons is right associative
 chr 97:(chr 98:(chr 99:[]))

CSC!372!Spring!2016,!Haskell!Slide!128!

It's important to understand that tail does not create a new list.
Instead it simply returns an existing cons node.

> let a = [5,10,20,30]

> let h = head a
> h
5

> let t = tail a
> t
[10,20,30]

> let t2 = tail (tail t)
> t2
[30]

head and tail visually

10

20

30

5

a

t h
5

t2

CSC!372!Spring!2016,!Haskell!Slide!129!

What operations are likely fast with cons lists?
•  Get the head of a list
•  Get the tail of a list
•  Make a new list from a head and tail ("cons up a list")

What operations are likely slower?

•  Get the Nth element of a list
•  Get the length of a list

With cons lists, what does list concatenation involve?

> let m=[1..10000000]
> length (m++[0])
10000001

A little on performance

CSC!372!Spring!2016,!Haskell!Slide!130!

The head of a list is a one-element list.
 False, unless...
 ...it's the head of a list of lists that starts with a one-element list

The tail of a list is a list.
 True

The tail of an empty list is an empty list.
 It's an error!

length (tail (tail x)) == (length x) – 2
 True (assuming what?)

A cons list is essentially a singly-linked list.
 True

A doubly-linked list might help performance in some cases.
 Hmm...what's the backlink for a multiply-referenced node?

Changing an element in a list might affect the value of many lists.
Trick question! We can't change a list element. We can only
"cons up" new lists and reference existing lists.

True or false?

CSC!372!Spring!2016,!Haskell!Slide!131!

Here's a function that produces a list with a range of integers:
> let fromTo first last = [first..last]

> fromTo 10 15
[10,11,12,13,14,15]

Problem: Write a recursive version of fromTo that uses the
cons operator to build up its result.

fromTo

CSC!372!Spring!2016,!Haskell!Slide!132!

One solution:
fromTo first last
 | first > last = []
 | otherwise = first : fromTo (first+1) last

Evaluation of fromTo 1 3 via substitution and rewriting:

fromTo 1 3
1 : fromTo (1+1) 3
1 : fromTo 2 3
1 : 2 : fromTo (2+1) 3
1 : 2 : fromTo 3 3
1 : 2 : 3 : fromTo (3+1) 3
1 : 2 : 3 : fromTo 4 3
1 : 2 : 3 : []

fromTo, continued

CSC!372!Spring!2016,!Haskell!Slide!133!

The Enum type class has
enumFromTo and more.

Do :set +s to get timing and memory information, and make
some lists. Try these:

fromTo 1 10
let f = fromTo -- So we can type f instead of fromTo
f 1 1000
let f = fromTo 1 -- Note partial application
f 1000
let x = f 1000000
length x
take 5 (f 1000000)

fromTo, continued

CSC!372!Spring!2016,!Haskell!Slide!134!

Here's a simple example of a list comprehension:

> [x^2 | x <- [1..10]]
[1,4,9,16,25,36,49,64,81,100]

This describes a list of the squares of x where x takes on each
of the values from 1 through 10.

List comprehensions are very powerful but in the interest of
time and staying focused on the core concepts of functional
programming, we're not going to cover them.

Chapter 5 in Hutton has some very interesting examples of
practical computations with list comprehensions.

List comprehensions

CSC!372!Spring!2016,!Haskell!Slide!135!

A little output

CSC!372!Spring!2016,!Haskell!Slide!136!

The putStr function outputs a string:
> putStr "just\ntesting\n"
just
testing

Here's the type of putStr:

> :t putStr
putStr :: String -> IO ()

The return type of putStr, IO (), is known as an action. It
represents an interaction with the outside world, which is a side
effect.

The construction () is read as "unit". The unit type has a single
value, unit. Both the type and the value are written as ().

CSC!372!Spring!2016,!Haskell!Slide!137!

A little output

For the time being, we'll use this approach for functions that
produce output:

•  A helper function will produce a ready-to-print string that
contains newline characters as needed.

•  The top-level function will call the helper function and

then call putStr with the helper function's result.

CSC!372!Spring!2016,!Haskell!Slide!138!

A little output, continued

We can use show to produce a string representation of any
value whose type is a member of the Show type class.

> :t show
show :: Show a => a -> String

> show 10
"10"

> show [10,20]
"[10,20]"

> show show
"<function>"

CSC!372!Spring!2016,!Haskell!Slide!139!

A little output, continued

Let's write a function to print the integers from 1 to N:
> printN 3
1
2
3

First, let's write a helper, printN':

> printN' 3
"1\n2\n3\n"

Solution:
printN' n
 | n == 0 = ""
 | otherwise = printN' (n-1) ++ show n ++ "\n"

CSC!372!Spring!2016,!Haskell!Slide!140!

printN

At hand:
printN'::Integer -> String
printN' n
 | n == 0 = ""
 | otherwise = printN' (n-1) ++ show n ++ "\n"

Usage:
> printN' 10
"1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n"

Let's write the top-level function:
printN::Integer -> IO ()
printN n = putStr (printN' n)

CSC!372!Spring!2016,!Haskell!Slide!141!

printN, continued

All together, as a file:
% cat printN.hs
printN::Integer -> IO ()
printN n = putStr (printN' n)

printN'::Integer -> String
printN' n
 | n == 0 = ""
 | otherwise = printN' (n-1) ++ show n ++ "\n"

% ghci printN
...
> printN 3
1
2
3

CSC!372!Spring!2016,!Haskell!Slide!142!

printN, continued

At hand:
printN::Integer -> IO ()
printN n = putStr (printN' n)

printN'::Integer -> String
printN' n
 | n == 0 = ""
 | otherwise = printN' (n-1) ++ show n ++ "\n"

Let's modify printN to print lines of characters:

> printN 3 '|'
|
||
|||

We can view it as printing unary numbers with a specified "digit", so
we'll call the new version printNunary.
 CSC!372!Spring!2016,!Haskell!Slide!143!

printNunary

Useful: The Prelude has replicate :: Int -> a -> [a]
> replicate 3 7
[7,7,7]
> replicate 3 'a'
"aaa"

Let's add a parameter for the character to print and call replicate
instead of show:

printNunary::Int -> Char -> IO ()
printNunary n c = putStr (printNunary' n c)

printNunary'::Int -> Char -> String
printNunary' n c
 | n == 0 = ""
 | otherwise = printNunary' (n-1) c ++
 (replicate n c) ++ "\n"

 CSC!372!Spring!2016,!Haskell!Slide!144!

printNunary, continued

Let's write charbox:
> charbox 5 3 '*'

> :t charbox
charbox :: Int -> Int -> Char -> IO ()

How can we approach it?

CSC!372!Spring!2016,!Haskell!Slide!145!

charbox

Let's work out a sequence of computations with ghci:
> replicate 5 '*'
"*****"

> it ++ "\n"
"*****\n"

> replicate 2 it
["*****\n","*****\n"] -- the type of it is [[Char]]

> :t concat
concat :: [[a]] -> [a]

> concat it
"*****\n*****\n"

> putStr it

CSC!372!Spring!2016,!Haskell!Slide!146!

charbox, continued

Let's write charbox':

charbox'::Int -> Int -> Char -> String
charbox' w h c = concat (replicate h (replicate w c ++ "\n"))

Test:

> charbox' 3 2 '*'
"***\n***\n"

Now we're ready for the top-level function:

charbox::Int -> Int -> Char -> IO ()
charbox w h c = putStr (charbox' w h c)

How does this approach contrast with how we'd write it in Java?

 CSC!372!Spring!2016,!Haskell!Slide!147!

charbox, continued

On the CS machines, selected Haskell code is in this directory:
!/cs/www/classes/cs372/spring16/haskell

!
In these slides I'll refer to that directory as spring16.

spring16/slides.hs has the smaller functions, in rough chronological
order. For functions that evolve, there may be multiple versions, with
all but one version commented out.

 Note: {- ... -} is a multi-line comment in Haskell.

Larger examples are in their own files, like spring16/printN.hs and
spring16/charbox.hs.

spring16 is also accessible on the web:

 http://cs.arizona.edu/classes/cs372/spring16

Sidebar: Where's the code?

CSC!372!Spring!2016,!Haskell!Slide!148!

Patterns

CSC!372!Spring!2016,!Haskell!Slide!149!

Imagine a function that computes the sum of a list's elements.
> sumElems [1..10]
55

> :type sumElems
sumElems :: Num a => [a] -> a

Implementation:

sumElems list
 | list == [] = 0
 | otherwise = head list + sumElems (tail list)

It works but it's not idiomatic Haskell. We should use patterns
instead!

Motivation: Summing list elements

CSC!372!Spring!2016,!Haskell!Slide!150!

In Haskell we can use patterns to bind names to elements of
data structures.

> let [x,y] = [10,20]
> x
10
> y
20

> let [inner] = [[2,3]]
> inner
[2,3]

Speculate: Given a list like [10,20,30] how could we use a
pattern to bind names to the head and tail of the list?

Patterns

10

20

2

3

inner

x
10

y
20

CSC!372!Spring!2016,!Haskell!Slide!151!

We can use the cons operator in a pattern.
> let h:t = [10,20,30]

> h
10

> t
[20,30]

What values get bound by the following pattern?

> let a:b:c:d = [10,20,30]
> [c,b,a] -- in a list so I could show them w/ a one-liner
[30,20,10]

> d
[] -- Why didn't I do [d,c,b,a] above?

Patterns, continued

10

20

30

h
10

t

CSC!372!Spring!2016,!Haskell!Slide!152!

If some part of a structure is not of interest, we indicate that with
an underscore, known as the wildcard pattern.

> let _:(a:[b]):c = [[1],[2,3],[4]]
> a
2
> b
3
> c
[[4]]

No binding is done for the wildcard pattern.

The pattern mechanism is completely general—patterns can be
arbitrarily complex.

Patterns, continued

CSC!372!Spring!2016,!Haskell!Slide!153!

A name can only appear once in a pattern. This is invalid:
> let a:a:[] = [3,3]
<interactive>:25:5:
 Conflicting definitions for `a'

When using let as we are here, a failed pattern isn't manifested
until we try to see what's bound to a name.

> let a:b:[] = [1]
> a
*** Exception: <interactive>:26:5-16: Irrefutable
pattern failed for pattern a : b : []

Patterns, continued

CSC!372!Spring!2016,!Haskell!Slide!154!

Describe in English what must be on the right hand side for a
successful match.

let (a:b:c) = ...

A list containing at least two elements.
Does [[1,2]] match?
[2,3] ?
"abc" ?

let [x:xs] = ...

 A list whose only element is a non-empty list.
 Does words "a test" match?
 [words "a test"] ?

 [[]] ?
 [[[]]] ?

Practice

CSC!372!Spring!2016,!Haskell!Slide!155!

Recall our non-idiomatic sumElems:
sumElems list
 | list == [] = 0
 | otherwise = head list + sumElems (tail list)

How could we redo it using patterns?

sumElems [] = 0
sumElems (h:t) = h + sumElems t

Note that sumElems appears on both lines and that there are no
guards. sumElems has two clauses. (H10 4.4.3.1)

The parentheses in (h:t) are required!!

Do the types of the two versions differ?

 (Eq a, Num a) => [a] -> a
 Num a => [a] -> a

Patterns in function definitions

CSC!372!Spring!2016,!Haskell!Slide!156!

Here's a buggy version of sumElems:
buggySum [x] = x
buggySum (h:t) = h + buggySum t

What's the bug?

> buggySum [1..100]
5050
> buggySum []
*** Exception: slides.hs:(62,1)-(63,31): Non-
exhaustive patterns in function buggySum

Patterns in functions, continued

CSC!372!Spring!2016,!Haskell!Slide!157!

At hand:
buggySum [x] = x
buggySum (h:t) = h + buggySum t

If we use the -fwarn-incomplete-patterns option of ghci, we'll
get a warning when loading:

% ghci -fwarn-incomplete-patterns buggySum.hs
buggySum.hs:1:1: Warning:
 Pattern match(es) are non-exhaustive
 In an equation for ‘buggySum’: Patterns not matched: []
 >

Suggestion: add a bash alias! (See us if you don't know how to.)

 alias ghci="ghci -fwarn-incomplete-patterns"

CSC!372!Spring!2016,!Haskell!Slide!158!

Patterns in functions, continued

What's a little silly about the following list-summing function?

sillySum [] = 0
sillySum [x] = x
sillySum (h:t) = h + sillySum t

The second clause isn't needed.

CSC!372!Spring!2016,!Haskell!Slide!159!

Patterns in functions, continued

Consider a function that duplicates the head of a list:
> duphead [10,20,30]
[10,10,20,30]

Here's one way to write it, but it's repetitious:

duphead (x:xs) = x:x:xs

We can use an "as pattern" to bind a name to the list as a whole:

duphead all@(x:xs) = x:all

Can it be improved?

duphead all@(x:_) = x:all

The term "as pattern" perhaps comes from Standard ML, which uses
an "as" keyword for the same purpose.

CSC!372!Spring!2016,!Haskell!Slide!160!

An "as pattern"

Good coding style in Haskell:
 Prefer patterns over guards
 Prefer guards over if-else

Patterns––first choice!

sumElems [] = 0
sumElems (h:t) = h + sumElems t

Guards––second choice...

sumElems list
 | list == [] = 0
 | otherwise = head list + sumElems (tail list)

if-else––third choice...

sumElems list =
 if list == [] then 0
 else head list + sumElems (tail list)

CSC!372!Spring!2016,!Haskell!Slide!161!

Patterns, then guards, then if-else

And, these comparisons imply
that list's type must in Eq!

Recall this example of guards:
weather temp | temp >= 80 = "Hot!"
 | temp >= 70 = "Nice"
 | otherwise = "Cold!"

Can we rewrite weather to have three clauses with patterns?

No.
The pattern mechanism doesn't provide a way to test ranges.

Design question: should patterns and guards be unified?

CSC!372!Spring!2016,!Haskell!Slide!162!

Patterns, then guards, then if-else

We first saw this general form of a function definition:
 name param1 param2 ... paramN = expression

Revision: A function may have one or more clauses, of this form:

function-name pattern1 pattern2 ... patternN

 { | guard-expression1 } = result-expression1
 ...

