
Icon
CSC#372,#Spring#2015#

The#University#of#Arizona#
William#H.#Mitchell#

whm@cs#
#

CSC#372#Spring#2015,#Icon#Slide#1#

Icon is a descendent of SNOBOL4 and SL5.

Icon was designed at the University of Arizona in the late 1970s by a team lead by
Ralph Griswold. The first implementation was in Ratfor (rational FORTRAN), to
facilitate porting Icon to a variety of machines. It was later reimplemented in C.

The last major upheaval in the language itself was in 1982, but a variety of minor
elements have been added in the years since.

Idol, an object-oriented derivative was developed in 1988 by Clint Jeffery.

Graphics extensions evolved from 1990 through 1994.

Unicon (Unified Extended Icon) evolved from 1997 through 1999 and
incremental change continues. Unicon has support for object-oriented
programming, systems programming, and programming-in-the-large.

The development of Icon was supported by about a decade of funding by the
National Science Foundation.

CSC#372#Spring#2015,#Icon#Slide#2#

A little history

Compared to today, computing resources were very limited when Icon was
developed.

The Ratfor implementation of Icon was developed on PDP-10 mainframe
with perhaps 1.5 MIPS and maybe a megabyte or two of virtual address
space. However, that was a timesharing system that supported users
campus-wide and was quite slow at times.

The UNIX implementation of Icon was developed on a PDP-11/70 owned
by the CS department. It limited programs to 64k bytes of program code
and 64k bytes of data. Its speed was perhaps 1 MIP.

Due to these limits Icon's implementation was required to be small and
efficient.

CSC#372#Spring#2015,#Icon#Slide#3#

Efficiency by virtue of limited resources

% /cs/www/classes/cs372/spring15/bin/ie -nn
Icon Evaluator, Version 1.1, ? for help
][3+4
 r := 7 (integer)

]["abc" || (3 + 4.5)
 r := "abc7.5" (string)

][type(r)
 r := "string" (string)

][type(type)
 r := "procedure" (string)

][*r
 r := 9 (integer)

CSC#372#Spring#2015,#Icon#Slide#4#

A little Icon by observation

][s := "testing"
 r := "testing" (string)

][s[1]
 r := "t" (string)

][s[-1]
 r := "g" (string)

][s * 3
Run-time error 102, numeric expected
offending value: "testing"
{"testing" * 3} from line 40 in ._ie_tmp.icn

][repl(s,3)
 r := "testingtestingtesting" (string)

CSC#372#Spring#2015,#Icon#Slide#5#

Icon by observation, continued

]['testing this'
 r := ' eghinst' (cset)

][&digits
 r := &digits (cset)

][split("Thursday, 4/29/2015", &digits)
 r := L1:["Thursday, ","/","/"] (list)

][split("Thursday, 4/29/2015", ~&digits)
 r := L1:["4","29","2015"] (list)

][*(&letters ++ &digits)
 r := 62 (integer)

CSC#372#Spring#2015,#Icon#Slide#6#

Icon by observation, continued

][line := read()
here's some input!
 r := "here's some input!" (string)

][write("just",2,"test")
just2test
 r := "test" (string)

][x := [1, [2], "three"]
 r := L1:[1,L2:[2],"three"] (list)

][x[1]
 r := 1 (integer)

][*(x ||| x)
 r := 6 (integer)

CSC#372#Spring#2015,#Icon#Slide#7#

Icon by observation, continued

][t := table("Go fish!")
 r := T1:[] (table)

][t["one"] := 1
 r := 1 (integer)

][t['two'] := 2
 r := 2 (integer)

][t
 r := T1:["one"->1,'otw'->2] (table)

][t["three"]
 r := "Go fish!" (string)

][table()[1]
 r := &null (null)

CSC#372#Spring#2015,#Icon#Slide#8#

Icon by observation, continued

In Icon, positions in a string are between characters and run in both directions.

 1 2 3 4 5 6 7 8
 | | | | | | | |
 t o o l k i t
 | | | | | | | |
 -7 -6 -5 -4 -3 -2 -1 0

Several forms of subscripting are provided.

