
Ruby
CSC#372,#Spring#2016#

The#University#of#Arizona#
William#H.#Mitchell#

whm@cs#
#

CSC#372#Spring#2016,#Ruby#Slide#1#

Our topic sequence:

•  Functional programming with Haskell (Done!)

•  Imperative and object-oriented programming using dynamic

typing with Ruby

•  Logic programming with Prolog

•  Whatever else in the realm of programming languages that we

find interesting and have time for.

The Big Picture

CSC#372#Spring#2016,#Ruby#Slide#2#

Introduction

CSC#372#Spring#2016,#Ruby#Slide#3#

From:#Ralph#Griswold#<ralph@CS.Arizona.EDU>#
Date:#Mon,#18#Sep#2006#16:14:46#S0700#
#
whm#wrote:#
>#I#ran#into#John#Cropper#in#the#mailroom#a#few#minutes#ago.##He#said#
>#he#was#out#at#your#place#today#and#that#you're#doing#well.##I#
>#understand#you've#got#a#meeWng#coming#up#regarding#math#in#your#
>#weaving#book#SS#sounds#like#fun!?#
#
Hi,#William#
#
I'm#doing#well#in#the#sense#of#surviving#longer#than#expected.##But#
I'm#sWll#a#sick#person#without#much#energy#and#with#a#lot#of#pain.#
>#
>#My#first#lecture#on#Ruby#is#tomorrow.##Ruby#was#cooked#up#by#a#
>#Japanese#fellow.##Judging#by#the#number#of#different#ways#to#do#the#
>#same#thing,#I#wonder#if#Japanese#has#a#word#like#"no".#
#
InteresWng.##I#know#nothing#about#Ruby,#but#I've#noWced#it's#
ge`ng#a#lot#of#press,#so#there#must#be#something#to#it.#

Ralph's#obituary:#hap://cs.arizona.edu/news/arWcles/200610Sgriswold.html# CSC#372#Spring#2016,#Ruby#Slide#4#

"A dynamic, open source programming language with a focus on
simplicity and productivity. It has an elegant syntax that is natural to
read and easy to write." — ruby-lang.org

Ruby is commonly described as an "object-oriented scripting
language".

 (I don't like the term "scripting language"!)

I describe Ruby as a dynamically typed object-oriented language.

Ruby was invented by Yukihiro Matsumoto ("Matz"), a "Japanese
amateur language designer", in his own words.

Ruby on Rails, a web application framework, has largely driven
Ruby's popularity.

What is Ruby?

CSC#372#Spring#2016,#Ruby#Slide#5#

Here is a second-hand excerpt of a posting by Matz:
"Well, Ruby was born on February 24, 1993. I was talking with
my colleague about the possibility of an object-oriented
scripting language. I knew Perl (Perl4, not Perl5), but I didn't
like it really, because it had smell of toy language (it still has).
The object-oriented scripting language seemed very promising."

Another quote from Matz:

"I believe that the purpose of life is, at least in part, to be happy.
Based on this belief, Ruby is designed to make programming not
only easy but also fun. It allows you to concentrate on the
creative side of programming, with less stress. If you don’t
believe me, read this book [the "pickaxe" book] and try Ruby.
I’m sure you’ll find out for yourself."

Matz says...

CSC#372#Spring#2016,#Ruby#Slide#6#

There is no written standard for Ruby. The language is effectively defined
by MRI—Matz' Ruby Implementation.

The most recent stable version of MRI is 2.3.0.

The default version of Ruby on lectura is 1.8.7 but we'll use rvm (the
Ruby Version Manager) to run version 2.2.4.

OS X, from Mavericks to El Capitan, has Ruby 2.0.0.

The last major upheaval in Ruby occurred between 1.8 and 1.9.

In general, there are few incompatibilities between 1.9.3 and the latest
version.

The examples in these slides should work with with 1.9.3 through 2.3.0.

CSC#372#Spring#2016,#Ruby#Slide#7#

Version issues

The Ruby Programming Language by David Flanagan and Matz
 – Perhaps the best book on Safari that covers 1.9 (along with 1.8)
 – I'll refer to it as "RPL" .

Programming Ruby 1.9 & 2.0 (4th edition): The Pragmatic Programmers'
Guide by Dave Thomas, with Chad Fowler and Andy Hunt

 – Known as the "Pickaxe book"
 – $28 for a DRM-free PDF at pragprog.com.#
 – I'll refer to it as "PA".
 – First edition is here: hap://rubySdoc.com/docs/ProgrammingRuby/

Safari has lots of pre-1.9 books, lots of books that teach just enough Ruby
to get one into the water with Rails, and lots of "cookbooks".

Resources

CSC#372#Spring#2016,#Ruby#Slide#8#

ruby-lang.org
•  Ruby's home page

ruby-doc.org
•  Documentation

•  Here's a sample URL, for the String class in 2.2.4:

 http://ruby-doc.org/core-2.2.4/String.html

•  Suggestion: Create a Chrome "search engine" named rc ("Ruby

class") with this expansion:
 http://www.ruby-doc.org/core-2.2.4/%s.html
 (See hap://www.cs.arizona.edu/~whm/o1nav.pdf)

Resources, continued

CSC#372#Spring#2016,#Ruby#Slide#9#

Ruby 2.0.0, as supplied by Apple with recent versions of OS X,
should be fine for our purposes.

I installed Ruby 2.2.0 on my Mac using MacPorts. The "port" is
ruby22.

Lot of people install Ruby versions using the Homebrew package
manager, too.

CSC#372#Spring#2016,#Ruby#Slide#10#

Getting Ruby for OS X

Go to http://rubyinstaller.org/downloads/ and get
 "Ruby 2.2.4" (not x64)

When installing, I recommend these selections:

 Add Ruby executables to your PATH
 Associate .rb and .rbw files with this Ruby installation

Getting Ruby for Windows

CSC#372#Spring#2016,#Ruby#Slide#11#

Running Ruby

CSC#372#Spring#2016,#Ruby#Slide#12#

rvm is the Ruby Version Manager. It lets one easily select a particular
version of Ruby to work with.

On lectura, we can select Ruby 2.2.4 and then check the version like this:

% rvm 2.2.4
% ruby --version
ruby 2.2.4p230 (2015-12-16 revision 53155) [x86_64-linux]

Depending on your bash configuration, rvm may produce a message like
"Warning! PATH is not properly set up..." but if ruby --version
shows 2.2.4, all is well.

Note: rvm does not work with ksh. If you're running ksh, let us know.

CSC#372#Spring#2016,#Ruby#Slide#13#

rvm––Ruby Version Manager

IMPORTANT: you must either
 1. Do rvm 2.2.4 each time you login on lectura.

 ––OR––
 2. Add the command rvm 2.2.4 to one of your bash start-up files.

There are a variety of ways in which bash start-up files can be configured.
•  With the default configuration for CS accounts, add the line
 rvm 2.2.4 >& /dev/null
 at the end of your ~/.profile.

•  If you're using the configuration suggested in my Fall 2015 352
slides, put that line at the end of your ~/.bashrc.

•  Let us know if you have trouble with this.

CSC#372#Spring#2016,#Ruby#Slide#14#

rvm, continued

The irb command provides a REPL for Ruby.

irb can be run with no arguments but I usually start irb with a bash alias
that specifies using a simple prompt and activates auto-completion:

 alias irb="irb --prompt simple -r irb/completion"

When irb starts up, it first processes ~/.irbrc, if present.

spring16/ruby/dotirbrc is a recommended starter ~/.irbrc file.
 % cp /cs/www/classes/cs372/spring16/ruby/dotirbrc ~/.irbrc

Control-D terminates irb.

irb––Interactive Ruby Shell

CSC#372#Spring#2016,#Ruby#Slide#15#

irb evaluates expressions as they are typed.
% irb
>> 1+2
=> 3

>> "testing" + "123"
=> "testing123"

Assuming you're using the ~/.irbrc suggested on the previous slide, you
can use "it" to reference the last result:

>> it
=> "testing123"

>> it + it
=> "testing123testing123"

irb, continued

CSC#372#Spring#2016,#Ruby#Slide#16#

A couple more:

>> `ssh lec uptime`
=> " 18:00:58 up 10 days, 9:00, 99 users, load average: 0.50,
0.32, 0.32\n"

>> it[-26,8]
=> "average:"

If an expression is definitely incomplete, irb displays an alternate prompt:

>> 1.23 +
?> 2e3
=> 2001.23

Note: To save space on the slides I'll typically not show the result line
(=> ...) when it's uninteresting.

irb, continued

CSC#372#Spring#2016,#Ruby#Slide#17#

Ruby basics

CSC#372#Spring#2016,#Ruby#Slide#18#

In Ruby every value is an object.

Methods can be invoked using receiver.method(parameters...)

>> "testing".count("t") # How many "t"s are there?
 => 2

>> "testing".slice(1,3)
=> "est"

>> "testing".length()
=> 7

Repeat: In Ruby every value is an object.

What are some values in Java that are not objects?

Every value is an object

CSC#372#Spring#2016,#Ruby#Slide#19#

Of course, "everything" includes numbers:
>> 1.2.class()
=> Float

>> (10-20).class()
=> Fixnum

>> 17**25
=> 5770627412348402378939569991057

>> it.succ() # Remember: the custom .irbc is needed to use "it"
=> 5770627412348402378939569991058

>> it.class()
=> Bignum

Everything is an object, continued

CSC#372#Spring#2016,#Ruby#Slide#20#

100.__id__
100.__send__
100.abs
100.abs2
100.angle
100.arg
100.between?
100.ceil
100.chr
100.class
100.clone
100.coerce
100.conj
100.conjugate
100.define_singleton_method
100.denominator

100.display
100.div
100.divmod
100.downto
100.dup
100.enum_for
100.eql?
100.equal?
100.even?
100.extend
100.fdiv
100.floor
100.freeze
100.frozen?
100.gcd
100.gcdlcm

Everything is an object, continued
The TAB key can be used to show completions:

>> 100.<TAB><TAB>
Display all 107 possibilities? (y or n)

CSC#372#Spring#2016,#Ruby#Slide#21#

Parentheses are often optional in method invocations:
>> 1.2.class
=> Float

>> "testing".count "aeiou"
=> 2

But, the following case fails. (Why?)
>> "testing".count "aeiou".class
TypeError: no implicit conversion of Class into String
 from (irb):17:in `count'

Solution:

>> "testing".count("aeiou").class
=> Fixnum

I usually omit parentheses in simple method invocations.

Parentheses are optional, sometimes

CSC#372#Spring#2016,#Ruby#Slide#22#

Don't let the optional parentheses make you have a Haskell moment and
leave out a comma between arguments:

>> "testing".slice 2 3
SyntaxError: (irb):20: syntax error, unexpected tINTEGER,
expecting end-of-input

Commas are required between arguments!

>> "testing".slice 2,3
=> "sti"

CSC#372#Spring#2016,#Ruby#Slide#23#

A post-Haskell hazard!

Ruby operators are methods with symbolic names.

In general,

 expr1 op expr2
means

 expr1.op(expr2)

Example:

>> 3 + 4
=> 7

>> 3.+(4)
=> 7

>> "abc".==(97.chr.+("bc"))
=> true

CSC#372#Spring#2016,#Ruby#Slide#24#

Operators are methods, too

The Kernel module has methods for I/O and more. Methods in Kernel
can be invoked with only the method name.

>> puts "hello"
hello
=> nil

>> printf "sum = %d, product = %d\n", 3+4, 3 * 4
sum = 7, product = 12
=> nil

>> puts gets.inspect
testing
"testing\n"
=> nil

See http://ruby-doc.org/core-2.2.4/Kernel.html

CSC#372#Spring#2016,#Ruby#Slide#25#

Kernel methods

For two assignment points of extra credit:

1.  Run irb somewhere and try ten Ruby expressions with some

degree of variety.

2.  Capture the output and put it in a plain text file, eca2.txt. No need
for your name, NetID, etc. in the file. No need to edit out errors.

3.  On lectura, turn in eca2.txt with the following command:
%#turnin#372Seca2#eca2.txt#

Due: At the start of the next lecture after we hit this slide.

Needless to say, feel free to read ahead in the slides and show
experimentation with the following material, too.

Extra Credit Assignment 2

CSC#372#Spring#2016,#Ruby#Slide#26#

The ruby command can be used to execute Ruby source code contained in
a file.

By convention, Ruby files have the suffix .rb.

Here is "Hello" in Ruby:

% cat hello.rb
puts "Hello, world!"

% ruby hello.rb
Hello, world!

Note that the code does not need to be enclosed in a method—"top level"
expressions are evaluated when encountered.

Executing Ruby code in a file

CSC#372#Spring#2016,#Ruby#Slide#27#

Alternatively, code can be placed in a method that is invoked by an
expression at the top level:

% cat hello2.rb
def say_hello
 puts "Hello, world!"
end

say_hello

% ruby hello2.rb
Hello, world!

The definition of say_hello must precede the call.

We'll see later that Ruby is somewhat sensitive to newlines.

Executing Ruby code in a file, continued

CSC#372#Spring#2016,#Ruby#Slide#28#

Here's a program that reads lines from standard input and writes each, with
a line number, to standard output:

line_num = 1 # numlines.rb

while line = gets
 printf("%3d: %s", line_num, line)
 line_num += 1 # Ruby does not have ++ and --
end

Execution:
% ruby numlines.rb < hello2.rb
 1: def say_hello
 2: puts "Hello, world!"
 3: end
 4:
 5: say_hello

A line-numbering program

CSC#372#Spring#2016,#Ruby#Slide#29#

Problem: Write a program that reads lines from standard input and writes
them in reverse order to standard output. Use only the Ruby you've seen.

For reference, here's the line-numbering program:

line_num = 1
while line = gets
 printf("%3d: %s", line_num, line)
 line_num += 1
end

Solution: (spring16/ruby/tac.rb)

reversed = ""
while line = gets
 reversed = line + reversed
end
puts reversed

tac.rb

CSC#372#Spring#2016,#Ruby#Slide#30#

Some basic types

CSC#372#Spring#2016,#Ruby#Slide#31#

nil is Ruby's "no value" value. The name nil references the only instance
of the class.

>> nil
=> nil

>> nil.class
=> NilClass

>> nil.object_id
=> 4

We'll see that Ruby uses nil in a variety of ways.

Speculate: Do uninitialized variables have the value nil?

>> x
NameError: undefined local variable or method `x' for main

The value nil

CSC#372#Spring#2016,#Ruby#Slide#32#

TODO
 x = 1 if false
 p x # outputs nil

It seems like the presence of an assignment for
x causes a reference to x to produce nil if no
assignment is ever done.

Instances of Ruby's String class represent character strings.

A variety of "escapes" are recognized in double-quoted string literals:

>> puts "newline >\n< and tab >\t<"
newline >
< and tab > <

>> "\n\t\\".length
=> 3

>> "Newlines: octal \012, hex \xa, control-j \cj"
=> "Newlines: octal \n, hex \n, control-j \n"

Section 3.2, page 49 in RPL has the full list of escapes.

Strings and string literals

CSC#372#Spring#2016,#Ruby#Slide#33#

In single-quoted literals only \' and \\ are recognized as escapes:

>> puts '\n\t'
\n\t
=> nil

>> '\n\t'.length # Four chars: backslash, n, backslash, t
=> 4

>> puts '\'\\'
'\
=> nil

>> '\'\\'.length # Two characters: apostrophe, backslash
=> 2

String literals, continued

CSC#372#Spring#2016,#Ruby#Slide#34#

The public_methods method shows the public methods that are
available for an object. Here are some of the methods for String:

>> "abc".public_methods.sort
=> [:!, :!=, :!~, :%, :*, :+, :<, :<<, :<=, :<=>, :==, :===, :=~,
 :>, :>=, :[], :[]=, :__id__, :__send__, :ascii_only?,
 :between?, :bytes, :bytesize, :byteslice, :capitalize, :capitalize!
, :casecmp, :center, :chars, :chomp, :chomp!, :chop, :chop!, :chr
, :class, :clear, :clone, :codepoints, :concat, :count, :crypt, :defi
ne_singleton_method, :delete, :delete!, :display, :downcase, :d
owncase!, :dump, :dup, :each_byte, :each_char, :each_codepoi
nt, :each_line, :empty?, ...

>> "abc".public_methods.length
=> 169

String has a lot of methods

CSC#372#Spring#2016,#Ruby#Slide#35#

Unlike Java, Haskell, and many other languages, strings in Ruby are
mutable.

If two variables reference a string and the string is changed, the change is
reflected by both variables:

>> x = "testing"

>> y = x # x and y now reference the same instance of String

>> y << " this" # the << operator appends a string
=> "testing this"

>> x
=> "testing this"

Is it a good idea to have mutable strings?

Strings are mutable

CSC#372#Spring#2016,#Ruby#Slide#36#

The dup method produces a copy of a string.
>> x = "testing"
>> y = x.dup
=> "testing"

>> y << "...more"
=> "testing...more"

>> y
=> "testing...more"

>> x
=> "testing"

Some objects that hold strings dup the string when the string is added to
the object.

Strings are mutable, continued

CSC#372#Spring#2016,#Ruby#Slide#37#

Some methods have both an applicative and an imperative form.

String's upcase method is applicative––it produces a new String but
doesn't change its receiver, the instance of String on which it's called:

>> s = "testing"
=> "testing"

>> s.upcase
=> "TESTING"

>> s
=> "testing"

CSC#372#Spring#2016,#Ruby#Slide#38#

Sidebar: applicative vs. imperative methods

In contrast, an imperative method potentially changes its receiver.

String's upcase! method is the imperative counterpart to upcase:

>> s.upcase!
=> "TESTING"

>> s
=> "TESTING"

A Ruby convention is that when methods have both an applicative and an
imperative form, the imperative form ends with an exclamation mark.

CSC#372#Spring#2016,#Ruby#Slide#39#

applicative vs. imperative methods, contineud

Strings can be compared with a typical set of operators:

>> s1 = "apple"

>> s2 = "testing"

>> s1 == s2
=> false

>> s1 != s2
=> true

>> s1 < s2
=> true

We'll talk about details of true and false later.

String comparisons

CSC#372#Spring#2016,#Ruby#Slide#40#

There is also a comparison operator: <=>

It produces -1, 0, or 1 depending on whether the first operand is less than,
equal to, or greater than the second operand.

>> "apple" <=> "testing"
=> -1

>> "testing" <=> "apple"
=> 1

>> "x" <=> "x"
=> 0

This operator is sometimes read as "spaceship".

String comparisons, continued

CSC#372#Spring#2016,#Ruby#Slide#41#

Subscripting a string with a number produces a one-character string.

>> s="abcd"

>> s[0] # Positions are zero-based
=> "a"

>> s[1]
=> "b"

>> s[-1] # Negative positions are counted from the right
=> "d"

>> s[100]
=> nil # An out-of-bounds reference produces nil

Historical note: With Ruby versions prior to 1.9, "abc"[0] is 97.

Why doesn't Java provide s[n] instead of s.charAt(n)?

Substrings

CSC#372#Spring#2016,#Ruby#Slide#42#

A subscripted string can be the target of an assignment. A string of any
length can be assigned.