 { | guard-expressionN } = result-expressionN

The set of clauses for a given name is the binding for that name.
(See 4.4.3 in H10.)

If values in a call match the pattern(s) for a clause and a guard is
true, the corresponding expression is evaluated.

CSC!372!Spring!2016,!Haskell!Slide!163!

Revision: the general form of a function

At hand, a more general form for functions:
function-name pattern1 pattern2 ... patternN

 { | guard-expression1 } = result-expression1
 ...

 { | guard-expressionN } = result-expressionN

How does

 add x y = x + y
conform to the above specification?

•  x and y are trivial patterns
•  add has one clause, which has no guard

CSC!372!Spring!2016,!Haskell!Slide!164!

Revision, continued

If the patterns of a clause match but all guards fail, the next clause is
tried. Here's a contrived example:

f (h:_) | h < 0 = "negative head"
f list | length list > 3 = "too long"
f (_:_) = "ok"
f [] = "empty"

Usage:
> f [-1,2,3]
"negative head"

> f []
"empty"

> f [1..10]
"too long"

CSC!372!Spring!2016,!Haskell!Slide!165!

Pattern/guard interaction

How many clauses does f have?
 4

What if 2nd and 3rd clauses swapped?

 3rd clause would never be matched!

What if 4th clause is removed?

Warning with -fwarn-incomplete-
patterns; "non-exhaustive
patterns" exception on f [].

Recursive functions on lists

CSC!372!Spring!2016,!Haskell!Slide!166!

Problem: Write len x, which returns the length of list x.
> len []
0

> len "testing"
7

Solution:
len [] = 0
len (_:t) = 1 + len t -- since head isn't needed, use _

Simple recursive list processing functions

CSC!372!Spring!2016,!Haskell!Slide!167!

Problem: Write odds x, which returns a list having only the odd
numbers from the list x.

> odds [1..10]
[1,3,5,7,9]

> take 10 (odds [1,4..100])
[1,7,13,19,25,31,37,43,49,55]

Handy: odd :: Integral a => a -> Bool

Solution:

odds [] = []
odds (h:t)
 | odd h = h:odds t
 | otherwise = odds t

Simple list functions, continued

CSC!372!Spring!2016,!Haskell!Slide!168!

Problem: write isElem x vals, like elem in the Prelude.
> isElem 5 [4,3,7]
False

> isElem 'n' "Bingo!"
True

> "quiz" `isElem` words "No quiz today!"
True

Solution:
isElem _ [] = False -- Why a wildcard?
isElem x (h:t)
 | x == h = True
 | otherwise = x `isElem` t

Simple list functions, continued

CSC!372!Spring!2016,!Haskell!Slide!169!

Problem: write a function that returns a list's maximum value.
> maxVal "maximum"
'x'

> maxVal [3,7,2]
7

> maxVal (words "i luv this stuff")
"this"

Note that the Prelude has max :: Ord a => a -> a -> a

One solution:
maxVal [x] = x
maxVal (x:xs) = max x (maxVal xs)
maxVal [] = error "empty list"

Simple list functions, continued

CSC!372!Spring!2016,!Haskell!Slide!170!

C programmers: Write strlen in C in a functional style. Do
strcmp and strchr, too!

Python programmers: In a functional style write size(x),
which returns the number of elements in the string or list x.
Restriction: You may not use type().

Sidebar: C and Python challenges

CSC!372!Spring!2016,!Haskell!Slide!171!

Tuples

CSC!372!Spring!2016,!Haskell!Slide!172!

A Haskell tuple is an ordered aggregation of two or more values
of possibly differing types.

> (1, "two", 3.0)
(1,"two",3.0)
it :: (Integer, [Char], Double)

> (3 < 4, it)
(True,(1,"two",3.0))
it :: (Bool, (Integer, [Char], Double))

What's something we can represent with a tuple that we can't
represent with a list?

We can't create analogous lists for the above tuples, due to the
mix of types. Lists must be homogeneous.

Tuples

CSC!372!Spring!2016,!Haskell!Slide!173!

A function can return a tuple:
> let pair x y = (x,y)

What's the type of pair?

pair :: t -> t1 -> (t, t1)
-- why not a -> b -> (a,b)?

Let's play...
> pair 3 4
(3,4)

> pair (3,4)
<function>

> it 5
((3,4),5)

Tuples, continued

CSC!372!Spring!2016,!Haskell!Slide!174!

The Prelude has two functions that operate on 2-tuples.
> let p = pair 30 "forty"
p :: (Integer, [Char])

> p
(30,"forty")

> fst p
30

> snd p
"forty"

Tuples, continued

CSC!372!Spring!2016,!Haskell!Slide!175!

Recall: patterns used to bind names to list elements have the
same syntax as expressions to create lists.

Patterns for tuples are like that, too.

Problem: Write middle, to extract a 3-tuple's second element.

> middle ("372", "BIOW 208", "Mitchell")
"BIOW 208"

> middle (1, [2], True)
[2]

Tuples, continued

CSC!372!Spring!2016,!Haskell!Slide!176!

At hand:
> middle (1, [2], True)
[2]

Solution:
 middle (_, m, _) = m

What's the type of middle?

 middle :: (t, t1, t2) -> t1

Does the following call work?

> middle(1,[(2,3)],4)
[(2,3)]

Tuples, continued

CSC!372!Spring!2016,!Haskell!Slide!177!

Here's the type of zip from the Prelude:
 zip :: [a] -> [b] -> [(a, b)]

Speculate: What does zip do?

> zip ["one","two","three"] [10,20,30]
[("one",10),("two",20),("three",30)]

> zip ['a'..'z'] [1..]
[('a',1),('b',2),('c',3),('d',4),('e',5),('f',6),('g',7),('h',8),('i',
9),('j',10), ...more..., ('x',24),('y',25),('z',26)]

What's especially interesting about the second example?
 [1..] is an infinite list! zip stops when either list runs out.

Tuples, continued

CSC!372!Spring!2016,!Haskell!Slide!178!

Problem: Write elemPos, which returns the zero-based
position of a value in a list, or -1 if not found.

> elemPos 'm' ['a'..'z']
12

Hint: Have a helper function do most of the work.

Solution:

elemPos x vals = elemPos' x (zip vals [0..])

elemPos' _ [] = -1
elemPos' x ((val,pos):vps)
 | x == val = pos
 | otherwise = elemPos' x vps

Tuples, continued

CSC!372!Spring!2016,!Haskell!Slide!179!

Consider these two functions:
> let add_c x y = x + y -- _c for curried arguments
add_c :: Num a => a -> a -> a

> let add_t (x,y) = x + y -- _t for tuple argument
add_t :: Num a => (a, a) -> a

Usage:
> add_c 3 4
7

> add_t (3,4)
7

Which is better, add_c or add_t?

Sidebar: To curry or not to curry?

Important: Note the
difference in types!

CSC!372!Spring!2016,!Haskell!Slide!180!

:info Eq shows many lines like this:
...
instance (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e)
instance (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d)
instance (Eq a, Eq b, Eq c) => Eq (a, b, c)
instance (Eq a, Eq b) => Eq (a, b)

We haven't talked about instance declarations but let's speculate:
What's being specified by the above?

instance (Eq a, Eq b, Eq c) => Eq (a, b, c)

If values of each of the three types a, b, and c can be tested for
equality then 3-tuples of type (a, b, c) can be tested for equality.

The Ord and Bounded type classes have similar instance
declarations.

The Eq type class and tuples

CSC!372!Spring!2016,!Haskell!Slide!181!

Type-wise, lists are homogeneous; tuples are heterogeneous.

We can write a function that handles a list of any length but a
function that operates on a tuple specifies the arity of that tuple.

Example: we can't write an analog for head, to return the first
element of an arbitrary tuple.

Even if values are homogeneous, using a tuple lets static type-
checking ensure that an exact number of values is being aggregated.

Example: A 3D point could be represented with a 3-element list
but using a 3-tuple guarantees points have three coordinates.

If there were Head First Haskell it would no doubt have an
interview with List and Tuple, each arguing their own merit.

Lists vs. tuples

CSC!372!Spring!2016,!Haskell!Slide!182!

More on
patterns and functions

CSC!372!Spring!2016,!Haskell!Slide!183!

Literal values can be part or all of a pattern. Here's a 3-clause
binding for f:

f 1 = 10
f 2 = 20
f n = n

Usage:
> f 1
10

> f 3
3

Remember: Patterns are tried in the order specified.

Literals in patterns

For contrast, with guards:
f n
 | n == 1 = 10
 | n == 2 = 20
 | otherwise = n

CSC!372!Spring!2016,!Haskell!Slide!184!

Here's a function that classifies characters as parentheses (or not):
parens c
 | c == '(' = "left"
 | c == ')' = "right"
 | otherwise = "neither"

Could we improve it by using patterns instead of guards?

parens '(' = "left"
parens ')' = "right"
parens _ = "neither"

Which is better?

 Remember: Patterns, then guards, then if-else.

Literals in patterns, continued

CSC!372!Spring!2016,!Haskell!Slide!185!

not is a function:
> :type not
not :: Bool -> Bool

> not True
False

Problem: Using literals in patterns, define not.

Solution:

not True = False
not _ = True -- Using wildcard avoids comparison

Literals in patterns, continued

CSC!372!Spring!2016,!Haskell!Slide!186!

A pattern can be:

• A literal value such as 1, 'x', or True
• An identifier (bound to a value if there's a match)
• An underscore (the wildcard pattern)
• A tuple composed of patterns
• A list of patterns in square brackets (fixed size list)
• A list of patterns constructed with : operators
• Other things we haven't seen yet

Note the recursion.

Patterns can be arbitrarily complex.

3.17.1 in H10 shows the full syntax for patterns.

Pattern construction

CSC!372!Spring!2016,!Haskell!Slide!187!

Intermediate values and/or helper functions can be defined using an
optional where clause for a function.

Here's an example to show the syntax; the computation is not
meaningful.

f x
 | g x < 0 = g a + g b
 | a > b = g b
 | otherwise = g a * g b
 where {
 a = x * 5;
 b = a * 2 + x;
 g t = log t + a
 }

The where clause for functions

The names a and b are bound to
expressions; g is a function binding.

The bindings in the where clause
are done first (!), then the guards are
evaluated in turn.

Like variables defined in a method
or block in Java, a, b, and g are not
visible outside the the function f.

CSC!372!Spring!2016,!Haskell!Slide!188!

This is a valid declaration with a where clause:
 f x = a + b + g a where { a = 1; b = 2; g x = -x }

The where clause has three declarations enclosed in braces
and separated by semicolons.

We can take advantage of the layout rule and write it like this
instead:

f x = a + b + g a
 where
 a = 1
 b = 2
 g x =

 -x

Besides whitespace what's different about the second version?

The layout rule for where (and more)

CSC!372!Spring!2016,!Haskell!Slide!189!

At hand:
f x = a + b + g a
 where
 a = 1
 b = 2
 g x =

 -x

The absence of a brace after where activates the layout rule.

The column position of the first token after where establishes
the column in which declarations of the where must start.

Note that the declaration of g is continued onto a second line;
if the minus sign were at or left of the line, it would be an error.

The layout rule, continued

Another example:

f x = a + b + g a where a = 1
 b = 2
 g x =
 -x

CSC!372!Spring!2016,!Haskell!Slide!190!

Don't confuse the layout rule with indentation-based continuation
of declarations! (See slides 94-95.)

The layout rule allows omission of braces and semicolons in
where, do, let, and of blocks. (We'll see do and let later.)

Indentation-based continuation applies

1.  outside of where/do/let/of blocks
2.  inside where/do/let/of blocks when the layout rule is

triggered by the absence of an opening brace.

The layout rule is also called the "off-side rule".

TAB characters are assumed to have a width of 8.

What other languages have rules of a similar nature?

The layout rule, continued

CSC!372!Spring!2016,!Haskell!Slide!191!

Imagine a function that counts occurrences of even and odd numbers
in a list.

> countEO [3,4,5]
(1,2) -- one even, two odds

Code:

countEO [] = (0,0) -- no odds or evens in []
countEO (x:xs)
 | odd x = (evens, odds+1)
 | otherwise = (evens+1, odds)
 where
 (evens, odds) = countEO xs -- do counts for tail first!

Would it be awkward to write it without using where?
 Try it!

countEO

CSC!372!Spring!2016,!Haskell!Slide!192!

At hand:
countEO [] = (0,0)
countEO (x:xs)
 | odd x = (evens, odds + 1)
 | otherwise = (1+ evens, odds)
 where (evens, odds) = countEO xs

Here's one way to picture this recursion:
 countEO [10,20,25]

 countEO [20,25]

 countEO [25]

 countEO []

CSC!372!Spring!2016,!Haskell!Slide!193!

countEO, continued

returns (0,0)

returns (0,1) (result of (0,0 + 1))

returns (1,1) (result of (1 + 0,1))

returns (2,1) (result of (1 + 1,1))

Larger examples

CSC!372!Spring!2016,!Haskell!Slide!194!

Imagine a robot that travels on an infinite grid of cells. Movement is
directed by a series of one character commands: n, e, s, and w.

Let's write a function travel that moves the robot about the grid and
determines if the robot ends up where it started (i.e., it got home) or
elsewhere (it got lost).

travel

R!

If the robot starts in square R the
command string nnnn leaves the robot
in the square marked 1.

The string nenene leaves the robot in
the square marked 2.

nnessw and news move the robot in a
round-trip that returns it to square R.

CSC!372!Spring!2016,!Haskell!Slide!195!

2!

1!

Usage:

> travel "nnnn" AA!ends!at!1!
"Got lost; 4 from home"

> travel "nenene" AA!ends!at!2
"Got lost; 6 from home"

> travel "nnessw"
"Got home"

How can we approach this problem?

travel, continued

1!

2!

R!

CSC!372!Spring!2016,!Haskell!Slide!196!

One approach:
1.  Map letters into integer 2-tuples representing X and Y

displacements on a Cartesian plane.
2.  Sum the X and Y displacements to yield a net displacement.

