Functional Programming with Haskell

CSC 372, Spring 2018
The University of Arizona
William H. Mitchell whm@cs

CSC 372 Spring 2018, Haskell Slide 1

Paradigms

Paradigms

Thomas Kuhn's The Structure of Scientific Revolutions (1962) describes a paradigm as a scientific achievement that is...

- "...sufficiently unprecedented to attract an enduring group of adherents away from competing modes of scientific activity."
- "...sufficiently open-ended to leave all sorts of problems for the redefined group of practitioners to resolve."

Examples of works that documented paradigms:

- Newton's Principia
- Lavoisier's Chemistry
- Lyell's Geology

Paradigms, continued

Kuhn says a paradigm has:

- A world view
- A vocabulary
- A set of techniques for solving problems

A paradigm provides a conceptual framework for understanding and solving problems.

Kuhn equates a paradigm shift with a scientific revolution.

The imperative programming paradigm

Imperative programming is a very early paradigm that's still used.

Originated with machine-level programming:

- Instructions change memory locations or registers
- Branching instructions alter the flow of control

Examples of areas of study for those interested in the paradigm:

- Data types
- Operators
- Branching mechanisms and (later) control structures

Imperative programming fits well with the human mind's ability to describe and understand processes as a series of steps.

The imperative paradigm, continued

Language-wise, imperative programming requires:

- "Variables"-data objects whose values can change
- Expressions to compute values
- Support for iteration-a "while" control structure, for example.

Support for imperative programming is very common.

- Java
- C
- C++
- Python
- and hundreds more
- but not Haskell

Code inside a Java method or C function is likely imperative.

The procedural programming paradigm

An outgrowth of imperative programming was procedural programming:

- Programs are composed of bodies of code (procedures) that manipulate individual data elements or structures.
- Procedures encapsulate complexity.

Examples of areas of study:

- How to decompose a computation into procedures and calls
- Parameter-passing mechanisms in languages
- Scoping of variables and nesting of procedures
- Visualization of procedural structure

What does a language need to provide to support procedural programming?

The procedural paradigm, continued

Support for procedural programming is very common.

- C
- Python
- Ruby
- and hundreds more

The procedural and imperative paradigms can be combined:

- Procedural programming: the set of procedures
- Imperative programming: the contents of procedures

Devising the set of functions for a C program is an example of procedural programming.

Procedural programming is possible but clumsy in Java.

- Classes devolve into collections of static methods and data

The object-oriented programming paradigm

The essence of the object-oriented programming paradigm:
Programs are a system of interacting objects.
Dan Ingalls said,
"Instead of a bit-grinding processor plundering data structures, we have a universe of well-behaved objects that courteously ask each other to carry out their various desires."

Examples of areas of study:

- How to model systems as interacting objects
- Managing dependencies between classes
- Costs and benefits of multiple inheritance
- Documentation of object-oriented designs

What does a language need to support OO programming?

The object-oriented paradigm, continued

Brief history of the rise of the object-oriented paradigm:

- Simula 67 recognized as first language to support objects
- Smalltalk created broad awareness of OO programming
(see https://archive.org/details/byte-magazine-1981-08)
- $\mathrm{C}++$ started a massive shift to OO programming
- Java broadened the audience even further

Object-oriented programming fits Kuhn's paradigm definition well:
World view:
Systems are interacting objects
Vocabulary:
Methods, inheritance, superclass, instances
Techniques:
Model with classes, work out responsibilities and collaborators, don't have public data, etc.

The object-oriented paradigm, continued

Language support for OOP has grown since mid-1980s.
Many languages support OO programming but don't force it.

- C++
- Python
- Ruby

Java forces at least a veneer of OO programming.
The OO and imperative paradigms can be combined:

- OO: the set of classes and their methods
- Imperative: the code inside methods

Multiple paradigms(?)

Paradigms in a field of science are often incompatible.
Example: geocentric vs. heliocentric model of the universe
Imperative programming is used both with procedural and objectoriented programming.

Is imperative programming really a paradigm?
Wikipedia's Programming_paradigm has this:
Programming paradigms are a way to classify programming languages based on their features. Languages can be classified into multiple paradigms.

Are "programming paradigms" really paradigms by Kuhn's definition or are they just characteristics?

The level of a paradigm

Programming paradigms can apply at different levels:

- Making a choice between procedural and object-oriented programming fundamentally determines the nature of the highlevel structure of a program.
- The imperative paradigm is focused more on the small aspects of programming-how code looks at the line-by-line level.

The procedural and object-oriented paradigms apply to programming in the large.

The imperative paradigm applies to programming in the small.

Do co-existing paradigms imply they're solving fundamentally different types of problems?

The influence of paradigms

The programming paradigms we know affect how we approach problems.

- If we use the procedural paradigm, we'll first think about breaking down a computation into a series of steps.
- If we use the object-oriented paradigm, we'll first think about modeling the problem with a set of objects and then consider their interactions.
- If we know only imperative programming, code inside methods and functions will be imperative.

Imperative programming revisited

Recall these language requirements for imperative programming:

- "Variables"-data objects whose values can change
- Expressions to compute values
- Support for iteration-a "while" control structure, for example.

Another:

- Statements are sequentially executed

Imperative summation

Here's an imperative solution in Java to sum the integers in an array:

```
int sum(int a[])
{
    int sum = 0;
    for (int i = 0; i < a.length; i++)
        sum += a[i];
    return sum;
}
```

How does it exemplify imperative programming?

- The values of sum and i change over time.
- An iterative control structure is at the heart of the computation.

Imperative summation, continued

With Java's "enhanced for", also known as a for-each loop, we can avoid array indexing.

```
int sum(int a[])
{
    int sum = 0;
    for (int val: a)
        sum += val;
```

 return sum;
 \}

Is this an improvement? If so, why?
Can we write sum in a non-imperative way?

Non-imperative summation

We can use recursion to get rid of loops and assignments, but...ouch!

```
int sum(int a[])
{
    return sum(a, 0);
}
int sum(int a[], int i)
{
    if (i == a.length)
        return 0;
    else
    return a[i] + sum(a,i+l);
}
```

Which of the three versions is the easiest to believe it is correct?

Background:
 Value, type, side effect

Value, type, and side effect

An expression is a sequence of symbols that can be evaluated to produce a value.

Here are some Java expressions:
'x'
$i+j * k$
f(args.length * 2) +n
Three questions to consider about an expression:

- What value does the expression produce?
- What's the type of that value?
- Does the expression have any side effects?

Mnemonic aid for the three: Imagine you're wearing a vest that's reversed.
"vest" reversed is "t-se-v": type/side-effect/value.

Value, type, and side effect, continued

What is the value of the following Java expressions?

$$
\begin{aligned}
& 3+4 \\
& 7 \\
& 1<2 \\
& \text { true } \\
& \text { "abc".charAt(1) } \\
& \text { 'b' } \\
& \text { s= }=3+4+\text { "5" } \\
& \text { "75" } \\
& \text { "a,bb,c3".split(",") } \\
& \text { AString array with three elements: "a", "bb" and "c3" } \\
& \text { "a,bb,c3".split(",")[2] } \\
& \text { "c3" } \\
& \text { "a,bb,c3".split(",")[2].charAt(0) == 'X' } \\
& \text { false }
\end{aligned}
$$

Value, type, and side effect, continued

What is the type of each of the following Java expressions?

$$
\begin{aligned}
& 3+4 \\
& \text { int } \\
& \text { l < } 2 \\
& \text { boolean } \\
& \text { "abc".charAt(1) } \\
& \text { char } \\
& \text { When we ask, } \\
& \text { we're actually asking this: } \\
& \text { expression?" } \\
& \text { s = } 3+4+\text { " } 5 " \\
& \text { String } \\
& \text { "a,bb, c3".split(",") } \\
& \text { String [] } \\
& \text { "a,bb, c3".split(",")[2] } \\
& \text { String } \\
& \text { "a,bb,c3".split(",")[2].charAt(0) == 'X' } \\
& \text { boolean }
\end{aligned}
$$

"What's the type of this expression?"
"What's the type of the value produced by this

Value, type, and side effect, continued

A "side effect" is a change to the program's observable data or to the state of the environment in which the program runs.

Which of these Java expressions have a side effect?

$$
x+3 * y
$$

No side effect. A computation was done but no evidence of it remains.
$\mathrm{x}+=3 * \mathrm{y}$
Side effect: $3 * y$ is added to x.
s.length ()$>2| |$ s.charAt $(1)==$ '\#'

No side effect. A computation was done but no evidence of it remains.

Value, type, and side effect, continued

More expressions to consider wrt. side effects:
"testing".toUpperCase()
A string "TESTING" was created somewhere but we can't get to it. No side effect.
L.add("x"), where L is an ArrayList

An element was added to L. Definitely a side-effect!
System.out.println("Hello!")
Side effect: "Hello!" went somewhere.
window.checkSize()
We can't tell without looking at window.checkSize()!

The hallmark of imperative programming

Side effects are the hallmark of imperative programing.
Code written in an imperative style is essentially an orchestration of side effects.

Recall:

$$
\begin{aligned}
& \text { int sum }=0 ; \\
& \text { for (int } i=0 ; i<\text { a.length; } i++ \text {) } \\
& \text { sum }+=a[i] ;
\end{aligned}
$$

Can we program without side effects?

The Functional Paradigm

The functional programming paradigm

A key characteristic of the functional paradigm is writing functions that are like pure mathematical functions.