>> s = "abc"
=> "abc"

>> s[0] = 65.chr
=> "A"

>> s[1] = "tomi"

>> s
=> "Atomic"

>> s[-3] = ""

>> s
=> "Atoic"

Substrings, continued

CSC#372#Spring#2016,#Ruby#Slide#43#

A substring can be referenced with
 s[start, length]

>> s = "replace"

>> s[2,3]
=> "pla"

>> s[3,100] # Note too-long behavior!
=> "lace"

>> s[-4,3]
=> "lac"

>> s[10,10]
=> nil

Substrings, continued

r e p l a c e
0 1 2 3 4 5 6
7 6 5 4 3 2 1 (negative)

CSC#372#Spring#2016,#Ruby#Slide#44#

Instances of Ruby's Range class represent a range of values. A Range
can be used to reference a substring.

>> r = 2..-2
=> 2..-2

>> r.class
=> Range

>> s = "replaced"

>> s[r]
=> "place"

>> s[r] = ""

>> s
=> "red"

Substrings with ranges

CSC#372#Spring#2016,#Ruby#Slide#45#

It's more common to use literal ranges with strings:

>> s = "rebuilding"
>> s[2..-1]
=> "building"

>> s[2..-4]
=> "build"

>> s[2...-4] # three dots is "up to"
=> "buil"

>> s[-8..-4]
=> "build"

>> s[-4..-8]
=> ""
 CSC#372#Spring#2016,#Ruby#Slide#46#

Substrings with ranges, continued

 r e b u i l d i n g
 0 1 2 3 4 5 6 7 8 9
10 9 8 7 6 5 4 3 2 1 (negative)

A substring can be the target of an assignment:
>> s = "replace"

>> s[0,2] = ""
=> ""

>> s
=> "place"

>> s[3..-1] = "naria"
>> s
=> "planaria"

>> s["aria"] = "kton" # If "aria" appears, replace it (error if not).
=> "kton"

>> s
=> "plankton"

Changing substrings

r e p l a c e
0 1 2 3 4 5 6
7 6 5 4 3 2 1 (negative)

p l a c e
0 1 2 3 4
5 4 3 2 1 (negative)

CSC#372#Spring#2016,#Ruby#Slide#47#

In a string literal enclosed with double quotes the sequence #{expr}
causes interpolation of expr, an arbitrary Ruby expression.

>> x = 10

>> y = "twenty"

>> s = "x = #{x}, y + y = #{y + y}"
=> "x = 10, y + y = twentytwenty"

>> puts "There are #{"".public_methods.length} string methods"
There are 169 string methods

>> "test #{"#{"abc".length*4}"}" # Arbitrary nesting works
=> "test 12"

It's idiomatic to use interpolation rather than concatenation to build a
string from multiple values.

Interpolation in string literals

CSC#372#Spring#2016,#Ruby#Slide#48#

With 2.2.4 on lectura, integers in the range -262 to 262-1 are represented by
instances of Fixnum. If an operation produces a number outside of that
range, the value is represented with a Bignum.

>> x = 2**62-1
=> 4611686018427387903

>> x.class => Fixnum

>> x += 1 => 4611686018427387904

>> x.class => Bignum

>> x -= 1 => 4611686018427387903

>> x.class => Fixnum

Is this automatic transitioning between Fixnum and Bignum a good idea?
How do other languages handle this?

Numbers

CSC#372#Spring#2016,#Ruby#Slide#49#

LHtLaL:

Explore boundaries!

The Float class represents floating point numbers that can be represented
by a double-precision floating point number on the host architecture.

>> x = 123.456
=> 123.456

>> x.class
=> Float

>> x ** 0.5
=> 11.111075555498667

>> x = x / 0.0
=> Infinity

>> (0.0/0.0).nan?
=> true

Numbers, continued

CSC#372#Spring#2016,#Ruby#Slide#50#

Arithmetic on two Fixnums produces a Fixnum.
>> 2/3
=> 0

>> it.class
=> Fixnum

Fixnums and Floats can be mixed. The result is a Float.

>> 10 / 5.1
=> 1.9607843137254903

>> 10 % 4.5
=> 1.0

>> it.class
=> Float

Numbers, continued

CSC#372#Spring#2016,#Ruby#Slide#51#

Ruby has a Complex type.

>> x = Complex(2,3)
=> (2+3i)

>> x * 2 + 7
=> (11+6i)

>> Complex 'i'
=> (0+1i)

>> it ** 2
=> (-1+0i)

Numbers, continued

CSC#372#Spring#2016,#Ruby#Slide#52#

There's Rational, too.

>> Rational(1,3)
=> (1/3)

>> it * 300
=> (100/1)

>> Rational 0.5
=> (1/2)

>> Rational 0.6
=> (5404319552844595/9007199254740992)

>> Rational 0.015625
=> (1/64)

Numbers, continued

CSC#372#Spring#2016,#Ruby#Slide#53#

Unlike some languages, Ruby does not automatically convert strings to
numbers and numbers to strings as needed.

>> 10 + "20"
TypeError: String can't be coerced into Fixnum

The methods to_i, to_f, and to_s are used to convert values to Fixnums,
Floats and Strings, respectively.

>> 10.to_s + "20"
=> "1020"

>> 10 + "20".to_f
=> 30.0

>> 10 + 20.9.to_i
=> 30

Conversions

>> 33.to_<TAB><TAB>
33.to_c 33.to_int
33.to_enum 33.to_r
33.to_f 33.to_s
33.to_i

CSC#372#Spring#2016,#Ruby#Slide#54#

A sequence of values is typically represented in Ruby by an instance of
Array.

An array can be created by enclosing a comma-separated sequence of values
in square brackets:

>> a1 = [10, 20, 30]
=> [10, 20, 30]

>> a2 = ["ten", 20, 30.0, 2**40]
=> ["ten", 20, 30.0, 1099511627776]

>> a3 = [a1, a2, [[a1]]]
=> [[10, 20, 30], ["ten", 20, 30.0, 1099511627776], [[[10, 20, 30]]]]

What's a difference between Ruby arrays and Haskell lists?

Arrays

CSC#372#Spring#2016,#Ruby#Slide#55#

Array elements and subarrays (sometimes called slices) are specified with
a notation like that used for strings.

>> a = [1, "two", 3.0, %w{a b c d}]
=> [1, "two", 3.0, ["a", "b", "c", "d"]]

>> a[0]
=> 1

>> a[1,2] # a[start, length]
=> ["two", 3.0]

>> a[-1]
=> ["a", "b", "c", "d"]

>> a[-1][-2]
=> "c"

Arrays, continued

CSC#372#Spring#2016,#Ruby#Slide#56#

Elements and subarrays can be assigned to. Ruby accommodates a variety
of cases; here are some:

>> a = [10, 20, 30, 40, 50, 60]

>> a[1] = "twenty"; a
=> [10, "twenty", 30, 40, 50, 60]

>> a[2..4] = %w{a b c d e}; a
=> [10, "twenty", "a", "b", "c", "d", "e", 60]

>> a[1..-1] = []; a
=> [10]

>> a[0] = [1,2,3]; a => [[1, 2, 3]]

>> a[4] = [5,6]; a => [[1, 2, 3], nil, nil, nil, [5, 6]]

>> a[0,2] = %w{a bb ccc}; a => ["a", "bb", "ccc", nil, nil, [5, 6]]

Arrays, continued

CSC#372#Spring#2016,#Ruby#Slide#57#

A variety of operations are provided for arrays. Here's a sampling:
>> a = []

>> a << 1; a
=> [1]

>> a << [2,3,4]; a
=> [1, [2, 3, 4]]

>> a.reverse!; a
=> [[2, 3, 4], 1]

Arrays, continued

CSC#372#Spring#2016,#Ruby#Slide#58#

A few more:

>> a
=> [[2, 3, 4], 1]

>> a[0].shift
=> 2

>> a
=> [[3, 4], 1]

>> a.unshift "a","b","c"
=> ["a", "b", "c", [3, 4], 1]

>> a.shuffle.shuffle
=> ["a", [3, 4], "b", "c", 1]

Arrays, continued

CSC#372#Spring#2016,#Ruby#Slide#59#

Even more!
>> a = [1,2,3,4]; b = [1,3,5]

>> a + b
=> [1, 2, 3, 4, 1, 3, 5]

>> a - b
=> [2, 4]

>> a & b
=> [1, 3]

>> a | b
=> [1, 2, 3, 4, 5]

>> ('a'..'zzz').to_a.size
=> 18278

Arrays, continued

CSC#372#Spring#2016,#Ruby#Slide#60#

We can compare arrays with == and !=. Elements are compared in turn,
possibly recursively.

>> [1,2,3] == [1,2]
=> false

>> [1,2,[3,"bcd"]] == [1,2] + [[3, "abcde"]]
=> false

>> [1,2,[3,"bcd"]] == [1,2] + [[3, "abcde"[1..-2]]]
=> true

Comparing arrays

CSC#372#Spring#2016,#Ruby#Slide#61#

Comparison of arrays with <=> is lexicographic.

>> [1,2,3,4] <=> [1,2,10]
=> -1

>> [[10,20],[2,30], [5,"x"]].sort
=> [[2, 30], [5, "x"], [10, 20]]

Comparing arrays

CSC#372#Spring#2016,#Ruby#Slide#62#

Comparison with <=> produces nil if differing types are encountered.

>> [1,2,3,4] <=> [1,2,3,"four"]
=> nil

>> [[10,20],[5,30], [5,"x"]].sort
ArgumentError: comparison of Array with Array failed

Here's a simpler failing case. Should it be allowed?
>> ["sixty",20,"two"].sort
ArgumentError: comparison of String with 20 failed

Comparing arrays

Tie!

CSC#372#Spring#2016,#Ruby#Slide#63#

At hand:
>> ["sixty",20,"two"].sort
ArgumentError: comparison of String with 20 failed

Contrast with Icon:
][sort(["sixty",20,"two"])
 r := [20,"sixty","two"] (list)

][sort([3.0, 7, 2, "a", "A", ":", [2], [1], -1.0])
 r := [2, 7, -1.0, 3.0, ":", "A", "a", [2], [1]] (list)

What does Icon do better? What does Icon do worse?

Here's Python 2:

>>> sorted([3.0, 7, 2, "a", "A", ":", [2], [1], -1.0])
[-1.0, 2, 3.0, 7, [1], [2], ':', 'A', 'a']

CSC#372#Spring#2016,#Ruby#Slide#64#

Comparing arrays, continued

An array can hold a reference to itself:
>> a = [1,2,3]

>> a.push a
=> [1, 2, 3, [...]]

>> a.size
=> 4

>> a[-1]
=> [1, 2, 3, [...]]

>> a[-1][-1][-1]
=> [1, 2, 3, [...]]

Arrays can be cyclic

[1, 2, 3,]

a

>> a << 10
=> [1, 2, 3, [...], 10]

>> a[-2][-1]
=> 10

CSC#372#Spring#2016,#Ruby#Slide#65#

Type Checking

CSC#372#Spring#2016,#Ruby#Slide#66#

"The Java programming language is a statically typed language, which
means that every variable and every expression has a type that is known at
compile time."

 -- The Java Language Specification, Java SE 7 Edition

Assume the following:

int i = ...; String s = ...; Object o = ...; static int f(int n);

What are the types of the following expressions?

i + 5
i + s
s + o
o + o
o.hashCode()
f(i.hashCode())
i = i + s

Did we need to know any values or execute any code to determine those
types?

Static typing

CSC#372#Spring#2016,#Ruby#Slide#67#

Java does type checking based on the declared types of variables and the
intrinsic types of literals.

Haskell supports type declarations but also provides type inferencing.

What are the inferred types for x, y, and z in the following expression?

 (isLetter $ head $ [x] ++ y) && z

> let f x y z = (isLetter $ head $ [x] ++ y) && z
f :: Char -> [Char] -> Bool -> Bool

Did we need to know any values or execute any code to determine those
types?

Haskell is a statically typed language—the type of every expression can be
determined by analyzing the code.

Static typing, continued

CSC#372#Spring#2016,#Ruby#Slide#68#

With a statically typed language, the type for all expressions is determined
when a body of code is compiled/loaded/etc. Any type inconsistencies
that exist are discoverable at that time.

Without having to run any code a statically typed language lets us
guarantee that various types of errors don't exist. Examples:

 Dividing a string by a float
 Taking the "head" of an integer
 Concatenating two numbers
 Putting an integer in a list of strings

Static typing, continued

CSC#372#Spring#2016,#Ruby#Slide#69#

How often did your Haskell code run correctly as soon as the type errors
were fixed?

How does that compare with your experience with Java?

 With C?
 With Python?

"The best news is that Haskell's type system will tell you if your program
is well-typed before you run it. This is a big advantage because most
programming errors are manifested as typing errors."—Paul Hudak, Yale

Do you agree with Hudak?

Static typing, continued

CSC#372#Spring#2016,#Ruby#Slide#70#

In Java, variables are declared to have a type.

Variables in Ruby do not have a type. Instead, type is associated with
values.

>> x = 10
>> x.class # What's the class of the object held in x?
=> Fixnum

>> x = "ten"
>> x.class
=> String

>> x = 2**100
>> x.class
=> Bignum

Variables in Ruby have no type

CSC#372#Spring#2016,#Ruby#Slide#71#

Ruby is a dynamically typed language. There is no static analysis of the
types involved in expressions.

Consider this Ruby method:

def f x, y, z
 return x[y + z] * x.foo
end

For some combinations of types it will produce a value. For others it will
produce a TypeError.

With dynamic typing such methods are allowed to exist.

Dynamic typing

CSC#372#Spring#2016,#Ruby#Slide#72#

With dynamic typing, no type checking is done when code is compiled.
Instead, types of values are checked during execution, as each operation is
performed.

Consider this Ruby code:

while line = gets
 puts(f(line) + 3 + g(line)[-2])
end

What types must be checked each time through that loop?

Wrt. static typing, what are the implications of dynamic typing for...

 Compilation speed?
 Probably faster!
 Execution speed?
 Probably slower!
 Reliability?
 It depends...

Dynamic typing, continued

CSC#372#Spring#2016,#Ruby#Slide#73#

A long-standing question in industry:
Can a good test suite find type errors in dynamically typed code as
effectively as static type checking?

What's a "good" test suite?

 Full code coverage? (every line executed by some test)
 Full path coverage? (all combinations of paths exercised)
 How about functions whose return type varies?

But wouldn't we want a good test suite no matter what language we're
using?

"Why have to write tests for things a compiler can catch?"

 ––Brendan Jennings, SigFig

Can testing compensate?

CSC#372#Spring#2016,#Ruby#Slide#74#

What does the end-user of software care about?

 Software that works
 Facebook game vs. radiation therapy system

 Fast enough
 When does 10ms vs. 50ms matter?

 Better sooner than later
 A demo that's a day late for a trade show isn't worth much.

 Affordable

How much more would you pay for a version of your
favorite game that has half as many bugs?

I'd pay A LOT for a version of PowerPoint with more
keyboard shortcuts!

What ultimately matters?

CSC#372#Spring#2016,#Ruby#Slide#75#

Java is statically typed but casts introduce the possibility of a type error
not being detected until execution.

C is statically typed but has casts that allow type errors during execution
that are never detected.

Ruby, Python, and Icon have no static type checking whatsoever, but type
errors during execution are always detected.

An example of a typing-related trade-off in execution time:
•  C spends zero time during execution checking types.
•  Java checks types during execution only in certain cases.
•  Languages with dynamic typing check types on every operation, at

least conceptually.

Is type inferencing applicable in a dynamically typed language?
 UA CS TR 93-32a: Type Inference in the Icon Programming Language

Variety in type checking

CSC#372#Spring#2016,#Ruby#Slide#76#

"Why?" vs. "Why Not?"

CSC#372#Spring#2016,#Ruby#Slide#77#

When designing a language some designers ask,
 "Why should feature X be included?"

Some designers ask the opposite:

 "Why should feature X not be included?"

Let's explore that question with Ruby.

"Why?" or "Why not?"

CSC#372#Spring#2016,#Ruby#Slide#78#

A "here document" is a third way to literally specify a string.
>> s = <<XYZZY
 +-----+
 | \\\ |
 | */ |
 | ''' |
 +-----+
XYZZY
=> "\n +-----+\n\n | \\ |\n\n | */ |\n
\n | ''' |\n\n +-----+\n\n"

The string following << specifies a delimiter that ends the literal. The
ending occurrence must be at the start of a line.

"There's more than one way to do it!"—a Perl motto

More string literals!

CSC#372#Spring#2016,#Ruby#Slide#79#

Here's another way to specify string literals. See if you can discern some
rules from these examples:

>> %q{ just testin' this... }
=> " just testin' this... "

>> %Q|\n\t|
=> "\n\t"

>> %q(\u0041 is Unicode for A)
=> "\\u0041 is Unicode for A"

>> %q.test.
=> "test"

%q follows single-quote rules. %Q follows double quote rules.
Symmetrical pairs like (), {}, and <> can be used.

And that's not all!

CSC#372#Spring#2016,#Ruby#Slide#80#

Partial summary of string literal syntax in Ruby:
>> x = 5; s = "x is #{x}"
=> "x is 5"

>> '\'\\\n\t'.length
=> 6

>> hd = <<X
just
testing
X
=> "just\ntesting\n"

>> %q{ \n \t } + %Q|\n \t | + %Q(\u0021 \u{23})
=> " \\n \\t \n \t ! #"

How much is enough?

How many ways does Haskell
have to make a string literal?

How many ways should there be
to make a string literal?

What's the minimum functionality
needed?

Which would you remove?

CSC#372#Spring#2016,#Ruby#Slide#81#

Here are some examples of operator overloading:
>> [1,2,3] + [4,5,6] + [] + [7]
=> [1, 2, 3, 4, 5, 6, 7]

>> "abc" * 5
=> "abcabcabcabcabc"

>> [1, 3, 15, 1, 2, 1, 3, 7] - [3, 2, 1, 3]
=> [15, 7]

>> [10, 20, 30] * "..."
=> "10...20...30" # "intercalation"

>> "decimal: %d, octal: %o, hex: %x" % [20, 20, 20]
=> "decimal: 20, octal: 24, hex: 14"

"Why" or "Why not?" as applied to operator overloading

CSC#372#Spring#2016,#Ruby#Slide#82#

What are some ways in which inclusion of a feature impacts a language?

•  Increases the "mental footprint" of the language.

 – There are separate footprints for reading code and writing code.

•  Maybe makes the language more expressive.

•  Maybe makes the language useful for new applications.

•  Probably increases size of implementation and documentation.

•  Might impact performance.

"Why" or "Why not?", continued

CSC#372#Spring#2016,#Ruby#Slide#83#

Features come in all sizes!
 Small: A new string literal escape sequence ("\U{65}" for "A")
 Small: Supporting an operator on a new pair of types
 Medium: Support for arbitrary precision integers

Large or small?

 Support for object-oriented programming
 Support for garbage collection

CSC#372#Spring#2016,#Ruby#Slide#84#

Features come in all sizes!

At one of my first meetings with Ralph Griswold I put forth a number of
ideas I had for new features for Icon.

He listened patiently. When I was done he said,

 "Go ahead. Add all of those you want to."

As I left his office he added,

 "But for every feature you add, first find one to remove."

What would Ralph do?

CSC#372#Spring#2016,#Ruby#Slide#85#

There's a lot of science in programming language design but there's art, too.