Example:
 Argument value: "nnee"
 Mapped to tuples: (0,1) (0,1) (1,0) (1,0)
 Sum of tuples: (2,2)

Another:

 Argument value: "nnessw"
 Mapped to tuples: (0,1) (0,1) (1,0) (0,-1) (0,-1) (-1,0)
 Sum of tuples: (0,0)

travel, continued

CSC!372!Spring!2016,!Haskell!Slide!197!

First, let's write a helper function to turn a direction into an (x,y)
displacement:

mapMove :: Char -> (Int, Int)
mapMove 'n' = (0,1)
mapMove 's' = (0,-1)
mapMove 'e' = (1,0)
mapMove 'w' = (-1,0)
mapMove c = error ("Unknown direction: " ++ [c])

Usage:
> mapMove 'n'
(0,1)

> mapMove 'w'
(-1,0)

travel, continued

Missing case found with
ghci$0fwarn0incomplete0pa6erns$

CSC!372!Spring!2016,!Haskell!Slide!198!

Next, a function to sum x and y displacements in a list of tuples:
> sumTuples [(0,1),(1,0)]
(1,1)

> sumTuples [mapMove 'n', mapMove 'w']
(-1,1)

Implementation:
sumTuples :: [(Int,Int)] -> (Int,Int)
sumTuples [] = (0,0)
sumTuples ((x,y):ts) = (x + sumX, y + sumY)
 where
 (sumX, sumY) = sumTuples ts

CSC!372!Spring!2016,!Haskell!Slide!199!

travel, continued

travel itself:

travel :: [Char] -> [Char]
travel s
 | disp == (0,0) = "Got home"
 | otherwise = "Got lost; " ++ show (abs x + abs y) ++
 " from home"

 where
 tuples = makeTuples s
 disp@(x,y) = sumTuples tuples -- note "as pattern"

 makeTuples :: [Char] -> [(Int, Int)]
 makeTuples [] = []
 makeTuples (c:cs) = mapMove c : makeTuples cs

As is, mapMove and sumTuples are at the top level but
makeTuples is hidden inside travel. How should they be arranged?

travel, continued

CSC!372!Spring!2016,!Haskell!Slide!200!

travel s
 | disp == (0,0) = "Got home"
 | otherwise = "Got lost; " ...
 where
 tuples = makeTuples s
 disp = sumTuples tuples

 makeTuples [] = []
 makeTuples (c:cs) =

 mapMove c:makeTuples cs

 mapMove 'n' = (0,1)
 mapMove 's' = (0,-1)
 mapMove 'e' = (1,0)
 mapMove 'w' = (-1,0)
 mapMove c = error ...

 sumTuples [] = (0,0)
 sumTuples ((x,y):ts) = (x + sumX, y + sumY)
 where
 (sumX, sumY) = sumTuples ts

Sidebar: top-level vs. hidden functions

Top-level functions can be
tested after code is loaded
but functions inside a
where block are not visible.

The functions at left are
hidden in the where block
but they can easily be
changed to top-level using a
shift or two with an editor.
Note: Types are not shown, to
save space.

CSC!372!Spring!2016,!Haskell!Slide!201!

Consider a function tally that counts character occurrences in a
string:

> tally "a bean bag"
a 3
b 2
 2
g 1
n 1
e 1

Note that the characters are shown in order of decreasing frequency.

How can this problem be approached?

 In a nutshell: [('a',3),('b',2),(' ',2),('g',1),('n',1),('e',1)]

tally

CSC!372!Spring!2016,!Haskell!Slide!202!

Let's start by writing incEntry c tuples, which takes a list of
(character, count) tuples and produces a new list of tuples that
reflects the addition of the character c.

 incEntry :: Char -> [(Char, Int)] -> [(Char, Int)]

Calls to incEntry with 't', 'o', 'o':

> incEntry 't' []
[('t',1)]

> incEntry 'o' it
[('t',1),('o',1)]

> incEntry 'o' it
[('t',1),('o',2)]

tally, continued

CSC!372!Spring!2016,!Haskell!Slide!203!

{- incEntry c tups

tups is a list of (Char, Int) tuples that indicate how many
times a character has been seen. A possible value for tups:

 [('b',1),('a',2)]

incEntry produces a copy of tups with the count in the tuple
containing the character c incremented by one.

If no tuple with c exists, one is created with a count of 1.

-}

incEntry::Char -> [(Char,Int)] -> [(Char,Int)]
incEntry c [] = [(c, 1)]
incEntry c ((char, count):entries)
 | c == char = (char, count+1) : entries
 | otherwise = (char, count) : incEntry c entries

CSC!372!Spring!2016,!Haskell!Slide!204!

Next, let's write mkentries s. It calls incEntry for each character in
the string s in turn and produces a list of (char, count) tuples.

 mkentries :: [Char] -> [(Char, Int)]

Usage:

> mkentries "tupple"
[('t',1),('u',1),('p',2),('l',1),('e',1)]

> mkentries "cocoon"
[('c',2),('o',3),('n',1)]

Code:
mkentries :: [Char] -> [(Char, Int)]
mkentries s = mkentries' s []
 where
 mkentries' [] entries = entries
 mkentries' (c:cs) entries =
 mkentries' cs (incEntry c entries)

CSC!372!Spring!2016,!Haskell!Slide!205!

{- insert, isOrdered, and sort provide an insertion sort -}
insert v [] = [v]
insert v (x:xs)
 | isOrdered (v,x) = v:x:xs
 | otherwise = x:insert v xs

isOrdered ((_, v1), (_, v2)) = v1 > v2

sort [] = []
sort (x:xs) = insert x (sort xs)

> mkentries "cocoon"
[('c',2),('o',3),('n',1)]

> sort it
[('o',3),('c',2),('n',1)]

CSC!372!Spring!2016,!Haskell!Slide!206!

{- fmtEntries prints (char,count) tuples one per line -}
fmtEntries [] = ""
fmtEntries ((c, count):es) =
 [c] ++ " " ++ (show count) ++ "\n" ++ fmtEntries es

{- top-level function -}
tally s = putStr (fmtEntries (sort (mkentries s)))

> tally "cocoon"
o 3
c 2
n 1

tally, continued

•  How does this solution exemplify functional
programming? (slide 24)

•  How is it like procedural programming (slide 5)

CSC!372!Spring!2016,!Haskell!Slide!207!

Let's run it on lectura...
% code=/cs/www/classes/cs372/spring16/haskell

% cat $code/tally.hs
... everything we've seen before and now a main:
main = do
 bytes <- getContents -- reads all of standard input
 tally bytes

% echo -n cocoon | runghc $code/tally.hs
o 3
c 2
n 1

Running tally from the command line

CSC!372!Spring!2016,!Haskell!Slide!208!

$code/genchars N generates N random letters:

% $code/genchars 20
KVQaVPEmClHRbgdkmMsQ

Lets tally a million letters:
 % $code/genchars 1000000 |

 time runghc $code/tally.hs >out
21.79user 0.24system 0:22.06elapsed
% head -3 out
s 19553
V 19448
 J 19437

tally from the command line, continued

CSC!372!Spring!2016,!Haskell!Slide!209!

Let's try a compiled executable.

% cd $code
% ghc --make -rtsopts tally.hs
% ls -l tally
-rwxrwxr-x 1 whm whm 1118828 Jan 26 00:54 tally

% ./genchars 1000000 > 1m
% time ./tally +RTS -K40000000 -RTS < 1m > out
real 0m7.367s
user 0m7.260s
sys 0m0.076s

tally from the command line, continued

CSC!372!Spring!2016,!Haskell!Slide!210!

Here are user CPU times for implementations of tally in several
languages. The same one-million letter file was used for all timings.

However, our tally implementation is very simplistic. An implementation
of tally by an expert Haskell programmer, Chris van Horne, ran in 0.008
seconds. (See spring16/haskell/tally-cwvh[12].hs.)

Then I revisited the C version (tally2.c) and got to 3x faster than Chris'
version with a one-billion character file.

CSC!372!Spring!2016,!Haskell!Slide!211!

tally performance in other languages

Language Time (seconds)
Haskell 7.260
Ruby 0.548
Icon 0.432
Python 2 0.256
C w/ gcc -O3 0.016

Here's an early question when planning a course for a
semester:

 "How many lectures will there be?"

How should we answer that question?

 Google for a course planning app?
 No! Let's write a Haskell program! !

Real world problem: "How many lectures?"

CSC!372!Spring!2016,!Haskell!Slide!212!

One approach:
> classdays ...arguments...
#1 H 1/15 (for 2015...)
#2 T 1/20
#3 H 1/22
#4 T 1/27
#5 H 1/29
...

What information do the arguments need to specify?
First and last day
Pattern, like M-W-F or T-H
How about holidays?

classdays

CSC!372!Spring!2016,!Haskell!Slide!213!

Let's start with something simple:
> classdays (1,15) (5,6) [('H',5),('T',2)]
#1 H 1/15
#2 T 1/20
#3 H 1/22
#4 T 1/27
...
#32 T 5/5
>

The first and last days are represented with (month,day) tuples.

The third argument shows the pattern of class days: the first is a
Thursday, and it's five days to the next class. The next is a Tuesday,
and it's two days to the next class. Repeat!

Arguments for classdays

CSC!372!Spring!2016,!Haskell!Slide!214!

There's a Data.Time.Calendar module but writing two minimal
date handling functions provides good practice.

> toOrdinal (12,31)
365 -- 12/31 is the last day of the year

> fromOrdinal 32
(2,1) -- The 32nd day of the year is February 1.

What's a minimal data structure that could help us?
[(0,0),(1,31),(2,59),(3,90),(4,120),(5,151),(6,181),
(7,212),(8,243),(9,273),(10,304),(11,334),(12,365)]

 (1,31) The last day in January is the 31st day of the year
 (7,212) The last day in July is the 212th day of the year

Date handling

CSC!372!Spring!2016,!Haskell!Slide!215!

offsets = [(0,0),(1,31),(2,59),(3,90),(4,120),(5,151),(6,181),
(7,212),(8,243),(9,273),(10,304),(11,334),(12,365)]

toOrdinal (month, day) = days + day
 where
 (_,days) = offsets!!(month-1)

fromOrdinal ordDay =
 fromOrdinal' (reverse offsets) ordDay
 where
 fromOrdinal' ((month,lastDay):t) ordDay
 | ordDay > lastDay = (month + 1, ordDay - lastDay)
 | otherwise = fromOrdinal' t ordDay
 fromOrdinal' [] _ = error "invalid month?"

toOrdinal and fromOrdinal

> toOrdinal (12,31)
365

> fromOrdinal 32
(2,1)

CSC!372!Spring!2016,!Haskell!Slide!216!

Recall:
> classdays (1,15) (5,6) [('H',5),('T',2)]
#1 H 1/15
#2 T 1/20
...

Ordinal dates for (1,15) and (5,6) are 15 and 126, respectively.

With the Thursday-Tuesday pattern we'd see the ordinal dates
progressing like this:

 15, 20, 22, 27, 29, 34, 36, 41, ...

 +5 +2 +5 +2 +5 +2 +5 ...

...

CSC!372!Spring!2016,!Haskell!Slide!217!

Imagine this series of calls to a helper, showLecture:

showLecture 1 15 'H'
showLecture 2 20 'T'
showLecture 3 22 'H'
showLecture 4 27 'T'
...
showLecture 32 125 'T'

What computations do we need to transform

 showLecture 1 15 'H'
into

 "#1 H 1/15\n"?

Desired output:
#1 H 1/15
#2 T 1/20
#3 H 1/22
#4 T 1/27
...
#32 T 5/5

CSC!372!Spring!2016,!Haskell!Slide!218!

We have: showLecture 1 15 'H'
We want: "#1 H 1/15"

Let's write showOrdinal :: Integer -> [Char]

> showOrdinal 15
"1/15"

showOrdinal ordDay = show month ++ "/" ++ show day
 where
 (month,day) = fromOrdinal ordDay

Now we can write showLecture:

showLecture lecNum ordDay dayOfWeek =
 "#" ++ show lecNum ++ " " ++ [dayOfWeek] ++
 " " ++ showOrdinal ordDay ++ "\n"

1 is lecture #1; 15 is 15th day of year

CSC!372!Spring!2016,!Haskell!Slide!219!

Recall:
showLecture 1 15 'H'
showLecture 2 20 'T'
...
showLecture 32 125 'T'

Let's "cons up" a list out of the results of those calls...
> showLecture 1 15 'H' :
 showLecture 2 20 'T' :
 "...more..." : -- I literally typed "...more..."
 showLecture 32 125 'T' : []
["#1 H 1/15\n","#2 T 1/20\n", "...more...","#32 T
5/5\n"]

How close are the contents of that list to what we need?

 Desired output:
#1 H 1/15
#2 T 1/20
...
#32 T 5/5

CSC!372!Spring!2016,!Haskell!Slide!220!

Now lets imagine a recursive function showLectures that builds up a
list of results from showLecture calls:

showLectures 1 15 126 [('H',5),('T',2)] "#1 H 1/15\n"
 showLectures 2 20 126 [(T',2),('H',5)] "#2 T 1/20\n"

 ...
 showLectures 32 125 126 [('T',2),('H',5)] "#32 T 5/5\n"

 showLectures 33 127 126 [('H',5),('T',2)]
Result:

["#1 H 1/15\n","#2 T 1/20\n", ... ,"#33 H 5/5\n"]

Now let's write showLectures:
showLectures lecNum thisDay lastDay
 (pair@(dayOfWeek, daysToNext):pairs)
 | thisDay > lastDay = []
 | otherwise = showLecture lecNum thisDay dayOfWeek
 : showLectures (lecNum+1) (thisDay + daysToNext)
 lastDay (pairs ++ [pair])

CSC!372!Spring!2016,!Haskell!Slide!221!

Finally, a top-level function to get the ball rolling:
classdays first last pattern = putStr (concat result)
 where
 result =
 showLectures 1 (toOrdinal first) (toOrdinal last) pattern

Usage:

> classdays (1,15) (5,6) [('H',5),('T',2)]
#1 H 1/15
#2 T 1/20
#3 H 1/22
...
#31 H 4/30
#32 T 5/5

Full source is in spring16/haskell/classdays.hs

classdays—top-level

CSC!372!Spring!2016,!Haskell!Slide!222!