][s[3:-1]
 r := "olki" (string)

][s[1+:4]
 r := "tool" (string)

s[i] is a shorthand for s[i:i+1]

][s[5]
 r := "k" (string)

What problem does between-based positioning avoid?
 It avoids the "to" vs. "through" problem.

CSC#372#Spring#2015,#Icon#Slide#9#

String indexing

Assignment of string values does not cause sharing of data:

][s1 := "Knuckles"
 r := "Knuckles" (string)

][s2 := s1
 r := "Knuckles" (string)

][s1[1:1] := "Fish "
 r := "Fish " (string)

][s1
 r := "Fish Knuckles" (string)

][s2
 r := "Knuckles" (string)

Any substring can be the target of an assignment.

CSC#372#Spring#2015,#Icon#Slide#10#

Strings use "value semantics"

A key design feature of Icon is that an expression can fail to produce a
result. A simple example of an expression that fails is an out of bounds
string subscript:

][s := "testing"
 r := "testing" (string)

][s[5]
 r := "i" (string)

][s[50]
Failure

We say, "s[50] fails"—it produces no value.

If an expression produces a value it is said to have succeeded.

When an expression is evaluated it either succeeds or fails.

CSC#372#Spring#2015,#Icon#Slide#11#

Failure

An important rule:
An operation is performed only if a value is present for all operands. If due
to failure a value is not present for all operands, the operation fails.

Another way to say it:

If evaluation of an operand fails, the operation fails. And, failure propagates.

][s := "testing"
 r := "testing" (string)

]["x" || s[50]
Failure

][reverse("x" || s[50])
Failure

][s := reverse("x" || s[50]) # s is unchanged
Failure

CSC#372#Spring#2015,#Icon#Slide#12#

Failure, continued

When working in Icon,
unexpected failure is the
root of madness.

Another example of an expression that fails is a comparison whose
condition does not hold:

][3 = 0
Failure

][4 < 3
Failure

A comparison that succeeds produces the value of the right hand operand
as the result of the comparison:

][1 < 2
 r := 2 (integer)

][10 ~= 20
 r := 20 (integer)

CSC#372#Spring#2015,#Icon#Slide#13#

Failure, continued

What do these expressions do?

write(a < b)

f(a < b, x = y, 0 ~= *s)

max := max < n

max <:= 30

How do Java exceptions compare to Icon's failure mechanism?

CSC#372#Spring#2015,#Icon#Slide#14#

Failure, continued

Here's a string that represents a hierarchical data structure:

 /a:b/apple:orange/10:2:4/xyz/

Major elements are delimited by slashes; minor elements are delimited by colons.

Imagine an Icon procedure to access an element given a major and minor:

][extract("/a:b/apple:orange/10:2:4/xyz/", 2, 1)
 r := "apple" (string)

][extract("/a:b/apple:orange/10:2:4/xyz/", 3, 4)
Failure

Implementation:

procedure extract(s,m,n)
 return split(split(s, '/')[m], ':')[n]
end

How does extract make use of failure?

CSC#372#Spring#2015,#Icon#Slide#15#

Failure, continued

Icon has several traditionally-named control structures, but they are driven
by success and failure.

Here's the general form of the while expression:

while expr1 do
 expr2

If expr1 succeeds, expr2 is evaluated. This continues until expr1 fails.

Here is a loop that reads lines and prints them:

while line := read() do
 write(line)

CSC#372#Spring#2015,#Icon#Slide#16#

The while expression

At hand:
while line := read() do
 write(line)

If no body is needed, the do clause can be omitted.

Here's a more concise way to write the loop above.

 while write(read())

What causes termination of this more compact version?

read() fails at end of file.
That failure propagates outward, causing the write() to fail.
The while terminates because its control expression, write(...),
failed.

CSC#372#Spring#2015,#Icon#Slide#17#

The while expression

The general form of the & operator:

 expr1 & expr2

expr1 is evaluated first. If expr1 succeeds, expr2 is evaluated. If expr2
succeeds, the entire expression succeeds and produces the result of expr2. If
either expr1 or expr2 fails, the entire expression fails.