Pure mathematical functions:

- Always produce the same value for given input(s)
- Have no side effects
- Can be easily combined to produce more powerful functions
- Are often specified with cases and expressions

Functional programming, continued

Other characteristics of the functional paradigm:

- Values are never changed but lots of new values are created.
- Recursion is used in place of iteration.
- Functions are values. Functions are put into data structures, passed to functions, and returned from functions. Lots of temporary functions are created.

Based on the above, how well would the following languages support functional programming?

- Java?
- Python?
- C?

Haskell basics

What is Haskell?

Haskell is a pure functional programming language; it has no imperative features.

Designed by a committee with the goal of creating a standard language for research into functional programming.

First version appeared in 1990. Latest version is known as Haskell 2010.

Is said to be non-strict-it supports lazy evaluation.
Is not object-oriented in any way.

Haskell resources

Website: haskell.org
All sorts of resources!

Books: (all on Safari Books Online)
Learn You a Haskell for Great Good!, by Miran Lipovača http://learnyouahaskell.com (Known as LYAH.)

Programming in Haskell, by Graham Hutton Note: See appendix B for mapping of non-ASCII chars!

Thinking Functionally with Haskell by Richard Bird
Real World Haskell, by O'Sullivan, Stewart, and Goerzen http://book.realworldhaskell.org (I'll call it RWH.)

Haskell 2010 Report (I'll call it H10.)
http://haskell.org/definition/haskell2010.pdf

Getting Haskell

Windows

1. https://www.haskell.org/platform/windows.html
2. Download Core (64 bit)
3. Install it!

- Under "Choose Components", deselect "Stack"
macOS

1. https://www.haskell.org/platform/mac.html
2. Download Core (64 bit)
3. Install it!

The latest version is 8.2.2. Lectura is running 8.0.1 but there should be no significant differences for our purposes.

Interacting with Haskell

On macOS and Linux machines like lectura we can interact with Haskell by running ghci:
\% ghci
GHCi, version 8.0.1: ... :? for help
Loaded GHCi configuration from /pl/hw/whm/.ghci
Prelude> $3+4$
7
Prelude> $1>2$
False
With no arguments, ghci starts a read-eval-print loop (REPL):
Expressions typed at the prompt (Prelude>) are evaluated and the result is printed.

Interacting with Haskell, continued

On Windows there's a choice between ghci:

And WinGHCi:

```
(\lambda) WinGHCi
Eile Edit Actions Iools Help
\square
GHCi, version 8.2.2: http://www.haskell.org/ghc/ :? for help
Loaded GHCi configuration from C:\Users\whm\AppData\Roaming\ghc\ghci.conf
> 3+4
7
>
```

Suggested WinGHCi options: (File > Options)
Prompt: Just a >
Uncheck Print type after evaluation (for now)

The $\sim /$. ghci file

When ghci starts up on macOS or Linux it looks for the file ~/.ghci - a .ghci file in the user's home directory.

I have these two lines in my $\sim /$. ghci file on both my Mac and on lectura:
:set prompt "> "
import Text.Show.Functions
The first line simply sets the prompt to just "> ".
The second line is very important:

- It loads a module that lets functions be printed.
- Prints <function> for function values.
- Without it, lots of examples in these slides won't work!

Goofy fact: ~/.ghci must not be group- or world-writable!
If you see something like this, *** WARNING: /home/whm/.ghci is writable by someone else, IGNORING! Suggested fix: execute 'chmod go-w /home/whm/.ghci'
the suggested fix should work.
Details on .ghci and lots more can be found in downloads.haskell.org/~ghc/latest/docs/users_guide.pdf
~/.ghci, continued
On Windows, ghci and WinGHCi use a different initialization file:
\%APPDATA\%
(Note: the file is named ghci.conf, not .ghci!)
\%APPDATA \% represents the location of your Application Data directory. You can find that path by typing set appdata in a command window, like this:

C:\>set appdata
APPDATA=C:\Users\whm\AppData\Roaming
Combing the two, the full path to the file for me would be
C:\Users\whm\AppData\Roaming\ghc\ghci.conf

Extra Credit Assignment 1

For two assignment points of extra credit:

1. Run ghci (or WinGHCi) somewhere and try ten Haskell expressions with some degree of variety. (Not just ten additions, for example!)
2. Demonstrate that you've got import Text.Show.Functions in your $\sim /$.ghci or ghc.conf file, as described on slides 35-37, by showing that typing negate produces <function>, like this:

Prelude> negate
<function>
3. Capture the interaction (both expressions and results) and put it in a plain text file, eca1.txt. No need for your name, NetID, etc. in the file. No need to edit out errors.
4. On lectura, turn in eca1.txt with the following command:
\% turnin 372-eca1 eca1.txt
Due: At the start of the next lecture after we hit this slide.

Collaborative Learning Exercise

Haskell by Observation
 cs.arizona.edu/classes/cs372/springl8/cle-haskell-obs.html

Functions and function types

Calling functions

In Haskell, juxtaposition indicates a function call:
$>$ negate 3
-3
$>$ even 5
False
> pred 'C' 'B'
$>$ signum 2
1
1

Note: These functions and many more are defined in the Haskell "Prelude", which is loaded by default when ghci starts up.

Calling functions, continued

Function call with juxtaposition is left-associative.
signum negate 2 means (signum negate) 2
> signum negate 2
<interactive>:ll:l: error:

- Non type-variable argument ...

We add parentheses to call negate 2 first:
$>$ signum (negate 2)
-l

Calling functions, continued

Function call has higher precedence than any operator.

```
> negate 3+4
l
```

negate $3+4$ means (negate 3$)+4$. Use parens to force + first:
$>$ negate $(3+4)$
-7
> signum (negate $(3+4)$)
-l

The Data.Char module

Haskell's Data. Char module has functions for working with characters. We'll use it to start learning about function types.

```
> import Data.Char
                                    (import the Data.Char module)
> isLower 'b'
True
> toUpper 'a'
'A'
> ord 'A'
65
> chr 66
'B'
> Data.Char.ord 'G' (uses a qualified name)
7l
```


Function types, continued

We can use ghci's :type command to see what the type of a function is:
> :type isLower isLower :: Char -> Bool

The type Char -> Bool says that isLower is a function that

1. Takes an argument of type Char
2. Produces a result of type Bool

The text
isLower :: Char -> Bool
is read as "isLower has type Char to Bool"

Recall:

Function types, continued

$>$ toUpper 'a'
'A'
> ord 'A'
65
$>\operatorname{chr} 66$
'B'

What are the types of those three functions?
> :t toUpper
toUpper :: Char -> Char
$>$:t ord
ord :: Char -> Int
$>$:t chr
chr :: Int -> Char

Sidebar: Contrast with Java

What is the type of the following Java methods?
jshell> Character.isLetter('4')
\$l==> false
jshell> Character.toUpperCase('a') \$2 ==> 'A'
\% javap java.lang.Character | grep "isLetter(\|toUpperCase(" public static boolean isLetter(char); public static boolean isLetter(int); public static char toUpperCase(char); public static int toUpperCase(int);

Important:

- Java: common to think of a method's return type as the method's type
- Haskell: function's type has both type of argument(s) and return type

Type consistency

Like most languages, Haskell requires that expressions be typeconsistent (or well-typed).

Here is an example of an inconsistency:
$>$ chr 'x'
<interactive>:1:5: error:

- Couldn't match expected type 'Int' with actual type 'Char' - In the first argument of 'chr', namely ' x '"
$>$:t chr
chr :: Int -> Char
> :t 'x'
'x' :: Char
chr requires its argument to be an Int but we gave it a Char. We can say that chr 'x' is ill-typed.

Type consistency, continued

State whether each expression is well-typed and if so, its type.
'a'
isUpper
isUpper 'a'
not (isUpper 'a')
not not (isUpper 'a')
toUpper (ord 97)
isUpper (toUpper (chr 'a'))
isUpper (intToDigit 100)

'a' :: Char
chr :: Int -> Char
digitToInt :: Char -> Int intToDigit :: Int -> Char
isUpper :: Char -> Bool
not :: Bool -> Bool
ord :: Char -> Int
toUpper :: Char -> Char

Sidebar: Key bindings in ghci

ghci uses the haskeline package to provide line-editing.
A few handy bindings:
TAB completes identifiers
\wedge A \quad Start of line
$\wedge E \quad$ End of line
${ }^{\wedge}$ R Incremental search through previously typed lines
More:
https://github.com/judah/haskeline/wiki/KeyBindings
Windows: Use Home and End for start- and end-of-line

Sidebar: Using a REPL to help learn a language

 ghci provides a REPL (read-eval-print loop) for Haskell.How does a REPL help us learn a language?
Is there a REPL for Java?
Java 9 has jshell. There's also javarepl.com.
What are some other languages that have a REPL available?
What characteristics does a language need to support a REPL?
If there's no REPL for a language, how hard is it to write one?

Type classes

What's the type of negate?

Recall the negate function:
$>$ negate 5
-5
> negate 5.0
-5.0
Speculate: What's the type of negate?

Type classes

"A type is a collection of related values." -Hutton
Bool, Char, and Int are examples of Haskell types.
Haskell also has type classes.
Type class:
A collection of types that support a specified set of of operations.
Num is one of the many type classes defined in the Prelude.
Haskell's type classes are unrelated to classes in the OO sense.
Important:
The names of types and type classes are always capitalized.

The Num type class

$>$:info Num
class Num a where

(+) :: a -> a -> a	
(-) :: a -> a -> a	
(*) :: a -> a -> a	A type must support all of
negate :: a -> a	- these operations to be an
abs :: a -> a	instance of Num
signum $:: \mathrm{a}->\mathrm{a}$	
fromInteger :: Integer -> a	

instance Num Word instance Num Integer instance Num Int instance Num Float instance Num Double

Here's the type of negate:

Type classes, continued

$>$:type negate negate ::Num a => a -> a

The type of negate is specified using a type variable, a.
The portion a -> a specifies that negate returns a value having the same type as its argument.
"If you give me an X, I'll give you back an X."
The portion Num a $=>$ is a class constraint. It specifies that the type a must be an instance of the type class Num.