Excerpt from interview with Perl Guru Damian Conway:

Q: "What languages other than Perl do you enjoy programming in?"
A: "I'm very partial to Icon. It's so beautifully put together, so elegantly

proportioned, almost like a Renaissance painting."
 hap://www.pair.com/pair/current/insider/1201/damianconway.html#(404#now!)#
#

"Icon: A general purpose language known for its elegance and grace.
Designed by Ralph Griswold to be successor to SNOBOL4."

 ––Digibarn "Mother Tongues" chart (see Intro slides)

Between SNOBOL4 and Icon there was there SL5 (SNOBOL Language 5).

I think of SL5 as an example of the "Second System Effect". It was never
released.

Ralph once said, "I was laying in the hospital thinking about SL5. I felt
there must be something simpler." That turned out to be Icon.

The art of language design

CSC#372#Spring#2016,#Ruby#Slide#86#

Procedure call in Icon:
][reverse("programming")
 r := "gnimmargorp" (string)

][p := reverse
 r := function reverse (procedure)

][p("foo")
 r := "oof" (string)

Doctoral student Steve Wampler added mutual goal directed evaluation
(MGDE). A trivial example:

][3("one", 2, "III")
 r := "III" (string)

][(?3)("one", 2, "III")
 r := "one" (string)

Design example: invocation in Icon

CSC#372#Spring#2016,#Ruby#Slide#87#

After a CSC 550A lecture where Ralph introduced MGDE, I asked,
 "How about 'string invocation', so that "+"(3,4) would be 7?"

What do you suppose Ralph said?

 "How would we distinguish between unary and binary operators?"

Solution: Discriminate based on the operand count!

]["-"(5,3)
 r := 2 (integer)
]["-"(5)
 r := -5 (integer)
][(?"+-")(3,4)
 r := -1 (integer)

Within a day or two I added string invocation to Icon.

Why did Ralph choose to allow this feature?

 He felt it would increase the research potential of Icon.

Invocation in Icon, continued

CSC#372#Spring#2016,#Ruby#Slide#88#

An interesting language design example in Ruby is parallel assignment.
Some simple examples:

>> a, b = 10, [20, 30]

>> a
=> 10

>> b
=> [20, 30]

>> c, d = b
>> c
=> 20

>> d
=> 30

Design example: Parallel assignment

CSC#372#Spring#2016,#Ruby#Slide#89#

Could we do a swap with parallel assignment?
>> x, y = 10, 20

>> x,y = y,x

>> x
=> 20

>> y
=> 10

This swaps, too:

 >> x,y=[y,x]

Contrast:

 Icon has a swap operator: x :=: y

 CSC#372#Spring#2016,#Ruby#Slide#90#

Parallel assignment, continued

Speculate: What does the following do?
>> a,b,c = [10,20,30,40,50]

>> [a,b,c]
=> [10, 20, 30]

Speculate again:
>> a,b,*c = [10,20,30,40,50]

>> [a,b,c]
=> [10, 20, [30, 40, 50]]

>> a,*b,*c = [10,20,30,40,50]
SyntaxError: (irb):57: syntax error, unexpected *

Section 4.5.5 in RPL has full details on parallel assignment. It is both
more complicated and less general than pattern matching in Haskell. (!)

CSC#372#Spring#2016,#Ruby#Slide#91#

Parallel assignment, continued

Control Structures

CSC#372#Spring#2016,#Ruby#Slide#92#

Here's a loop to print the integers from 1 through 10, one per line.

i=1
while i <= 10 do # "do" is optional
 puts i
 i += 1
end

When i <= 10 produces false, control branches to the code following
end, if any.

The body of the while is always terminated with end, even if there's only
one expression in the body.

The while loop

CSC#372#Spring#2016,#Ruby#Slide#93#

Java control structures such as if, while, and for are driven by the result of
expressions that produce a value whose type is boolean.

C has a more flexible view: control structures consider a scalar value that
is non-zero to be "true".

PHP considers zeroes, the empty string, the string "0", empty arrays, and
more to be false.

Python and JavaScript, too, have sets of "truthy" and "falsy/falsey" values.

Here's the Ruby rule:

 Any value that is not false or nil is considered to be "true".

while, continued

CSC#372#Spring#2016,#Ruby#Slide#94#

Remember: Any value that is not false or nil is considered to be "true".

Let's analyze this loop, which reads lines from standard input using gets.

while line = gets
 puts line

end

gets returns a string that is the next line of the input, or nil, on end of file.

The expression line = gets has two side effects but also produces a value.

 Side effects: (1) a line is read from standard input and (2) is assigned to line.
 Value: The string assigned to line.

If the first line of the file is "one", then the first time through the loop what's
evaluated is while "one".

The value "one" is not false or nil, so the body of the loop is executed, causing
"one" to be printed on standard output.

At end of file, gets returns nil. nil is assigned to line and produced as the value
of the assignment, in turn terminating the loop.

while, continued

CSC#372#Spring#2016,#Ruby#Slide#95#

From the previous slide:
while line = gets

 puts line
end

Partial understanding:

 That loop reads and prints every line from standard input.

Full understanding:

 What we worked through on the previous slide.

I think there's merit in full understanding.

Another example of full understanding:

 Knowing the full set of truthy/falsy rules for a language.

CSC#372#Spring#2016,#Ruby#Slide#96#

LHtLaL sidebar: Partial vs. full understanding

String's chomp method removes a carriage return and/or newline from
the end of a string, if present.

Here's a program that's intended to flatten all input lines to a single line:

result = ""
while line = gets.chomp

 result += line
end
puts result

It doesn't work. What's wrong with it?

Here's the error:

% ruby while4.rb < lines.txt
while4.rb:2:in `<main>': undefined method `chomp' for
nil:NilClass (NoMethodError)

while, continued

CSC#372#Spring#2016,#Ruby#Slide#97#

At hand:
result = ""
while line = gets.chomp

 result += line
end
puts result

At end of file, gets returns nil, producing an error on gets.chomp.

Which of the two alternatives below is better? What's a third alternative?

CSC#372#Spring#2016,#Ruby#Slide#98#

while, continued

result = ""
while line = gets
 line.chomp!
 result += line
end
puts result

result = ""
while line = gets
 result += line.chomp
end
puts result

Problem: Write a while loop that prints the characters in the string s, one
per line. Don't use the length or size methods of String.

Extra credit: Don't use any variables other than s.

Solution: (while5.rb)

i = 0
while c = s[i]
 puts c
 i += 1
end

Solution with only s: (while5a.rb)
while s[0]
 puts s[0]
 s[0] = ""
end

while, continued

CSC#372#Spring#2016,#Ruby#Slide#99#

Unlike Java, Ruby does pay some attention to the presence of newlines in
source code.

For example, a while loop cannot be trivially squashed onto a single line.

 while i <= 10 puts i i += 1 end # Syntax error

If we add semicolons where newlines originally were, it works:

 while i <= 10; puts i; i += 1; end # OK

There is some middle ground, too:

 while i <= 10 do puts i; i+=1 end # OK. Note added "do"

Unlike Haskell and Python, indentation is never significant in Ruby.

Source code layout

CSC#372#Spring#2016,#Ruby#Slide#100#

Ruby considers a newline to terminate an expression, unless the
expression is definitely incomplete.

For example, the following is ok because "i <=" is definitely incomplete.

while i <=
10 do puts i; i += 1 end

Is the following ok?

while i
<= 10 do puts i; i += 1 end

Nope...
syntax error, unexpected tLEQ
<= 10 do puts i; i += 1 end
^

Source code layout, continued

CSC#372#Spring#2016,#Ruby#Slide#101#

Can you think of any pitfalls that the incomplete expression rule could
produce?

Example of a pitfall: Ruby considers

x = a + b
 + c

to be two expressions: x = a + b and + c.

Rule of thumb: If breaking an expression across lines, end lines with an
operator:

 x = a + b +
 c

Alternative: Indicate continuation with a backslash at the end of the line.

Source code layout, continued

CSC#372#Spring#2016,#Ruby#Slide#102#

Academic writing on programming languages commonly uses the term
"statement" to denote a syntactic element that performs operation(s) but
does not produce a value.

The term "expression" is consistently used to describe a construct that
produces a value.

Ruby literature sometimes talks about the "while statement" even though
while produces a value:

>> i = 1
>> while i <= 3 do i += 1 end
=> nil

Dilemma: Do we call it the "while statement" or the "while expression"?

We'll see later that the break construct can cause a while loop to produce
a value other than nil.

Expression or statement?

CSC#372#Spring#2016,#Ruby#Slide#103#

Ruby has operators for conjunction, disjunction, and "not" with the same
symbols as Java and C, but with somewhat different semantics.

Conjunction is &&, just like Java, but note the values produced:

>> true && false
=> false

>> 1 && 2
=> 2

>> true && "abc"
=> "abc"

>> nil && 1
=> nil

Challenge: Concisely describe the rule that Ruby uses to determine the
value of a conjunction operation.

Logical operators

Remember:
Any value that is not false or
nil is considered to be "true".

CSC#372#Spring#2016,#Ruby#Slide#104#

Disjunction is ||, also like Java. As with conjunction, the values produced
are interesting:

>> 1 || nil
=> 1

>> false || 2
=> 2

>> "abc" || "xyz"
=> "abc"

>> s = "abc"
>> s[0] || s[3]
=> "a"

>> s[4] || false
=> false

Logical operators, continued

Remember:
Any value that is not false or
nil is considered to be "true".

CSC#372#Spring#2016,#Ruby#Slide#105#

An exclamation mark inverts a logical value. The resulting value is always
true or false.

 >> ! true
 => false

>> ! 1
=> false

>> ! nil
=> true

>> ! (1 || 2)
=> false

>> ! ("abc"[5] || [1,2,3][10])
=> true

>> ![nil]
=> false

Logical operators, continued

Remember:
Any value that is not false or
nil is considered to be "true".

CSC#372#Spring#2016,#Ruby#Slide#106#

There are also and, or, and not operators, but with very low precedence.

Why?

 They eliminate the need for parentheses in some cases.

We can write this,

 x < 2 && y > 3 or x * y < 10 || z > 20

instead of this:

 (x < 2 && y > 3) || (x * y < 10 || z > 20)

LHtLaL problem: Devise an example for ! vs. not.

Logical operators, continued

CSC#372#Spring#2016,#Ruby#Slide#107#

Here is Ruby's if-then-else:

>> if 1 < 2 then "three" else [4] end
=> "three"

>> if 10 < 2 then "three" else [4] end
=> [4]

>> if 0 then "three" else [4] end * 3
=> "threethreethree"

Observations?

Speculate: Is the following valid? If so, what will it produce?

if 1 > 2 then 3 end

if-then-else

CSC#372#Spring#2016,#Ruby#Slide#108#

If a language's if-then-else returns a value, it creates an issue about the
meaning of an if-then with no else.

In Ruby, if there's no else clause and the control expression is false, nil is
produced:

>> if 1 > 2 then 3 end
=> nil

In the C family, if-else doesn't return a value.

Haskell and ML simply don't allow an else-less if.

In Icon, an expression like if 2 > 3 then 4 is said to fail. No value is
produced, and failure propagates to any enclosing expression, which in
turn fails.

Ruby also provides 1 > 2 ? 3 : 4, a ternary conditional operator, just like
the C family. Is that a good thing or bad thing? (TMTOWTDI!)

if-then-else, continued

CSC#372#Spring#2016,#Ruby#Slide#109#

The most common Ruby coding style puts the if, the else, the end, and
the expressions of the clauses on separate lines:

if lower <= x && x <= higher or inExRange(x, rangeList) then
 puts "x is in range"
 history.add x

else
 outliers.add x

end

Note the use of the low-precedence or instead of ||.

The trailing then above is optional.

then is not optional in this one-line expression:

 if 1 then 2 else 3 end

if-then-else, continued

CSC#372#Spring#2016,#Ruby#Slide#110#

Ruby provides an elsif clause for "else-if" situations.

if average >= 90 then
 grade = "A"
elsif average >= 80 then
 grade = "B"
elsif average >= 70 then
 grade = "C"
else
 grade = "F"
end

Note that there is no "end" to terminate the then clauses. elsif both closes
the current then and starts a new clause.

It is not required to have a final else.

Is elsif syntactic sugar?

The elsif clause

CSC#372#Spring#2016,#Ruby#Slide#111#

At hand:
if average >= 90 then
 grade = "A"
elsif average >= 80 then
 grade = "B"
elsif average >= 70 then
 grade = "C"
else
 grade = "F"
end

Can we shorten it by thinking less imperatively and more about values?

See 5.1.4 in RPL for Ruby's case (a.k.a. "switch") expression.

elsif, continued

grade =
 if average >= 90 then "A"
 elsif average >= 80 then "B"
 elsif average >= 70 then "C"
 else "F"
 end

CSC#372#Spring#2016,#Ruby#Slide#112#

if and unless can be used as modifiers to indicate conditional execution.

>> total, count = 123.4, 5 # Note: parallel assignment

>> printf("average = %g\n", total / count) if count != 0
average = 24.68
=> nil

>> total, count = 123.4, 0
>> printf("average = %g\n", total / count) unless count == 0
=> nil

The general forms are:

expr1 if expr2
expr1 unless expr2

What does 'x.f if x' mean?

if and unless as modifiers

CSC#372#Spring#2016,#Ruby#Slide#113#

Ruby's break and next are similar to Java's break and continue.

Below is a loop that reads lines from standard input, terminating on end of
file or when a line beginning with a period is read. Each line is printed
unless the line begins with a pound sign.

while line = gets
 if line[0] == "." then
 break
 end
 if line[0] == "#" then
 next
 end
 puts line
end

Problem: Rewrite the above loop to use if as a modifier.

break and next

while line = gets
 break if line[0] == "."
 next if line[0] == "#"
 puts line
end

CSC#372#Spring#2016,#Ruby#Slide#114#

Remember that while is an expression that by default produces the value
nil when the loop terminates.

If a while loop is exited with break expr, the value of expr is the value
of the while.

Here's a contrived example to show the mechanics of it:

% cat break2.rb
s = "x"
puts (while true do
 break s if s.size > 30
 s += s
 end)

% ruby break2.rb
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

break and next, continued

CSC#372#Spring#2016,#Ruby#Slide#115#

Here are three examples of Ruby's for loop:
for i in 1..100 do # as with while, the do is optional
 sum += i
end

for i in [10,20,30]
 sum += i
end

for msymbol in "x".methods
 puts msymbol if msymbol.to_s.include? "!"
end

The "in" expression must be an object that has an each method.

In the first case, the "in" expression is a Range. In the latter two it is an
Array.

The for loop

CSC#372#Spring#2016,#Ruby#Slide#116#

The for loop supports parallel assignment:

for s,n,sep in [["1",5,"-"], ["s",2,"o"], [" <-> ",10,""]]
 puts [s] * n * sep
end

Output:

1-1-1-1-1
sos
 <-> <-> <-> <-> <-> <-> <-> <-> <-> <->

Consider the feature of supporting parallel assignment in the for.
•  How would we write the above without it?
•  What's the mental footprint of this feature?
•  What's the big deal since there's already parallel assignment?
•  Is this creeping featurism?

The for loop, continued

CSC#372#Spring#2016,#Ruby#Slide#117#

Methods and more

CSC#372#Spring#2016,#Ruby#Slide#118#

Here is a simple Ruby method:

def add x, y
 return x + y
end

The keyword def indicates that this is a method definition.

Next is the method name.

The parameter list follows, optionally enclosed in parentheses.

No types can be specified.

Zero or more expressions follow

end terminates the definition.

Method definition

CSC#372#Spring#2016,#Ruby#Slide#119#

If the end of a method is reached without encountering a return, the value
of the last expression becomes the return value.

Here is a more idiomatic definition for add:

def add x, y
 x + y
end

CSC#372#Spring#2016,#Ruby#Slide#120#

Method definition, continued

As we saw in an early example, if no arguments are required, the
parameter list can be omitted:

def hello
 puts "Hello!"

end

What does hello return?
 What does the last expression in hello return?

Method definition, continued

CSC#372#Spring#2016,#Ruby#Slide#121#

One way to test methods in a file is to use load, a
Kernel method.

>> load "simple.rb"
=> true
>> add 3,4
=> 7
>> hello
Hello!
[...edit simple.rb in another window...]
>> load "simple.rb"
=> true
>> hello
Hello! (v2)

CSC#372#Spring#2016,#Ruby#Slide#122#

Testing methods with irb

% cat simple.rb
def add x, y
 x + y
end

def hello
 puts "Hello!"
end

How does load in Ruby differ from :load in
ghci?

load "simple.rb" is simply a Ruby
expression that's evaluated by irb. Its side-
effect is that the specified file is loaded.

I claim to be defining methods add and hello but there's no class in sight!

Methods can be added to a class at run-time in Ruby!

A freestanding method found in a file is associated with an object referred
to as "main", an instance of Object.

At the top level, the name self references that object.

>> [self.class, self.to_s] => [Object, "main"]

>> methods_b4 = self.private_methods
>> load "simple.rb"

>> self.private_methods - methods_b4
=> [:add, :hello]

We see that loading simple.rb added two methods to main.

Where's the class?!

CSC#372#Spring#2016,#Ruby#Slide#123#

We'll later see how to define classes but our initial "mode" on the
Ruby assignments will be writing programs in terms of top-level
methods.

This is essentially procedural programming with an object-oriented
library.

CSC#372#Spring#2016,#Ruby#Slide#124#

Where's the class, continued?

Ruby allows default values to be specified for a method's arguments:

def wrap s, wrapper = "()" # wrap3.rb
 wrapper[0] + s + wrapper[-1] # Why -1?
end

>> wrap "abc", "<>"
=> "<abc>"

>> wrap "abc"
=> "(abc)"

>> wrap it, "|"
=> "|(abc)|"

Lots of library methods use default arguments.
>> "a-b c-d".split => ["a-b", "c-d"]
>> "a-b c-d".split "-" => ["a", "b c", "d"]

Default values for arguments

CSC#372#Spring#2016,#Ruby#Slide#125#

Ruby does not allow the methods of a class to be overloaded. Here's a
Java-like approach that does not work:

def wrap s
 wrap(s, "()")
end

def wrap s, wrapper
 wrapper[0] + s + wrapper[-1]
end

The imagined behavior is that if wrap is called with one argument it will
call the two-argument wrap with "()" as a second argument. In fact, the
second definition of wrap simply replaces the first. (Last def wins!)

>> wrap "x"
ArgumentError: wrong number of arguments (1 for 2)

>> wrap("testing", "[]") => "[testing]"

Methods can't be overloaded!

CSC#372#Spring#2016,#Ruby#Slide#126#

Different languages approach overloading and default arguments in
various ways. Here's a sampling:

Java Overloading; no default arguments
Ruby No overloading; default arguments
C++ Overloading and default arguments
Icon No overloading; no default arguments; use an idiom

How does the mental footprint of the four approaches vary? What's the
impact on the language's written specification?

Here is wrap in Icon:

procedure wrap(s, wrapper)
 /wrapper := "()" # if wrapper is &null, assign "()" to wrapper
 return wrapper[1] || s || wrapper[-1]
end

Sidebar: A study in contrast

CSC#372#Spring#2016,#Ruby#Slide#127#

Java's String.format and C's printf can accept any number of arguments.

This Ruby method accepts any number of arguments and prints them:

def showargs(*args)
 puts "#{args.size} arguments"
 for i in 0...args.size do # Recall a...b is a to b-1
 puts "##{i}: #{args[i]}"
 end
end

The rule: If a parameter is prefixed with an asterisk, an array is made of all
following arguments.