Example:

while line := read() & line[1] ~== "." do
 write(line)

Here is pseudo-code for the implementation of &:

Value andOp(Value expr1, Value expr2) { return expr2 }

How does it work?

andOp only gets called if evaluation of both operands succeeded, so all it
needs to do is to return the value of the right-hand operand!

CSC#372#Spring#2015,#Icon#Slide#18#

The & operator

All executable code in an Icon program is contained in procedures. A
procedure may take arguments. It may return a value of interest.

Execution of an Icon program begins by calling the procedure main.

A simple program with two procedures:

procedure main()
 while n := read() do
 write(n, " doubled is ", double(n))
end

procedure double(n)
 return 2 * n
end

Use icont to compile and run. -s suppresses some chatty stuff. -x says to
execute; without it, icont would only produce the executable double.

 % icont –s double.icn –x

CSC#372#Spring#2015,#Icon#Slide#19#

Procedures

A procedure may produce a result or it may fail. Here's a more flexible version of
double:

procedure double(x)
 if type(x) == "string" then
 return x || x
 else if numeric(x) then
 return x + x
 else
 fail
end

][double(5)
 r := 10 (integer)

][double("xyz")
 r := "xyzxyz" (string)

][double([1,2])
Failure

CSC#372#Spring#2015,#Icon#Slide#20#

Procedures, continued

Does double exemplify duck typing?

Here is the Ruby counterpart:

def double x
 x * 2
end

Is Icon duck-challenged? If so, why?

What are tradeoffs in having different operators for addition and
concatenation?

CSC#372#Spring#2015,#Icon#Slide#21#

Procedures, continued

procedure double(x)
 if type(x) == "string" then
 return x || x
 else if numeric(x) then
 return x + x
 else
 fail
end

>> s = "abc"; n = 123
>> s + n
TypeError: ...
>> s + n.to_s
=> "abc123"

][s := "abc"; n := 123
][s || n
 r := "abc123" (string)

One of Icon's debugging facilities is call tracing. Tracing is activated by
setting the keyword &trace or the TRACE environment variable.

% TRACE=-1 icont –s sum.icn -x
 : main()
sum.icn: 2 | sum(3)
sum.icn: 7 | | sum(2)
sum.icn: 7 | | | sum(1)
sum.icn: 7 | | | | sum(0)
sum.icn: 6 | | | | sum returned 0
sum.icn: 6 | | | sum returned 1
sum.icn: 6 | | sum returned 3
sum.icn: 6 | sum returned 6
6
sum.icn: 3 main failed
%

CSC#372#Spring#2015,#Icon#Slide#22#

Call tracing in procedures

% cat -n sum.icn
1 procedure main()
2 write(sum(3))
3 end
4
5 procedure sum(n)
6 return if n = 0 then 0
7 else n + sum(n-1)
8 end

In most languages, evaluation of an expression produces either a result or
an exception.

We've seen that Icon expressions can fail, producing no result.

Some expressions in Icon are generators, and can produce many results.

Here's a generator:

 1 to 3

1 to 3 has the result sequence {1, 2, 3}.

The .every directive of ie can be used to show the result sequence of a
generator:

][.every 1 to 3
 1 (integer)
 2 (integer)
 3 (integer)

CSC#372#Spring#2015,#Icon#Slide#23#

Generator basics

Some languages allow generative constructs in particular contexts, like a
"for" control structure but an Icon generator can appear at any place in any
expression.

][.every repl("*", 1 to 3)
 "*" (string)
 "**" (string)
 "***" (string)

][s := "abcd"
][.every write(reverse(s[1:2 to *s]))
a
 "a" (string)
ba
 "ba" (string)
cba
 "cba" (string)

CSC#372#Spring#2015,#Icon#Slide#24#

Generator basics, continued

If an expression fails to produce a result, Icon resumes the last generator to
produce a result.