Errors

CSC!372!Spring!2016,!Haskell!Slide!223!

Note: next set of slides!

What syntax errors do you see in the following file?

% cat synerrors.hs
let f x =
 | x < 0 == y + 10
 | x != 0 = y + 20
 otherwise = y + 30
 where
 g x:xs = x
 y =
 g [x] + 5
 g2 x = 10

Syntax errors

CSC!372!Spring!2016,!Haskell!Slide!224!

What syntax errors do you see in the following file?

% cat synerrors.hs
let f x =
 | x < 0 == y + 10
 | x != 0 = y + 20
 otherwise = y + 30
 where
 g x:xs = x
 y =
 g [x] + 5
 g2 x = 10

Syntax errors, continued

no let before
functions in files

no = before guards

=, not ==
before result

use /= for
inequality missing | before

otherwise

Needs parens:
(x:xs)

continuation should
be indented violates layout rule (a.k.a. off-side rule)

CSC!372!Spring!2016,!Haskell!Slide!225!

In my opinion, producing understandable messages for type errors is
what ghci is worst at.

If only concrete types are involved, type errors are typically easy to
understand.

> chr 'x'
 Couldn't match expected type `Int' with actual

 type `Char'
 In the first argument of `chr', namely 'x'
 In the expression: chr 'x'
 In an equation for `it': it = chr 'x'

> :type chr
chr :: Int -> Char

Type errors

CSC!372!Spring!2016,!Haskell!Slide!226!

Code and error:
f x y
 | x == 0 = []
 | otherwise = f x

 Couldn't match expected type `[a1]' with actual type
 `t0 -> [a1]'
 In the return type of a call of `f'
 Probable cause: `f' is applied to too few arguments
 In the expression: f x

The error message is perfect in this case.

The first clause implies that f returns a list but the second clause
returns a partial application, of type t0 -> [a1], a contradiction.

Type errors, continued

CSC!372!Spring!2016,!Haskell!Slide!227!

Code:
countEO (x:xs)
 | odd x = (evens, odds+1)
 | otherwise = (evens+1, odds)
 where (evens,odds) = countEO

 Error:
 Couldn't match expected type `(t3, t4)'
 with actual type `[t0] -> (t1, t2)'
 In the expression: countEO
 In a pattern binding: (evens, odds) = countEO

What's the problem?
It's expecting a tuple, (t3,t4) but it's getting a function, [t0] -> (t1,t2)

Typically, instead of getting errors about too few (or too many) function
arguments, you get function types popping up in unexpected places.

Type errors, continued

CSC!372!Spring!2016,!Haskell!Slide!228!

Is there an error in the following?
f [] = []
f [x] = x
f (x:xs) = x : f xs

 Occurs check: cannot construct the infinite type:
 a0 = [a0] ("a0 is a list of a0s"--whm)
 In the first argument of `(:)', namely `x'
 In the expression: x : f xs
 In an equation for `f': f (x : xs) = x : f xs

The second and third clauses are fine by themselves but together they
create a contradiction.

Technique: Comment out clauses (and/or guards) to find the
troublemaker, or incompatibilities between them.

Type errors, continued

CSC!372!Spring!2016,!Haskell!Slide!229!

Another way to produce an
infinite type:
 let x = head x

Recall ord :: Char -> Int.

Note these two errors:
> ord 5
 No instance for (Num Char) arising from the literal `5'
 Possible fix: add an instance declaration for (Num Char)

> length 3
 No instance for (Num [a0]) arising from the literal `3'
 Possible fix: add an instance declaration for (Num [a0])

The error "No instance for (A B)" means I want a B but got an A.

The suggested fix, adding an instance declaration, is always wrong in
our simple Haskell world.

Type errors, continued

CSC!372!Spring!2016,!Haskell!Slide!230!

Debugging

CSC!372!Spring!2016,!Haskell!Slide!231!

My advice in a nutshell for debugging in Haskell:
 Don't need to do any debugging!

My usual development process in Haskell:

1.  Work out expressions at the ghci prompt.
2.  Write a function using those expressions and put it in a file.
3.  Test that function at the ghci prompt.
4.  Repeat with the next function.

With conventional languages I might write dozens of lines of code
before trying them out.

With Haskell I might write a half-dozen lines of code before trying
them out.

CSC!372!Spring!2016,!Haskell!Slide!232!

Debugging in general

The Debug.Trace module provides a trace function that sneakily does
output without getting embroiled with the I/O machinery.

Consider a trivial function:

f 1 = 10
f n = n * 5 + 7

Let's augment it with tracing:

import Debug.Trace
f 1 = trace "f: first case" 10
f n = trace "f: default case" n * 5 + 7

Execution:

> f 1
f: first case
10

> f 3
f: default case
22

CSC!372!Spring!2016,!Haskell!Slide!233!

Tracing

Here's countEO with tracing:
import Debug.Trace
countEO [] = (0,0)
countEO list@(x:xs)
 | odd x = (evens, odds+1)
 | otherwise = (evens+1, odds)
 where
 result = countEO xs
 (evens,odds) =
 trace ("countEO " ++ show xs ++ " --> " ++ show result) result

Execution:
> countEO [3,2,4]
(countEO [] --> (0,0)
countEO [4] --> (1,0)
countEO [2,4] --> (2,0)
2,1)

CSC!372!Spring!2016,!Haskell!Slide!234!

Tracing, continued

 Before tracing the where was:
 (evens,odds) = countEO xs

ghci does have some debugging support but debugging is expression-
based. Here's some simple interaction with it on countEO:
> :step countEO [3,2,4]
Stopped at countEO.hs:(1,1)-(6,29)
_result :: (t, t1) = _
> :step
Stopped at countEO.hs:3:7-11
_result :: Bool = _
x :: Integer = 3
> :step
Stopped at countEO.hs:3:15-29
_result :: (t, t1) = _
evens :: t = _
odds :: t1 = _
> :step
(Stopped at countEO.hs:6:20-29
_result :: (t, t1) = _
xs :: [Integer] = [2,4]

CSC!372!Spring!2016,!Haskell!Slide!235!

ghci's debugger

countEO [] = (0,0)
countEO (x:xs)
 | odd x = (evens, odds+1)
 | otherwise = (evens+1, odds)
 where
 (evens,odds) = countEO xs

_result shows type of current
expression

Arbitrary expressions can be
evaluated at the > prompt (as
always).

There's lots more to the debugging support in gchi.
https://downloads.haskell.org/~ghc/latest/docs/html/
users_guide/ghci-debugger.html

http://www.youtube.com/watch?v=1OYljb_3Cdg
 GHCi's Debugger - Haskell from Scratch #2

In 352, I promote gdb heavily but this is the first time in 372 that
I've ever mentioned tracing and debugging for Haskell.

Again, my advice in a nutshell for debugging in Haskell:

 Don't need to do any debugging!

CSC!372!Spring!2016,!Haskell!Slide!236!

More on debugging

Excursion:
A little bit with infinite lists

and lazy evaluation

CSC!372!Spring!2016,!Haskell!Slide!237!

Here's a way we've seen to make an infinite list:
> [1..]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,2
2,23,24,25,26,27,28,29,30,31,32,^C

What does the following let create?
> let f = (!!) [1,3..]
f :: Int -> Integer

A function that produces the Nth odd number, zero-based.

Yes, we could say nthOdd n = (n*2)+1 but that wouldn't be
nearly as much fun! (This is functional programming!)

I want you to be cognizant of performance but don't let
concerns about performance stifle creativity!

Infinite lists

CSC!372!Spring!2016,!Haskell!Slide!238!

Consider the following let. Why does it complete?
> let fives=[5,10..]
fives :: [Integer]

A simple answer we'll later refine:

Haskell uses lazy evaluation. Values aren't computed until
needed.

How will the following expression behave?

> take (head fives) fives
[5,10,15,20,25]

Haskell computes the first element of fives, and then four more
elements of fives.

Lazy evaluation

CSC!372!Spring!2016,!Haskell!Slide!239!

Here is an expression that is said to be non-terminating:
> length fives
...when tired of waiting...^C Interrupted.
The value of length fives is said to be , read "bottom".

But, we can bind a name to length fives:

> let numFives = length fives
numFives :: Int

That completes because Haskell hasn't yet needed to compute a value for
length fives.

We can get another coffee break by asking Haskell to print the value of
numFives:

> numFives
...after a while...^CInterrupted.

Lazy evaluation, continued

CSC!372!Spring!2016,!Haskell!Slide!240!

We can use :print to explore lazy evaluation:
> let fives = [5,10..]

> :print fives
fives = (_t2::[Integer])

> take 3 fives
[5,10,15]

What do you think :print fives will now show?

> :print fives
fives = 5 : 10 : 15 : (_t3::[Integer])

Lazy evaluation, continued

CSC!372!Spring!2016,!Haskell!Slide!241!

Consider this function:
 f x y z = if x < y then y else z

Will the following expressions terminate?

> f 2 3 (length [1..])
3

> f 3 2 (length [1..])
^CInterrupted.

> f 3 (length [1..]) 2
^CInterrupted.

CSC!372!Spring!2016,!Haskell!Slide!242!

Lazy evaluation, continued

In fact, Haskell doesn't fully meet the requirements of lazy evaluation.
 The word "lazy" appears only once in the Haskell 2010 Report.

What Haskell does provide is non-strict evaluation:

 Function arguments are not evaluated until a value is needed.

From the previous slide:

 f x y z = if x < y then y else z

Reconsider the following wrt. non-strict evaluation:

> f 2 3 (length [1..]) -- Third argument is not used
3

> f 3 2 (length [1..]) -- Third argument is used
^CInterrupted.

See wiki.haskell.org/Lazy_vs._non-strict for the fine points of lazy
evaluation vs. non-strict evaluation. Google for more, too.

CSC!372!Spring!2016,!Haskell!Slide!243!

Sidebar: Lazy vs. non-strict

Speculate: Can infinite lists be concatenated?
> let values = [1..] ++ [5,10..] ++ [1,2,3]
> :t values
values :: [Integer]

What will the following do?
> let nums = [1..]
> nums > [1,2,3,5]
False

 False due to lexicographic comparison—4 < 5

How far did evaluation of nums progress?

> :print nums
nums = 1 : 2 : 3 : 4 : (_t2::[Integer])

More with infinite lists

CSC!372!Spring!2016,!Haskell!Slide!244!

What does the following expression mean?
> let threes = 3 : threes

threes is a list whose head is 3 and whose tail is threes!
> take 5 threes
[3,3,3,3,3]

How about the following?

> let xys = ['x','y'] ++ xys

> take 5 xys
"xyxyx"

> xys !! 100000000
'x'

CSC!372!Spring!2016,!Haskell!Slide!245!

Infinite expressions

One more:
> let x = 1 + x
> x
^CInterrupted.

Problem: write a function intsFrom that produces the integers from a
starting value.

> intsFrom 1
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,...

> intsFrom 1000
[1000,1001,1002,1003,1004,1005,1006,1007,1008,...

> take 5 (intsFrom 1000000)
[1000000,1000001,1000002,1000003,1000004]

Solution:

intsFrom n = n : intsFrom (n + 1)

Does length (intsFrom (minBound::Int)) terminate?

CSC!372!Spring!2016,!Haskell!Slide!246!

intsFrom

The cycle function returns an infinite number of repetitions of its
argument, a list:

> take 10 (cycle [1,2,3])
[1,2,3,1,2,3,1,2,3,1]

Using cycle, write repblock:

> repblock "abc" 4 3 -- string width height
abca
bcab
cabc

> repblock "+-" 3 2
+-+
-+-

CSC!372!Spring!2016,!Haskell!Slide!247!

repblock

At hand: repblock s width height

Approach: Create an infinite repetition of s and take width-sized
lines height times.

Solution:

repblock :: String -> Int -> Int -> IO ()
repblock s width height =
 putStr (repblock' (cycle s) width height)

repblock' :: String -> Int -> Int -> String
repblock' s width height
 | height == 0 = ""
 | otherwise = take width s ++ "\n" ++
 repblock' (drop width s) width (height - 1)

 CSC!372!Spring!2016,!Haskell!Slide!248!

repblock, continued

Higher-order functions

CSC!372!Spring!2016,!Haskell!Slide!249!

Remember:
A fundamental characteristic of a functional language: functions
are values that can be used as flexibly as values of other types.

Here are some more examples of that. What do the following do?

> let nums = [1..10]

> (if 3 < 4 then head else last) nums
1

> let funcs = (tail, (:) 100)

> fst funcs nums
[2,3,4,5,6,7,8,9,10]

> snd funcs nums
[100,1,2,3,4,5,6,7,8,9,10]

CSC!372!Spring!2016,!Haskell!Slide!250!

Remember: Functions are values

We can work with lists of functions:
> let funcs = [head, last]

> funcs
[<function>,<function>]

> let nums = [1..10]

> head funcs nums
1

> (funcs!!1) nums
10

> last [last]
<function>

Lists of functions

CSC!372!Spring!2016,!Haskell!Slide!251!

Is the following valid?
> [take, tail, init]
Couldn't match type `[a2]' with `Int'
 Expected type: Int -> [a0] -> [a0]
 Actual type: [a2] -> [a2]
 In the expression: init

What's the problem?
 take does not have the same type as tail and init.

Puzzle: Make [take, tail, init] valid by adding two characters.

> [take 5, tail, init]
[<function>,<function>,<function>]

Lists of functions, continued

CSC!372!Spring!2016,!Haskell!Slide!252!

Can functions be compared?
> add == plus
No instance for (Eq (Integer -> Integer -> Integer))
 arising from a use of `=='
In the expression: add == plus

You might see a proof based on this in 473:
If we could determine if two arbitrary functions perform the same
computation, we could solve the halting problem, which is
considered to be unsolvable.

Because functions can't be compared, this version of length won't
work for lists of functions: (Its type: (Num a, Eq t) => [t] -> a)

len list@(_h:t)
 | list == [] = 0
 | otherwise = 1 + len t

Comparing functions

CSC!372!Spring!2016,!Haskell!Slide!253!