>> showargs(1, "two", 3.0)
3 arguments:
#0: 1
#1: two
#2: 3.0

Arbitrary number of arguments

CSC#372#Spring#2016,#Ruby#Slide#128#

Problem: Write a method format that interpolates argument values into a
string where percent signs are found.

>> format("x = %, y = %, z = %\n", 7, "ten", "zoo")
=> "x = 7, y = ten, z = zoo\n"

>> format "testing\n"
=> "testing\n"

Use to_s for conversion to String.

A common term for this sort of facility
is "varargs"––variable number of
arguments.

Arbitrary number of arguments, continued

def format(fmt, *args)
 result = ""
 for i in 0...fmt.size do
 if fmt[i] == "%" then
 result += args.shift.to_s
 else
 result += fmt[i]
 end
 end
 result
end

CSC#372#Spring#2016,#Ruby#Slide#129#

Here's an example of source file layout for a
program with several methods:

def main
 puts "in main"; f; g
end

def f; puts "in f" end
def g; puts "in g" end

main # This runs the program

A rule: the definition for a method must be seen before it is executed.

The definitions for f and g can follow the definition of main because they
aren't executed until main is executed.

Could the line "main" appear before the definition of f?

Try shuffling the three definitions and "main" to see what works and what
doesn't.

Source File Layout

Execution:
% ruby main1.rb
in main
in f
in g

CSC#372#Spring#2016,#Ruby#Slide#130#

I'd like to load the following file and then test showline, but loading it in
irb seems to hang. Why?

% cat main3.rb
def showline s
 puts "Line: #{s.inspect} (#{s.size} chars)"
end
def main
 while line = gets; showline line; end
end
main

% irb
>> load "main3.rb"
...no output or >> prompt after the load...

Actually, it's waiting for input! After the defs for showline and main,
main is called. main does a gets, and that gets is waiting for input.

CSC#372#Spring#2016,#Ruby#Slide#131#

Testing methods when there's a "main"

Here's a technique that lets the program run normally with ruby but not
run main when loaded with irb:

% cat main3a.rb
def showline s
 puts "Line: #{s.inspect} (#{s.size} chars)"
end
def main
 while line = gets; showline line; end
end
main unless $0 == "irb"

% irb
>> load "main3a.rb"
>> showline "testing"
Line: "testing" (7 chars)
>> main
(waits for input)

CSC#372#Spring#2016,#Ruby#Slide#132#

Testing methods when there's a "main", cont.

Call main unless the name of the
program being run is "irb".

Now I can test methods by hand in
irb but still do ruby main3.rb ...

Ordinary variables are local to the method in which they're created.

Example: (global0.rb)

def f
 puts "f: x = #{x}" # undefined local variable or method `x'
end

def g
 x = 100 # This x is visible only in g
end

x = 10 # This x is visible only at the top-level in this file.

g

puts "top-level: x = #{x}"

Scoping rules for variables

CSC#372#Spring#2016,#Ruby#Slide#133#

Variables prefixed with a $ are global, and can be referenced in any
method in any file, including top-level code.

def f
 puts "f: $x = #{$x}"
end

def g
 $x = 100
end

$x = 10
f
g

puts "top-level: $x = #{$x}"

Global variables

The code at left...
1.  Sets $x at the top-level.
2.  Prints $x in f.
3.  Changes $x in g.
4.  Prints the final value of

$x at the top-level.

Output:

f: $x = 10
top-level: $x = 100

CSC#372#Spring#2016,#Ruby#Slide#134#

A rule in Ruby is that if an identifier begins with a capital letter, it
represents a constant.

The first assignment to a constant is considered initialization.

>> MAX_ITEMS = 100

Assigning to an already initialized constant is permitted but a warning is
generated.

>> MAX_ITEMS = 200
(irb):4: warning: already initialized constant MAX_ITEMS
=> 200

Modifying an object referenced by a constant does not produce a warning:

>> L = [10,20]
=> [10, 20]

>> L.push 30
=> [10, 20, 30]

Constants

CSC#372#Spring#2016,#Ruby#Slide#135#

Pitfall: If a method is given a name that begins with a capital letter, it
compiles ok but it can't be run!

>> def Hello; puts "hello!" end

>> Hello
NameError: uninitialized constant Hello

Constants, continued

CSC#372#Spring#2016,#Ruby#Slide#136#

There are a number of predefined constants. Here are a few:

RUBY_VERSION

 The version of Ruby that's running.

ARGV

An array holding the command line arguments, like the argument to
main in a Java program.

ENV

An object holding the "environment variables" (shown with env on
UNIX machines and set on Windows machines.)

STDIN, STDOUT

Instances of the IO class representing standard input and standard
output (the keyboard and screen, by default).

Constants, continued

CSC#372#Spring#2016,#Ruby#Slide#137#

Duck Typing

CSC#372#Spring#2016,#Ruby#Slide#138#

Definition from Wikipedia (c.2015):
Duck typing is a style of typing in which an object's methods and
properties determine the valid semantics, rather than its inheritance
from a particular class or implementation of an explicit interface.

Recall these examples of the for loop:

for i in 1..100 do ...end

for i in [10,20,30] do ... end

for only requires that the "in" value be an object that has an each method.
(It doesn't need to be a subclass of Enumerable, for example.)

This is an example of duck typing, so named based on the "duck test":

If it looks like a duck, swims like a duck, and quacks like a duck, then
it probably is a duck.

For the case at hand, the value produced by the "in" expression qualifies
as a "duck" if it has an each method.

Duck typing

CSC#372#Spring#2016,#Ruby#Slide#139#

For reference:
Duck typing is a style of typing in which an object's methods and
properties determine the valid semantics, rather than its inheritance
from a particular class or implementation of an explicit interface.

 ––Wikipedia (c.2015)

Duck typing is both a technique and a mindset.

Ruby both facilitates and uses duck typing.

We don't say Ruby is duck typed. We say that Ruby allows duck typing.

CSC#372#Spring#2016,#Ruby#Slide#140#

Duck typing, continued

The key characteristic of duck typing is that we only care about whether
an object supports the operation(s) we require.

With Ruby's for loop, it is only required that the in value have an each
method.

Consider this method:

def double x
 x * 2

end

Remember: x * 2 actually means x.*(2) — invoke the method * on the
object x and pass it the value 2 as a parameter.

What operation(s) does double require that x support?

Duck typing, continued

CSC#372#Spring#2016,#Ruby#Slide#141#

>> double 10
=> 20

>> double "abc"
=> "abcabc"

>> double [1,2,3]
=> [1, 2, 3, 1, 2, 3]

>> double Rational(3)
=> (6/1)

>> double 1..10
NoMethodError: undefined method `*' for 1..10:Range

Is it good or bad that double operates on so many different types?

Is double polymorphic? What's the type of double?

Should we limit double to certain types, like numbers, strings and lists?

Duck typing, continued

def double x
 x * 2

end

CSC#372#Spring#2016,#Ruby#Slide#142#

Recall: The key characteristic of duck typing is that we only care about
whether an object supports the operation(s) we require.

Should we have double check for known types?

def double x
 if [Fixnum, Float, String, Array].include? x.class
 x * 2
 else raise "Can't double a #{x.class}!" end
end

>> double "abc"
=> "abcabc"

>> double 1..2
RuntimeError: Can't double a Range!

>> double Rational(3)
RuntimeError: Can't double a Rational!

Duck typing, continued

Previously...
>> double 1..10
NoMethodError: undefined
method `*' for 1..10:Range

CSC#372#Spring#2016,#Ruby#Slide#143#

Here's wrap from slide 125. What does it require of s and wrapper?
def wrap s, wrapper = "()"
 wrapper[0] + s + wrapper[-1]
end

>> wrap "test", "<>"
=> "<test>"

Will the following work?

>> wrap "test", ["<<<",">>>"]
=> "<<<test>>>"

>> wrap [1,2,3], [["..."]]
=> ["...", 1, 2, 3, "..."]

>> wrap 10,3
=> 11

CSC#372#Spring#2016,#Ruby#Slide#144#

Duck typing, continued

Recall: The key characteristic of duck typing is that we only care about
whether an object supports the operation(s) we require.

Does the following Java method exemplify duck typing?

 static double sumOfAreas(Shape shapes[]) {
 double area = 0.0;
 for (Shape s: shapes)

 area += s.getArea();
 return area;
 }

No! sumOfAreas requires an array of Shape instances.

Could we change Shape to Object above? Would that be duck typing?

Does duck typing require a language to be dynamically typed?

Duck typing, continued

CSC#372#Spring#2016,#Ruby#Slide#145#

Iterators and blocks

CSC#372#Spring#2016,#Ruby#Slide#146#

Some methods are iterators. One of the many iterators in the Array class
is each.

each iterates over the elements of the array. Example:

>> x = [10,20,30]

>> x.each { puts "element" }
element
element
element
=> [10, 20, 30] # (each returns its receiver but it's often not used)

The construct { puts "element" } is a block.

Array#each invokes the block once for each element of the array.

Because there are three values in x, the block is invoked three times,
printing "element" each time.

Iterators and blocks

An iterator is a method that
can invoke a block.

CSC#372#Spring#2016,#Ruby#Slide#147#

Recall: An iterator is a method that can invoke a block.

Iterators can pass one or more values to a block as arguments.

A block can access arguments by naming them with a parameter list, a
comma-separated sequence of identifiers enclosed in vertical bars.

>> [10, "twenty", [30,40]].each { |e| puts "element: #{e}" }
element: 10
element: twenty
element: [30, 40]
=> [10, "twenty", [30, 40]]

The behavior of the iterator Array#each is to invoke the block with each
array element in turn.

Iterators and blocks, continued

CSC#372#Spring#2016,#Ruby#Slide#148#

For reference:
 [10, "twenty", [30,40]].each { |e| puts "element: #{e}" }

Problem: Using a block, compute the sum of the numbers in an array
containing values of any type. (Use e.is_a? Numeric to decide whether e
is a number of some sort.)

>> sum = 0
>> [10, "twenty", 30].each { ??? }

>> sum => 40 Note: sum = ... inside the block changes
 it outside the block. (Rules coming soon!)

>> sum = 0
>> (1..100).to_a.each { }
>> sum => 5050

Iterators and blocks, continued

|e| sum += e if e.is_a? Numeric

CSC#372#Spring#2016,#Ruby#Slide#149#

Recall that the for loop requires the value of the "in" expression to have
an each method.

That leads to a choice between a for loop,

for name in "x".methods do
 puts name if name.to_s.include? "!"
end

and iteration with each,

 "x".methods.each {|name| puts name if name.to_s.include? "!" }

Which is better?

Sidebar: Iterate with each or use a for loop?

CSC#372#Spring#2016,#Ruby#Slide#150#

Array#each is typically used to create side effects of interest, like
printing values or changing variables.

In contrast, with some iterators it is the value returned by an iterator that is
of principle interest.

See if you can describe what the following iterators are doing.

>> [10, "twenty", 30].collect { |v| v * 2 }
=> [20, "twentytwenty", 60]

>> [[1,2], "a", [3], "four"].select { |v| v.size == 1 }
=> ["a", [3]]

What do those remind you of?

Iterators and blocks, continued

CSC#372#Spring#2016,#Ruby#Slide#151#

The block for Array#sort takes two arguments.

>> [30, 20, 10, 40].sort { |a,b| a <=> b}
=> [10, 20, 30, 40]

Speculate: what are the arguments being passed to sort's block? How
could we find out?

>> [30, 20, 10, 40].sort { |a,b| puts "call: #{a} #{b}"; a <=> b}
call: 30 10
call: 10 40
call: 30 40
call: 20 30
call: 10 20
=> [10, 20, 30, 40]

How could we reverse the order of the sort?

Iterators and blocks, continued

CSC#372#Spring#2016,#Ruby#Slide#152#

Problem: sort the words in a sentence by descending length.

>> "a longer try first".split.sort { }

 => ["longer", "first", "try", "a"]

What do the following examples remind you of?

>> [10, 20, 30].inject(0) { |sum, i| sum + i }
=> 60

>> [10,20,30].inject([]) {

 |memo, element| memo << element << "---" }
=> [10, "---", 20, "---", 30, "---"]

Iterators and blocks, continued

|a,b| b.size <=> a.size

CSC#372#Spring#2016,#Ruby#Slide#153#

We can query the "ancestors" of a class like this:
>> Array.ancestors
=> [Array, Enumerable, Object, Kernel, BasicObject]

For now we'll simply say that an object can call methods in its ancestors.

Enumerable has a number of iterators. Here are some:

>> [2,4,5].any? { |n| n.odd? }
=> true

>> [2,4,5].all? { |n| n.odd? }
=> false

>> [1,10,17,25].find { |n| n % 5 == 0 }
=> 10

Iterators in Enumerable

CSC#372#Spring#2016,#Ruby#Slide#154#

At hand:
A object can call methods in its ancestors. An ancestor of Array is
Enumerable.

Another Enumerable method is max:

>> ["apple", "banana", "grape"].max {

 |a,b| v = "aeiou"
 a.count(v) <=> b.count(v)
 }

=> "banana"

The methods in Enumerable use duck typing. They require only an
each method except for min, max, and sort, which also require <=>.

See http://ruby-doc.org/core-2.2.4/Enumerable.html

Iterators in Enumerable

CSC#372#Spring#2016,#Ruby#Slide#155#

Recall: An iterator is a method that can invoke a block.

Many classes have one or more iterators. One way to find them is to
search their ruby-doc.org page for "block".

What will 3.times { |n| puts n } do?

Iterators abound!

>> 3.times { |n| puts n }
0
1
2
=> 3

CSC#372#Spring#2016,#Ruby#Slide#156#

Three more examples:

>> "abc".each { |c| puts c }
NoMethodError: undefined method `each' for "abc":String

>> "abc".each_char { |c| puts c }
a
b
c
=> "abc"

>> i = 0
>> "Mississippi".gsub("i") { (i += 1).to_s }
=> "M1ss2ss3pp4"

A few more iterators

CSC#372#Spring#2016,#Ruby#Slide#157#

An alternative to enclosing a block in braces is to use do/end:

a.each do
 |element|
 print "element: #{element}\n"
end

Common style is to use brackets for one-line blocks, like previous
examples, and do...end for multi-line blocks.

The opening brace or do for a block must be on the same line as the
iterator invocation. Here's an error:

a.each
 do # syntax error, unexpected keyword_do_block,

 # expecting $end
 |element|
 print "element: #{element}\n"
end

The "do" syntax for blocks

CSC#372#Spring#2016,#Ruby#Slide#158#

sumnums.rb reads lines from standard input, assumes the lines consist of
integers separated by spaces, and prints their total, count, and average.

total = n = 0
readlines().each do
 |line|
 line.split(" ").each do
 |word|
 total += word.to_i
 n += 1
 end
end
printf("total = %d, n = %d, average = %g\n",

 total, n, total / n.to_f) if n != 0

Kernel#readlines reads/returns all of standard input as an array of lines.

The printf format specifier %g indicates to format a floating point number and
select the better of fixed point or exponential form based on the value.

Nested blocks

% cat nums.dat
5 10 0 50

 200
1 2 3 4 5 6 7 8 9 10
% ruby sumnums.rb < nums.dat
total = 320, n = 15, average = 21.3333

CSC#372#Spring#2016,#Ruby#Slide#159#

Blocks raise issues with the scope of variables.

If a variable exists outside of a block, references to that variable in a block
refer to that existing variable. Example:

>> sum = 0 Note: sum will accumulate across two iterator calls

>> [10,20,30].each {|x| sum += x}

>> sum
=> 60

>> [10,20,30].each {|x| sum += x}

>> sum
=> 120

Scoping issues with blocks

CSC#372#Spring#2016,#Ruby#Slide#160#

If a variable is created in a block, the scope of the variable is limited to the
block.

In the example below we confirm that x exists only in the block, and that
the block's parameter, e, is local to the block.

>> e = "eee"
>> x
NameError: undefined local variable or method `x' ...

>> [10,20,30].each {|e| x = e * 2; puts x}
20
...
>> x
NameError: undefined local variable or method `x' ...
>> e
=> "eee" # e's value was not changed by the block

Scoping issues with blocks, continued

LHtLaL

CSC#372#Spring#2016,#Ruby#Slide#161#

Pitfall: If we write a block that references a currently unused variable but
later add a use for that variable outside the block, we might get a surprise.

Version 1:

 a.each do |x|
 result = ... # first use of result in this method
 ...

end

Version 2:

result = ... # new first use of result in this method
...
a.each do |x|

 ...
 result = ... # references/clobbers result in outer scope

end
...
...use result... # uses value of result set in block. Surprise!

Scoping issues with blocks, continued

CSC#372#Spring#2016,#Ruby#Slide#162#

We can make variable(s) local to a block by adding them at the end of the
block's parameter list, preceded by a semicolon.

result = ...
...
a.each do
 |x; result, tmp|

 result = ... # result is local to block
 ...

end

...
...use result... # uses result created outside of block

Scoping issues with blocks, continued

CSC#372#Spring#2016,#Ruby#Slide#163#

Writing iterators

CSC#372#Spring#2016,#Ruby#Slide#164#

Recall: An iterator is a method that can invoke a block.

The yield expression invokes the block associated with the current
method invocation. Arguments of yield become parameters of the block.

Here is a simple iterator that yields two values, a 3 and a 7:

def simple
 puts "simple: Starting..."
 yield 3
 puts "simple: Continuing..."
 yield 7
 puts "simple: Done..."
 "simple result"
end

The puts in simple are used to show when simple is active. Note the
interleaving of execution between the iterator and the block.

A simple iterator

Usage:
>> simple {|x|puts "\tx = #{x}" }
simple: Starting...
 x = 3
simple: Continuing...
 x = 7
simple: Done...
=> "simple result"

CSC#372#Spring#2016,#Ruby#Slide#165#

At hand:
def simple
 puts "simple: Starting..."
 yield 3
 puts "simple: Continuing..."
 yield 7
 puts "simple: Done..."
 "simple result"
end

There's no formal parameter that corresponds to a block. The block, if any, is
implicitly referenced by yield.

The parameter of yield becomes the named parameter for the block.

Calling simple without a block produces an error on the first yield:

>> simple
simple: Starting...
LocalJumpError: no block given (yield)

A simple iterator, continued
Usage:
>> simple { |x| puts "\tx = #{x}" }
simple: Starting...
 x = 3
simple: Continuing...
 x = 7
simple: Done...
=> "simple result"

CSC#372#Spring#2016,#Ruby#Slide#166#

Problem: Write an iterator from_to(f, t, by) that yields the integers from f
through t in steps of by, which defaults to 1. Assume f <= t.

>> from_to(1,3) { |i| puts i }
1
2
3
=> 3

>> from_to(0,99,25) { |i| puts i }
0
25
50
75
=> 4

Parameters are passed to the iterator (the method) just like any other
method.

Write from_to

CSC#372#Spring#2016,#Ruby#Slide#167#

Solution:

def from_to(from, to, by = 1)
 n = from
 results = 0
 while n <= to do
 yield n
 n += by
 results += 1
 end
 results
end

Another test:

>> from_to(-5,5,1) { |i| print i, " " }
-5 -4 -3 -2 -1 0 1 2 3 4 5 => 11

from_to, continued

Desired:
>> from_to(1,10,2) { |i| puts i }
1
3
5
7
9
=> 5

CSC#372#Spring#2016,#Ruby#Slide#168#

To pass multiple arguments for a block, specify multiple arguments for
yield.