][i := 1 to 10 & i % 2 = 0 & write(i) & 1 = 2
2
4
6
8
10
Failure

Icon backtracks through previous expressions to find an active generator.
If one is found, it starts evaluating the following expressions again.

What does this back and forth movement remind you of?

The above is an example of goal-directed evaluation.

CSC#372#Spring#2015,#Icon#Slide#25#

Generator basics, continued

The every control structure drives a generator to failure, making it
produce all its results. Example:

every i := 1 to 5 do
 write(repl("*", i))

Output:

*
**

Here's a more concise version:
every write(repl("*", 1 to 5))

CSC#372#Spring#2015,#Icon#Slide#26#

Generator basics, continued

Another built-in generator is the unary exclamation mark, called "bang".

It is polymorphic, as is the size operator (*). For character strings it
generates the characters in the string one at a time.

][every write(!"abc") Note: using every control structure
a
b
c
Failure

The result sequence of !"abc" is {"a", "b", "c"}.

For lists, ! generates the elements:

][every write(![&lcase,&ucase,&digits])
abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
Failure

CSC#372#Spring#2015,#Icon#Slide#27#

The generator "bang" (!)

A program to count vowels appearing on standard input:

procedure main()
 vowels := 0
 while line := read() do
 every c := !line do
 if c == !"aeiouAEIOU" then

 vowels +:= 1
 write(vowels, " vowels")
end

Execution:

% echo "testing" | icont -s vowels.icn -x
2 vowels

CSC#372#Spring#2015,#Icon#Slide#28#

"bang", continued

Speculate: What does the following program do?

procedure main()
 lines := []
 every push(lines, !&input)
 every write(!lines)

end

Execution:

% seq 3 | icont -s tac.icn -x
3
2
1

CSC#372#Spring#2015,#Icon#Slide#29#

"bang", continued

The alternation control structure looks like an operator:

expr1 | expr2

This creates a generator whose result sequence is the result sequence of
expr1 followed by the result sequence of expr2.

For example, the expression

 3 | 7

has the result sequence {3, 7}.

The expression

 (1 to 5) | (5 to 1 by -1)

has the result sequence {1, 2, 3, 4, 5, 5, 4, 3, 2, 1}.

CSC#372#Spring#2015,#Icon#Slide#30#

Alternation

Alternation used in goal-directed evaluation:

procedure main()
 while time := (writes("Time? ") & read()) do {
 if time = (10 | 2 | 4) then
 write("It's Dr. Pepper time!")
 }
end

A program to read lines from standard input and write out the first twenty
characters of each line:

procedure main()
 while line := read() do
 write(line[1:(21|0)])
end

Would it work with line[1:21] instead?

CSC#372#Spring#2015,#Icon#Slide#31#

Alternation, continued

An expression may contain any number of generators:

][every write(!"ab", !"+-", !"cd")
a+c
a+d
a-c
a-d
b+c
b+d
b-c
b-d
Failure

Generators are resumed in a LIFO manner: the generator that most
recently produced a result is the first one resumed.

What does every write(!x == !y) do?

CSC#372#Spring#2015,#Icon#Slide#32#

Multiple generators

Recall this vowel counter:
procedure main()
 vowels := 0
 while line := read() do
 every c := !line do
 if c == !"aeiouAEIOU" then

 vowels +:= 1
 write(vowels, " vowels")
end

Here is a more concise version, using multiple generators:

procedure main()
 vowels := 0
 every !!&input == !"aeiouAEIOU" do
 vowels +:= 1
 write(vowels, " vowels")
end

CSC#372#Spring#2015,#Icon#Slide#33#

Multiple generators, continued

A program to show the distribution of the sum of three dice:

procedure main()
 every N := 1 to 18 do {
 writes(right(N,2), " ")
 every (1 to 6) + (1 to 6) + (1 to 6) = N do
 writes("*")
 write()
 }
end

CSC#372#Spring#2015,#Icon#Slide#34#

Multiple generators, continued

 1
 2
 3 *
 4 ***
 5 ******
 6 **********
 7 ***************
 8 *********************
 9 *************************
10 ***************************
11 ***************************
12 *************************
13 *********************
14 ***************
15 **********
16 ******
17 ***
18 *

The SNOBOL4 programming language has a very powerful string pattern
matching facility but it shares a problem with regular expressions in Ruby: you're
either doing regular computation or you're matching a pattern—the operations
can't be interleaved smoothly, like they can be in Prolog.