How can we state the type of negate in English? negate accepts any value whose type is an instance of Num. It returns a value of the same type.

Type classes, continued

What type do integer literals have?
$>$:type 3
3 :: Num p => p
$>$:type (-27) -- Note: Parens needed!
(-27) :: Num p => p
Why are integer literals typed with a class constraint rather than just Int or Integer?

Type classes, continued

What's the type of a decimal fraction?
> :type 3.4
3.4 :: Fractional a => a

Will negate 3.4 work?
> :type negate
negate :: Num a => a -> a
$>$ negate 3.4
-3.4

Speculate: Why does it work?

Type classes, continued

Haskell type classes form a hierarchy. The Prelude has these:

Type classes, continued

Excerpt:

The arrow from Num to Fractional means that a Fractional can be used as a Num.

Given
negate :: Num a => a -> a
and
5.0 : Fractional a => a
then
negate 5.0 is valid.

Type classes, continued

Excerpt: $\begin{array}{r}\text { Int, Integer, } \\ \text { Float, Double }\end{array}$

Fractional Float, Double

What does the diagram show us other than the relationship between Num and Fractional?

It shows us types that are instances of Num and Fractional.
Do :info Num again. Do :info Fractional, too.

Type classes, continued

The Prelude has a truncate function:
$>$ truncate 3.4
3

What does the type of truncate tell us? truncate :: (Integral b, RealFrac a) => a -> b
truncate accepts any type that is an instance of RealFrac truncate returns a type that is an instance of Integral

Explore the Integral and RealFrac type classes with :info.

Type classes, continued

:info Type shows the classes that Type is an instance of.

```
> :info Int
data Int = GHC.Types.I# GHC.Prim.Int#
instance Eq Int
instance Ord Int
instance Show Int
instance Read Int
instance Enum Int
instance Num Int
instance Real Int
instance Bounded Int
instance Integral Int
```

Try :info for each of the classes.

Type classes, continued

In LYAH, Type Classes 101 has a good description of the Prelude's type classes.

Note:
Type classes are not required for functional programming but because Haskell makes extensive use of them, we must learn about them.

Remember:
Haskell's type classes are unrelated to classes in the OO sense.

negate is polymorphic

In essence, negate :: Num a => a -> a describes many functions:
negate :: Integer -> Integer
negate : : Int -> Int
negate :: Float -> Float
negate :: Double -> Double
...and more...
negate is a polymorphic function. It handles values of many forms.

If a function's type has any type variables, it is a polymorphic function.

Does Java have polymorphic methods? Does C? Python?

A mystery

Consider this excerpt from Bounded:
> :info Bounded
class Bounded a where minBound :: a maxBound:: a

What sort of things are minBound and maxBound? Polymorphic values!

How can we use them?

Polymorphic values

The construct ::type is an expression type signature.
A usage of it:
> minBound::Char
'\NUL'
> maxBound::Int
9223372036854775807
> maxBound::Bool True
> maxBound::Integer
<interactive>:9:l: error:

- No instance for (Bounded Integer)

We can use :set +t to direct ghci to automatically show types:
$>$:set +t
>3
3
it :: Num $p=>p$
$>3+4.5$
7.5
it :: Fractional a => a
$>$ abs
<function>
it :: Num a => a -> a

Use :unset $+t$ to turn off display of types.

Sidebar: LHtLaL—introspective tools

:type, :info and :set +t are three introspective tools that we can use to help learn Haskell.

When learning a language, look for such tools early on.
Some type-related tools in other languages:
Python: type(expr) and repr(expr)
JavaScript: typeof(expr)
PHP: var_dump(expr1, expr2,...)
C: sizeof(expr)
Java: getClass(); /var in jshell.
What's a difference between ghci's :type and Java's getClass()?

Sidebar, continued

Here's a Java program that makes use of the "boxing" mechanism to show the type of values, albeit with wrapper types for primitives. public class exprtype \{
public static void main(String args[]) \{
showtype(3 + 'a');
showtype (3 + 4.0);
showtype("(2<F".toCharArray()); showtype("a,b,c".split(",")); showtype(new HashMap());
\}
private static void showtype(Object o) \{
System.out.println(o.getClass());
\}\}
Output:
class java.lang.Integer
class java.lang.Double
class [C
class [Ljava.lang.String;
class java.util.HashMap (Note: no String or Integer-type erasure!)

More on functions

Writing simple functions

A function can be defined at the REPL prompt. Example:

```
> double x = x * 2
double :: Num a => a -> a (:set +t is in effect)
> double 5
10
it :: Num a => a
> double 2.7
5.4
it :: Fractional a => a
```

General form of a function definition for the moment:
function-name parameter $=$ expression
Function and parameter names must begin with a lowercase letter or an underscore.

Simple functions, continued

Two more functions:

```
>neg x = -x
neg ::Num a => a -> a (:set +t is in effect)
> toCelsius temp = (temp - 32)*5/9
toCelsius :: Fractional a => a -> a
```

The determination of types based on the operations performed is known as type inferencing. (More on it later!)

Problem: Write isPositive x which returns True iff x is positive.
$>$ isPositive $\mathrm{x}=\mathrm{x}>0$
isPositive :: (Num a, Ord a) => a -> Bool

Simple functions, continued

We can use :: type to constrain a function's type:
$>\operatorname{neg} x=-x:$ Int
neg :: Int -> Int
$>$ toCelsius temp $=($ temp -32$) * 5 / 9$:: Double toCelsius :: Double -> Double
:: type has low precedence; parentheses are required for this:
$>$ isPositive $\mathrm{x}=\mathrm{x}>$ (0::Int)
isPositive :: Int -> Bool
Note that :: type applies to an expression, not a function.
We'll use :: type to simplify some following examples.

Sidebar: loading functions from a file

We can put function definitions in a file.
The file simple.hs has four function definitions:

```
% cat simple.hs
double x = x * 2 :: Int
neg x = -x :: Int
isPositive x = x > (0::Int)
toCelsius temp = (temp - 32) *5/(9::Double)
```

We'll use the extension .hs for Haskell source files.

Generally, code from the slides will be (poorly organized) here: https://www2.cs.arizona.edu/classes/cs372/spring18/haskell/ /cs/www/classes/cs372/spring18/haskell (on lectura)

Sidebar, continued

Assuming simple.hs is in the current directory, we can load it with :load and see what we got with :browse.

```
% ghci
> :load simple (assumes .hs suffix)
[l of l] Compiling Main ...
Ok, one module loaded.
> :browse
double :: Int -> Int
neg :: Int -> Int
isPositive :: Int -> Bool
toCelsius :: Double -> Double
```


Sidebar: My usual edit-run cycle

ghci is clumsy to type! I've got an hs alias in my $\sim /$. bashre: alias hs=ghci

I specify the file I'm working with as an argument to hs.
\% hs simple
[l of l] Compiling Main (simple.hs, interpreted)
Ok, one module loaded.
> ... experim ent ...
After editing in a different window, I use :r to reload the file.
$>$:r
[l of l] Compiling Main
(simple.hs, interpreted)
Ok, one module loaded.
> ...experim ent som e m ore...
Lather, rinse, repeat.

Functions with multiple arguments

Functions with multiple arguments

Here's a function that produces the sum of its two arguments: $>\operatorname{add} \mathrm{x} y=\mathrm{x}+\mathrm{y}::$ Int

Here's how we call it: (no commas or parentheses!)
$>$ add 35
8
Here is its type:
$>$:type add
add :: Int -> Int -> Int
The operator -> is right-associative, so the above means this: add :: Int -> (Int -> Int)

But what does that mean?

Multiple arguments, continued

Recall our negate function:
$>$ neg $\mathrm{x}=-\mathrm{x}:$: Int
neg :: Int -> Int
Here's add again, with parentheses added to show precedence:
$>$ add $\mathrm{x} y=\mathrm{x}+\mathrm{y}::$ Int
add :: Int -> (Int -> Int)
add is a function that takes an integer as an argument and produces a function as its result!
add 35 means (add 3) 5
Call add with the value 3 , producing a nameless function.
Call that nameless function with the value 5 .

REPLACEMENTS! Discard 81+ in the old set

Exercise
Consider the following expression:

$$
\mathrm{r}=\mathrm{f} a \mathrm{~b}+\mathrm{g} \mathrm{c} \mathrm{~b}(\mathrm{a})
$$

1. Fully parenthesize it to show the order of operations
2. Write some code to precede it such that \mathbf{r} gets bound to 3 .

Collaborative Learning Exercise

Haskell Functions

http://cs.arizona.edu/classes/cs372/spring18/cle-3-functions.html

Partial applications

Partial application

When we give a function fewer arguments than it requires, the resulting value is a partial application. It is a function.

We can bind a name to a partial application like this:
$>$ plusThree = add 3
plusThree :: Int -> Int
The name plusThree now references a function that takes an Int and returns an Int.

What will plusThree 5 produce?
$>$ plusThree 5
8
it :: Int

Partial application, continued

At hand:

```
    \(>\operatorname{add} \mathrm{x} y=\mathrm{x}+\mathrm{y}::\) Int
    add :: Int -> (Int -> Int) -- parens added
```

 \(>\) plusThree \(=\) add 3
 plusThree :: Int -> Int
 Imagine add and plusThree as machines with inputs and outputs:

Analogy: plusThree is like a calculator where you've clicked 3, then + , and handed it to somebody.