Imagine an iterator that produces overlapping pairs from an array:

>> elem_pairs([3,1,5,9]) { |x,y| print "x = #{x}, y = #{y}\n" }
x = 3, y = 1
x = 1, y = 5
x = 5, y = 9

Implementation:

def elem_pairs(a)
 for i in 0...(a.length-1)
 yield a[i], a[i+1] # yield(a[i], a[i+1]) is ok, too
 end
end

Speculate: What will be the result with yield [a[i], a[i+1]]? (Extra [...])

yield, continued

CSC#372#Spring#2016,#Ruby#Slide#169#

When yield passes a value to a block the result of the block becomes the
value of the yield expression.

Here is a trivial iterator to show the mechanics:

def round_trip x
 r = yield x
 "yielded #{x} and got back #{r}"
end

Usage:

>> round_trip(3) {|x| x * 5 } # parens around 3 are required!
=> "yielded 3 and got back 15"

>> round_trip("testing") {|x| x.size }
=> "yielded testing and got back 7"

A round-trip with yield

CSC#372#Spring#2016,#Ruby#Slide#170#

At hand:
def round_trip x
 r = yield x
 "yielded #{x} and got back #{r}"
end

>> round_trip(3) {|x| x * 5 }
=> "yielded 3 and got back 15"

r = yield 3 {|x| x * 5 }

A round-trip with yield, continued

1. Iterator yields 3 to block. x becomes 3.

2. Block returns 15, which becomes value of yield 3.

3. Value of yield 3 is assigned to r.
CSC#372#Spring#2016,#Ruby#Slide#171#

Consider this iterator:
>> select([[1,2], "a", [3], "four"]) { |v| v.size == 1 }
=> ["a", [3]]

>> select("testing this here".split) { |w| w.include? "e" }
=> ["testing", "here"]

What does it appear to be doing?

Producing the elements in its argument, an array, for which the block
produces true.

Problem: Write it!

Round trips with yield

CSC#372#Spring#2016,#Ruby#Slide#172#

At hand:
>> select([[1,2], "a", [3], "four"]) { |v| v.size == 1 }
=> ["a", [3]]

Solution:

def select array
 result = []

 for element in array
 if yield element then
 result << element
 end
 end

 result
end

Round trips with yield, continued

What does the iterator/block interaction
look like?
 Iterator Block
if yield [1,2] then # [1,2].size == 1
 result << [1,2]

if yield "a" then # "a".size == 1

 result << "a"

if yield [3] then # [3] .size == 1

 result << [3]

if yield "four" then # "four".size == 1

 result << "four"

CSC#372#Spring#2016,#Ruby#Slide#173#

Is select limited to arrays?

>> select(1..10) {|n| n.odd? && n > 5 }
=> [7, 9]

Why does that work?

Because for var in x works for any x that
has an each method. (Duck typing!)

What's a better name than array for select's
parameter?

Problem: Rewrite select to use the iterator
each instead of a for loop. Also use an if
modifier with the yield.

Round trips with yield, continued
def select array
 result = []
 for element in array
 if yield element then
 result << element
 end
 end

 result
end

CSC#372#Spring#2016,#Ruby#Slide#174#

Solution:
def select eachable
 result = []
 eachable.each do
 |element|
 result << element if yield element
 end
 result
end

Round trips with yield, continued
def select array
 result = []
 for element in array
 if yield element then
 result << element
 end
 end

 result
end

What's the difference between our select,
 select([[1,2], "a", [3], "four"]) { |v| v.size == 1 }

And Ruby's Array#select?

 [[1,2], "a", [3], "four"].select { |v| v.size == 1 }

Ruby's Array#select is a method of Array. Our select is added to the
object "main". (See slide 123.)

CSC#372#Spring#2016,#Ruby#Slide#175#

Sidebar: Ruby vs. Haskell
def select array
 result = []
 for element in array
 if yield element then
 result << element
 end
 end

 result
end

>> select(["just","a", "test"]) { |x| x.size == 4 }
=> ["just", "test"]

Which is better?

select _ [] = []
select f (x:xs)
 | f x = x : select f xs
 | otherwise = select f xs

> select (\x -> length x == 4) ["just","a", "test"]
["just","test"]

CSC#372#Spring#2016,#Ruby#Slide#176#

>> [10, "twenty", [30,40]].each { |e| puts "element: #{e}" }
>> sum = 0; [1,2,3].each { |x| sum += x }

Invokes block with each element in turn for side-effect(s). Result of
each uninteresting.

>> [10,20,30].map { |x| x * 2 } => [20, 40, 60]

Invokes block with each element in turn and returns array of block
results.

>> [2,4,5].all? { |n| n.odd? } => false

Invokes block with each element in turn; each block result
contributes to final result of true or false, possibly short-circuiting.

>> [[1,2], "a", [3], "four"].select { |v| v.size == 1 } => ["a", [3]]

Invokes block to determine membership in final result.

>> "try this first".split.sort {|a,b| b.size <=> a.size } => [...]

Invokes block an arbitrary number of times; each block result guides
further computation towards final result.

Various types of iteration side-by-side

CSC#372#Spring#2016,#Ruby#Slide#177#

The Hash class

CSC#372#Spring#2016,#Ruby#Slide#178#

Ruby's Hash class is similar to the Map family in Java and dictionaries in
Python. It's like an array that can be subscripted with values of any type.

The expression { } (empty curly braces) creates a Hash:

>> numbers = {} => {}

>> numbers.class => Hash

Subscripting with a key and assigning a value stores that key/value pair.

>> numbers["one"] = 1

>> numbers["two"] = 2

>> numbers
=> {"one"=>1, "two"=>2}

>> numbers.size
=> 2

The Hash class

CSC#372#Spring#2016,#Ruby#Slide#179#

At hand:
>> numbers
=> {"one"=>1, "two"=>2}

Subscripting with a key fetches the associated value. If the key is not
found, nil is produced.

>> numbers["two"]
=> 2

>> numbers["three"]
=> nil

Hash, continued

CSC#372#Spring#2016,#Ruby#Slide#180#

At hand:
>> numbers => {"one"=>1, "two"=>2}

The Hash class has many methods. Here's a sampling:

>> numbers.keys
=> ["one", "two"]

>> numbers.values
=> [1, 2]

>> numbers.invert
=> {1=>"one", 2=>"two"}

>> numbers.to_a
=> [["one", 1], ["two", 2]]

Some of the many Hash iterators: delete_if, each_pair, select

Hash, continued

CSC#372#Spring#2016,#Ruby#Slide#181#

At hand:
>> numbers
=> {"one"=>1, "two"=>2}

The value associated with a key can be changed via assignment.

>> numbers["two"] = "1 + 1"

A key/value pair can be removed with Hash#delete.

>> numbers.delete("one")
=> 1 # Returns associated value

>> numbers
=> {"two"=>"1 + 1"}

>> numbers["one"]
=> nil

Hash, continued

CSC#372#Spring#2016,#Ruby#Slide#182#

The rules for keys and values:
•  Key values must have a hash method that produces a Fixnum.

(Duck typing!)
•  Any value can be the value in a key/value pair.

>> h = {}; a = [1,2,3]

>> h[a] = "-"

>> h[String] = ["a","b","c"]

>> h["x".class] * h[(1..3).to_a]
=> "a-b-c"

>> h[h] = h

>> h
=> {[1, 2, 3]=>"-", String=>["a", "b", "c"], {...}=>{...}}

Hash, continued

CSC#372#Spring#2016,#Ruby#Slide#183#

Note that keys for a given Hash
may be a mix of types. Ditto for
values. (Unlike a Java HashMap.)

Inconsistencies can arise when using mutable values as keys.

>> h = {}; a = []

>> h[a] = "x"

>> h
=> {[]=>"x"}

>> a << 1

>> h
=> {[1]=>"x"}

>> h[a]
=> nil

Ruby treats string-valued keys as a special case and makes a copy of them.

Hash, continued

CSC#372#Spring#2016,#Ruby#Slide#184#

Here's a sequence that shows some of the flexibility of hashes.
>> h = {}

>> h[1000] = [1,2]

>> h[true] = {}

>> h[[1,2,3]] = [4]

>> h
=> {1000=>[1, 2], true=>{}, [1, 2, 3]=>[4]}

>> h[h[1000] + [3]] << 40

>> h[!h[10]]["x"] = "ten"

>> h
=> {1000=>[1, 2], true=>{"x"=>"ten"}, [1, 2, 3]=>[4, 40]}

Hash, continued

CSC#372#Spring#2016,#Ruby#Slide#185#

An earlier simplification: If a key is not found, nil is returned.
Full detail: If a key is not found, the default value of the hash is returned.

The default value of a hash defaults to nil but an arbitrary default value
can be specified when creating a hash with new:

 >> h = Hash.new("Go Fish!") # Example from ruby-doc.org

>> h.default
=> "Go Fish!"

>> h["x"] = [1,2]

>> h["x"]
=> [1, 2]

>> h["y"]
=> "Go Fish!"

Default values

CSC#372#Spring#2016,#Ruby#Slide#186#

Problem: write tally.rb, to tally occurrences of blank-separated "words"
on standard input.

% ruby tally.rb
to be or
not to be
^D
{"to"=>2, "be"=>2, "or"=>1, "not"=>1}

How can we approach it?

tally.rb

CSC#372#Spring#2016,#Ruby#Slide#187#

Solution:

 # Use default of zero so += 1 works
counts = Hash.new(0)

readlines.each do
 |line|
 line.split(" ").each do
 |word|
 counts[word] += 1
 end
end

Like puts counts.inspect
p counts

tally.rb

% ruby tally.rb
to be or
not to be
^D
{"to"=>2, "be"=>2,
"or"=>1, "not"=>1}

Contrast with while/for vs. iterators:
counts = Hash.new(0)
while line = gets do
 for word in line.split(" ") do
 counts[word] += 1
 end
end
p counts

CSC#372#Spring#2016,#Ruby#Slide#188#

The output of tally.rb is not customer-ready!

 {"to"=>2, "be"=>2, "or"=>1, "not"=>1}

Hash#sort produces an array of key/value arrays ordered by the keys, in
ascending order:

>> counts.sort
=> [["be", 2], ["not", 1], ["or", 1], ["to", 2]]

Problem: Produce nicely labeled output, like this:

Word Count
be 2
not 1
or 1
to 2

tally.rb, continued

CSC#372#Spring#2016,#Ruby#Slide#189#

At hand:
>> counts.sort
[["be", 2], ["not", 1], ["or", 1], ["to", 2]]

Solution:
([["Word","Count"]] + counts.sort).each do
 |k,v| printf("%-7s %5s\n", k, v)
end

Notes:
•  The minus in the format %-7s left-justifies, in a field of width seven.
•  As a shortcut for easy alignment, the column headers are put at the start

of the array, as a fake key/value pair.
•  We use %5s instead of %5d to format the counts and accommodate

"Count", too. (This works because %s causes to_s to be invoked on
the value being formatted.)

•  A next step might be to size columns based on content.

tally.rb, continued
Word Count
be 2
not 1
or 1
to 2

CSC#372#Spring#2016,#Ruby#Slide#190#

Hash#sort's default behavior of ordering by keys can be overridden by
supplying a block. The block is repeatedly invoked with two key/value
pairs, like ["be", 2] and ["or", 1].

Here's a block that sorts by descending count: (the second element of the
two-element arrays)

>> counts.sort { |a,b| b[1] <=> a[1] }
=> [["to", 2], ["be", 2], ["or", 1], ["not", 1]]

How we could resolve ties on counts by alphabetic ordering of the words?

counts.sort do
 |a,b|
 r = b[1] <=> a[1]
 if r != 0 then r else a[0] <=> b[0] end

end
=> [["be", 2], ["to", 2], ["not", 1], ["or", 1]]

More on Hash sorting

CSC#372#Spring#2016,#Ruby#Slide#191#

Let's turn tally.rb into a cross-reference program:
% cat xref.1
to be or
not to be is not
to be the question

% ruby xref.rb < xref.1
Word Lines
be 1, 2, 3
is 2
not 2
or 1
question 3
the 3
to 1, 2, 3

How can we approach it?
CSC#372#Spring#2016,#Ruby#Slide#192#

xref.rb

counts = Hash.new(0)

readlines.each do
 |line|
 line.split(" ").each do
 |word|
 counts[word] += 1
 end
end

Changes:
•  Use each_with_index to get line numbers (0-based).
•  Turn counts into refs, a Hash whose values are arrays.
•  For each word on a line...

– If word hasn't been seen, add a key/value pair with word and an
empty array.

– Add the current line number to refs[word]

Revised:

refs = {}
readlines.each_with_index do
 |line, num|
 line.split(" ").each do
 |word|
 refs[word] = [] unless refs.member? word
 refs[word] << num unless refs[word].member? num
 end
end

CSC#372#Spring#2016,#Ruby#Slide#193#

xref.rb, continued

If we add "p refs" after that loop, here's what we see:
% cat xref.1
to be or
not to be is not
to be the question

% ruby xref.rb < xref.1
{"to"=>[0, 1, 2], "be"=>[0, 1, 2], "or"=>[0], "not"=>[1],
"is"=>[1], "the"=>[2], "question"=>[2]}

We want:
% ruby xref.rb < xref.1
Word Lines
be 1, 2, 3
is 2
not 2
...

 CSC#372#Spring#2016,#Ruby#Slide#194#

xref.rb, continued

At hand:
{"to"=>[0, 1, 2], "be"=>[0, 1, 2], "or"=>[0], "not"=>[1], ...

We want:
Word Lines
be 1, 2, 3
...

Let's get fancy and size the "Word" column based on the largest word:
max_len = refs.map {|k,v| k.size}.max
fmt = "%-#{max_len}s %s\n"

print fmt % ["Word", "Lines"]
refs.sort.each do
 |k,v|
 printf(fmt, k, v.map {|n| n+1} * ", ")
end

CSC#372#Spring#2016,#Ruby#Slide#195#

xref.rb, continued

Observe:
>> h = Hash.new { |h,k| h[k] = [] }

>> h["to"]
=> []

>> h
=> {"to"=>[]}

If Hash.new is called with a block, that block is invoked when a non-
existent key is accessed.

The block is passed the Hash and the key.

What does the block above do when a key doesn't exist?
 It adds a key/value pair that associates the key with a new, empty array.

CSC#372#Spring#2016,#Ruby#Slide#196#

Another Hash behavior

An identifier preceded by a colon creates a Symbol.
>> s1 = :testing
=> :testing

>> s1.class
=> Symbol

A symbol is much like a string but a given identifier always produces the
same Symbol object.

>> s1.object_id => 1103708
>> :testing.object_id => 1103708

In contrast, two identical string literals produce two different String
objects:

>> "testing".object_id => 3673780
>> "testing".object_id => 4598080

Symbols

CSC#372#Spring#2016,#Ruby#Slide#197#

A symbol can also be made from a string with to_sym:
>> "testing".to_sym
=> :testing

>> "==".to_sym
=> :==

Recall that .methods returns an array of symbols:

>> "".methods.sort
=> [:!, :!=, :%, :*, :+, :<, :<<, :<=, :<=>, :==, :===, :=~, :>, :>=,
:__id__, :__send__, :ascii_only?, :b, :between?, :bytes,
:bytesize, :byteslice, :capitalize, :capitalize!, :casecmp, :center,
:chars, :chomp, :chomp!, :chop, :chop!, :chr, :class, :clear, ...

CSC#372#Spring#2016,#Ruby#Slide#198#

Symbols, continued

Because symbols can be quickly compared, they're commonly used as
hash keys.

moves = {}
moves[:up] = [0,1]
moves[:down] = [0,-1]

>> moves
=> {:up=>[0, 1], :down=>[0, -1]}

> moves["up".to_sym]
=> [0, 1]

>> moves["down"]
=> nil

CSC#372#Spring#2016,#Ruby#Slide#199#

Symbols and hashes

Instead of a series of assignments we can use an initialization syntax:
 >> moves = { :up => [0,1], :down => [0,-1] }
 => {:up=>[0, 1], :down=>[0, -1]}

There's even more syntactic sugar available:

 >> moves = { up:[0,1], down:[0,-1] }
 => {:up=>[0, 1], :down=>[0, -1]}

CSC#372#Spring#2016,#Ruby#Slide#200#

Symbols and hashes, continued

Regular Expressions

CSC#372#Spring#2016,#Ruby#Slide#201#

In computer science theory, a language is a set of strings. The set may be infinite.

The Chomsky hierarchy of languages looks like this:

Unrestricted languages ("Type 0")
Context-sensitive languages ("Type 1")
Context-free languages ("Type 2")
Regular languages ("Type 3")

Roughly speaking, natural languages are unrestricted languages that can only be
specified by unrestricted grammars.

Programming languages are usually context-free languages—they can be
specified with context-free grammars, which have restrictive rules.

•  Every Java program is a string in the context-free language that is specified
by the Java grammar.

A regular language is a very limited kind of context free language that can be
described by a regular grammar.

•  A regular language can also be described by a regular expression.

A little theory

CSC#372#Spring#2016,#Ruby#Slide#202#

A regular expression is simply a string that may contain metacharacters—
characters with special meaning.

Here is a simple regular expression:

a+

It specifies the regular language that consists of the strings {a, aa, aaa, ...}.

Here is another regular expression:

(ab)+c*

It describes the set of strings that start with ab repeated one or more times
and followed by zero or more c's.

Some strings in the language are ab, ababc, and ababababccccccc.

The regular expression (north|south)(east|west) describes a language
with four strings: {northeast, northwest, southeast, southwest}.

A little theory, continued

CSC#372#Spring#2016,#Ruby#Slide#203#

Regular expressions have a sound theoretical basis and are also very
practical.

UNIX tools such as the ed editor and the grep family introduced regular
expressions to a wide audience.

Most current editors and IDEs support regular expressions in searches.

Many languages provide a library for working with regular expressions.

•  Java provides the java.util.regex package.
•  The command man regex shows the interface for POSIX regular

expression routines, usable in C.

Some languages, Ruby included, have a regular expression type.

Good news and bad news

CSC#372#Spring#2016,#Ruby#Slide#204#

Regular expressions as covered in a theory class are relatively simple.

Regular expressions as available in many languages and libraries have
been extended far beyond their theoretical basis.

In languages like Ruby, regular expressions are truly a language within a
language.

An edition of the "Pickaxe" book devoted four pages to its summary of
regular expressions.
•  Four more pages sufficed to cover integers, floating point numbers,

strings, ranges, arrays, and hashes.

Entire books have been written on the subject of regular expressions.

A number of tools have been developed to help programmers create and
maintain complex regular expressions.

Good news and bad news, continued

CSC#372#Spring#2016,#Ruby#Slide#205#

Here is a regular expression written by Mark Cranness and posted at
RegExLib.com:

^((?>[a-zA-Z\d!#$%&'*+\-/=?^_`{|}~]+\x20*|"((?=[\x01-\x7f])
[^"\\]|\\[\x01-\x7f])*"\x20*)*(? <angle><))?((?!\.)(?>\.?[a-zA-
Z\d!#$%&'*+\-/=?^_`{|}~]+)+|"((?=[\x01-\x7f])[^"\\]|\\[\x01-\
x7f])*")@(((?!-)[a-zA-Z\d\-]+(?<!-)\.)+[a-zA-Z]{2,}|\[(((?(?<!\[)
\.)(25[0-5]|2[0-4]\d|[01]?\d? \d)){4}|[a-zA-Z\d\-]*[a-zA-Z\d]:
((?=[\x01-\x7f])[^\\\[\]]|\\[\x01-\x7f])+)\])(?(angle)>)$

It describes RFC 2822 email addresses.