A design goal for Icon was to integrate string pattern matching with regular
computation—match a little, compute a little, match a little, compute a little, etc.

The end result was a handful of string scanning functions that can be used in
conjunction with Icon's other facilities to achieve the desired full integration of
string pattern matching with regular computation.

In the end, Icon's string scanning facility turned to be a disappointment. It is
small and powerful but the techniques involved are non-trivial. Too often, the
first version of code using string scanning is not correct. Ditto for the second
version.

The following slides provide a very brief look at Icon's string scanning facility.
(About 50-60 slides are required for an in-depth study of the facility.)

CSC#372#Spring#2015,#Icon#Slide#35#

String scanning

String scanning is initiated with ?, the scanning operator:

 expr1 ? expr2

The value of expr1 is established as the subject of the scan (&subject).
The scanning position in the subject (&pos) is set to 1. expr2 is then
evaluated.

A trivial example:

]["testing" ? { write(&subject); write(&pos) }
testing
1
 r := 1 (integer)

The result of the scanning expression is the result of expr2.

CSC#372#Spring#2015,#Icon#Slide#36#

The scanning operator

There are two string scanning functions that change &pos—the current
position in &subject:

 move(n) Move forwards or backwards by n characters.
 (&pos +:= n)

 tab(n) Move to position n. (&pos := n)

Both move and tab return the string between the old and new values of
&pos.

CSC#372#Spring#2015,#Icon#Slide#37#

String scanning functions

There is a group of functions that produce positions to be used in
conjunction with tab:

 many(cs) produces position after run of characters in cs
 upto(cs) generates positions of characters in cs
 find(s) generates positions of s
 match(s) produces position after s, if s is next
 any(cs) produces position after a character in cs
 bal(s, cs1, cs2, cs3)
 similar to upto(cs), but used with "balanced" strings.

There is one other string scanning function:

 pos(n) tests if &pos is equivalent to n

The string scanning facility consists of only the above functions (including
move and tab), the ? operator, and the &pos and &subject keywords.
Nothing more.

CSC#372#Spring#2015,#Icon#Slide#38#

String scanning functions, continued

Here's a procedure that sums the integers it finds in a string:

procedure sumnums(s)
 sum := 0
 s ? while tab(upto(&digits)) do

 sum +:= integer(tab(many(&digits)))
 return sum

end

upto(&digits) produces the position of the next digit after &pos, the current
position. The wrapping tab(...) advances &pos to that position.

tab(many(&digits)) advances over the digits and returns them as a string.

][sumnums("values: 10, 20 and 30")
 r := 60 (integer)

A goal of string scanning was to be able to interleave scanning operations with
ordinary computation. Does sumnums exemplify that?

CSC#372#Spring#2015,#Icon#Slide#39#

upto, many, and tab

Here's a procedure that generates matches for strings of the form aNbNcN:
procedure aNbNcN()
 tab(upto('a')) &
 start := &pos &
 as := tab(many('a')) &
 bs := tab(many('b')) &
 cs := tab(many('c')) &
 *as = *bs = *cs &
 suspend [start, as || bs || cs]
end

A main to test with:
procedure main()
 while writes("Line? ") & line := read() do {
 line ? every m := aNbNcN() do
 printf("At %d: '%s'\n", m[1], m[2])
 }
end

CSC#372#Spring#2015,#Icon#Slide#40#

Line? aabbcc abbc aaabbbccc ab abc
At 1: 'aabbcc'
At 13: 'aaabbbccc'
At 26: 'abc'

The &s are needed to produce
procedure-wide backtracking.

Facilities for graphical programming in Icon evolved in the period
1990-1994.