Definition: A higher-order function is a function that has one
or more arguments that are functions.

twice is a higher-order function with two arguments: f and x

 twice f x = f (f x)

What does it do?

> twice tail [1,2,3,4,5]
[3,4,5]

> tail (tail [1,2,3,4,5])
[3,4,5]

.

A simple higher-order function

CSC!372!Spring!2016,!Haskell!Slide!254!

At hand:
 > let twice f x = f (f x)
> twice tail [1,2,3,4,5]
[3,4,5]

Let's make the precedence explicit:

> ((twice tail) [1,2,3,4,5])
[3,4,5]

Consider a partial application...
> let t2 = twice tail
> t2
<function>
it :: [a] -> [a]

twice, continued

-- like let t2 x = tail (tail x)

CSC!372!Spring!2016,!Haskell!Slide!255!

At hand:
 > let twice f x = f (f x)
> twice tail [1,2,3,4,5]
[3,4,5]

Let's give twice a partial application!

> twice (drop 2) [1..5]
[5]

Let's make a partial application with a partial application!

> twice (drop 5)
<function>
> it ['a'..'z']
"klmnopqrstuvwxyz"

twice, continued

Try these!
 twice (twice (drop 3)) [1..20]
 twice (twice (take 3)) [1..20]

CSC!372!Spring!2016,!Haskell!Slide!256!

At hand:
 twice f x = f (f x)

What's the the type of twice?

> :t twice
twice :: (t -> t) -> t -> t

Parentheses added to show precedence:
twice :: (t -> t) -> (t -> t)

 twice f x = f (f x)

What's the correspondence between the elements of the clause
and the elements of the type?

twice, continued

A higher-order function is a
function that has one or more
arguments that are functions.

CSC!372!Spring!2016,!Haskell!Slide!257!

The map function

CSC!372!Spring!2016,!Haskell!Slide!258!

Recall double x = x * 2

map is a Prelude function that applies a function to each element of
a list, producing a new list:

> map double [1..5]
[2,4,6,8,10]

> map length (words "a few words")
[1,3,5]

> map head (words "a few words")
"afw"

Is map a higher order function?
 Yes! It's first argument is a function.

The Prelude's map function

CSC!372!Spring!2016,!Haskell!Slide!259!

At hand:
> map double [1..5]
[2,4,6,8,10]

Write it!
 map _ [] = []
map f (x:xs) = f x : map f xs

What is its type?

map :: (a -> b) -> [a] -> [b]

What's the relationship between the length of the input and output
lists?

The lengths are always the same.

map, continued

CSC!372!Spring!2016,!Haskell!Slide!260!

Mapping (via map) is applying a transformation (a function) to
each of the values in a list, always producing a new list of the same
length.

> map chr [97,32,98,105,103,32,99,97,116]
"a big cat"

> map isLetter it
[True,False,True,True,True,False,True,True,True]

> map not it
[False,True,False,False,False,True,False,False,False]

> map head (map show it) -- Note: show True is "True"
"FTFFFTFFF"

map, continued

CSC!372!Spring!2016,!Haskell!Slide!261!

Here's another map:
> map weather [85,55,75]
["Hot!","Cold!","Nice"]

This is equivalent:
> [weather 85, weather 55, weather 75]
["Hot!","Cold!","Nice"]

Because functions have no side effects, we can immediately
turn a mapping into a parallel computation. We might start
each function call on a separate processor and combine the
values when all are done.

Sidebar: map can go parallel

CSC!372!Spring!2016,!Haskell!Slide!262!

What's the result of these?
> map (add 5) [1..10]
[6,7,8,9,10,11,12,13,14,15]

> map (drop 1) (words "the knot was cold")
["he","not","as","old"]

> map (replicate 5) "abc"
["aaaaa","bbbbb","ccccc"]

map and partial applications

CSC!372!Spring!2016,!Haskell!Slide!263!

What's going on here?
> let f = map double
> f [1..5]
[2,4,6,8,10]

> map f [[1..3],[10..15]]
[[2,4,6],[20,22,24,26,28,30]]

Here's the above in one step:

> map (map double) [[1..3],[10..15]]
[[2,4,6],[20,22,24,26,28,30]]

Here's one way to think about it:
 [(map double) [1..3], (map double) [10..15]]

map and partial applications, cont.

CSC!372!Spring!2016,!Haskell!Slide!264!

Instead of using map (add 5) to add 5 to the values in a list, we
should use a section instead: (it's the idiomatic way!)

> map (5+) [1,2,3]
[6,7,8]

More sections:
> map (10*) [1,2,3]
[10,20,30]

> map (++"*") (words "a few words")
["a*","few*","words*"]

> map ("*"++) (words "a few words")
["*a","*few","*words"]

Sections

-- [5+ 1, 5+ 2, 5+ 3]

CSC!372!Spring!2016,!Haskell!Slide!265!

Sections have one of two forms:

 (infix-operator value) Examples: (+5), (/10)

 (value infix-operator) Examples: (5*), ("x"++)

Iff the operator is commutative, the two forms are equivalent.

> map (3<=) [1..4]
[False,False,True,True]

> map (<=3) [1..4]
[True,True,True,False]

Sections aren't just for map; they're a general mechanism.
> twice (+5) 3
13

Sections, continued

[3 <= 1, 3 <= 2, 3 <= 3, 3 <= 4]

 [1 <= 3, 2 <= 3, 3 <= 3, 4 <= 4]

CSC!372!Spring!2016,!Haskell!Slide!266!

travel, revisited

CSC!372!Spring!2016,!Haskell!Slide!267!

Some of the problems on the next assignment will encourage
working with higher-order functions by prohibiting you from
writing any recursive functions!

Think of it as isolating muscle groups when weight training.

Here's a simple way to avoid what's prohibited:

 Pretend that you no longer understand recursion!
 What's a base case? Is it related to baseball?
 Why would a function call itself? How's it stop?
 Is a recursive plunge refreshing?

If you were UNIX machines, I'd do chmod 0 on an appropriate
section of your brains.

Now that we're good at recursion...

CSC!372!Spring!2016,!Haskell!Slide!268!

Recall our traveling robot: (slide 195)
> travel "nnee"
"Got lost"

> travel "nnss"
"Got home"

Recall our approach:

 Argument value: "nnee"
 Mapped to tuples: (0,1) (0,1) (1,0) (1,0)
 Sum of tuples: (2,2)

How can we solve it non-recursively?

travel revisited

CSC!372!Spring!2016,!Haskell!Slide!269!

Recall:
> :t mapMove
mapMove :: Char -> (Int, Int)

> mapMove 'n'
(0,1)

Now what?

> map mapMove "nneen"
[(0,1),(0,1),(1,0),(1,0),(0,1)]

Can we sum them with map?

travel, continued

CSC!372!Spring!2016,!Haskell!Slide!270!

We have:
> let disps= map mapMove "nneen"
[(0,1),(0,1),(1,0),(1,0),(0,1)]

We want: (2,3)

Any ideas?

> :t fst
fst :: (a, b) -> a

> map fst disps
[0,0,1,1,0]

> map snd disps
[1,1,0,0,1]

travel, continued

CSC!372!Spring!2016,!Haskell!Slide!271!

We have:
> let disps= map mapMove "nneen"
[(0,1),(0,1),(1,0),(1,0),(0,1)]
> map fst disps
[0,0,1,1,0]
> map snd disps
[1,1,0,0,1]

We want: (2,3)

Ideas?

> :t sum
sum :: Num a => [a] -> a

> (sum (map fst disps), sum (map snd disps))
(2,3)

travel, revisited

CSC!372!Spring!2016,!Haskell!Slide!272!

travel :: [Char] -> [Char]
travel s
 | totalDisp == (0,0) = "Got home"
 | otherwise = "Got lost"
 where
 disps = map mapMove s
 totalDisp = (sum (map fst disps),
 sum (map snd disps))

Did we have to understand recursion to write this?

 No.

Did we write any recursive functions?

 No.

Did we use any recursive functions?

Maybe so, but using recursive functions doesn't violate the
prohibition at hand.

travel—Final answer

CSC!372!Spring!2016,!Haskell!Slide!273!

Filtering

CSC!372!Spring!2016,!Haskell!Slide!274!

Another higher order function in the Prelude is filter:
> filter odd [1..10]
[1,3,5,7,9]

> filter isDigit "(800) 555-1212"
"8005551212"

What's filter doing?

What is the type of filter?

filter :: (a -> Bool) -> [a] -> [a]

Think of filter as filtering *in*, not filtering *out*.

Filtering

CSC!372!Spring!2016,!Haskell!Slide!275!

More...
> filter (<= 5) (filter odd [1..10])
[1,3,5]

> map (filter isDigit) ["br549", "24/7"]
["549","247"]

> filter (`elem` "aeiou") "some words here"
"oeoee"

 Note that (`elem` ...) is a section!
 elem :: Eq a => a -> [a] -> Bool

filter, continued

CSC!372!Spring!2016,!Haskell!Slide!276!

At hand:
> filter odd [1..10]
[1,3,5,7,9]

> :t filter
filter :: (a -> Bool) -> [a] -> [a]

Let's write filter!
filter _ [] = []
filter f (x:xs)
 | f x = x : filteredTail
 | otherwise = filteredTail
 where
 filteredTail = filter f xs

filter, continued

CSC!372!Spring!2016,!Haskell!Slide!277!

filter's first argument (a function) is called a predicate because
inclusion of each value is predicated on the result of calling that
function with that value.

Several Prelude functions use predicates. Here are two:

all :: (a -> Bool) -> [a] -> Bool
> all even [2,4,6,8]
True
> all even [2,4,6,7]
False

dropWhile :: (a -> Bool) -> [a] -> [a]
> dropWhile isSpace " testing "
"testing "
> dropWhile isLetter it
" "

 filter uses a predicate

CSC!372!Spring!2016,!Haskell!Slide!278!

For reference:
> map double [1..10]
[2,4,6,8,10,12,14,16,18,20]

> filter odd [1..10]
[1,3,5,7,9]

map:

 transforms a list of values
 length input == length output

filter:

 selects values from a list
 0 <= length output <= length input

map and filter are in Python and JavaScript, to name two of many
languages having them. (And, they're trivial to write!)

map vs. filter

CSC!372!Spring!2016,!Haskell!Slide!279!

Anonymous functions

CSC!372!Spring!2016,!Haskell!Slide!280!

Put a big "X" on
281-282 and go to

slide 305!

We can map a section to double the numbers in a list:
> map (*2) [1..5]
[2,4,6,8,10]

Alternatively we could use an anonymous function:

> map (\x -> x * 2) [1..5]
[2,4,6,8,10]

What are things we can do with an anonymous function that we
can't do with a section?

> map (\n -> n * 3 + 7) [1..5]
[10,13,16,19,22]

> filter (\x -> head x == last x) (words "pop top suds")
["pop","suds"]

Anonymous functions

CSC!372!Spring!2016,!Haskell!Slide!281!

The general form:
 \ pattern1 ... patternN -> expression

Simple syntax suggestion: enclose the whole works in parentheses.

 map (\x -> x * 2) [1..5]

The typical use case for an anonymous function is a single instance
of supplying a higher order function with a computation that can't be
expressed with a section or partial application.

Anonymous functions are also called lambdas, lambda expressions,
and lambda abstractions.

The \ character was chosen due to its similarity to λ, used in
Lambda calculus, another system for expressing computation.

Anonymous functions, continued

CSC!372!Spring!2016,!Haskell!Slide!282!

Larger example: longest

CSC!372!Spring!2016,!Haskell!Slide!283!

Imagine a program to print the longest line(s) in a file, along
with their line numbers:

% runghc longest.hs /usr/share/dict/web2
72632:formaldehydesulphoxylate
140339:pathologicopsychological
175108:scientificophilosophical
200796:tetraiodophenolphthalein
203042:thyroparathyroidectomize

What are some ways in which we could approach it?

Example: longest line(s) in a file

CSC!372!Spring!2016,!Haskell!Slide!284!

Let's work with a shorter file for development testing:
% cat longest.1
data
to
test

readFile in the Prelude lazily returns the full contents of a file as a
string:

> readFile "longest.1"
"data\nto\ntest\n"

To avoid wading into I/O yet, let's focus on a function that operates
on a string of characters (the full contents of a file):

> longest "data\nto\ntest\n"
"1:data\n3:test\n"

longest, continued

CSC!372!Spring!2016,!Haskell!Slide!285!

Let's work through a series of transformations of the data:
> let bytes = "data\nto\ntest\n"

> let lns = lines bytes
["data","to","test"]

Note: To save space, values of let bindings are being shown
immediately after each let. E.g., > lns is not shown above.

Let's use zip3 and map length to create (length, line-number, line)
triples:

> let triples = zip3 (map length lns) [1..] lns
[(4,1,"data"),(2,2,"to"),(4,3,"test")]

longest, continued

CSC!372!Spring!2016,!Haskell!Slide!286!

We have (length, line-number, line) triples at hand:
> triples
[(4,1,"data"),(2,2,"to"),(4,3,"test")]

Let's use sort :: Ord a => [a] -> [a] on them:

> let sortedTriples = reverse (sort triples)
[(4,3,"test"),(4,1,"data"),(2,2,"to")]

Note that by having the line length first, triples are sorted first by
line length, with ties resolved by line number.

We use reverse to get a descending order.

If line length weren't first, we'd instead use

 Data.List.sortBy :: (a -> a -> Ordering) -> [a] -> [a]
and supply a function that returns an Ordering.

longest, continued

CSC!372!Spring!2016,!Haskell!Slide!287!

At hand:
> sortedTriples
[(4,3,"test"),(4,1,"data"),(2,2,"to")]

We'll handle ties by using takeWhile to get all the triples with lines
of the maximum length.

Let's use a helper function to get the first element of a 3-tuple:

> let first (len, _, _) = len
> let maxLength = first (head sortedTriples)
4

first will be used in another place but were it not for that we might
have used a pattern:

 let (maxLength,_,_) = head sortedTriples

longest, continued

CSC!372!Spring!2016,!Haskell!Slide!288!