My opinion: regular expressions are good for simple tasks but grammar-
based parsers should be favored as complexity rises, especially when an
underlying specification includes a grammar.

We'll cover a subset of Ruby's regular expression capabilities.

Good news and bad news, continued

CSC#372#Spring#2016,#Ruby#Slide#206#

One way to create a regular expression (RE) in Ruby is to use the
/regexp/ syntax, for regular expression literals.

>> re = /a.b.c/ => /a.b.c/

>> re.class => Regexp

In a RE, a dot is a metacharacter (a character with special meaning) that
will match any (one) character.

Letters, numbers, and some special characters simply match themselves.

The RE /a.b.c/ matches strings that contain the five-character sequence
a<anychar>b<anychar>c

 Examples: "albacore", "barbecue", "drawback", and "iambic".

A simple regular expression in Ruby

CSC#372#Spring#2016,#Ruby#Slide#207#

The binary operator =~ is called "match".

One operand must be a string and the other must be a regular expression.
If the string contains a match for the RE, the position of the match is
returned. nil is returned if there is no match.

>> "albacore" =~ /a.b.c/ => 0

>> "drawback" =~ /a.b.c/ => 2

>> "abc" =~ /a.b.c/ => nil

>> "abcdef" =~ /..f/
=> 3

>> "abcdef" =~ /.f./
=> nil

>> "abc" =~ /..../
=> nil

The match operator

CSC#372#Spring#2016,#Ruby#Slide#208#

Language-wise, what's an implication of the following?
>> /x/.class => Regexp

Ruby has syntactic support for regular expressions. We can say that
regular expressions are first-class values in Ruby.

In general there are two levels of support for a type:

 Syntactic support
 Most languages have syntactic support for strings with "...".
 Scala and ActionScript have syntactic support for XML.
 In Icon, 'aeiou' is a character set, not a string.

 Library support
 Java and Python have classes for working with REs.
 C and Icon have function libraries for working with REs.

What are the tradeoffs between the two levels?

 Example from Icon: cset("aeiou") vs. 'aeiou'

Regular expressions are "in deep" in Ruby

CSC#372#Spring#2016,#Ruby#Slide#209#

The UNIX grep command reads standard input or files named as
arguments and prints lines that contain a specified regular expression:

$ grep g.h.i < /usr/share/dict/words
lengthwise

$ grep l.m.n < /usr/share/dict/words | wc -l
 252 252 2825

$ grep < /usr/share/dict/words
electroencephalograph's

Problem: Write a simple grep in Ruby that will handle the cases above.

Hint: #{...} interpolation works in /.../ (regular expression) literals.

Sidebar: rgrep.rb

CSC#372#Spring#2016,#Ruby#Slide#210#

UNIX grep:
$ grep g.h.i < /usr/share/dict/words

Solution:

while line = STDIN.gets # STDIN so "g.h.i" isn't opened for input
 puts line if line =~ /#{ARGV[0]}/
end

Usage:

$ ruby rgrep.rb g.h.i < /usr/share/dict/words
lengthwise

$ ruby rgrep.rb < /usr/share/dict/words
electroencephalograph's

rgrep.rb sidebar, continued

CSC#372#Spring#2016,#Ruby#Slide#211#

After a successful match we can use some cryptically named predefined
global variables to access parts of the string:

$` Is the portion of the string that precedes the match. (That's a
backquote—ASCII code 96.)

$& Is the portion of the string that was matched by the regular

expression.

$' Is the portion of the string following the match.

Example:

>> "limit=300" =~ /=/ => 5
>> $` => "limit" (left of the match)
>> $& => "=" (the match itself)
>> $' => "300" (right of the match)

The match operator, continued

CSC#372#Spring#2016,#Ruby#Slide#212#

Here's a handy utility routine from the Pickaxe book:
def show_match(s, re)
 if s =~ re then
 "#{$`}<<#{$&}>>#{$'}"
 else
 "no match"
 end
end

Usage:
>> show_match("limit is 300",/is/)
=> "limit <<is>> 300"

>> %w{albacore drawback iambic}.

 each { |w| puts show_match(w, /a.b.c/) }
<<albac>>ore
dr<<awbac>>k
i<<ambic>>

Great idea: Put it in your .irbrc! Call it "sm", to save some typing!

The match operator, continued

LHtLaL

CSC#372#Spring#2016,#Ruby#Slide#213#

[characters] is a character class—a RE that matches any one of the
characters enclosed by the square brackets.

/[aeiou]/ matches a single lower-case vowel

>> show_match("testing", /[aeiou]/)

=> "t<<e>>sting"

A dash between two characters in a class specification creates a range
based on the collating sequence. [0-9] matches a single digit.

>> show_match("Testing 1, 2, 3...", /[0-9]/)
=> "Testing <<1>>, 2, 3..."

>> show_match("Take five!", /[0-9]/)

=> "no match"

Character classes

CSC#372#Spring#2016,#Ruby#Slide#214#

[^characters] is a RE that matches any single character not in the class.
(It matches the complement of the class.)

/[^0-9]/ matches a single character that is not a digit.
 >> show_match("1,000", /[^0-9]/)

 => "1<<,>>000"

For any RE we can ask,

 What is the shortest string the RE can match? What is the longest?

What is the shortest string that [A-Za-z345] can match? The longest?

 One for both! [anything] always has a one-character match!

Character classes

CSC#372#Spring#2016,#Ruby#Slide#215#

Describe what's matched by this regular expression:
 /.[a-z][0-9][a-z]./
A five character string whose middle three characters are, in order, a
lowercase letter, a digit, and a lowercase letter.

In the following, which portion of the string is matched, if any?

>> show_match("A1b33s4ax1", /.[a-z][0-9][a-z]./)
=> "A1b3<<3s4ax>>1"

Character classes, continued

CSC#372#Spring#2016,#Ruby#Slide#216#

String#gsub does global substitution with both plain old strings and
regular expressions

>> "520-621-6613".gsub("-", "<DASH>")
=> "520<DASH>621<DASH>6613"

>> "520-621-6613".gsub(/[02468]/, "(e#)")
=> "5(e#)(e#)-(e#)(e#)1-(e#)(e#)13"

There's an imperative form of gsub, too.

Character classes, continued

CSC#372#Spring#2016,#Ruby#Slide#217#

Some frequently used character classes can be specified with \C
 \d Stands for [0-9]
 \w Stands for [A-Za-z0-9_]
 \s Whitespace—blank, tab, carriage return, newline, formfeed

The abbreviations \D, \W, and \S produce a complemented class.

Examples:

>> show_match("Call me at 555-1212", /\d\d\d-\d\d\d\d/)
=> "Call me at <<555-1212>>"

>> "fun double(n) = n * 2".gsub(/\w/,".")
=> "...(.) = . * ."

>> "BIOW 208, 14:00-15:15 TR".gsub(/\D/, "")
=> "20814001515"

>> "buzz93@tv-2000.com".gsub(/[\w-]/,"*")
=> "******@*******.***"

Character classes, continued

CSC#372#Spring#2016,#Ruby#Slide#218#

Preceding an RE metacharacter with a backslash suppresses its meaning.

>> show_match("123.456", /.\../)
=> "12<<3.4>>56"

>> "5-3^2*2.0".gsub(/[\^.\-6]/, "_")
=> "5_3_2*2_0"

>> show_match("x = y[1] + z", /\[\d\]/)
=> "x = y<<[1]>> + z"

An old technique with regular expressions is to take advantage of the fact
that metacharacters often aren't special when used out of context:

>> "5-3^2*2.0".gsub(/[-6^.]/, "_")
=> "5_3_2*2_0"

CSC#372#Spring#2016,#Ruby#Slide#219#

Backslashes suppress special meaning

Alternatives can be specified with a vertical bar:

>> show_match("a green box", /red|green|blue/)
=> "a <<green>> box"

>> %w{you ate a pie}.select { |s| s =~ /ea|ou|ie/ }
=> ["you", "pie"]

Alternatives

CSC#372#Spring#2016,#Ruby#Slide#220#

Parentheses can be used for grouping. Consider this regular expression:
/(two|three) (apple|biscuit)s/

It corresponds to a regular language that is a set of four strings:

{two apples, three apples, two biscuits, three biscuits}

Usage:

 >> "I ate two apples." =~ /(two|three) (apple|biscuit)s/
 => 6

 >> "She ate three mice." =~ /(two|three) (apple|biscuit)s/
 => nil

Another:

>> %w{you ate a mouse}.select { |s| s =~ /.(ea|ou|ie)./ }
=> ["mouse"]

Alternatives and grouping

CSC#372#Spring#2016,#Ruby#Slide#221#

Imagine a program to look through a word list for a pattern of consonants
and vowels specified on the command line, showing matches in bars.

% ruby convow.rb cvcvcvcvcvcvcvcvc < web2
c|hemicomineralogic|al
|hepatoperitonitis|
o|verimaginativenes|s

A capital letter means to match exactly that letter, in lowercase. e matches
either consonant or vowel.

% ruby convow.rb vvvDvvv < web2
Chromat|ioideae|
Rhodobacter|ioideae|

% ruby convow.rb vvvCvvv < web2 | wc -l
24

% ruby convow.rb vvvevvv < web2 | wc -l
43

Simple app: looking for letter patterns

CSC#372#Spring#2016,#Ruby#Slide#222#

Here's a solution. We loop through the command line argument and build
up a regular expression of character classes and literal characters, and then
look for lines with a match.

re = ""
ARGV[0].each_char do |char|
 re += case char # An example of Ruby's case
 when "v" then "[aeiou]"
 when "c" then "[^aeiou]"
 when "e" then "[a-z]"
 else char.downcase
 end
end
puts re
re = /#{re}/ # Transform re from String to Regexp
STDIN.each do
 |line|
 puts [$`, $&, $'] * "|" if line.chomp =~ re
end

convow.rb

$ ruby convow.rb cvc
[^aeiou][aeiou][^aeiou]

$ ruby convow.rb cEEcc
[^aeiou]ee[^aeiou][^aeiou]

CSC#372#Spring#2016,#Ruby#Slide#223#

A rule we've been using but haven't formally stated is this:
 If R1 and R2 are regular expressions then R1R2 is a regular expression.
 In other words, juxtaposition is the concatenation operation for REs.

There are also postfix operators on regular expressions.

If R is a regular expression, then...

R* matches zero or more occurrences of R

R+ matches one or more occurrences of R

R? matches zero or one occurrences of R

All have higher precedence than juxtaposition.

*, +, and ? are commonly called quantifiers but PA doesn't use that term.

There are regular expression operators

CSC#372#Spring#2016,#Ruby#Slide#224#

At hand:
R* matches zero or more occurrences of R
R+ matches one or more occurrences of R
R? matches zero or one occurrences of R

What does the RE ab*c+d describe?

 An 'a' that is followed by zero or more 'b's that are followed by one
or more 'c's and then a 'd'.

>> show_match("acd", /ab*c+d/)
=> "<<acd>>"

>> show_match("abcccc", /ab*c+d/)
=> "no match"

>> show_match("abcabccccddd", /ab*c+d/)
=> "abc<<abccccd>>dd"

 The *, +, and ? quantifiers

CSC#372#Spring#2016,#Ruby#Slide#225#

At hand:
R* matches zero or more occurrences of R
R+ matches one or more occurrences of R
R? matches zero or one occurrences of R

What does the RE -?\d+ describe?

 Integers with any number of digits

>> show_match("y is -27 initially", /-?\d+/)
=> "y is <<-27>> initially"

>> show_match("maybe --123.4e-10 works", /-?\d+/)
=> "maybe -<<-123>>.4e-10 works"

>> show_match("maybe --123.4e-10 works", /-?\d*/) # *, not +
=> "<<>>maybe --123.4e-10 works"

The *, +, and ? quantifiers, continued

CSC#372#Spring#2016,#Ruby#Slide#226#

What does a(12|21|3)*b describe?
 Matches strings like ab, a3b, a312b, and a3123213123333b.

Write an RE to match numbers with commas, like these:

 58 4,297 1,000,000 446,744 73,709,551,616

 (\d\d\d|\d\d|\d)(,\d\d\d)* # Why is \d\d\d first?

Write an RE to match floating point literals, like these:

 1.2 .3333e10 -4.567e-30 .0001

>> %w{1.2 .3333e10 -4.567e-30 .0001}.
 each {|s| puts show_match(s, /-?\d*\.\d+(e-?\d+)?/) }

<<1.2>>
<<.3333e10>>
<<-4.567e-30>>
<<.0001>>

 The *, +, and ? quantifiers, continued

Note the \. to match only a period.

CSC#372#Spring#2016,#Ruby#Slide#227#

/(\d?\d?\d)(,\d\d\d)*/#SS#Alan#Smith#

The operators *, +, and ? are "greedy"—each tries to match the longest
string possible, and cuts back only to make the full expression succeed.

Example:

 Given a.*b and the input 'abbb', the first attempt is:
 a matches a
 .* matches bbb
 b fails—no characters left!

 The matching algorithm then backtracks and does this:
 a matches a
 .* matches bb
 b matches b

 *, +, and ? are greedy!

CSC#372#Spring#2016,#Ruby#Slide#228#

More examples of greedy behavior:

>> show_match("xabbbbc", /a.*b/)
=> "x<<abbbb>>c"

>> show_match("xabbbbc", /ab?b?/)
=> "x<<abb>>bbc"

>> show_match("xabbbbcxyzc", /ab?b?.*c/)
=> "x<<abbbbcxyzc>>"

Why are *, +, and ? greedy?

 *, +, and ? are greedy, continued

CSC#372#Spring#2016,#Ruby#Slide#229#

In the following we'd like to match just 'abc' but the greedy asterisk goes
too far:

show_match("x + 'abc' + 'def' + y", /'.*'/)
=> "x + <<'abc' + 'def'>> + y"

We can make * lazy by putting ? after it, causing it to match only as much
as needed to make the full expression match. Example:

>> show_match("x + 'abc' + 'def' + y", /'.*?'/)
=> "x + <<'abc'>> + 'def' + y"

?? and +? are supported, too. The three are also called reluctant
quantifiers.

Once upon a time, before *? was supported, one would do this:

>> show_match("x + 'abc' + 'def' + y", /'[^']+'/)
=> "x + <<'abc'>> + 'def' + y"

Lazy/reluctant quantifiers

CSC#372#Spring#2016,#Ruby#Slide#230#

We can use curly braces to require a specific number of repetitions:

>> show_match("Call me at 555-1212!", /\d{3}-\d{4}/)
=> "Call me at <<555-1212>>!"

There are also forms with {min,max} and {min,}

>> show_match("3/17/2013", /\d{1,2}\/\d{1,2}\/(\d{4}|\d{2})/)
=> "<<3/17/2013>>"

Note that the RE above has escaped slashes to match the literal slashes.

Specific numbers of repetitions

CSC#372#Spring#2016,#Ruby#Slide#231#

We can split a string using a regular expression:
>> " one, two,three / four".split(/[\s,\/]+/) # w.s., commas, slashes
=> ["", "one", "two", "three", "four"]

Note that leading delimiters produce an empty string in the result.

If we can describe the strings of interest instead of what separates them,
scan is a better choice:

>> " one, two,three / four".scan(/\w+/)
=> ["one", "two", "three", "four"]

>> "10.0/-1.3...5.700+[1.0,2.3]".scan(/-?\d+\.\d+/)
=> ["10.0", "-1.3", "5.700", "1.0", "2.3"]

Here's a way to keep all the pieces:
>> " one, two,three / four".scan(/\w+|\W+/)
=> [" ", "one", ", ", "two", ",", "three", " / ", "four"]

split and scan with regular expressions

CSC#372#Spring#2016,#Ruby#Slide#232#

Reminder: s =~ /x/ succeeds if "x" appears anywhere in s.

The metacharacter ^ is an anchor when used at the start of a RE. (At the
start of a character class it means to complement.)

^ doesn't match any characters but it constrains the following regular
expression to appear at the beginning of the string being matched against.

>> show_match("this is x", /^x/) => "no match"

>> show_match("this is x", /^this/) => "<<this>> is x"

What will /^x|y/ match? Hint: it's not the same as /^(x|y)/

What does /^.[^0-9]/ match?

TODO: Talk about newlines, and \A, \Z, and \z

Anchors

CSC#372#Spring#2016,#Ruby#Slide#233#

Another anchor is $. It constrains the preceding regular expression to
appear at the end of the string.

>> show_match("ending", /end$/)
=> "no match"

>> show_match("the end", /end$/)
=> "the <<end>>"

What does /\d+$/ match?
 Can it be shortened?

Anchors, continued

CSC#372#Spring#2016,#Ruby#Slide#234#

We can combine the ^ and $ anchors to fully specify a string.

Problem: Write a RE to match lines with only a curly brace and (maybe)
whitespace.

>> show_match(" } ", /^\s*[{}]\s*$/)
=> "<< } >>"

Using grep, print lines in Ruby source files that are exactly three
characters long.

 % grep ^...$ *.rb

The sets of metacharacters recognized by grep, egrep, and egrep -P
differ. fgrep treats all characters as literals. The set in egrep -P is closest
to Ruby, but there's also rgrep.rb from slide 210.

CSC#372#Spring#2016,#Ruby#Slide#235#

Anchors, continued

What does /\w+\d+/ specify?
 One or more "word" characters followed by one or more digits.

How do the following matches differ from each other?

 line =~ /\w+\d+/

 line =~ /^\w+\d+/

 line =~ /\w+\d+$/

 line =~ /^\w+\d+$/

 line =~ /^.\w+\d+.$/

 line =~ /^.*\w+\d+$/

Anchors, continued

CSC#372#Spring#2016,#Ruby#Slide#236#

Imagine a program that's reading dozens of large data files whose lines
start with first names, like "Mary". We're getting drowned by the data.

for fname in files
 f = open(fname)
 while line = f.gets

 ...lots of processing to build a data structure, bdata...
 end
 p bdata # outputs way too much to easily analyze!!

We could edit data files down to a few names but here's an RE-based
solution.

for fname in files
 f = open(fname)
 while line = f.gets
 next unless line =~ /^(John|Dana|Mary),/
 ...processing... # toomuch.rb

Sidebar: Dealing with too much input

CSC#372#Spring#2016,#Ruby#Slide#237#

Note trailing comma!

Recall that convow.rb on slide 223 simply does char.downcase on any
characters it doesn't recognize. downcase doesn't change ^ or $.

The command

% ruby convow.rb ^cvc$

builds this this RE

/^[^aeiou][aeiou][^aeiou]$/

Let's explore with it:

% ruby convow.rb ^cvc$ < web2 | wc -l
858
% ruby convow.rb ^vccccv$ < web2 | wc -l
15
% ruby convow.rb ^vccccccv$ < web2
|oxyphyte|

Sidebar: convow.rb with anchors

CSC#372#Spring#2016,#Ruby#Slide#238#

web2 is in spring16

The following regular expression uses three named groups to capture the
elements of a binary arithmetic expression

>> re = /(?<lhs>\d+)(?<op>[+\-*\/])(?<rhs>\d+)/

After a successful match, the predefined global $~, an instance of
MatchData, shows us the groups:

>> re =~ "What is 100+23?"
=> 8

>> $~
=> #<MatchData "100+23" lhs:"100" op:"+" rhs:"23">

>> $~["lhs"]
=> "100"

Named groups are sometimes called named backreferences or named
captures.