Partial application, continued

At hand:

```
> add x y = x + y :: Int
add :: Int -> (Int -> Int) -- parens added
```

Another: (with parentheses added to type to aid understanding)
$>$ add3 $\mathrm{xy} \mathrm{z}=\mathrm{x}+\mathrm{y}+\mathrm{z}:$: Int add3 :: Int -> (Int -> (Int -> Int))

These functions are said to be defined in curried form, which allows partial application of arguments.

LYAH nails it:
... functions in Haskell are curried by default, which means that a function that seems to take several parameters actually takes just one parameter and returns a function that takes the next parameter and so on.

Partial application, continued

A little history:

- The idea of a partially applicable function was first described by Moses Schönfinkel.
- It was further developed by Haskell B. Curry.
- Both worked with David Hilbert in the 1920s.

What prior use have you made of partially applied functions? $\log _{2} n$

Another model of partial application

When an argument is provided to a function...

- The next parameter is dropped
- The argument's value is "wired" into the expression
- The result is a new function with one less parameter

$$
\begin{aligned}
& >f x y=(y * x+x):: \text { Int } \quad--f:: \text { Int }->\text { Int }->\text { Int } \\
& >\boldsymbol{g}=\boldsymbol{f} \mathbf{3} \\
& \boldsymbol{g}:: \text { Int }->\text { Int } \quad-\quad \text { as if we'd done this: } \boldsymbol{g} y=y * 3+3
\end{aligned}
$$

$>g 5$
18
Everybody: Try it!
$>f$ f 5
18

Consider this function:

$$
f x y z=x+y+y * z
$$

$$
f 1=f \underline{3}
$$

is equivalent to

$$
f 1 y z=\underline{3}+y+y * z
$$

$$
f 2=f 1 \underline{5}
$$

is equivalent to

$$
f 2 z=3+\underline{5}+\underline{5} * z
$$

$$
\begin{aligned}
& \text { val = f2 } 7 \\
& \text { is equivalent to } \\
& \text { val }=\mathrm{f} 357 \\
& \text { and } \\
& \text { val = f1 } 57 \\
& \text { nd }
\end{aligned}
$$

Another model, continued

When an argument is provided to a function...

- A parameter is dropped
- The argument's value is "wired" into the expression
- The result is a new function with one less parameter

Some key points about functions

- The general form of a function definition (for now): name param 1 param $2 \ldots$ param $N=$ expression
- A function with a type like Int $->$ Char -> Char takes two arguments, an Int and a Char. It produces a Char.
- Remember that $->$ is a right-associative type operator. Int -> Char -> Char means Int -> (Char -> Char)
- A function call like
fxyz
means
$((f x) y) z$
and (conceptually) causes two temporary, unnamed functions to be created.

Key points, continued

- Calling a function with fewer arguments than it requires creates a partial application, a function value.
- There's really nothing special about a partial applicationit's just another function.

Functions are values

A fundamental characteristic of a functional language: functions are values that can be used as flexibly as values of other types.

The following creates a function and binds the name add to it.
$>\operatorname{add} \mathrm{xy}=\mathrm{x}+\mathrm{y}$
add, plus
...code...
The following binds the name plus to the expression add.
$>$ plus = add
Either name can be used to reference the function value:
$>$ add 34
7
> plus 56
11

Functions as values, continued

What does the following suggest to you?

```
> :info add
add :: Num a => a -> a -> a
```

$>$:info +
class Num a where
(+) :: a -> a -> a
infixl $6+$

Operators in Haskell are simply functions that have a symbolic name bound to them.
infixl $6+$ shows that the symbol + can be used as a infix operator that is left associative and has precedence level 6.

Use :info to explore these operators: $==,>,+, *,| |, \wedge, \wedge \wedge$ and $* *$.

Function/operator equivalence

To use an operator like a function, enclose it in parentheses:
$>(+) 34$
7
Conversely, we can use a function like an operator by enclosing it in backquotes:
> 3 `add` 4
7
>11 `rem` 3
2
Speculate: do `add` and `rem` have precedence and associativity?

Sidebar: Custom operators

Haskell lets us define custom operators.

```
% cat plusper.hs
infixl 6 +%
x+% percentage = x + x * percentage / 100
```

Usage:

$$
\begin{aligned}
& >100+\% 1 \\
& 101.0 \\
& >12+\% 25 \\
& 15.0
\end{aligned}
$$

The characters ! \# \$ \% \& * + / < = > ? @ \^|-~: and others can be used in custom operators.

Haskell's standard modules define LOTS of custom operators.

Reference: Operators from the Prelude

Precedence	Left associative operators	Non associative operators	Right associative operators
9	!!		.
8			$\wedge, \wedge \wedge$, **
7	*, /, `div`, ’mod`, `rem’, ‘quot`& & \\ \hline 6 & +, - & & \\ \hline 5 & & & :, ++ \\ \hline 4 & & \[\begin{aligned} & ==, /=,<,<=, \\ & >,>=\text {, 'elem', } \\ & \text { 'notElem' } \end{aligned} \] & \\ \hline 3 & & & \&\& \\ \hline 2 & & & 11 \\ \hline 1 & >>, >>= & & \\ \hline 0 & & & \$, \$!,`seq`		
Note: From page 51 in Haskell 2010 report			

Squeezed in for flip, to avoid adding a slide.
$>$:set +t
$>$ add $x y=x+y$ add :: Num a => a -> a -> a

What has Haskell inferred (figured out)?

- Both arguments must have same type.
- That type must be an instance of the Num class.
- A value of that same type is returned.

Type Inferencing

Type inferencing

Haskell does type inferencing:

- The types of values are inferred based on the operations performed on the values.
- Inferences based on assumption that there are no errors.

Example:
$>$ isCapital $\mathrm{c}=\mathrm{c}>=$ ' $^{\prime}$ ' \&\& $\mathrm{c}<=$ ' $^{\prime}$ ' isCapital :: Char -> Bool

Process:

1. \mathbf{c} is being compared to ' A ' and ' Z '
2. 'A' and ' Z ' are of type Char
3. c must be a Char
4. The result of $\& \&$, of type Bool, is returned

Type inferencing, continued

Recall ord in the Data.Char module:
$>$:t ord
ord :: Char -> Int
What type will be inferred for f ?
$\mathrm{fxy}=\operatorname{ord} \mathrm{x}==\mathrm{y}$

1. The argument of ord is a Char, so x must be a Char.
2. The result of ord, an Int, is compared to y , so y must be an Int.

Let's try it:
$>\mathrm{fxy}=\operatorname{ord} \mathrm{x}==\mathrm{y}$
f :: Char -> Int -> Bool

Type inferencing, continued

Recall this example:
$>$ isPositive $\mathrm{x}=\mathrm{x}>0$
isPositive :: (Num a, Ord a) => a -> Bool
:info shows that $>$ operates on types that are instances of Ord:
$>$:info >
class Eq a $=>$ Ord a where
(>) :: a -> a -> Bool

1. Because x is an operand of $>$, Haskell infers that the type of x must be a member of the Ord type class.
2. Because \mathbf{x} is being compared to 0 , Haskell also infers that the type of x must be an instance of the Num type class.

Type inferencing, continued

If a contradiction is reached during type inferencing, it's an error.
The function below uses \mathbf{x} as both a Num and a Char.
$>\mathrm{gxy}=\mathrm{x}>0 \& \& \mathrm{x}>{ }^{\prime} \mathrm{O}^{\prime}$
<interactive>:1:13: error:

- No instance for (Num Char) arising from the literal ' 0 '
- In the second argument of ' $(>$)', namely ' 0 ' In the first argument of ' (\&\&)', namely ' $x>0$ ' In the expression: $x>0 \& \& x>{ }^{\prime} 0$ '

What does the error "No instance for (Num Char)" mean?
Char is not an instance of the Num type class.
(:info Num shows instance Num Int, instance Num Float, etc.)

Type Specifications

Type specifications for functions

Even though Haskell has type inferencing, a common practice is to specify the types of functions.

Here's a file with several functions, each preceded by its type:
$\%$ cat typespecs.hs
min3::Ord $a=>a->a->a->a$
$\min 3 x y z=\min x(\min y z)$
isCapital :: Char -> Bool isCapital c = c >= 'A' \&\& c <= 'Z'
isPositive :: (Num a, Ord a) => a -> Bool isPositive $\mathrm{x}=\mathrm{x}>0$

Type specifications, continued

Sometimes type specifications can backfire.
What's a ramification of the difference between the types of addl and add2?

$$
\begin{aligned}
& \text { addl }:: \text { Num } \mathrm{a}=>\mathrm{a}->\mathrm{a}->\mathrm{a} \\
& \text { addl } \mathrm{x} \mathrm{y}=\mathrm{x}+\mathrm{y}
\end{aligned}
$$

add2::Integer -> Integer -> Integer

$$
\operatorname{add} 2 \mathrm{x} y=\mathrm{x}+\mathrm{y}
$$

addl can operate on Nums but add2 requires Integers.
Challenge: Without using ::type, show an expression that works with addl but fails with add2.

Type specification for functions, continued

Two pitfalls related to type specifications for functions:

- Specifying a type, such as Integer, rather than a type class, such as Num, may make a function's type needlessly specific, like add2 on the previous slide.
- In some cases the type can be plain wrong without the mistake being obvious, leading to a baffling problem. (An "Ishihara".)

Recommendation:
Try writing functions without a type specification and see what type gets inferred. If the type looks reasonable, and the function works as expected, add a specification for that type.

Type specifications can prevent Haskell's type inferencing mechanism from making a series of bad inferences that lead one far away from the actual source of an error.