A philosophy of Icon is to insulate the programmer from details and place
the burden on the language implementation. The graphics facilities were
designed with same philosophy.

Icon's graphical facilities are built on the X Window System on UNIX
machines. On Microsoft Windows platforms the facilities are built on the
Windows API.

CSC#372#Spring#2015,#Icon#Slide#41#

Graphics in Icon

Here is a program that draws a "crosshair" of dots in a window:

link graphics
procedure main() # g1.icn
 WOpen("size=300,200")

 every x := 0 to 300 by 3 do
 DrawPoint(x, 100) # horizontal

 every y := 0 to 200 by 7 do
 DrawPoint(150, y) # vertical

 WDone() # wait for a "q" to be typed
end

CSC#372#Spring#2015,#Icon#Slide#42#

Graphics, continued

Here is a program that randomly draws points.

link graphics

$define Height 700 # symbolic constants
$define Width 900 # via preprocessor

procedure main() # g2.icn
 WOpen("size=" || Width ||","||Height)

 repeat {
 DrawPoint(?Width-1, ?Height-1)
 }
end

Speculate: How long will it take it to black out every single point?

CSC#372#Spring#2015,#Icon#Slide#43#

Graphics, continued

$define Width 500
$define Height 500
procedure main() # g3.icn
 WOpen("size="||Width||","||Height, "drawop=reverse")

 x := ?Width; y := ?Height; r := 50
 repeat {
 DrawCircle(x, y, r)
 hit := &null
 every 1 to 80 do {
 WDelay(10)
 while *Pending() > 0 do {
 if Event()=== &lpress then {
 if sqrt((x-&x)^2+(y-&y)^2) < r then {
 FillCircle(x,y, r)
 WDelay(500)
 FillCircle(x,y,r)
 hit := 1
 break break
 }}}}
 DrawCircle(x,y,r)
 if \hit then r *:= .9 else r *:= 1.10
 x := ?Width; y := ?Height
 }
end

CSC#372#Spring#2015,#Icon#Slide#44#

Simple game

This program draws a circular target at
random location If the player clicks inside
the target within 800ms, the radius shrinks
by 10%. If not, the radius grows by 10%.

Steve Kobes wrote this very elegant curve editor in 2003:
procedure main()
 WOpen("height=500", "width=700", "label=Curve Editor")
 pts := []
 repeat case Event() of {
 &lpress: if not(i := nearpt(&x, &y, pts)) then

 { pts |||:= [&x, &y]; draw(pts)}
 &ldrag: if \i then { pts[i] := &x; pts[i + 1] := &y; draw(pts) }
 !"Qq": break
 }
end

procedure draw(pts)
 EraseArea()
 DrawCurve!(pts ||| [pts[1], pts[2]])
 every i := 1 to *pts by 2 do
 FillCircle(pts[i], pts[i + 1], 3)
end

procedure nearpt(x, y, pts)
 every i := 1 to *pts by 2 do
 if abs(x - pts[i]) < 4 & abs(y - pts[i + 1]) < 4 then return i
end
 CSC#372#Spring#2015,#Icon#Slide#45#

Kobes' Curve Editor

http://www.cs.arizona.edu/icon is the Icon home page.

http://www.cs.arizona.edu/~whm/451 has the materials from a full-semester
course I taught on Icon in 2003.

On the home page, under "Books About Icon", I recommend three:

The Icon Programming Language, 3rd edition
A comprehensive treatment of the language, with numerous examples of
non-numerical applications.

The Implementation of the Icon Programming Language

 For a time, Ralph taught a course that covered the implementation of Icon's
run-time system. This book rose out of that course. If you're interested in
how dynamic languages are implemented, this book is definitely worth a
look.

Graphics Programming in Icon

Some parts are dated but lots of interesting stuff, like Lindenmayer systems
and a caricature algorithm.

unicon.org is the home page for Unicon, a derivative of Icon that supports object-
oriented programming, systems programming, and programming-in-the-large.

CSC#372#Spring#2015,#Icon#Slide#46#

Icon resources