CSC#372#Spring#2016,#Ruby#Slide#239#

Named groups

At hand:
 /(?<lhs>\d+)(?<op>[+\-*\/])(?<rhs>\d+)/

Important: Named groups must always be enclosed in parentheses.

Consider the difference in these two REs:

/x(?<n>\d+)/
 Matches strings like "x10" and "testx7ing"

/x?<n>\d+/

 Matches strings like "<n>10", "ax<n>10", "testx<n>10ing"

Design lesson:
"(?" in a RE originally had no meaning, so it provided an opportunity
for extension without breaking any existing REs.

Post-lecture addition: See "NAMED CAPTURES AND LOCAL
VARIABLES" in RPL.

CSC#372#Spring#2016,#Ruby#Slide#240#

Named groups, continued

Consider an application that reads elapsed times on standard input and
prints their total:

% ruby ttl.rb
3h
15m
4:30
^D
7:45

Multiple times can be specified per line, separated by spaces and commas.
% ruby ttl.rb
10m, 3:30
20m 2:15 1:01 3h
^D
10:16

How can we approach it?

Application: Time totaling

CSC#372#Spring#2016,#Ruby#Slide#241#

def main
 mins = 0
 while line = gets do
 line.scan(/[^\s,]+/).each {|time| mins += parse_time(time) }
 end
 printf("%d:%02d\n", mins / 60, mins % 60)
end

def parse_time(s)
 if s =~ /^(?<hours>\d+):(?<mins>[0-5]\d)$/
 $~["hours"].to_i * 60 + $~["mins"].to_i
 elsif s =~ /^(?<n>\d+)(?<which>[hm])$/
 n = $~["n"].to_i
 if $~["which"] == "h" then n * 60
 else n end
 else
 0 # return 0 for things that don't look like times
 end
end
main

Time totaling, continued

CSC#372#Spring#2016,#Ruby#Slide#242#

Problem: Write a method pt(s) that takes a string like "[(10,'a'),(3,'x'),
(7,'o')]" and returns an array with the sum of the numbers and a
concatenation of the letters. If s is malformed, nil is returned.

Examples:

>> pt "[(10,'a'),(3,'x'),(7,'o')]"
=> [20, "axo"]

>> pt "[(100,'c')]"
=> [100, "c"]

>> pt "[(10,'x'),(5,7,'y')]"
=> nil

>> pt "[(10,'x'),(5,'y'),]"
=> nil

CSC#372#Spring#2016,#Ruby#Slide#243#

Example: consuming a string

Desired:
>> pt "[(10,'a'),(3,'x'),(7,'o')]"
=> [20, "axo"]

Approach:

1.  Remove outer brackets: "(10,'a'),(3,'x'),(7,'o')"
2.  Append a comma: "(10,'a'),(3,'x'),(7,'o'),". (Why?!)
3.  Recognize (NUM,LET), and replace with ""

4.  Repeat 3. until failure
5.  If nothing left but an empty string, success!

Important: By appending that comma we produce a simple repetition,
 (tuple ,)+

rather than
 tuple (, tuple)*

CSC#372#Spring#2016,#Ruby#Slide#244#

Example, continued

Solution:
def pt(s) # process_tuples.rb
 if s =~ /^\[(?<tuples>.*)\]$/ then
 tuples = $~["tuples"] + ","
 sum, lets = 0, ""
 tuples.gsub!(/\((?<num>\d+),'(?<let>[a-z])'\),/) do
 sum += $~["num"].to_i
 lets << $~["let"]
 "" # block result--replaces matched string in tuples
 end
 if tuples.empty? then
 [sum,lets]
 end
 end
end

CSC#372#Spring#2016,#Ruby#Slide#245#

Example, continued

Approach:
1.  Remove outer brackets
2.  Append a comma
3.  Recognize (NUM,LET), and replace with ""
4.  Repeat 3. until failure
5.  If nothing left but an empty string, success!

TODO: Named groups
can set local variables

calc.rb on assignment 6 accepts input lines such as these:
x=7
yval=x+10*x
x+yval+z

Here's a very repetitious RE that recognizes calc.rb input lines:

valid_line = /^([a-zA-Z][a-zA-Z\d]*=)?([a-zA-Z][a-zA-Z\d]*|\d
+)([-+*\/]([a-zA-Z][a-zA-Z\d]*|\d+))*$/

Let's use some intermediate variables to build that same RE.
var = /[a-z][a-z\d]*/i # trailing "i": case insensitive

expr = /(#{var}|\d+)/

op = /[-+*\/]/

valid_line = /^(#{var}=)?#{expr}(#{op}#{expr})*$/

CSC#372#Spring#2016,#Ruby#Slide#246#

Avoiding repetitious REs

Our look at regular expressions ends here but there's lots more, like...

•  Back references––/(.)(.).\2\1/ matches 5-character palindromes
•  Nested regular expressions
•  Nested and conditional groups
•  Conditional subpatterns
•  Zero-width positive lookahead

Proverb:
A programmer decided to use regular expressions to solve a problem.
Then the programmer had two problems.

Regular expressions are great, up to a point.

SNOBOL4 patterns, Icon's string scanning facility, and Prolog grammars
can all recognize unrestricted languages and are far less complex than the
regular expression facility in most languages.

Lots more with regular expressions

CSC#372#Spring#2016,#Ruby#Slide#247#

Groups can be accessed in
code with $1, $2, ...

Defining classes

CSC#372#Spring#2016,#Ruby#Slide#248#

Imagine a class named Counter that models a tally counter.

Here's how we might create and interact with an instance of Counter:

c1 = Counter.new
c1.click
c1.click

puts c1 # Output: Counter's count is 2
c1.reset

c2 = Counter.new "c2"
c2.click

puts c2 # Output: c2's count is 1

c2.click
puts "c2 = #{c2.count}" # Output: c2 = 2

A tally counter

CSC#372#Spring#2016,#Ruby#Slide#249#

Here is a partial implementation of Counter:

class Counter
 def initialize(label = "Counter")
 ...
 end
 ...
end # Counter.rb

Class definitions are bracketed with class and end. Class names must
start with a capital letter. Unlike Java there are no filename requirements.

The initialize method is the constructor, called when new is invoked.

c1 = Counter.new
c2 = Counter.new "c2"

If no argument is supplied to new, the default value of "Counter" is used.

Counter, continued

CSC#372#Spring#2016,#Ruby#Slide#250#

Here is the body of initialize:

class Counter
 def initialize(label = "Counter")
 @count = 0
 @label = label
 end
end

Instance variables are identified by prefixing them with @.

An instance variable comes into existence when it is assigned to. The
code above creates @count and @label. (There are no instance variable
declarations.)

Just like Java, each object has its own copy of instance variables.

Counter, continued

CSC#372#Spring#2016,#Ruby#Slide#251#

Let's add click and reset methods, which are straightforward:
class Counter
 def initialize(label = "Counter")
 @count = 0
 @label = label
 end

 def click
 @count += 1
 end

 def reset
 @count = 0
 end
end

Counter, continued

CSC#372#Spring#2016,#Ruby#Slide#252#

In Ruby the instance variables of an object cannot by accessed by any
other object.

The only way way to make the value of @count available to other objects
is via methods.

Here's a simple "getter" for the counter's count.

def count
 @count
end

Let's override Object#to_s with a to_s that produces a detailed
description:

def to_s
 return "#{@label}'s count is #{@count}"
end

In Ruby, there is simply no such thing as a public instance variable. All
access must be through methods.

Counter, continued

CSC#372#Spring#2016,#Ruby#Slide#253#

Full source for Counter thus far:
class Counter
 def initialize(label = "Counter")
 @count = 0; @label = label
 end

 def click
 @count += 1
 end

 def reset
 @count = 0
 end

 def count # Note the convention: count, not get_count
 @count
 end

 def to_s
 return "#{@label}'s count is #{@count}"
 end
end # Counter.rb

Common error: omitting the @ on a reference to an instance variable.

Counter, continued

CSC#372#Spring#2016,#Ruby#Slide#254#

Consider this class: (instvar.rb)
class X
 def initialize(n)
 case n
 when 1 then @x = 1
 when 2 then @y = 1
 when 3 then @x = @y = 1
 end; end; end

What's interesting about the following?

>> X.new 1
=> #<X:0x00000101176838 @x=1>

>> X.new 2
=> #<X:0x00000101174970 @y=1>

>> X.new 3
=> #<X:0x0000010117aaa0 @x=1, @y=1>

An interesting thing about instance variables

CSC#372#Spring#2016,#Ruby#Slide#255#

Instances of a class can
have differing sets of
instance variables!

If class X ... end has been seen and another class X ... end is
encountered, the second definition adds and/or replaces methods.

Let's confirm Counter has no label method.

 >> c = Counter.new "ctr 1"

>> c.label
NoMethodError: undefined method `label' ...

Now we add a label method: (we're typing lines into irb but could load)
>> class Counter
>> def label; @label; end
>> end

>> c.label => "ctr 1"

What's an implication of this capability?

 We can add methods to classes written by others!

Addition of methods

CSC#372#Spring#2016,#Ruby#Slide#256#

In Icon, the unary ? operator can be used to generate a random number or
select a random value from an aggregate.

Icon Evaluator, Version 1.1
][?10
 r1 := 3 (integer)

][?"abcd"
 r2 := "b" (string)

I miss that. Let's add something similar to Ruby!

If we call Kernel#rand with a Fixnum n it will return a random Fixnum
r such that 0 <= r < n.

There's no unary ? to overload in Ruby so let's just add a rand method to
Fixnum and String.

Addition of methods, continued

CSC#372#Spring#2016,#Ruby#Slide#257#

Here is random.rb:
class Fixnum
 def rand

 Kernel.rand(self)+1
 end
end

class String
 def rand

 self[size.rand-1] # Uses Fixnum.rand
 end
end

>> load "random.rb"
>> 12.times { print 6.rand, " " }
2 1 2 4 2 1 4 3 4 4 6 3

>> 8.times { print "HT".rand, " " }
H H T H T T H H

Addition of methods, continued

MONKEY

PATCHING

CSC#372#Spring#2016,#Ruby#Slide#258#

Observe the following. What does it suggest to you?

>> class X
>> end
=> nil

>> p (class Y; end)
nil
=> nil

>> class Z; puts "here"; end
here
=> nil

Class definitions are executable code!

An interesting thing about class definitions

CSC#372#Spring#2016,#Ruby#Slide#259#

At hand: A class definition is executable code. The following class
definition uses a case statement to selectively execute defs for methods.

class X
 print "What methods would you like? "
 gets.split.each do |m|
 case m
 when "f" then def f; "from f" end
 when "g" then def g; "from g" end
 when "h" then def h; "from h" end
 end
 end
end

Use:
>> load "dynmethods1.rb"
What methods would you like?
>> x = X.new => #<X:0x007fc45c0b0f40>
>> x.f => "from f"
>> x.g => "from g"
>> x.h
NoMethodError: undefined method `h' for #<X:...>

Class definitions are executable code

f g

CSC#372#Spring#2016,#Ruby#Slide#260#

Kernel#eval parses a string containing Ruby source code and executes it.

>> s = "abc"

>> n = 3

>> eval "x = s * n" => "abcabcabc"

>> x => "abcabcabc"

>> eval "x[2..-2].length" => 6

>> eval gets
s.reverse
=> "cba"

Note that eval uses variables from the current scope and that an assignment to x
is reflected in the current scope. (Note: There are details about scoping!)

Bottom line: A Ruby program can generate code for itself.

Sidebar: Fun with eval

CSC#372#Spring#2016,#Ruby#Slide#261#

mk_methods.rb prompts for a method name, parameters, and method
body. It then creates that method and adds it to class X.

>> load "mk_methods.rb"
What method would you like? add
Parameters? a, b
What shall it do? a + b
Method add(a, b) added to class X

What method would you like? last
Parameters? x
What shall it do? x[-1]
Method last(x) added to class X

What method would you like? ^D => true
>> x = X.new => #<X:0x0000010185d930>
>> x.add(3,4) => 7
>> x.last "abcd" => "d"

Sidebar, continued

CSC#372#Spring#2016,#Ruby#Slide#262#

Here is mk_methods.rb. Note that the body of the class is a while loop.
class X
 while (print "What method would you like? "; name = gets)
 name.chomp!

 print "Parameters? "
 params = gets.chomp

 print "What shall it do? "
 body = gets.chomp

 code = "def #{name} #{params}; #{body}; end"

 eval(code)
 print("Method #{name}(#{params}) added to class #{self}\n\n");
 end
end

Is this a useful capability or simply fun to play with?

Sidebar, continued

CSC#372#Spring#2016,#Ruby#Slide#263#

Does eval pose any risks?

while (print("? "); line = gets)
 eval(line)
end # eval1.rb

Interaction: (input is underlined)
% ruby eval1.rb
? puts 3*5
15
? puts "abcdef".size
6
? system("date")
Mon Mar 23 19:09:35 MST 2015
? system("rm –rf ...")
...
? system("chmod 777 ...")
...

Sidebar: Risks with eval

CSC#372#Spring#2016,#Ruby#Slide#264#

At hand:
% ruby eval1.rb
? system("rm –rf ...")
...
? system("chmod 777 ...")
...

But, we can do those things without using Ruby!

eval gets risky when we can't trust the source of the data. Examples:

 A collaborator on a project sends us a data file.
 A Ruby on Rails web app calls eval with user-supplied data. (!)

It's very easy to fall victim to a variety of code-injection attacks when
using eval.

The define_method (et. al) machinery is often preferred over eval but
risks still abound!

Related topic: Ruby supports the notion of tainted data.

Sidebar, continued

while (print("? "); line = gets)
eval(line)

end # eval1.rb

CSC#372#Spring#2016,#Ruby#Slide#265#

Like Java, Ruby provides a way to associate data and methods with a class
itself rather than each instance of a class.

Java uses the static keyword to denote a class variable.

In Ruby a variable prefixed with two at-signs is a class variable.

Here is Counter augmented with a class variable that keeps track of how
many counters have been created.

class Counter
 @@created = 0 # Must precede any use of @@created
 def initialize(label = "Counter")
 @count, @label = 0, label
 @@created += 1
 end
end

Note: Unaffected methods are not shown.

Class variables and methods

CSC#372#Spring#2016,#Ruby#Slide#266#

To define a class method, simply prefix the method name with the name of
the class:

class Counter
 @@created = 0
 ...
 def Counter.created
 return @@created
 end
end

Usage:

>> Counter.created => 0
>> c = Counter.new
>> Counter.created => 1
>> 5.times { Counter.new }
>> Counter.created => 6

Class variables and methods, continued

CSC#372#Spring#2016,#Ruby#Slide#267#

By default, methods are public. If private appears on a line by itself,
subsequent methods in the class are private. Ditto for public.

class X
 def f; puts "in f"; g end # Note: calls g
 private
 def g; puts "in g" end
end

Usage:

>> x = X.new
>> x.f
in f
in g
>> x.g
NoMethodError: private method `g' ...

Speculate: What are private and public? Keywords?

 Methods in Module! (Module is an ancestor of Class.)

A little bit on access control

CSC#372#Spring#2016,#Ruby#Slide#268#

If Counter were in Java, we might provide methods like void
setCount(int n) and int getCount().

Our Counter already has a count method as a "getter".

For a "setter" we implement count=, with a trailing equals sign.

 def count= n
 puts "count=(#{n}) called" # Just for observation (LHtLAL)
 @count = n unless n < 0
 end

Usage:
>> c = Counter.new
>> c.count = 10
count=(10) called
=> 10
>> c => Counter's count is 10

Getters and setters

CSC#372#Spring#2016,#Ruby#Slide#269#

Here's a class to represent points on a Cartesian plane:
class Point
 def initialize(x, y)
 @x = x
 @y = y
 end
 def x; @x end
 def y; @y end
end

Usage:

>> p1 = Point.new(3,4) => #<Point:0x00193320 @x=3, @y=4>
>> [p1.x, p1.y] => [3, 4]

It can be tedious and error prone to write a number of simple getter
methods like Point#x and Point#y.

Getters and setters, continued

CSC#372#Spring#2016,#Ruby#Slide#270#

The method attr_reader creates getter methods.

Here's an equivalent definition of Point:

class Point
 def initialize(x, y)
 @x = x
 @y = y
 end
 attr_reader :x, :y
end

Usage:

>> p = Point.new(3,4)
>> p.x => 3
>> p.x = 10
NoMethodError: undefined method `x=' for #<Point: ...>

Why does p.x = 10 fail?

Getters and setters, continued

CSC#372#Spring#2016,#Ruby#Slide#271#

If you want both getters and setters, use attr_accessor.
class Point
 def initialize(x, y)
 @x = x
 @y = y
 end
 attr_accessor :x, :y
end

Usage:

>> p = Point.new(3,4)
>> p.x
=> 3
>> p.y = 10

It's important to appreciate that attr_reader and attr_accessor are
methods that create methods.

Getters and setters, continued

CSC#372#Spring#2016,#Ruby#Slide#272#

(What if Ruby didn't provide them?)

Operator overloading

CSC#372#Spring#2016,#Ruby#Slide#273#

In most languages at least a few operators are "overloaded"—an operator
stands for more than one operation.

C: + is used to express addition of integers, floating point numbers,
and pointer/integer pairs.

Java: + is used to express addition and string concatenation.

Icon: *x produces the number of...

 characters in a string
 values in a list
 key/value pairs in a table
 results a "co-expression" has produced

Icon: + means only addition; s1 || s2 is string concatenation

What are examples of overloading in Ruby? In Haskell?

Operator overloading

CSC#372#Spring#2016,#Ruby#Slide#274#

We've seen that Ruby operators can be expressed as method calls:
 3 + 4 is 3.+(4)

Here's what subscripting means:
 "abc"[2] is "abc".[](2)
 "testing"[2,3] is "testing".[](2,3)

Unary operators are indicated by adding @ after the operator:

-5 is 5.-@()

!"abc" is "abc".!@()

Challenge: See if you can find a binary operation that can't be expressed as
a method call.

Operators as methods

CSC#372#Spring#2016,#Ruby#Slide#275#

Let's use a dimensions-only rectangle class to study overloading in Ruby:
class Rectangle
 def initialize(w,h)
 @width, @height = w, h
 end
 attr_reader :width, :height
 def area; width * height; end
 def inspect
 "#{width} x #{height} Rectangle"
 end
end

Usage:

>> r = Rectangle.new(3,4) => 3 x 4 Rectangle
>> r.area => 12
>> r.width => 3

Operator overloading, continued

CSC#372#Spring#2016,#Ruby#Slide#276#

Let's imagine that we can compute the "sum" of two rectangles:

>> a = Rectangle.new(3,4) => 3 x 4 Rectangle

>> b = Rectangle.new(5,6) => 5 x 6 Rectangle

>> a + b => 8 x 10 Rectangle

>> c = a + b + b => 13 x 16 Rectangle

>> (a + b + c).area => 546

As shown above, what does Rectangle + Rectangle mean?