Indentation

Continuation with indentation

A Haskell source file is a series of declarations. Here's a file with two declarations:

```
% cat indentl.hs
add::Integer -> Integer -> Integer
add x y = x + y
```

Rule: A declaration can be continued across multiple lines by indenting subsequent lines more than the first line of the declaration.

These weaving declarations are poor style but are valid:

```
add
    x
        +

\section*{Indentation, continued}

Rule: A line that starts in the same column as did the previous declaration ends that previous declaration and starts a new one.
\% cat indent2.hs
add::Integer -> Integer -> Integer
add \(\mathrm{x} y=\)
\(x+y\)
\% ghci indent2
indent2.hs:3:1:error:


Note that 3:1 indicates line 3, column 1.

\section*{Guards}

\section*{Guards}

Recall this characteristic of mathematical functions:
"Are often specified with cases and expressions."
This function definition uses guards to specify three cases:
\[
\begin{gathered}
\operatorname{sign} x \mid x<0=-1 \\
x==0=0 \\
\text { otherwise }=1
\end{gathered}
\]

Notes:
- This definition would be found in a file, not typed in ghci.
- sign x appears just once. First guard might be on next line.
- The guards appear between \| and =, and produce Bools.
- What is otherwise?

\section*{Guards, continued}

Problem: Using guards, define a function smaller, like min:
> smaller 710
7
> smaller 'z' 'a'
'a'

Solution:
smaller xy
\(\mathrm{x}<\mathrm{y}=\mathrm{x}\)
| otherwise = y

\section*{Guards, continued}

Problem: Write a function weather that classifies a given temperature as hot if \(80+\), else nice if \(70+\), and cold otherwise.
\(>\) weather 95
"Hot!"
> weather 32
"Cold!"
> weather 75
"Nice"

Hint: guards are tried in turn.

Solution:
\[
\begin{array}{l|l}
\text { weather temp } \mid \text { temp }>=80=\text { "Hot!" } \\
& \mid \text { temp }>=70=\text { "Nice" } \\
\mid \text { otherwise }=\text { "Cold!" }
\end{array}
\]

\section*{if-else}

\section*{Haskell's if-else}

Here's an example of Haskell's if-else:
\(>\) if \(1<2\) then 3 else 4
3

How does it compare to Java's if-else?

\section*{Sidebar: Java's if-else}

Java's if-else is a statement. It cannot be used where a value is required. System.out.println(if \(1<2\) then 3 else 4);

Does Java have an analog to Haskell's if-else?
The conditional operator: \(1<2\) ? \(3: 4\)

It's an expression that can be used when a value is required.
Java's if-else statement has an else-less form but Haskell's if-else does not. Why doesn't Haskell allow it?

Java's if-else vs. Java's conditional operator provides a good example of a statement vs. an expression.

Pythonistas: Is there an if-else expression in Python?
3 if \(1<2\) else 4

\section*{An Original Thought}
"A statement changes the state of the program while an expression wants to express itself. "
- Victor Nguyen, CSC 372, Spring 2014

\section*{Guards vs. if-else}

Which of the versions of sign below is better?
\(\operatorname{sign} x\)
\[
\begin{aligned}
& \mid x<0=-1 \\
& \mid x==0=0 \\
& \text { otherwise }=1
\end{aligned}
\]
\[
\begin{aligned}
& \operatorname{sign} x=\text { if } x<0 \text { then }-1 \\
& \text { else if } x==0 \text { then } 0 \\
& \text { else } 1
\end{aligned}
\]
- We'll later see that patterns add a third possibility for expressing cases.
- For now, prefer guards over if-else.

\section*{A Little Recursion}

\section*{Recursion}

A recursive function is a function that calls itself either directly or indirectly.

Computing the factorial of a integer ( N ! ) is a classic example of recursion.
\(>\) factorial 40
815915283247897734345611269596115894272000000000
Write factorial in Haskell. (p.s. 0! is 1)
factorial \(n\)
\[
\left\lvert\, \begin{aligned}
& \mathrm{n}==0=1 \\
& \text { otherwise }=\mathrm{n} * \text { factorial }(\mathrm{n}-\mathrm{l})
\end{aligned}\right.
\]

What is the type of factorial?
> :type factorial
factorial :: (Eq a, Num a) => a -> a

\section*{Recursion, continued}

One way to manually trace through a recursive computation is to underline a call, then rewrite the call with a textual expansion.
factorial 4
4 * factorial 3
\(4 * 3\) * factorial 2
\(4 * 3\) * 2 * factorial l
\(4 * 3 * 2 * 1 *\) factorial 0
\(4 * 3 * 2 * 1 * 1\)

\section*{Lists}

\section*{List basics}

In Haskell, a list is a sequence of values of the same type.
Here's one way to make a list.
\(>[7,3,8]\)
[7,3,8]
it :: Num a => [a]
> ['x', 10]
<interactive>:3:7:
No instance for (Num Char) arising from the literal ` 10 '
It is said that lists in Haskell are homogeneous.

\section*{List basics, continued}

The function length returns the number of elements in a list:
\(>\) length [3,4,5]
3
> length []
0

What's the type of length?
\(>\) :type length
length :: [a] -> Int (Note: A white lie, to be fixed!)
With no class constraint specified, [a] indicates that length operates on lists containing elements of any type.

\section*{List basics, continued}

The head function returns the first element of a list.
\(>\) head \([3,4,5]\)
3

What's the type of head?
head :: [a] -> a
Here's what tail does. How would you describe it?
\(>\) tail \([3,4,5]\)
\([4,5]\)
What's the type of tail? tail :: [a] -> [a]

Important: head and tail are good for learning about lists but we'll almost always use patterns to access list elements!

\section*{List basics, continued}

The ++ operator concatenates two lists, producing a new list.
\(>[3,4]++[10,20,30]\)
\([3,4,10,20,30]\)
> it ++ reverse(it)
[3,4,10,20,30,30,20,10,4,3]

What are the types of ++ and reverse?
\(>\) :type (++)
(++) :: [a] -> [a] -> [a]
\(>\) :type reverse
reverse :: [a] -> [a]

\section*{List basics, continued}

Haskell has an arithmetic sequence notation:
```

$>$ [1..20]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
it :: (Enum a, Num a) => [a]
$>[-5,-3 . .20]$
[-5,-3,-1,1,3,5,7,9, 11,13, 15, 17, 19]
> [10..5]
[]

```

\section*{List basics, continue}

Here are drop and take:
\(>\) drop 3 [1..10]
[4,5,6,7,8,9,10]
> take 5 [1.0,1.2..2]
[1.0,1.2,1.4,1.5999999999999999,1.7999999999999998]

\section*{Problem: halves}

Problem:
Write halves lst that returns a list with the two halves of lst, a list. If lst's length is odd, the second "half" is longer.
\(>\) halves([1..10])
[[1,2,3,4,5],[6,7,8,9,10]]
> halves([1]) [[],[1]]
halves will be a little repetitious because we don't have the where clause in our toolbox yet.

\section*{Solution: halves}

Solution:
\(\ln =\) length
halves lst = [take (ln lst `div` 2 ) lst, drop (ln lst `div` 2 ) lst]

\section*{List basics, continued}

The !! operator produces a list's Nth element, zero-based:
> [10,20..100] !! 3
40
\(>\) :type (!!)
(!!) :: [a] -> Int -> a
Speculate: do negative indexes work?
\(>\) [10,20..100] !! (-2)
*** Exception: Prelude.(!!): negative index
Important:
Much use of !! might indicate you're writing a Java program in Haskell!

\section*{Comparing lists}

Haskell lists are values and can be compared as values:
\[
>[3,4]==[1+2,2 * 2]
\]

True
\(>[3]++[]++[4]==[3,4]\)
True
\(>\) tail \((\) tail \([3,4,5,6])==[\) last \([4,5]]++[6]\)
True

Conceptually, how many lists are created by each of the above?
In Haskell we'll write complex expressions using lists (and more) as freely as a Java programmer might write
\[
f(x) * a==g(a, b)+c
\]

\section*{Comparing lists, continued}

Lists are compared lexicographically:
- Corresponding elements are compared until an inequality is found.
- The inequality determines the result of the comparison.

Example:
\(>[1,2,3]<[1,2,4]\)
True

Why: The first two elements are equal, and \(3<4\).

\section*{Lists of Lists}

We can make lists of lists.
\(>x=[[1],[2,3,4],[5,6]]\)
\(\mathrm{x}::\) Num \(\mathrm{a}=>\) [[a]]
Note the type: \(\mathbf{x}\) is a list of Num a => [a] lists.
What's the length of \(\mathbf{x}\) ?
\(>\) length x
3

\section*{Lists of lists, continued}

More examples:
\(>x=[[1],[2,3,4],[5,6]]\)
\(>\) head x
[1]
\(>\) tail x
[[2,3,4],[5,6]]
>x!! 1!! 2
4
> head (head (tail (tail x)))
5

CSC 372 Spring 2018, Haskell Slide 134

\section*{I lied!}

Earlier I showed you this:
length :: [a] -> Int

Around version 7.10 length was generalized to this:
length :: Foldable t => t a -> Int

We're going to think of Foldable \(\mathrm{t}=>\mathrm{t}\) a as meaning [a].

Instead of \(\quad\) sum \(::\) (Num a, Foldable \(t)=>t a->a\)
Pretend this sum :: Num a => [a] -> a

Instead of minimum :: (Ord a, Foldable \(t)=>\mathrm{ta}->\mathrm{a}\)
Pretend this minimum :: Ord a => [a] -> a

\section*{Strings are [Char]}

Strings in Haskell are simply lists of characters.
```

