
CSc 372 — Comparative Programming Languages
Spring 2017 (McCann)

http://www.cs.arizona.edu/classes/cs372/spring17

Program #1: Ruby

Due Date: February 10 th, 2017, at the beginning of class

Overview: In this class, we study specific languages in some detail, but not all detail. Our purpose is to study
the design of the languages. In the case of Ruby, we are focusing on the object-oriented characteristics. The
best way to understand those features is to write programs that use them. Before you can do that, you also
need to be able to use the basics of the language. That is why this assignment is a collection of programming
exercises, ranging from the straight-forward to the more involved. Between the lecture material and this
assignment, we hope that you will become comfortable enough with Ruby to continue to explore additional
features of the language on your own, should you choose to do so.

Assignment: For each numbered task below, write a Ruby program (named as stated) that accomplishes it.

1. Hailstones.

$ ruby hailstones.rb 7

The hailstone sequence starting with 7:

7 22 11 34 17 52 26 13

40 20 10 5 16 8 4 2

1

There are 17 values; the largest is 52.

In 1937, Lothar Collatz, a German mathematician, suggested that the following result is always true:
Start with a positive integer. If that integer is an even number, halve it. If it is odd, triple it and add
one. Continuing this with the resulting integers will always cause you to reach one, sooner or later. What
makes this process interesting is that no one has been able to prove that the sequence will reach one
for every positive integer, but every number ever tested (over 5× 1018 of them) has. This conjecture is
known by many names, including the Collatz Conjecture and the Hailstone Sequence.

As an example, consider the integer 6. It’s even, so we halve it to get 3. 3 is odd, so we triple it and add
one, producing 10. Continuing produces this sequence of nine values:

6, 3, 10, 5, 16, 8, 4, 2, 1

You may be wondering why we stop at one. If we were to continue, we’d jump back to four (3∗1+1 = 4),
which starts a repeating sequence. Thus, there’s no point in continuing past one.

Write a complete, well-documented Ruby program named hailstones.rb that accepts a positive integer
from the command line and computes and displays the sequence resulting from it, starting with the given
value, eight values per line in fields of size 6. The last line may have fewer than eight values. Then,
display the total quantity of values in the sequence, and the largest value in the sequence (which might
be the starting value). Use the output format shown above.

(Continued...)

2. Wordify.

$ cat data.txt

Some (made-up) data --

over 2.0 lines.

$ ruby wordify.rb < data.txt > words.txt

$ cat words.txt

Some

made-up

data

over

2

0

lines

Write a complete, well-documented Ruby program named wordify.rb that reads text from standard
input (normally the keyboard, but could be the content of a text file, as demonstrated above), identifies
the words in the input, and outputs them to standard output, one word per line. For this program, a
word is defined to be a sequence of characters starting with a letter or a digit, and consisting of letters,
digits, or hyphens.

There are many ways to do this sort of task in Ruby. Any of them will be acceptable, including ones using
regular expressions, should you wish to read up on them and use them. (We don’t anticipate spending
much time on regular expressions in class.)

3. Word Sort.

$ cat words.txt
Some
made-up
data
over
2
0
lines
$ ruby wordsort.rb words.txt
$ cat words-sorted.txt
0
2
Some
data
lines
made-up
over

NOTE: The input to this program is in the same format as the output from wordify.rb, but is required
to be in a file.

We hope that you learned Insertion Sort in an earlier class. (If you did not, check out the Wikipedia
page on the algorithm; the URL is in the “Want to Learn More?” section of this handout.) A simple
variation of Insertion Sort is Binary Insertion Sort, which uses binary search to find the proper location
of the next item to be inserted into the growing sorted sequence.

Write a complete, well-documented Ruby program named wordsort.rb that accepts, as a command-line
argument, the name of a file of words (one word per line); sorts those words using binary insertion sort;
and saves the sorted list of words to a file, again one word per line, whose name is that of the input file
with “-sorted” added after the name but ahead of the extension.

Additional requirement: You are to write stand-alone Ruby methods (that is, methods that are not
explicitly added to a class) to perform the searching and the sorting. Thus, you will need to write two
methods, though you may write additional helper methods if you wish.

(Continued...)

2

4. Word Concordance.

$ cat seuss.txt

One Fish

Two Fish

Red Fish

Blue Fish

$ ruby concordance.rb seuss.txt

Blue (4,1)

Fish (1,2) (2,2) (3,2) (4,2)

One (1,1)

Red (3,1)

Two (2,1)

NOTE: The input to this program is in the same format as the input to wordify.rb — a text file of
words, using the same definition of word.