Operator overloading, continued

CSC#372#Spring#2016,#Ruby#Slide#277#

Our vision:
>> a = Rectangle.new(3,4); b = Rectangle.new(5,6)
>> a + b => 8 x 10 Rectangle

Here's how to make it so:

class Rectangle
 def + rhs
 Rectangle.new(self.width + rhs.width, self.height + rhs.height)
 end
end

Remember that a + b is equivalent to a.+(b). We are invoking the method "+" on
a and passing it b as a parameter.

The parameter name, rhs, stands for "right-hand side".

Do we need self in self.width or would just width work? How about @width?

Even if somebody else had provided Rectangle, we could still overload + on it—
the lines above are additive, assuming Rectangle.freeze hasn't been done.

Operator overloading, continued

CSC#372#Spring#2016,#Ruby#Slide#278#

For reference:
def + rhs
 Rectangle.new(self.width + rhs.width, self.height + rhs.height)

 end

Here is a faulty implementation of our idea of rectangle addition:

def + rhs
 @width += rhs.width; @height += rhs.height
end

What's wrong with it?
>> a = Rectangle.new(3,4)
>> b = Rectangle.new(5,6)

>> c = a + b => 10

>> a => 8 x 10 Rectangle

The problem:

We're changing the attributes of the left operand instead of creating and
returning a new instance of Rectangle.

Operator overloading, continued

CSC#372#Spring#2016,#Ruby#Slide#279#

Just like with regular methods, we have complete freedom to define what's
meant by an overloaded operator.

Here is a method for Rectangle that defines unary minus to be imperative
"rotation" (a clear violation of the Principle of Least Astonishment!)

def -@ # Note: @ suffix to indicate unary form of -

 @width, @height = @height, @width
 self

end

>> a = Rectangle.new(2,5) => 2 x 5 Rectangle
>> -a => 5 x 2 Rectangle
>> a + -a => 4 x 10 Rectangle
>> a => 2 x 5 Rectangle

Goofy, yes?

Operator overloading, continued

CSC#372#Spring#2016,#Ruby#Slide#280#

At hand:
def -@

 @width, @height = @height, @width
 self

end

What's a more sensible implementation of unary -?

 def -@
 Rectangle.new(height, width)
 end

>> a = Rectangle.new(5,2) => 5 x 2 Rectangle
>> -a => 2 x 5 Rectangle
>> a => 5 x 2 Rectangle
>> a += -a; a => 7 x 7 Rectangle

Operator overloading, continued

CSC#372#Spring#2016,#Ruby#Slide#281#

Consider "scaling" a rectangle by some factor. Example:
>> a = Rectangle.new(3,4) => 3 x 4 Rectangle
>> b = a * 5 => 15 x 20 Rectangle
>> c = b * 0.77 => 11.55 x 15.4 Rectangle

Implementation:

 def * rhs
 Rectangle.new(self.width * rhs, self.height * rhs)
end

A problem:

>> a => 3 x 4 Rectangle
>> 3 * a
TypeError: Rectangle can't be coerced into Fixnum

What's wrong?

 We've implemented only Rectangle * Fixnum

Operator overloading, continued

CSC#372#Spring#2016,#Ruby#Slide#282#

Imagine a case where it's useful to reference width and height uniformly,
via subscripts:

>> a = Rectangle.new(3,4) => 3 x 4 Rectangle
>> a[0] => 3
>> a[1] => 4
>> a[2] RuntimeError: out of bounds

Note that a[n] is a.[](n)

Implementation:

def [] n
 case n
 when 0 then width
 when 1 then height
 else raise "out of bounds"
 end
end

Operator overloading, continued

CSC#372#Spring#2016,#Ruby#Slide#283#

A language is considered to be extensible if we can create new types that
can be used as easily as built-in types.

Does our simple Rectangle class and its overloaded operators
demonstrate that Ruby is extensible?

What would a = b + c * 2 with Rectangles look like in Java?

 Maybe: Rectangle a = b.plus(c.times(2));

How about in C?

 Would Rectangle a = rectPlus(b, rectTimes(c, 2)); be workable?

Haskell goes further with extensibility, allowing new operators to be
defined.

Is Ruby extensible?

CSC#372#Spring#2016,#Ruby#Slide#284#

Ruby is not only extensible; it is also mutable—we can change the
meaning of expressions.

If we wanted to be sure that a program never used integer addition, we
could start with this:

class Fixnum
 def + x
 raise "boom!"
 end
end

What else would we need to do?

Contrast: C++ is extensible, but not mutable. For example, in C++ you can
define the meaning of Rectangle * int but you can't change the meaning
of integer addition, as we do above.

Ruby is mutable

CSC#372#Spring#2016,#Ruby#Slide#285#

Inheritance

CSC#372#Spring#2016,#Ruby#Slide#286#

Here's the classic Shape/Rectangle/Circle inheritance example in Ruby:

A Shape hierarchy in Ruby

class Shape
 def initialize(label)
 @label = label
 end

 attr_reader :label
end

class Rectangle < Shape
 def initialize(label, width, height)
 super(label)
 @width, @height = width, height
 end

 def area
 width * height
 end

 def inspect
 "Rectangle #{label} (#{width} x
#{height})"
 end

 attr_reader :width, :height
end

Rectangle < Shape
specifies inheritance.

Note that Rectangle
methods use the generated
width and height methods
rather than @width and
@height.

CSC#372#Spring#2016,#Ruby#Slide#287#

class Circle < Shape
 def initialize(label, radius)
 super(label)
 @radius = radius
 end

 attr_reader :radius

 def area
 Math::PI * radius * radius
 end

 def perimeter
 Math::PI * radius * 2
 end

 def inspect
 "Circle #{label} (r = #{radius})"
 end
end

Shape, continued

Math::PI references the
constant PI in the Math class.

CSC#372#Spring#2016,#Ruby#Slide#288#

Inheritance in Ruby has a lot of behavioral overlap with Java:

•  Subclasses inherit superclass methods.

•  Methods in a subclass can call superclass methods.

•  Methods in a subclass override superclass methods of the same name.

•  Calls to a method f resolve to f in the most-subclassed (most-derived)
class.

There are differences, too:

•  Subclass methods can always access superclass fields.

•  Superclass constructors aren't automatically invoked when creating
an instance of a subclass.

CSC#372#Spring#2016,#Ruby#Slide#289#

Similarities to inheritance in Java

The abstract reserved word is used in Java to indicate that a class, method, or
interface is abstract.

Ruby does not have any language mechanism to mark a class or method as
abstract.

Some programmers put "abstract" in class names, like AbstractWindow.

A method-level practice is to have abstract methods raise an error if called:

class Shape
 def area
 raise "Shape#area is abstract"
 end
end

There is also an abstract_method "gem" (a package of code and more):

class Shape
 abstract_method :area
 ...

There's no abstract

CSC#372#Spring#2016,#Ruby#Slide#290#

A common use of inheritance in Java is to let us write code in terms of a
superclass type and then use that code to operate on subclass instances.

With a Shape hierarchy in Java we might write a routine sumOfAreas:

 static double sumOfAreas(Shape shapes[]) {
 double area = 0.0;
 for (Shape s: shapes)

 area += s.getArea();
 return area;
 }

We can make Shape.getArea() abstract to force concrete subclasses to
implement getArea().

sumOfAreas is written in terms of Shape but works with instances of
any subclass of Shape.

Inheritance is important in Java

CSC#372#Spring#2016,#Ruby#Slide#291#

Here is sumOfAreas in Ruby:

def sumOfAreas(shapes)
 area = 0.0
 for shape in shapes do
 area += shape.area
 end
 area
end

Does it rely on inheritance in any way?

Even simpler:

 sum = shapes.inject (0.0) {|memo, shape| memo + shape.area }

Dynamic typing in Ruby makes it unnecessary to require common superclasses or
interfaces to write polymorphic methods that operate on a variety of underlying
types.

If you look closely, you'll find that some common design patterns are simply
patterns of working with inheritance hierarchies in statically typed languages.

Inheritance is less important in Ruby

CSC#372#Spring#2016,#Ruby#Slide#292#

Imagine an abstract class VString with two concrete subclasses:
ReplString and MirrorString.

A ReplString is created with a string and a replication count. It supports
size, substrings with [pos] and [start, len], and to_s operations.

>> r1 = ReplString.new("abc", 2) => ReplString(6)

>> r1.size => 6

>> r1[0] => "a"

>> r1[10] => nil

>> r1[2,3] => "cab"

>> r1.to_s => "abcabc"

Example: VString

CSC#372#Spring#2016,#Ruby#Slide#293#

A MirrorString represents a string concatenated with a reversed copy of
itself.

>> m1 = MirrorString.new("abcdef")
=> MirrorString(12)

>> m1.to_s => "abcdeffedcba"

>> m1.size => 12

>> m1[3,6] => "deffed"

What's a trivial way to implement the VString/ReplString/MirrorString
hierarchy?

VString, continued

CSC#372#Spring#2016,#Ruby#Slide#294#

A trivial VString implementation
class VString
 def initialize(s)
 @s = s
 end

 def [](start, len = 1)
 @s[start, len]
 end

 def size
 @s.size
 end

 def to_s
 @s.dup
 end

end

class ReplString < VString
 def initialize(s, n)
 super(s * n)
 end

 def inspect
 "ReplString(#{size})"
 end
end

class MirrorString < VString
 def initialize(s)
 super(s + s.reverse)
 end

 def inspect
 "MirrorString(#{size})"
 end
end

CSC#372#Spring#2016,#Ruby#Slide#295#

New requirements:
 A VString can be created using either a VString or a String.
 A ReplString can have a very large replication count.

Will VStrings in constructors work with the implemetation as-is?

>> m2 = MirrorString.new(ReplString.new("abc",3))
NoMethodError: undefined method `reverse' for ReplString

>> r2 = ReplString.new(MirrorString.new("abc"),5)
NoMethodError: undefined method `*' for MirrorString

What's the problem?

 The ReplString and MirrorString constructors use * n and .reverse

What will ReplString("abc", 2_000_000_000_000) do?

VString, continued

CSC#372#Spring#2016,#Ruby#Slide#296#

Here's some behavior that we'd like to see:
>> s1 = ReplString.new("abc", 2_000_000_000_000)
=> ReplString("abc",2000000000000)

>> s1[0] => "a"

>> s1[-1] => "c"

>> s1[1_000_000_000] => "b"

>> s2 = MirrorString.new(s1)
=> MirrorString(ReplString("abc",2000000000000))

>> s2.size => 12000000000000

>> s2[-1] => "a"

>> s2[s2.size/2 - 3, 6] => "abccba"

VString, continued

CSC#372#Spring#2016,#Ruby#Slide#297#

Let's review requirements:
•  Both ReplString and MirrorString are subclasses of VString.
•  A VString can be created using either a String or a VString.
•  The ReplString replication count can be a Bignum.
•  If vs is a VString, vs[pos] and vs[pos,len] produce Strings.
•  VString#size works, possibly producing a Bignum.
•  VString#to_s "works" but is problematic with long strings.

How can we make this work?

VString, continued

CSC#372#Spring#2016,#Ruby#Slide#298#

Let's play computer!
>> s = MirrorString.new(ReplString.new("abc",1_000_000))
=> MirrorString(ReplString("abc",1000000))

>> s.size
=> 6000000

>> s[-1]
=> "a"

>> s[3_000_000]
=> "c"

>> s[3_000_000,6]
=> "cbacba"

What data did you need to perform those computations?

VString, continued

To be continued,
on assignment 7!

VString stands for "virtual string"—the
hierarchy provides the illusion of very
long strings but uses very little memory.

CSC#372#Spring#2016,#Ruby#Slide#299#

Modules and "mixins"

CSC#372#Spring#2016,#Ruby#Slide#300#

A Ruby module can be used to group related methods for organizational purposes.

Imagine some methods to comfort a homesick Haskell programmer at Camp Ruby:

module Haskell
 def Haskell.head(a) # Class method--prefixed with class name
 a[0]
 end

 def Haskell.tail(a)
 a[1..-1]
 end
 ...more...
end

>> a = [10, "twenty", 30, 40.0]
>> Haskell.head(a)
=> 10
>> Haskell.tail(a)
=> ["twenty", 30, 40.0]

Modules

CSC#372#Spring#2016,#Ruby#Slide#301#

In addition to providing a way to group related methods, a module can be
"included" in a class. When a module is used in this way it is called a
"mixin" because it mixes additional functionality into a class.

Here is a revised version of the Haskell module. The class methods are
now written as instance methods; they use self and have no parameter:

module Haskell
 def head
 self[0]
 end

 def tail
 self[1..-1]
 end
end

Modules as "mixins"

Previous version:
 module Haskell

 def Haskell.head(a)
 a[0]
 end

 def Haskell.tail(a)
 a[1..-1]
 end
end

CSC#372#Spring#2016,#Ruby#Slide#302#

We can mix our Haskell methods into the Array class like this:
% cat mixin1.rb
require './Haskell' # loads ./Haskell.rb if not already loaded
class Array
 include Haskell
end

We can load mixin1.rb and then use .head and .tail on arrays:

>> load "mixin1.rb"
>> ints = (1..10).to_a => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>> ints.head
=> 1

>> ints.tail
=> [2, 3, 4, 5, 6, 7, 8, 9, 10]

>> ints.tail.tail.head
=> 3

Mixins, continued

CSC#372#Spring#2016,#Ruby#Slide#303#

We can add those same capabilities to String, too:
class String
 include Haskell
end

Usage:

>> s = "testing"

>> s.head => "t"
>> s.tail => "esting"
>> s.tail.tail.head => "s"

In addition to the include mechanism, what other aspect of Ruby
facilitates mixins?

Mixins, continued

CSC#372#Spring#2016,#Ruby#Slide#304#

The Ruby core classes and standard library make extensive use of mixins.

The class method ancestors can be used to see the superclasses and
modules that contribute methods to a class:

>> Array.ancestors
=> [Array, Enumerable, Object, Kernel, BasicObject]

>> Fixnum.ancestors
=> [Fixnum, Integer, Numeric, Comparable, Object, Kernel,
BasicObject]

>> load "mixin1.rb"

>> Array.ancestors
=> [Array, Haskell, Enumerable, Object, Kernel, BasicObject]

Modules and superclasses

CSC#372#Spring#2016,#Ruby#Slide#305#

The method included_modules shows the modules that a class
includes.

>> Array.included_modules => [Haskell, Enumerable, Kernel]

>> Fixnum.included_modules => [Comparable, Kernel]

instance_methods can be used to see what methods are in a module:

>> Enumerable.instance_methods.sort =>
[:all?, :any?, :chunk, :collect, :collect_concat, :count, :cycle, :de
tect, :drop, :drop_while, :each_cons, :each_entry, ...more...

>> Comparable.instance_methods.sort
=> [:<, :<=, :==, :>, :>=, :between?]

>> Haskell.instance_methods
=> [:head, :tail]

Modules and superclasses, continued

CSC#372#Spring#2016,#Ruby#Slide#306#

When talking about iterators we encountered Enumerable. It's a module:
>> Enumerable.class
=> Module

>> Enumerable.instance_methods.sort =>
[:all?, :any?, :chunk, :collect, :collect_concat, :count, :cycle, :de
tect, :drop, :drop_while, :each_cons, :each_entry, :each_slice, :
each_with_index, :each_with_object, :entries, :find, :find_all, :f
ind_index, :first, :flat_map, :grep, :group_by, :include?, :inject,
:map, :max, :max_by, :member?, :min, :min_by, :minmax, :min
max_by, :none?, :one?, :partition, :reduce, :reject, ...

The methods in Enumerable use duck typing, requiring only an each
method. min, max, and sort, also require <=> for values operated on.

If class implements each and includes Enumerable then all those
methods become available to instances of the class.

The Enumerable module

CSC#372#Spring#2016,#Ruby#Slide#307#

Here's a class whose instances simply hold three values:
class Trio
 include Enumerable
 def initialize(a,b,c); @values = [a,b,c]; end

 def each
 @values.each {|v| yield v }
 end
end

Because Trio implements each and includes Enumerable, lots of stuff works:

>> t = Trio.new(10, "twenty", 30)

>> t.member?(30) => true

>> t.map{|e| e * 2} => [20, "twentytwenty", 60]

>> t.partition {|e| e.is_a? Numeric } => [[10, 30], ["twenty"]]

What would the Java equivalent be for the above?

The Enumerable module, continued

CSC#372#Spring#2016,#Ruby#Slide#308#

Another common mixin is Comparable:
 >> Comparable.instance_methods
=> [:==, :>, :>=, :<, :<=, :between?]

Comparable's methods are implemented in terms of <=>.

Let's compare rectangles on the basis of areas:

class Rectangle
 include Comparable
 def <=> rhs
 (self.area - rhs.area) <=> 0
 end
end

The Comparable module

CSC#372#Spring#2016,#Ruby#Slide#309#

Usage:
>> r1 = Rectangle.new(3,4) => 3 x 4 Rectangle
>> r2 = Rectangle.new(5,2) => 5 x 2 Rectangle
>> r3 = Rectangle.new(2,2) => 2 x 2 Rectangle

>> r1 < r2 => false

>> r1 > r2 => true

>> r1 == Rectangle.new(6,2) => true

>> r2.between?(r3,r1) => true

Is Comparable making the following work?
>> [r1,r2,r3].sort
=> [2 x 2 Rectangle, 5 x 2 Rectangle, 3 x 4 Rectangle]

>> [r1,r2,r3].min
=> 2 x 2 Rectangle

Comparable, continued

CSC#372#Spring#2016,#Ruby#Slide#310#

In conclusion...

CSC#372#Spring#2016,#Ruby#Slide#311#

•  Everything is an object?

•  Substring/subarray access with x[...] notation?

•  Negative indexing to access from right end of strings and arrays?

•  if modifiers? (puts x if x > y)

•  Iterators and blocks?

•  Ruby's support for regular expressions?

•  Monkey patching? Adding methods to existing classes?

•  Programmer-defined operator overloading?

•  Dynamic typing?

Is programming more fun with Ruby?

If you know Python, do you prefer Python or Ruby?

What do you like (or not?) about Ruby?

CSC#372#Spring#2016,#Ruby#Slide#312#

September 3, 2006:
n=1
d = Date.new(2006, 8, 22)
incs = [2,5]
pos = 0
while d < Date.new(2006, 12, 6)

 if d != Date.new(2006, 11, 23)
 printf("%s %s, #%2d\n",
 if d.cwday() == 2: "T"; else "H";end,
 d.strftime("%m/%d/%y"), n)
 n += 1
 end
 d += incs[pos % 2]
 pos += 1

end

Output:

T 08/22/06, # 1
H 08/24/06, # 2
T 08/29/06, # 3
...

My first practical Ruby program

CSC#372#Spring#2016,#Ruby#Slide#313#

If we had more time, we'd...

•  Learn about lambdas, blocks as explicit parameters, and call.

•  Play with ObjectSpace. (Try ObjectSpace.count_objects)

•  Do some metaprogramming with hooks like method_missing,

included, and inherited.

•  Experiment with internal Domain Specific Languages (DSL).

•  Look at how Ruby on Rails puts Ruby features to good use.

•  Write a Swing app with JRuby, a Ruby implementation for the JVM.

•  Take a peek at BDD (Behavior-Driven Development) with Cucumber
and RSpec.

More with Ruby...

CSC#372#Spring#2016,#Ruby#Slide#314#