> "testing"
"testing"
it :: [Char]
> ['a'..'z']
"abcdefghijklmnopqrstuvwxyz"
it :: [Char]
> ["just", "a", "test"]
["just","a","test"]
it :: [[Char]]

```

What's the beauty of this?

\section*{Strings, continued}

All list functions work on strings, too!
> asciiLets = ['A'..'Z'] ++ ['a'..'z']
asciiLets :: [Char]
> length asciiLets
52
> reverse (drop 26 asciiLets)
"zyxwvutsrqponmlkjihgfedcba"
\(>\) :type elem
elem :: Eq a => a -> [a] -> Bool
\(>\) isAsciiLet c = c elem` asciiLets isAsciiLet :: Char -> Bool

\section*{Strings, continued}

The Prelude defines String as [Char] (a type synonym).
\(>\) :info String
type String = [Char]
A number of functions operate on Strings. Here are two:
> :type words
words :: String -> [String]
\(>\) :type unwords
unwords :: [String] -> String
What's the following doing?
> unwords (tail (words "Just some words!"))
"some words!"

Like most functional languages, Haskell's lists are "cons" lists.
A "cons" list has two parts:
head: a value
tail: a list of values (possibly empty)
The : ("cons") operator creates a list from a value and a list of values of that same type (or an empty list).
> 5 : \([10,20,30]\)
[5,10,20,30]
What's the type of the cons operator?
\(>\) :type (:)
(:) :: a -> [a] -> [a]

The cons (:) operation forms a new list from a value and a list.
\(>\mathrm{a}=5\)
\(>\mathrm{b}=[10,20,30]\)
\(>\mathrm{c}=\mathrm{a}: \mathrm{b}\)
[5,10,20,30]
\(>\) head c
5
\(>\) tail c
[10,20,30]
\(>\mathrm{d}=\) tail (tail c)
\(>d\)
[20,30]


CSC 372 Spring 2018, Haskell Slide 140
"cons" lists, continued
A cons node can be referenced by multiple cons nodes.
\(>\mathrm{a}=5\)
\(>b=[10,20,30]\)
\(>\mathrm{c}=\mathrm{a}: \mathrm{b}\)
\(>d=\) tail (tail c)
[20,30]
\(>e=2: d\)
[2,20,30]
> f=l:c
[1,5,10,20,30]


CSC 372 Spring 2018, Haskell Slide 141

\section*{"cons" lists, continued}

What are the values of the following expressions?
> \(1:[2,3]\)
[1,2,3]
> 1:2
...error...
> chr 97:chr 98:chr 99:[] "abc"
cons is right associative chr 97:(chr 98:(chr 99:[]))
> []:[]
[[]]
\(>[1,2]:[]\)
[[1,2]]
> []:[1]
...error...

It's important to understand that tail does not create a new list. Instead it simply returns an existing cons node.
\(>\mathrm{a}=[5,10,20,30]\)
\(>\mathrm{h}=\) head a
\(>h\)
5
\(>\mathrm{t}=\) tail a
\(>t\)
[10,20,30]
\(>\mathrm{t} 2=\) tail (tail t\()\)
\(>\) t2
[30]


CSC 372 Spring 2018, Haskell Slide 143

\section*{A little on performance}

What operations are likely fast with cons lists?
- Get the head of a list
- Get the tail of a list
- Make a new list from a head and tail ("cons up a list")

What operations are likely slower?
- Get the Nth element of a list
- Get the length of a list

With cons lists, what does list concatenation involve?
\(>\mathrm{m}=[1 . .10000000]\)
\(>\) length ( \(\mathrm{m}++[0]\) ) 10000001

\section*{True or false?}

The head of a list is a one-element list.
False, unless...
...it's the head of a list of lists that starts with a one-element list
The tail of a list is a list.
True
The tail of an empty list is an empty list.
It's an error!
length \((\) tail \((\) tail \(x))==(\) length \(x)-2\)
True (assuming what?)
A cons list is essentially a singly-linked list.
True
A doubly-linked list might help performance in some cases.
Hmm...what's the backlink for a multiply-referenced node?
Changing an element in a list might affect the value of many lists.
Trick question! We can't change a list element. We can only
"cons up" new lists and reference existing lists.

\section*{fromTo}

Here's a function that produces a list with a range of integers: > fromTo first last = [first..last]
> fromTo 1015
[10,11,12,13,14,15]
Problem:
Write a recursive version of fromTo that uses the cons operator to build up its result.

\section*{fromTo, continued}

One solution:
```

fromTo first last
| first > last = []
otherwise = first : fromTo (first+l) last

```

Evaluation of fromTo 13 via substitution and rewriting:

\section*{fromTo 13}

1 : fromTo (1+1) 3
1 : fromTo 23
\(1: 2\) : fromTo (2+1) 3
\(1: 2\) : fromTo 3
\(1: 2: 3:\) fromTo (3+1) 3
1:2:3:fromTo 43
1:2:3:[]

The Enum type class has enumFromTo and more.

\section*{fromTo, continued}

Do :set + s to get timing and memory information, and make some lists. Try these:

\author{
fromTo 110 \\ \(\mathrm{f}=\mathrm{fromTo} \quad--\) So we can type f instead of fromTo \\ fl 1000 \\ \(\mathrm{f}=\mathrm{fromTo} 1 \quad--\) Note partial application \\ f 1000 \\ \(\mathrm{x}=\mathrm{f} 1000000\) \\ length \(x\) \\ take 5 (f 1000000)
}

\section*{List comprehensions}

Here's a simple example of a list comprehension:
\(>\left[\mathrm{x}^{\wedge} 2 \mid \mathrm{x}<-\right.\) [1..10] \(]\)
[1,4,9,16,25,36,49,64,81,100]
In English:
Make a list of the squares of \(\mathbf{x}\) where \(\mathbf{x}\) takes on each of the values from 1 through 10 .

List comprehensions are very powerful but in the interest of time and staying focused on the core concepts of functional programming, we're not going to cover them.

Chapter 5 in Hutton has some very interesting examples of practical computations with list comprehensions.

What are other languages with list comprehensions?

\section*{REPLACEMENTS! Discard 150+ in the old set}

\section*{A little output}

\section*{Handy: the show function}

What can you tell me about show? show :: Show a => a -> String
show produces a string representation of a value.
\(>\) show 10
"10"
> show [10,20]
"[10,20]"
> show show
"<function>"

Important: show does not produce output!
What's the Python analog for show?
Challenge: Write a Java analog for show.

The putStr function outputs a string:

\section*{A little output}
> putStr "just\ntesting\n"
just
testing
Type:
putStr :: String -> IO ()
- IO (), the type returned by putStr, is an action.
- An action is an interaction with the outside world.
- An interaction with the outside world is a side effect.
- An action can hold/produce a value. (simplistic)
- The construct () is read as "unit".
- The unit type has a single value, unit.
- Both the type and the value are written as ().
- Contrast: getChar :: IO Char

\section*{Our approach}

For the time being, we'll use this approach for functions that produce output:
- A helper function produces a ready-to-print string that represents all the output to be produced by the function.
- We'll often use show to create pieces of the string.
- The string will often have embedded newlines.
- The top-level function calls the helper function to get a string.
- The top-level function uses putStr to print that string returned by the helper.

\section*{Our approach, continued}

A Java analog to our approach for functions that produce output:
public class output \{ public static void main(String args[]) \{ System.out.print(computeOutput(args)); \}
\}

Why print instead of println?
If the output should end with a newline, computeOutput includes it.

\section*{printN}

Let's write a function to print the integers from 1 to N :
\(>\) printN 3
1
2
3

First, write a helper, printN':
\(>\) printN' 3
" 1 \n2\n3\n"

Solution: (does appear on next slide)
printN' n
\[
\begin{aligned}
& \mid \mathrm{n}==0=" \mathrm{n} \\
& \text { | otherwise }=\text { printN' }(\mathrm{n}-\mathrm{l})++ \text { show } \mathrm{n}++ \text { "\n" }
\end{aligned}
\]

\section*{printN, continued}

At hand:
printN'::Integer -> String -- Covered in flip! printN' \(n\)
\[
\left\lvert\, \begin{aligned}
& \mathrm{n}==0=" \mathrm{l} \\
& \text { otherwise }=\text { print } \mathrm{N}^{\prime}(\mathrm{n}-1)++ \text { show } \mathrm{n}++ \text { "\} \mathrm { n } " }
\end{aligned}\right.
\]

Usage:
\(>\operatorname{printN} 10\)
" 1 \n2\n3\n4 1 n5\n6\n7\n8\n9\n10\n"

Let's write the top-level function:
printN::Integer -> IO () printN \(n=\) putStr (printN' \(n\) )

\section*{printN, continued}

All together in a file:
\% cat printN.hs
printN::Integer -> IO ()
printN \(n=\) putStr \(\left(\operatorname{printN}{ }^{\prime} n\right)\)
printN'::Integer -> String
printN' \(n\)
| \(\mathrm{n}==0=" \mathrm{l}\)
| otherwise = printN' (n-l) ++ show n ++ "\n"
\% ghci printN
\(>\) printN 3
1
2
3

\section*{charbox}

Let's write charbox:
\(>\) charbox 53 ' \({ }^{\prime}\) '
*****
*****
*****
> :t charbox
charbox :: Int -> Int -> Char -> IO ()
How can we approach it?

\section*{charbox, continued}

Let's work out a sequence of computations with ghci:
```