You may be familiar with maps in Java and/or dictionaries in Python. Ruby’s version of the association

list concept is called a “hash,” but the idea is the same: A hash is a collection of values of any type,
indexed by keys of any type.

A concordance is an alphabetical list of words from a document in which the words are paired with their
locations in the document.

Write a complete, well-documented Ruby program named concordance.rb that reads words from the
given text file and uses a hash to produce a sorted list of the words, one per line, with their locations
listed to the right of the word in the form “(X,Y)”, where X is the line number (the first line is line 1)
and Y is the word number on that line (the first word is word 1). The example output above should
clear up any confusion.

We want the output to be tidy, so: Use the length of the longest word to position the word locations
such that the first location of the longest word is separated from the word by one space, and the first
locations of the rest of the words align with that list. All of the words should be aligned by their last
letters (that is, right-justified). Again, this is shown in the output above.

5. Clock and AlarmClock Classes.

Seems like we should have you do something with creating classes and playing with OO language features,
but at the same time we don’t want to turn this into a 335 assignment, so we’ll do something simple.

Write three complete, well-documented Ruby program files as detailed below:

(a) clock.rb: This file contains the definition of the class Clock. Clock uses Ruby’s Time class to
represent a 24-hour time (a.k.a. military time) in hours and seconds. (That is, 17 hours and 15
minutes is 5:15 p.m.) Its constructor accepts hours and minutes and uses those values to set the
clock’s time. Clock has a setter (settime(h,m)) that also takes both hours and minutes, and two
getters (gethour and getminute) to retrieve those components. The ‘fun’ method is formattime,
which takes no arguments but returns a string that, when printed, shows the time as a digital clock
does, in 12-hour time. For example, the string:

" _ _ _ _ \n|_|.|_||_| |_|\n|_|.|_||_| |\n"

will display as the (impossible, but illustrative) time:

_ _ _ _
|_|.|_||_| |_|
|_|.|_||_| |

Of course, your version will need a fourth digit on the left. Note that the trailing character should
be ‘P’ for PM or ‘A’ for AM, both of which can be formed from the seven bars available for forming
digits. Each digit is three characters wide and three lines tall, and the A/P is separated from the
last digit by a space, as shown. The ‘colon’ between the hour and minute is formed from a pair of
periods.

(Continued...)

3

(b) alarmclock.rb: This file contains the definition of the class AlarmClock. AlarmClock inherits from
Clock, and stores the time of the alarm, the setter setalarm(h,m), the getters getalarmhour and
getalarmminute, and the formatting method formatalarm (which produces the same sort of string
that Clock’s formattime does).

(c) testclocks.rb: This is to be a tester of your own design that exercises the methods of Clock and
AlarmClock. The TAs will create their own tester for your classes, but a portion of your grade will
come from their evaluation of the completeness of your tester.

This raises the question: “How much error-checking and error-handling do we need to do?” The
answer is: Not much. If the given values for hours or minutes are outside of 24-hour ranges (0-23
for hours, 0-59 for minutes), set the instance variables to the closest legal value. For example, given
an hours value of 26, set hours to 23.

Data: The input expectations for the programs are given with the program descriptions, above.

Output: Output details for each program are stated in the Assignment section, above. Please ask (preferably
on Piazza) if you need additional details.

Hand In: You are required to submit your completed program files (your .rb files) using the turnin facility
on lectura. The submission folder is cs372p1. Instructions are available from the document of submission
instructions linked to the class web page. In particular, because we will be grading your program on lectura,
it needs to run on lectura, so be sure to test it on lectura. Submit all files as-is, without packaging them into
.zip, .jar, .tar, etc., files.

Want to Learn More?

• https://en.wikipedia.org/wiki/Insertion sort — Wikipedia’s description of Insertion Sort.

Additional Hints, Reminders, and Requirements:

• There is a list of Ruby resources on the class web page, and other suggestions (irb, Googling) were
mentioned in class. Working through statement syntax, execution errors, etc., are chores that we expect
you to do on your own, as you would have to if you were learning a language on your own. But, if you
get really stuck, the TAs and I are here to help.

• We realize that we haven’t yet demonstrated all of the features of Ruby that you will need to complete
all of these programs. You can either wait for those features to be covered, or you can explore them on
your own.

• Start Early! We don’t expect that any of these programs will be conceptually difficult for you, but
they will probably take some time to complete, due to your inexperience with the language.

4