At hand:
> sortedTriples
[(4,3,"test"),(4,1,"data"),(2,2,"to")]

> maxLength
4

Let's use takeWhile :: (a -> Bool) -> [a] -> [a] to get the triples
having the maximum length:

> let maxTriples = takeWhile
 (\triple -> first triple == maxLength) sortedTriples

[(4,3,"test"),(4,1,"data")]

longest, continued

CSC!372!Spring!2016,!Haskell!Slide!289!

anonymous function for takeWhile

At hand:
> maxTriples
[(4,3,"test"),(4,1,"data")]

Let's map an anonymous function to turn the triples into lines
prefixed with their line number:

> let linesWithNums =
 map (\(_,num,line) -> show num ++ ":" ++ line)
 maxTriples

 ["3:test","1:data"]

We can now produce a ready-to-print result:

> let result = unlines (reverse linesWithNums)
> result
"1:data\n3:test\n"

longest, continued

CSC!372!Spring!2016,!Haskell!Slide!290!

Let's package up our work into a function:
longest bytes = result
 where
 lns = lines bytes
 triples = zip3 (map length lns) [1..] lns
 sortedTriples = reverse (sort triples)
 maxLength = first (head sortedTriples)
 maxTriples = takeWhile
 (\triple -> first triple == maxLength) sortedTriples

 linesWithNums =
 map (\(_,num,line) -> show num ++ ":" ++ line)
 maxTriples

 result = unlines (reverse linesWithNums)

 first (x,_,_) = x

longest, continued

CSC!372!Spring!2016,!Haskell!Slide!291!

At hand:
> longest "data\nto\ntest\n"
"1:data\n3:test\n"

Let's add a main that handles command-line args and does I/O:

% cat longest.hs
import System.Environment (getArgs)
import Data.List (sort)

longest bytes = ...from previous slide...

main = do
 args <- getArgs -- Get command line args as list
 bytes <- readFile (head args)
 putStr (longest bytes)

Execution:
$ runghc longest.hs /usr/share/dict/words
39886:electroencephalograph's

longest, continued

CSC!372!Spring!2016,!Haskell!Slide!292!

Composition

CSC!372!Spring!2016,!Haskell!Slide!293!

Given two functions f and g, the composition of f and g is a function
c that for all values of x, (c x) equals (f (g x))

Here is a primitive compose function that applies two functions in
turn:

> let compose f g x = f (g x)

How many arguments does compose have?

Its type:

 (b -> c) -> (a -> b) -> a -> c

> compose init tail [1..5]
[2,3,4]

> compose signum negate 3
-1

Function composition

CSC!372!Spring!2016,!Haskell!Slide!294!

Haskell has a function composition operator. It is a dot (.)
> :t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c

Its two operands are functions, and its result is a function.

> let numwords = length . words

> numwords "just testing this"
3

> map numwords ["a test", "up & down", "done"]
[2,3,1]

Composition, continued

CSC!372!Spring!2016,!Haskell!Slide!295!

Problem: Using composition create a function that returns the next-
to-last element in a list:

> ntl [1..5]
4

> ntl "abc"
'b'

Two solutions:
 ntl = head . tail . reverse
ntl = last . init

Problem: Recall twice f x = f (f x). Define twice as a composition.
 twice f = f . f

Composition, continued

CSC!372!Spring!2016,!Haskell!Slide!296!

Problem: Create a function to remove the digits from a string:
> rmdigits "Thu Feb 6 19:13:34 MST 2014"
"Thu Feb :: MST "

Solution:

> let rmdigits = filter (not . isDigit)

Given the following, describe f:
> let f = (*2) . (+3)

> map f [1..5]
[8,10,12,14,16]

Would an anonymous function be a better choice?

Composition, continued

CSC!372!Spring!2016,!Haskell!Slide!297!

Given the following, what's the type of numwords?
> :type words
words :: String -> [String]

> :type length
length :: [a] -> Int

> let numwords = length . words

Type:

 numwords :: String -> Int

Assuming a composition is valid, the type is based only on the input
of the rightmost function and the output of the leftmost function.

 (.) :: (b -> c) -> (a -> b) -> a -> c

Composition, continued

CSC!372!Spring!2016,!Haskell!Slide!298!

REPLACEMENTS

Put a big "X" on slides 299-300
in the 223-300 set and continue

with this set.

CSC!372!Spring!2016,!Haskell!Slide!299!

Note: Next set of slides!

Consider the following:
> let s = "It's on!"
> map head (map show (map not (map isLetter s)))
"FFTFTFFT"

Can we use composition to simplify it?

> map (head . show . not . isLetter) s
"FFTFTFFT"

In general, because there are no side-effects,

 map f (map g x)
is equivalent to

 map (f . g) x

If f and g did output, how would the output of the two cases differ?

CSC!372!Spring!2016,!Haskell!Slide!300!

Composition, continued

Recall rmdigits:
> rmdigits "Thu Feb 6 19:13:34 MST 2014"
"Thu Feb :: MST "

What the difference between these two bindings for rmdigits?

rmdigits s = filter (not . isDigit) s

rmdigits = filter (not . isDigit)

The latter version is said to be written in point-free style.

A point-free binding of a function f has NO parameters!

Point-free style

CSC!372!Spring!2016,!Haskell!Slide!301!

I think of point-free style as a natural result of fully grasping partial
application and operations like composition.

Although it was nameless, we've already seen examples of point-free
style, such as these:

nthOdd = (!!) [1,3..]
t2 = twice tail
numwords = length . words
ntl = head . tail . reverse

There's nothing too special about point-free style but it does save some
visual clutter. It is commonly used.

The term "point-free" comes from topology, where a point-free
function operates on points that are not specifically cited.

CSC!372!Spring!2016,!Haskell!Slide!302!

Point-free style, continued

Problem: Using point-free style, bind len to a function that works like
the Prelude's length.

Handy:

> :t const
const :: a -> b -> a

> const 10 20
10

> const [1] "foo"
[1]

Solution:
len = sum . map (const 1)

See also: Tacit programming on Wikipedia

Point-free style, continued

CSC!372!Spring!2016,!Haskell!Slide!303!

CSC!372!Spring!2016,!Haskell!Slide!304!

Go to slide 312

Anonymous functions
(second attempt at 281-283)

CSC!372!Spring!2016,!Haskell!Slide!305!

Imagine that for every number in a list we'd like to double it and
then subtract 5.

Here's one way to do it:

> let f n = n * 2 - 5
> map f [1..5]
[-3,-1,1,3,5]

We could instead use an anonymous function to do the same thing:

> map (\n -> n * 2 - 5) [1..5]
[-3,-1,1,3,5]

Which do you like better, and why?

CSC!372!Spring!2016,!Haskell!Slide!306!

Anonymous functions

At hand:
let f n = n * 2 - 5
map f [1..5]

vs.
 map (\n -> n * 2 - 5) [1..5]

If a computation is only used in one place, using an anonymous
function lets us specify it on the spot, directly associating its
definition with its only use.

We also don't need to think up a name for the function! !

CSC!372!Spring!2016,!Haskell!Slide!307!

Anonymous functions, continued

The general form of an anonymous function:
 \ pattern1 ... patternN -> expression

Simple syntax suggestion: enclose the whole works in parentheses.

 map (\n -> n * 2 - 5) [1..5]

Anonymous functions are also called lambda abstractions (H10),
lambda expressions, and just lambdas (LYAH).

The \ character was chosen due to its similarity to λ, used in the
lambda calculus, another system for expressing computation.

The typical use case for an anonymous function is a single instance
of supplying a higher order function with a computation that can't be
expressed with a section or partial application.

Anonymous functions, continued

CSC!372!Spring!2016,!Haskell!Slide!308!

Speculate: What will ghci respond with?
> \x y -> x + y * 2
<function>
> it 3 4
11

The expression \x y -> x + y * 2 produces a function value.

Here are three ways to bind the name double to a function that
doubles a number:

double x = x * 2

double = \x -> x * 2

double = (*2)

CSC!372!Spring!2016,!Haskell!Slide!309!

Anonymous functions, continued

Anonymous functions are commonly used with higher order
functions such as map and filter.

> map (\w -> (length w, w)) (words "a test now")
[(1,"a"),(4,"test"),(3,"now")]

> map (\c -> "{" ++ [c] ++ "}") "anon."
 ["{a}","{n}","{o}","{n}","{.}"]

> filter (\x -> head x == last x) (words "pop top suds")
["pop","suds"]

In the above examples, the anonymous functions are somewhat like
the bodies of loops in imperative languages.

Anonymous functions, continued

CSC!372!Spring!2016,!Haskell!Slide!310!

CSC!372!Spring!2016,!Haskell!Slide!311!

Go to slide 283

Hocus pocus with
higher-order functions

CSC!372!Spring!2016,!Haskell!Slide!312!

What's this function doing?
f a = g
 where
 g b = a + b

Type?

 f :: Num a => a -> a -> a

Interaction:

> let f ' = f 10
> f ' 20
30

> f 3 4
7

Mystery function

CSC!372!Spring!2016,!Haskell!Slide!313!

Fact:
Curried function definitions are really just syntactic sugar––they just
save some clutter. The don't provide something we can't do without.

Compare these two completely equivalent declarations for add:

 add x y = x + y

 add x = add'
 where
 add' y = x + y

The result of the call add 5 is essentially this function:

 add' y = 5 + y

The combination of the code for add' and the binding for x is known as
a closure. It contains what's needed for execution.

DIY Currying

CSC!372!Spring!2016,!Haskell!Slide!314!

The x used in add' refers to the x parameter
of add.

In 1964 Peter Landin coined the term "syntactic sugar".

A language construct that makes something easier to express but
doesn't add a new capability is called syntactic sugar. It simply
makes the language "sweeter" for human use.

Two examples from C:

•  "abc" is equivalent to a char array initialized with {'a', 'b', 'c',
'\0'}

•  a[i] is equivalent to *(a + i)

What's an example of syntactic sugar in Java?
 The "enhanced for": for (int i: a) { ... }

Sidebar: Syntactic sugar

CSC!372!Spring!2016,!Haskell!Slide!315!

In Haskell a list like [5, 2, 7] can be expressed as 5:2:7:[].
 Is that square-bracket list literal notation syntactic sugar?

What about [1..], [1,3..], ['a'..'z']?

 The Enum type class has enumFrom, enumFromTo, etc.

Recall these equivalent bindings for double:

double x = x * 2
double = \x -> x * 2

Is the first form just syntactic sugar?
What if a function has multiple clauses?

Are anonymous functions syntactic sugar?

Syntactic sugar, continued

CSC!372!Spring!2016,!Haskell!Slide!316!

"Syntactic sugar causes cancer of the semicolon."
 —Alan J. Perlis.

Another Perlis quote:

"A language that doesn't affect the way you think about
programming is not worth knowing."

Perlis was the first recipient of the ACM's Turing Award.

CSC!372!Spring!2016,!Haskell!Slide!317!

Syntactic sugar, continued

DIY currying in JavaScript
JavaScript doesn't provide the syntactic sugar of curried
function definitions but we can do this:

function add(x) {
 return function (y) { return x + y }
 }

Try it in Chrome!

View>Developer>!
JavaScript!Console
brings up a console.

Type in the code for
add on one line.

CSC!372!Spring!2016,!Haskell!Slide!318!

>>> def add(x):
... return lambda y: x + y
...

>>> f = add(5)

>>> type(f)
<type 'function'>

>>> map(f, [10,20,30])
[15, 25, 35]

DIY currying in Python

CSC!372!Spring!2016,!Haskell!Slide!319!

Here's another mystery function:

> let m f x y = f y x

> :type m
m :: (t1 -> t2 -> t) -> t2 -> t1 -> t

Can you devise a call to m?
> m add 3 4
7

> m (++) "a" "b"
"ba"

What is m doing? What could m be useful for?

Another mystery function

CSC!372!Spring!2016,!Haskell!Slide!320!

At hand:
 m f x y = f y x

 m is actually a Prelude function named flip:
> :t flip
flip :: (a -> b -> c) -> b -> a -> c

> flip take [1..10] 3
[1,2,3]

> let ftake = flip take
> ftake [1..10] 3
[1,2,3]

Any ideas on how to use it?

flip

CSC!372!Spring!2016,!Haskell!Slide!321!

At hand:
 flip f x y = f y x

> map (flip take "Haskell") [1..7]
["H","Ha","Has","Hask","Haske","Haskel","Haskell"]

Problem: write a function that behaves like this:

> f 'a'
["a","aa","aaa","aaaa","aaaaa",...

Solution:
 f x = map (flip replicate x) [1..]

flip, continued

CSC!372!Spring!2016,!Haskell!Slide!322!

From assignment 3:
> splits "abcd"
[("a","bcd"),("ab","cd"),("abc","d")]

Some students have noticed the Prelude's splitAt:
> splitAt 2 [10,20,30,40]
([10,20],[30,40])

Problem: Write splits using higher order functions but no explicit
recursion.

Solution:

splits list = map (flip splitAt list) [1..(length list - 1)]

flip, continued

CSC!372!Spring!2016,!Haskell!Slide!323!

$ is the "application operator". Note what :info shows:
> :info ($)
($) :: (a -> b) -> a -> b
infixr 0 $ -- right associative infix operator with very
 -- low precedence

The following binding of $ uses an infix syntax:

f $ x = f x -- Equivalent: ($) f x = f x

Usage:

> negate $ 3 + 4
-7

What's the point of it?

The $ operator

CSC!372!Spring!2016,!Haskell!Slide!324!

$ is a low precedence, right associative operator that applies a
function to a value:

 f $ x = f x

Because + has higher precedence than $, the expression

 negate $ 3 + 4
 groups like this:

 negate $ (3 + 4)

How does the following expression group?

 filter (>3) $ map length $ words "up and down"

 filter (>3) (map length (words "up and down"))

Don't confuse $ with . (composition)!

The $ operator, continued

CSC!372!Spring!2016,!Haskell!Slide!325!

Problem: We're given a function whose argument is a 2-tuple but we
wish it were curried so we could use a partial application of it.

g :: (Int, Int) -> Int
g (x,y) = x^2 + 3*x*y + 2*y^2

> g (3,4)
77

Solution: Curry it with curry from the Prelude!