> replicate 5'*'
"*****"

```

\(>\) replicate 2 it
["*****\n","*****\n"] -- the type of it is [[Char]]
\(>\) :t concat
concat :: [[a]] -> [a]
\(>\) concat it
"*****\n*****\n"
\(>\) putStr it
*****
*****

\section*{charbox, continued}

Let's write charbox':
charbox'::Int -> Int -> Char -> String
charbox' wh c = concat (replicate h (replicate w c ++ "\n"))
Test:
> charbox' \(32^{\prime \prime *}\)
"***\n***\n"

Now we're ready for the top-level function: charbox::Int -> Int -> Char -> IO () charbox wh c = putStr (charbox' wh c)
- Should we have used a helper function charrow rowLen char?
- How does this approach contrast with how we'd write it in Java?

Patterns

\section*{Motivation: Summing list elements}

Imagine a function that computes the sum of a list's elements.
> sumElems [1..10]
55
> :type sumElems
sumElems :: Num a => [a] -> a
Implementation:
sumElems list
| list == [] = 0
| otherwise = head list + sumElems (tail list)
- It works but it's not idiomatic Haskell.
- We should use patterns instead!

\section*{Patterns}

In Haskell we can use patterns to bind names to elements of data structures.
\[
\begin{aligned}
& >[x, y]=[10,20] \\
& >x \\
& 10 \\
& >y \\
& 20
\end{aligned}
\]
\(>\) [inner] \(=[[2,3]]\)
\(>\) inner
[2,3]
Speculate: Given a list like \([10,20,30]\) how could we use a pattern to bind names to the head and tail of the list?

\section*{Patterns, continued}

We can use the cons operator in a pattern.
\(>\mathrm{h}: \mathrm{t}=[10,20,30]\)
\(>h\)
10
\(>\boldsymbol{t}\)
[20,30]

What values get bound by the following pattern?
> a:b:c:d = [10,20,30]
\(>[\mathbf{c}, \mathbf{b}, \mathbf{a}] \quad--\) Why in a list?
[30,20,10]
\(>d\)
[]
-- Why did I do [c,b, a] instead of \([\mathbf{d}, \mathbf{c}, \mathbf{b}, \mathbf{a}]\) ?
CSC 372 Spring 2018, Haskell Slide 164

\section*{Patterns, continued}

If some part of a structure is not of interest, we indicate that with an underscore, known as the wildcard pattern.
```

 \(>_{-}:(a:[b]): c=[[1],[2,3],[4]]\)
 \(>a\)
 2
 \(>b\)
 3
 \(>c\)
 [[4]]
    ```

No binding is done for the wildcard pattern.
The pattern mechanism is completely general-patterns can be arbitrarily complex.

\section*{Patterns, continued}

A name can only appear once in a pattern.
\(>\mathrm{a}: \mathrm{a}:[\mathrm{]}=[3,3]\)
<interactive>: error: Multiple declarations of ' \(a\) '
A failed pattern isn't manifested until we try to see what's bound to a name.
\(>\mathrm{a}: \mathrm{b}:[]=[1]\)
\(>a\)
**** Exception: Irrefutable pattern failed for pattern a:b:[]

\section*{Practice}

Describe in English what must be on the right hand side for a successful match.
let (a:b:c) = ...
A list containing at least two elements.
Does [[10,20]] match?
[20,30] ?
"abc" ?
let \([\mathrm{x}: \mathrm{xs}]=\)...
A list whose only element is a non-empty list.
Does words "a test" match?
[words "a test"] ?
[[]]?
[[[]]] ?

\section*{Patterns in function definitions}

Recall our non-idiomatic sumElems:
sumElems list
| list \(==[]=0\)
| otherwise = head list + sumElems (tail list)
How could we redo it using patterns?
\[
\text { sumElems [] = } 0
\]
sumElems (h:t) \(=\mathrm{h}+\) sumElems t
Note that sumElems appears on both lines and that there are no guards. sumElems has two clauses. (H10 4.4.3.1)

\section*{The parentheses in (h:t) are required!!}

Do the types of the two versions differ?
(Eq a, Num a) => [a] -> a
-- with head/tail
Num a => [a] -> a -- with pattern

\section*{Patterns in functions, continued}

Here's a buggy version of sumElems:
buggySum \([\mathrm{x}]=\mathrm{x}\)
buggySum (h:t) \(=\mathrm{h}+\) buggySum t

What's the bug?
> buggySum [1..100]
5050
> buggySum []
*** Exception: slides.hs:(62,1)-(63,31):
Non-exhaustive patterns in function buggySum

\section*{Patterns in functions, continued}

At hand:
buggySum \([\mathrm{x}]=\mathrm{x}\)
buggySum (h:t) \(=\mathrm{h}+\) buggySum t

If we use the -fwarn-incomplete-patterns option of ghci, we'll get a warning when loading:
\% ghci -fwarn-incomplete-patterns buggySum.hs
buggySum.hs:l:1:Warning:
Pattern match(es) are non-exhaustive In an equation for 'buggySum': Patterns not matched: [] >

Suggestion: add a bash alias! (See us if you don't know how to.)
alias ghci="ghci -fwarn-incomplete-patterns"
Todo: Find a Windows analog.

\section*{Patterns in functions, continued}

What's a little silly about the following list-summing function?
\[
\begin{aligned}
& \text { sillySum }[]=0 \\
& \text { sillySum }[x]=x \\
& \text { sillySum (h:t) }=h+\text { sillySum } t
\end{aligned}
\]

The second clause isn't needed.

\section*{An "as pattern"}

Consider a function that duplicates the head of a list:
> duphead [10,20,30]
[10,10,20,30]

Here's one way to write it, but it's repetitious: duphead (x:xs) = x:x:xs

We can use an "as pattern" to bind a name to the list as a whole: duphead all@(x:xs) = x:all

Can it be improved?
duphead all@(x:_) = x:all

The term "as pattern" perhaps comes from Standard ML, which uses an "as" keyword for the same purpose.

\section*{Patterns, then guards, then if-else}

Good coding style in Haskell:
Prefer patterns over guards
Prefer guards over if-else
Patterns-first choice!
sumElems [] = 0
sumElems (h:t) \(=\mathrm{h}+\) sumElems t


\section*{A student wrote...}
"Throughout the assignment I tried to keep in mind that I should use patterns first then guards if patterns didn't work.
"However, as I was doing the assignment, I realized that sometimes I couldn't see the patterns until I had written them as guards, so I would go back and change them.
"As I continued with the assignment, this happened less because the more code I wrote the more I was able to see patterns before I had them written as guards."
—Kelsey McCabe, Spring 2016, a3/observations.txt

\section*{Patterns, then guards, then if-else}

Recall this example of guards:
weather temp | temp >= \(80=\) "Hot!" temp >= 70 = "Nice" otherwise = "Cold!"

Can we rewrite weather to have three clauses with patterns?
No.
The pattern mechanism doesn't provide a way to test ranges.
Design question: should patterns and guards be unified?

\section*{Revision: the general form of a function}

An earlier general form of a function definition:
name param l param \(2 \ldots\) param \(N=\) expression
Revision: A function may have one or more clauses, of this form:
function-nam e pattern 1 pattern 2 ...pattern \(N\)
\[
\begin{aligned}
& \{\mid \text { guard-expression }\}=\text { result-expression } 1 \\
& \ldots \\
& \{\mid \text { guard-expression } N\}=\text { result-expression } N
\end{aligned}
\]

The set of clauses for a given name is the binding for that name. (See 4.4.3 in H10.)

If values in a call match the pattern(s) for a clause and a guard is true, the corresponding expression is evaluated.

\section*{Revision, continued}

At hand, a more general form for functions: function-name pattern 1 pattern2 ... patternN
\(\{\mid\) guard-expression 1\(\}=\) result-expression 1
\(\{\mid\) guard-expression \(N\}=\) result-expression \(N\)

How does
add \(\mathrm{x} y=\mathrm{x}+\mathrm{y}\)
conform to the above specification?
- \(\mathbf{x}\) and y are trivial patterns
- add has one clause, which has no guard

\section*{Pattern/guard interaction}

If the patterns of a clause match but all guards fail, the next clause is tried. Here's a contrived example:
f (h:_) | h < \(0=\) "negative head"
f list | length list > 3 = "too long"
f (_:_) = "ok"
f [] = "empty"
Usage:
\(>\mathrm{f}[-1,2,3]\)
"negative head"
\(>\mathrm{f}[]\)
"empty"
\(>\mathrm{f}[1 . .10]\)
"too long"

How many clauses does \(f\) have? 4

What if \(2^{\text {nd }}\) and \(3^{\text {rd }}\) clauses swapped? \(3^{\text {rd }}\) clause would never be matched!

What if \(4^{\text {th }}\) clause is removed?
Warning re "non-exhaustive patterns" exception on \(f\) [] (if -fwarn-incomplete-patterns specified).