> map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]

Your problem: Write curry!

Currying the uncurried

CSC!372!Spring!2016,!Haskell!Slide!326!

At hand:
> g (3,4)
77
> map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]

Here's curry, and use of it:

 curry :: ((a, b) -> c) -> a -> b -> c
 curry f x y = f (x,y)

> let cg = curry g
> :type cg
cg :: Int -> Int -> Int

> cg 3 4
77

Currying the uncurried, continued

CSC!372!Spring!2016,!Haskell!Slide!327!

At hand:
 curry :: ((a, b) -> c) -> a -> b -> c
 curry f x y = f (x, y)

> map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]

The key: (curry g 3) is a partial application of curry!

 Call: curry g 3

 Dcl: curry f x y = f (x, y)
 = g (3, y)

Currying the uncurried, continued

CSC!372!Spring!2016,!Haskell!Slide!328!

At hand:
 curry :: ((a, b) -> c) -> (a -> b -> c) (parentheses added)
 curry f x y = f (x, y)

> map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]

Let's get flip into the game!

> map (flip (curry g) 4) [1..10]
[45,60,77,96,117,140,165,192,221,252]

The counterpart of curry is uncurry:

> uncurry (+) (3,4)
7

Currying the uncurried, continued

CSC!372!Spring!2016,!Haskell!Slide!329!

function curry(f) {
 return function(x) {
 return function (y) { return f(x,y) }

 }
 }

A curry function for JavaScript

CSC!372!Spring!2016,!Haskell!Slide!330!

Folding

CSC!372!Spring!2016,!Haskell!Slide!331!

We can reduce a list by a binary operator by inserting that operator
between the elements in the list:

[1,2,3,4] reduced by + is 1 + 2 + 3 + 4

["a","bc", "def"] reduced by ++ is "a" ++ "bc" ++ "def"

Imagine a function reduce that does reduction by an operator.

> reduce (+) [1,2,3,4]
10

> reduce (++) ["a","bc","def"]
"abcdef"

> reduce max [10,2,4]
10

Reduction

 -- think of!10 `max` 2 `max` 4

CSC!372!Spring!2016,!Haskell!Slide!332!

At hand:
> reduce (+) [1,2,3,4]
10

An implementation of reduce:

reduce _ [] = undefined
reduce _ [x] = x
reduce op (x:xs) = x `op` reduce op xs

Does reduce + [1,2,3,4] do
 ((1 + 2) + 3) + 4

or
 1 + (2 + (3 + 4))

?

In general, when would the grouping matter?

 If the operation is non-associative, like division.

Reduction, continued

CSC!372!Spring!2016,!Haskell!Slide!333!

In the Prelude there's no reduce but there is foldl1 and foldr1.

>!foldl1!(+)![1..4]!
10!
!
>!foldl1!max!"maximum"!
'x'!
!
>!foldl1!(/)![1,2,3]!
0.16666666666666666 !AA!lea!associabve:!(1!/!2)!/!3!
!
>!foldr1!(/)![1,2,3]! ! !AA!right!associabve:!1!/!(2!/!3)!
1.5!

The types of both foldl1 and foldr1 are (a!A>!a!A>!a)!A>![a]!A>!a.!

foldl1 and foldr1!

CSC!372!Spring!2016,!Haskell!Slide!334!

Another folding function is foldl (no 1). Let's compare the types of
the two:

foldl1!::!(a!A>!a!A>!a)!A>![a]!A>!a!
foldl!::!(a!A>!b!A>!a)!A>!a!A>![b]!A>!a!

What's different between them?

First difference: foldl requires one more argument:

>!foldl!(+)!0![1..10]!
55!
!
>!foldl!(+)!100![]!
100!
!
>!foldl1!(+)![]!
***!Excepbon:!Prelude.foldl1:!empty!list

CSC!372!Spring!2016,!Haskell!Slide!335!

foldl1 vs. foldl!

Again, the types:
foldl1!::!(a!A>!a!A>!a)!A>![a]!A>!a!
foldl!::!(a!A>!b!A>!a)!A>!a!A>![b]!A>!a!
!

Second difference:
 foldl can fold a list of values into a different type! (This is BIG!)

Examples:

>!foldl!f1!0!["just","a","test"]!
3 ! ! ! ! !AA!folded!strings!into!a!number!
!
>!foldl!f2!"stars:!"![3,1,2]!
"stars:!******" !AA!folded!numbers!into!a!string!
!
>!foldl!f3!0![(1,1),(2,3),(5,10)]!
57 ! ! ! ! !AA!folded!twoAtuples!into!a!sum!of!products!

CSC!372!Spring!2016,!Haskell!Slide!336!

foldl1 vs. foldl, continued

For reference:
!!!!foldl!::!(a!A>!b!A>!a)!A>!a!A>![b]!A>!a!

Here's another view of the type: (acm_t stands for accumulator type)
!!!!foldl!::!(acm_t!A>!elem_t!A>!acm_t)!A>!acm_t!A>![elem_t]!A>!acm_t!
!
foldl takes three arguments:

1.  A function that takes an accumulated value and an element value
and produces a new accumulated value

2.  An initial accumulated value
3.  A list of elements

Recall:
>!foldl!f1!0!["just","a","test"]!
3!
!
>!foldl!f2!"stars:!"![3,1,2]!
"stars:!******"!

CSC!372!Spring!2016,!Haskell!Slide!337!

foldl!

Recall:
>!foldl!f1!0!["just","a","test"]!
3!

Here are the computations that foldl did to produce that result

>!f1!0!"just"!
1!
>!f1!it!"a"!
2!
>!f1!it!"test"!
3!

Let's do it in one shot, and use backquotes to infix f1:

>!((0!!`f1`!!"just")!!`f1`!!"a")!!`f1`!!"test"!
3!

!
!!!!!!!!!!!!!!!1!+!2!+!3!+!4 is the reduction we started this section with.

CSC!372!Spring!2016,!Haskell!Slide!338!

Note the parallels between these two.

At hand:
>!f1!0!"just"!
1!
>!f1!it!"a"!
2!
>!f1!it!"test"!
3!

Problem: Write a function f1 that behaves like above.

Starter:

!f1!::!acm_t!A>!elem_t!A>!acm_t!
!f1!acm!elem!=!!

!
Congratulations! You just wrote a folding function!

CSC!372!Spring!2016,!Haskell!Slide!339!

foldl, continued

acm!+!1!

For reference:
>!foldl!f1!0!["just","a","test"]!
3!

Recall:
>!foldl!f2!"stars:!"![3,1,2]!
"stars:!******"!
!

Here's what foldl does with f2 and the initial value, "stars:!":
>!f2!"stars:!"!3!
"stars:!***"!
>!f2!it!1!
"stars:!****"!
>!f2!it!2!
"stars:!******"!

Write f2, with this starter:

f2!::!acm_t!A>!elem_t!A>!acm_t!
f2!acm!elem!=!acm!++!replicate!elem!'*'!

Look! Another folding function!

CSC!372!Spring!2016,!Haskell!Slide!340!

Folding abstracts a common pattern of computation: a series of values
contribute one-by-one to a result that accumulates.

The challenge of folding is to envision a function that takes nothing but an
accumulated value (acm) and a single list element (elem) and produces a
result that reflects the contribution of elem to acm.

!f2!acm!elem!=!acm!++!replicate!elem!'*'!

It's important to recognize that the folding function never sees the full list!

We then call foldl with that folding function, an appropriate initial value
and a list of values.

 foldl!f2!"stars:!"![3,1,2]

foldl orchestrates the computation by making the appropriate series of calls
to the folding function.

>!(("stars:!"!`f2`!3)!`f2`!1)!`f2`!2!
"stars:!******"!

CSC!372!Spring!2016,!Haskell!Slide!341!

Recall:
>!foldl!f3!0![(1,1),(2,3),(5,10)]!
57!

Here are the calls that foldl!will make:

>!f3!0!(1,1)!
1!
>!f3!it!(2,3)!
7!
>!f3!it!(5,10)!
57!

Problem: write f3!
f3!acm!(a,b)!=!acm!+!a!*!b!

CSC!372!Spring!2016,!Haskell!Slide!342!

 foldl, continued

Remember that
 foldl!f!0![10,20,30]!

is like
 ((0!`f`!10)!`f`!20)!`f`!30!

Here's an implementation of foldl:
foldl!f!acm![]!=!acm!
foldl!f!acm!(elem:elems)!=!!foldl!f!(acm!`f`!elem)!elems!

We can implement foldl1 in terms of foldl:
foldl1!f!(x1:xs)!=!foldl!f!x1!xs!
foldl1!_![]!=!error!"empty!list"!

CSC!372!Spring!2016,!Haskell!Slide!343!

!foldl, continued

Let's use folding to implement our even/odd counter non-recursively.
>!countEO![3,4,7,9]!
(1,3)!
!

Often, a good place to start on a folding is to figure out what the initial
accumulator value should be. What should it be for countEO?

 (0,0)!
!
What will be the calls to the folding function?

>!f!(0,0)!3!
(0,1)!
>!f!it!4!
(1,1)!
>!f!it!7!
(1,2)!
>!f!it!9!
(1,3)!
!

A non-recursive countEO!

CSC!372!Spring!2016,!Haskell!Slide!344!

Now we're ready to write countEO:
countEO!nums!=!foldl!f!(0,0)!nums!
!!!!where!
!!!!!!!!f!(evens,!odds)!elem!
!!!!!!!!!!!!|!even!elem!=!(evens!+!1,!odds)!
!!!!!!!!!!!!|!otherwise!=!(evens,!odds!+!1)!

If a folding function is simple, an anonymous function is typically
used.

Let's redo our three earlier folds with anonymous functions:

>!foldl!(\acm!_!A>!acm!+!1)!0!["just","a","test"]!
3!
!
>!foldl!(\acm!elem!A>!acm!++!replicate!elem!'*')!"stars:!"![3,1,2]!
"stars:!******"!
!
>!foldl!(\acm!(a,b)!A>!acm!+!a!*!b)!0![(1,1),(2,3),(5,10)]!
57!

CSC!372!Spring!2016,!Haskell!Slide!345!

Folds with anonymous functions

The counterpart of foldl!is foldr. Compare their meanings:
!
foldl!f!zero![e1,!e2,!...,!eN]!==!(...((zero!`f`!e1)!`f`!e2)!`f`...)`f`!eN!
!
foldr!f!zero![e1,!e2,!...,!eN]!==!e1!`f`!(e2!`f`!...!(eN!`f`!zero)...)!!
!

"zero" represents a computation-specific initial value. Note that with
foldl, zero is leftmost; but with foldr, zero is rightmost.

!
Their types, with long type variables:

!foldl!::!(acm!A>!val!A>!acm)!A>!acm!A>![val]!A>!acm!
!foldr!::!(val!A>!acm!A>!acm)!A>!acm!A>![val]!A>!acm!

!
Mnemonic aid:

!foldl's folding function has the accumulator on the left
!foldr's folding function has the accumulator on the right

foldr!

CSC!372!Spring!2016,!Haskell!Slide!346!

Because cons (:) is right-associative, folds that produce lists are often
done with foldr.

Imagine a function that keeps the odd numbers in a list:
>!keepOdds![5,4,2,3]!
[5,3]!

Implementation, with foldr:
keepOdds!list!=!foldr!f![]!list!
!!!!where!
!!!!!!!!f!elem!acm!
!!!!!!!!!!!!|!odd!elem!=!elem!:!acm!
!!!!!!!!!!!!|!otherwise!=!acm!

CSC!372!Spring!2016,!Haskell!Slide!347!

foldr, continued

Here are calls to the folding
function:

>!f!3![]!AA!rightmost first!
[3]!
>!f!2!it!
[3]!
>!f!4!it!
[3]!
>!f!5!it!
[5,3]!

keepOdds could have been written using filter:
 keepOdds!=!filter!odd!

Can we implement filter as a fold?

filter!predicate!list!=!foldr!f![]!list!
!!!!where!
!!!!!!!!f!elem!acm!
!!!!!!!!!!!!|!predicate!elem!=!elem!:!acm!
!!!!!!!!!!!!|!otherwise!=!acm!

How about implmenting map as a fold?

map!f!=!foldr!(\elem!acm!A>!f!elem!:!acm)![]!

Is folding One Operation to Rule Them All?

CSC!372!Spring!2016,!Haskell!Slide!348!

filter!and map with folds?

Recall paired from assignment 3:
> paired "((())())"
True

Can we implement paired with a fold?

counter (-1) _ = -1
counter total '(' = total + 1
counter total ')' = total - 1
counter total _ = total

paired s = foldl counter 0 s == 0

Point-free:
paired = (0==) . foldl counter 0

paired with a fold

CSC!372!Spring!2016,!Haskell!Slide!349!

paired is a fold with a simple
wrapper, to test the result of
the fold.

Data.List.partition partitions a list based on a predicate:

> partition isLetter "Thu Feb 13 16:59:03 MST 2014"
("ThuFebMST"," 13 16:59:03 2014")

> partition odd [1..10]
([1,3,5,7,9],[2,4,6,8,10])

Problem: Write partition using a fold.
sorter f val (pass, fail)
 | f val = (val:pass, fail)
 | otherwise = (pass, val:fail)

partition f = foldr (sorter f) ([],[])

Folding, continued

CSC!372!Spring!2016,!Haskell!Slide!350!

Let's do a progression of folds related to finding vowels in a string.

First, let's write a fold that counts vowels in a string:

> foldr (\val acm ->
 acm + if val `elem` "aeiou" then 1 else 0) 0 "ate"
2

Now let's produce both a count and the vowels themselves:

> foldr (\val acm@(n, vows) ->
 if val `elem` "aeiou" then (n+1, val:vows)
 else acm) (0,[]) "ate"
(2,"ae")

A progression of folds

CSC!372!Spring!2016,!Haskell!Slide!351!

Finally, let's write a function that produces a list of vowels and their
positions:

> vowelPositions "Down to Rubyville!"
[('o',1),('o',6),('u',9),('i',13),('e',16)]

Solution:

vowelPositions s = reverse result
 where (_, result, _) =
 foldl (\acm@(n, vows,pos) val ->
 if val `elem` "aeiou" then (n, (val,pos):vows,pos+1)
 else (n,vows,pos+1)) (0,[],0) s

Note that vowelPositions uses foldl to produce a 3-tuple whose
middle element is the result, in reverse order. (This is another
function that's a fold with a wrapper, like paired on 348).

 CSC!372!Spring!2016,!Haskell!Slide!352!

A progression of folds, continued

map:
 transforms a list of values
 length input == length output

filter:

 selects values from a list
 0 <= length output <= length input

folding

 Input: A list of values and an initial value for accumulator
 Output: A value of any type and complexity

True or false?

Any operation that processes a list can be expressed in a
terms of a fold, perhaps with a simple wrapper.

map vs. filter vs. folding

CSC!372!Spring!2016,!Haskell!Slide!353!

Far-fetched folding:

Refrigerators in Gould-Simpson to
 ((grams fat, grams protein, grams carbs), calories)

Keyboards in Gould-Simpson to

 [("a", #), ("b", #), ..., ("@2", #), ("CMD", #)]

[Backpack] to

 (# pens, pounds of paper,
 [(title, author, [page #s with the word "computer")])

[Furniture]

to a structure of 3D vertices representing a convex hull
that could hold any single piece of furniture.

We can fold a list of anythings into anything!

CSC!372!Spring!2016,!Haskell!Slide!354!

User-defined types

CSC!372!Spring!2016,!Haskell!Slide!355!

A new type can be created with a data declaration.

Here's a simple Shape type whose instances represent circles or
rectangles:

data Shape =
 Circle Double | -- just a radius
 Rect Double Double -- width and height

 deriving Show

The shapes have dimensions but no position.

Circle and Rect are data constructors.

"deriving Show" declares Shape to be an instance of the Show type
class, so that values can be shown using some simple, default rules.

Shape is called an algebraic type because instances of Shape are built
using other types.

A Shape type

CSC!372!Spring!2016,!Haskell!Slide!356!

Instances of Shape are created by calling the data constructors:

> let r1 = Rect 3 4
> r1
Rect 3.0 4.0

> let r2 = Rect 5 3

> let c1 = Circle 2

> let shapes = [r1, r2, c1]

> shapes
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0]

Lists must be homogeneous—why are both Rects and Circles
allowed in the same list?

Shape, continued

data Shape =
 Circle Double |
 Rect Double Double

 deriving Show

CSC!372!Spring!2016,!Haskell!Slide!357!

The data constructors are just functions—we can use all our
function-fu with them!

> :t Circle
Circle :: Double -> Shape

> :t Rect
Rect :: Double -> Double -> Shape

> map Circle [2,3] ++ map (Rect 3) [10,20]
[Circle 2.0,Circle 3.0,Rect 3.0 10.0,Rect 3.0 20.0]

Shape, continued

data Shape =
 Circle Double |
 Rect Double Double

 deriving Show

CSC!372!Spring!2016,!Haskell!Slide!358!

Functions that operate on algebraic types use patterns based on the type's
data constructors.

area (Circle r) = r ** 2 * pi
area (Rect w h) = w * h

Usage:

> r1
Rect 3.0 4.0

> area r1
12.0

> shapes
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0]

> map area shapes
[12.0,15.0,12.566370614359172]

> sum $ map area shapes
39.56637061435917

Shape, continued

data Shape =
 Circle Double |
 Rect Double Double

 deriving Show

CSC!372!Spring!2016,!Haskell!Slide!359!

Let's make the Shape type an instance of the Eq type class.

What does Eq require?

> :info Eq
class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

We'll say that two shapes are equal if their areas are equal.

instance Eq Shape where
 (==) r1 r2 = area r1 == area r2

Usage:

> Rect 3 4 == Rect 6 2
True

> Rect 3 4 == Circle 2
False

Shape, continued

Default definitions from Eq:
(==) a b = not $ a /= b
(/=) a b = not $ a == b

CSC!372!Spring!2016,!Haskell!Slide!360!

Let's see if we can find the biggest shape:
> maximum shapes
 No instance for (Ord Shape) arising from a use of
`maximum'
 Possible fix: add an instance declaration for (Ord
Shape)

What's in Ord?

> :info Ord
class Eq a => Ord a where
 compare :: a -> a -> Ordering
 (<) :: a -> a -> Bool
 (>=) :: a -> a -> Bool
 (>) :: a -> a -> Bool
 (<=) :: a -> a -> Bool
 max :: a -> a -> a
 min :: a -> a -> a

Shape, continued

Eq a => Ord a requires
would-be Ord classes to be
instances of Eq. (Done!)

Like == and /= with Eq, the
operators are implemented in
terms of each other.

CSC!372!Spring!2016,!Haskell!Slide!361!

Let's make Shape an instance of the Ord type class:
instance Ord Shape where
 (<) r1 r2 = area r1 < area r2 -- < and <= are sufficient
 (<=) r1 r2 = area r1 <= area r2

Usage:

> shapes
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0]

> map area shapes
[12.0,15.0,12.566370614359172]

> maximum shapes
Rect 5.0 3.0

> Data.List.sort shapes
[Rect 3.0 4.0,Circle 2.0,Rect 5.0 3.0]

Note that we didn't need to write functions like sumOfAreas or
largestShape—we can express those in terms of existing operations

Shape, continued

CSC!372!Spring!2016,!Haskell!Slide!362!

Here's all the Shape code: (in shape.hs)
data Shape =
 Circle Double |
 Rect Double Double deriving Show

area (Circle r) = r ** 2 * pi
area (Rect w h) = w * h

instance Eq Shape where
 (==) r1 r2 = area r1 == area r2

instance Ord Shape where
 (<) r1 r2 = area r1 < area r2
 (<=) r1 r2 = area r1 <= area r2

What would be needed to add a Figure8 shape and a perimeter function?

How does this compare to a Shape/Circle/Rect hierarchy in Java?

Shape all in one place

CSC!372!Spring!2016,!Haskell!Slide!363!

Let's look at the compare function:
> :t compare
compare :: Ord a => a -> a -> Ordering

Ordering is a simple algebraic type, with only three values:
> :info Ordering
data Ordering = LT | EQ | GT

> [r1,r2]
[Rect 3.0 4.0,Rect 5.0 3.0]

> compare r1 r2
LT

> compare r2 r1
GT

The type Ordering

CSC!372!Spring!2016,!Haskell!Slide!364!

What do you suppose Bool really is?

Bool is just an algebraic type with two values:

> :info Bool
data Bool = False | True

Bool is an example of Haskell's extensibility. Instead of being a
primitive type, like boolean in Java, it's defined in terms of
something more basic.

CSC!372!Spring!2016,!Haskell!Slide!365!

What is Bool?

Here's an algebraic type for a binary tree: (in tree.hs)
data Tree a = Node a (Tree a) (Tree a)
 | Empty

 deriving Show

The a is a type variable. Our Shape type used Double values but Tree
can hold values of any type!

> let t1 = Node 9 (Node 6 Empty Empty) Empty
> t1
Node 9 (Node 6 Empty Empty) Empty

> let t2 = Node 4 Empty t1
> t2
Node 4 Empty (Node 9 (Node 6 Empty Empty) Empty)

A binary tree

4

9

6

t1

t2

CSC!372!Spring!2016,!Haskell!Slide!366!

Here's a function that inserts values, maintaining an ordered tree:
insert Empty v = Node v Empty Empty
insert (Node x left right) value
 | value <= x = (Node x (insert left value) right)
 | otherwise = (Node x left (insert right value))

Let's insert some values...
> let t = Empty
> insert t 5
Node 5 Empty Empty

> insert it 10
Node 5 Empty (Node 10 Empty Empty)

> insert it 3
Node 5 (Node 3 Empty Empty) (Node 10 Empty Empty)

Note that each insertion rebuilds some portion of the tree!

Tree, continued

5

10 3

CSC!372!Spring!2016,!Haskell!Slide!367!

Here's an in-order traversal that produces a list of values:
inOrder Empty = []
inOrder (Node val left right) =

 inOrder left ++ [val] ++ inOrder right

What's an easy way to insert a bunch of values?
> let t = foldl insert Empty [3,1,9,5,20,17,4,12]
> inOrder t
[1,3,4,5,9,12,17,20]

> inOrder $ foldl insert Empty "tim korb"
" bikmort"

> inOrder $ foldl insert Empty [Rect 3 4, Circle 1, Rect 1 2]
[Rect 1.0 2.0,Circle 1.0,Rect 3.0 4.0]

Tree, continued

CSC!372!Spring!2016,!Haskell!Slide!368!

Here's an interesting type:
> :info Maybe
data Maybe a = Nothing | Just a

Speculate: What's the point of it?

Here's a function that uses it:

> :t Data.List.find
Data.List.find :: (a -> Bool) -> [a] -> Maybe a

How could we use it?

> find even [3,5,6,8,9]
Just 6

> find even [3,5,9]
Nothing

> case (find even [3,5,9]) of { Just _ -> "got one"; _ -> "oops!"}
"oops!"

Maybe

CSC!372!Spring!2016,!Haskell!Slide!369!

 A little I/O

CSC!372!Spring!2016,!Haskell!Slide!370!

Consider this function declaration
f2 x = a + b + c
 where
 a = f x
 b = g x
 c = h x

Haskell guarantees that the order of the where clause bindings is
inconsequential—those three lines can be in any order.

What enables that guarantee?

(Pure) Haskell functions depend only on the argument value. For
a given value of x, f x always produces the same result.

You can shuffle the bindings of any function's where clause without
changing the function's behavior! (Try it with longest, slide 291.)

Sequencing

a = f x
c = h x
b = g x

c = h x
b = g x
a = f x

CSC!372!Spring!2016,!Haskell!Slide!371!

Imagine a getInt function, which reads an integer from standard
input (e.g., the keyboard).

Can the where clause bindings in the following function be done in
any order?

f x = r
 where
 a = getInt
 b = getInt
 r = a * 2 + b + x

The following is not valid syntax but ignoring that, is it reorderable?
greet name = ""
 where
 putStr "Hello, "
 putStr name
 putStr "!\n"

I/O and sequencing

CSC!372!Spring!2016,!Haskell!Slide!372!

One way we can specify that operations are to be performed in a
specific sequence is to use a do:

% cat io2.hs
main = do
 putStrLn "Who goes there?"
 name <- getLine
 let greeting = "Hello, " ++ name ++ "!"
 putStrLn greeting

Interaction:

% runghc io2.hs
Who goes there?
whm (typed)
Hello, whm!

I/O and sequencing, continued

CSC!372!Spring!2016,!Haskell!Slide!373!

Here's the type of putStrLn:

putStrLn :: String -> IO () ("unit", (), is the no-value value)

The type IO x represents an interaction with the outside world that
produces a value of type x. Instances of IO x are called actions.

When an action is evaluated the corresponding outside-world
activity is performed.

> let hello = putStrLn "hello!" (Note: no output here!)
hello :: IO () (Type of hello is an action.)

> hello
hello! (Evaluating hello, an action, caused output.)
it :: ()

Actions

CSC!372!Spring!2016,!Haskell!Slide!374!

The value of getLine is an action that reads a line:
getLine :: IO String

We can evaluate the action, causing the line to be read, and bind a
name to the string produced:

> s <- getLine
testing

> s
"testing"

Note that getLine is not a function!

Actions, continued

CSC!372!Spring!2016,!Haskell!Slide!375!

Recall io2.hs:
main = do
 putStrLn "Who goes there?"
 name <- getLine
 let greeting = "Hello, " ++ name ++ "!"
 putStrLn greeting

Note the type: main :: IO (). We can say that main is an action.
Evaluating main causes interaction with the outside world.

> main
Who goes there?
hello? (I typed)
Hello, hello?!

Actions, continued

CSC!372!Spring!2016,!Haskell!Slide!376!

A pure function (1) always produces the same result for a given
argument value, and (2) has no side effects.

Is this a pure function?

twice :: String -> IO ()
twice s = do
 putStr s
 putStr s

twice "abc" will always produce the same value, an action that if
evaluated will cause "abcabc" to be output.

Is it pure?

CSC!372!Spring!2016,!Haskell!Slide!377!

We want to use pure functions whenever possible but we want to be
able to do I/O, too.

In general, evaluating an action produces side effects.

Here's the Haskell solution for I/O in a nutshell:

Actions can evaluate other actions and pure functions but pure
functions don't evaluate actions.

Recall longest.hs:
longest bytes = result where ...lots...
main = do
 args <- getArgs -- gets command line arguments
 bytes <- readFile (head args)
 putStr (longest bytes)

The Haskell solution for I/O

CSC!372!Spring!2016,!Haskell!Slide!378!

In conclusion...

CSC!372!Spring!2016,!Haskell!Slide!379!

If we had a whole semester to study functional programming, here's what
might be next:

•  More with infinite data structures (like x = 1:x)

•  How lazy/non-strict evaluation works

•  Implications and benefits of referential transparency (which means that
the value of a given expression is always the same).

•  Functors (structures that can be mapped over)

•  Monoids (a set of things with a binary operation over them)

•  Monads (for representing sequential computations)

•  Zippers (a structure for traversing and updating another structure)

•  And more!

Jeremiah Nelson and Jordan Danford are great local resources for Haskell!

If we had a whole semester...

CSC!372!Spring!2016,!Haskell!Slide!380!

Recursion and techniques with higher-order functions can be used in most
languages. Some examples:

JavaScript, Python, PHP, all flavors of Lisp, and lots of others:

Functions are "first-class" values; anonymous functions are supported.

C

Pass a function pointer to a recursive function that traverses a data
structure.

C#

Excellent support for functional programming with the language itself,
and LINQ, too.

Java 8

 Lambda expressions are in!

OCaml

"an industrial strength programming language supporting functional,
imperative and object-oriented styles" – OCaml.org
http://www.ffconsultancy.com/languages/ray_tracer/comparison.html

Even if you never use Haskell again...

CSC!372!Spring!2016,!Haskell!Slide!381!

Killer Quiz!

CSC!372!Spring!2016,!Haskell!Slide!382!