\section*{REPLACEMENTS! Discard 179+ in the old set}

\title{
Recursive functions on lists
}

\section*{Simple recursive list processing functions}

Problem: Write len \(\boldsymbol{x}\), which returns the length of list \(\boldsymbol{x}\).
\(>\) len []
0
> len 'testing"
7

Solution:
len \(\square=0\)
len (_t) \(=\mathbf{1}+\boldsymbol{l e n} \boldsymbol{t}-\) since head isn't needed, use _

\section*{Simple list functions, continued}

Problem: Write odds \(\mathbf{x}\), which returns a list having only the odd numbers from the list x .
> odds [1..10]
[1,3,5,7,9]
> take 10 (odds [1,4..100])
[1,7,13,19,25,31,37,43,49,55]
Handy: odd :: Integral a => a -> Bool
Solution:
odds [] = []
odds (h:t)
odd \(\mathrm{h}=\mathrm{h}\) :odds t
| otherwise = odds t

\section*{Simple list functions, continued}

Problem: write isElem x vals, like elem in the Prelude.
\(>\) isElem 5 [4,3,7]
False
> isElem 'n' "Bingo!"
True
> "quiz" `isElem` words "No quiz today!" True

Solution:
isElem _ [] = False -- Why a wildcard?
isElem \(x\) (h:t)
| \(\mathrm{x}=\mathrm{=h}=\) True
otherwise \(=\mathrm{x}\) `isElem` t

\section*{Simple list functions, continued}

Problem: Write a function that returns a list's maximum value.
> maxVal "maximum"
'x'
\(>\operatorname{maxVal}[3,7,2]\)
7
> maxVal (words "i luv this stuff")
"this"
Recall that the Prelude has max :: Ord a => a -> a -> a
One solution:
\[
\begin{aligned}
& \operatorname{maxVal}[\mathrm{x}]=\mathrm{x} \\
& \operatorname{maxVal}(\mathrm{x}: \mathrm{xs})=\max x(\operatorname{maxVal} \mathrm{xs}) \\
& \operatorname{maxVal}[]=\text { error "empty list" }
\end{aligned}
\]

\section*{Sidebar: C and Python challenges}

C programmers:
- Write strlen in C in a functional style. (No loops or assignments.)
- Do strcmp and strchr, too!
- Mail us!

Python programmers:
- In a functional style write size(x), which returns the number of elements in the string, list, or range x . Restriction: You may not use type() or len().
- Mail us!

\section*{Tuples}

A Haskell tuple is an ordered aggregation of two or more values of possibly differing types.
```

> (1, "two", 3.0)
(l,"two",3.0)
it :: (Num a, Fractional c) => (a, [Char], c)
$>(3<4$, it $)$
(True,(1,"two",3.0))
it :: (Num a, Fractional c) => (Bool, (a, [Char], c))
$>$ (head, tail, [words], putStr)
(<function>,<function>,[<function>],<function>)
it :: ([al] -> al, [a2] -> [a2], [String -> [String]], String -> IO ())

```

Note that we can't create analogous lists for the above tuples, due to the mix of types. Lists must be homogeneous.

A function can return a tuple:

\section*{Tuples, continued} pair \(\mathrm{x} \mathrm{y}=(\mathrm{x}, \mathrm{y})\)

What's the type of pair?
pair :: a -> b -> (a, b)

Usage:
> pair 34
\((3,4)\)
\(>\) pair \((3,4)\)
<function>
\(>\) it 5
((3,4),5)

\section*{Tuples, continued}

The Prelude has two functions that operate on 2-tuples.
> p = pair 30 "forty"
\(>p\)
(30,"forty")
\(>\) fst \(p\)
30
> snd p
"forty"

\section*{Tuples, continued}

Recall: patterns used to bind names to list elements have the same syntax as expressions to create lists.

Patterns for tuples have the same syntax as expressions to create tuples.

Problem: Write middle, to extract a 3-tuple's second element. > middle ("372", "ILC 119", "Mitchell") "ILC 119"
> middle (1, [2], True) [2]
(Solution on next slide. Don't peek! This means you!)

\section*{Tuples, continued}

At hand:
\(>\) middle (1, [2], True)
[2]
Solution: middle \((\underline{L}, \mathrm{~m}, \underline{-})=\mathrm{m}\)

What's the type of middle? middle :: \((\mathrm{a}, \mathrm{b}, \mathrm{c})->\mathrm{b}\)

Wil the following call work?
\(>\) middle( \(1,[(2,3)], 4)\)
[(2,3)]

\section*{Tuples, continued}

Problem: Write a function swap that behaves like this:
\(>\operatorname{swap}\) ('a',False)
(False,'a')
\(>\operatorname{swap}(1,(2,3))\)
\(((2,3), 1)\)
Solution:
\(>\operatorname{swap}(x, y)=(y, x)\)
What is the type of swap?
\[
\text { swap :: }(b, a)->(a, b)
\]

\section*{Tuples, continued}

Here's the type of zip from the Prelude:
zip :: [a] -> [b] -> [(a, b)]

Speculate: What does zip do? (Pythonistas: Silence please!)
```

> zip ["one","two","three"] [10,20,30]
[("one",10),("two",20),("three",30)]
> zip ['a'..'z'] [l..]
[('a',l),('b',2),('c',3),('d',4),('e',5),('f',6),('g',7),('h',8),('i',
9),('j',10), ...more..., ('x',24),('y',25),('z',26)]

```

What's especially interesting about the second example?
[l..] is an infinite list! zip stops when either list runs out.

\section*{Tuples, continued}

Problem: Write elemPos, which returns the zero-based position of a value in a list, or -1 if not found.
> elemPos 'm' ['a'..'z']
12
Hint: Have a helper function do most of the work.
Solution:
elemPos x vals \(=\) elemPos' \(\mathrm{x}(\) zip vals [0..])
elemPos' _ [] = -l
elemPos' x ((val,pos):vps)
| \(\mathrm{x}==\mathrm{val}=\mathrm{pos}\)
otherwise \(=\) elemPos' x vps

What's wrong below?

\section*{What's wrong?}
\[
\begin{aligned}
& >x=((1,2),(3,4,5)) \\
& >\text { fst } x \\
& (1,2) \\
& >\text { snd } x \\
& (3,4,5) \\
& >\text { fst (snd } x) \\
& \text { <interactive> error: Couldn't match expected type '(a, b0)' } \\
& \quad \text { with actual type '(Integer, Integer, Integer)' }
\end{aligned}
\]

What's wrong with fst (snd x )?
fst :: (a, b) -> a
- We can write a function that handles a list of arbitrary length.
- We can't write a function that operates on a tuple of arbitrary "arity".*

\section*{The Eq type class and tuples}
:info Eq shows many lines like this:
```

instance (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e)
instance (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d)
instance (Eq a, Eq b, Eq c) => Eq (a, b, c)
instance (Eq a, Eq b) => Eq (a, b)

```

Speculate: What's being specified by the above?
One of them:
instance (Eq a, Eq b, Eq c) => Eq (a, b, c)
If values of each of the three types \(a, b\), and \(c\) can be tested for equality then 3-tuples of type ( \(a, b, c\) ) can be tested for equality.

The Ord and Bounded type classes have similar instance declarations.

\section*{Lists vs. tuples}

Type-wise, lists are homogeneous; tuples are heterogeneous.
Using a tuple lets type-checking ensure that an exact number of values is being aggregated, even if all values have the same type. Example: A 3D point could be represented with a 3-element list but using a 3 -tuple guarantees points have three coordinates.

In our Haskell we can't write functions that operate on tuples of arbitrary arity.

If there were Head First Haskell, it would no doubt have an interview with List and Tuple, each arguing their own merit.

\section*{Sidebar: To curry or not to curry?}

Consider these two functions:
> add_c xy = x+y --_c for curried arguments add_c :: Num a => a -> a -> a
\(>\) add_t \((x, y)=x+y \quad--\quad t\) for tuple argument add_t :: Num a => (a, a) -> a

Usage:
> add_c 34
7
Important: Note the difference in types!
\(>\) add_t \((3,4)\)
7
Which is better, add_c or add_t?

\section*{The where clause}

\section*{The where clause}

Intermediate values and/or helper functions can be defined using an optional where clause for a function.

Here's a declaration that shows the syntax; the computation is not meaningful.
f x
\[
\begin{aligned}
& \mid x<0=g a+g b \\
& \mid a>b=g b \\
& \text { | otherwise }=c+10 \\
& \text { where }\{ \\
& a=x * 5 ; \\
& b=a * 2+x ; \\
& g t=\log t+a ; \\
& c=a * 3 ; \\
& \}
\end{aligned}
\]

The where clause specifies bindings that may be needed when evaluating the guards and their associated expressions.

Like variables defined in a method or block in Java, a, b, c and g are not visible outside the the function f .

\section*{The where clause, continued}

A Computer Science Tapestry by Owen Astrachan shows an interesting way to raise a number to a power:
```

power base expo
| expo == $0=1.0$
| even expo $=$ semi * semi
| otherwise $=$ base * semi * semi
where \{
semi $=$ power base (expo `div` 2)
\}

```

Binding semi in a where clause avoids lots of repetition.
Exercise for the mathematically inclined: Figure out how it works.

\section*{Problem: halves}

Recall:
> halves ['a'..'z']
("abcdefghijklm","nopqrstuvwxyz")
halves lst =
[take (length lst `div` 2 ) lst, drop (length lst `div` 2) lst]
Problem: Rewrite halves to be less repetitious. Also, have it return a tuple instead of a list.

Solution:
halves lst = (take halflen lst, drop halflen lst) where \{ halflen \(=(\) length lst `div` 2 ) \}

\section*{The layout rule}

\section*{The layout rule for where (and more)}

This is a valid declaration with a where clause:
\[
\mathrm{f} x=\mathrm{x}+\mathrm{b}+\mathrm{g} \mathrm{a} \text { where }\{\mathrm{a}=1 ; \mathrm{b}=2 ; \mathrm{g} \mathrm{x}=-\mathrm{x}\}
\]

The where clause has three declarations enclosed in braces and separated by semicolons.

We can take advantage of Haskell's layout rule and write it like this instead:
\[
\begin{gathered}
\mathrm{fx}=\mathrm{a}+\mathrm{b}+\mathrm{ga} \\
\text { where } \\
\mathrm{a}=1 \\
\mathrm{~b}=2 \\
\mathrm{gx}= \\
-\mathrm{x}
\end{gathered}
\]

Besides whitespace what's different about the second version?

\section*{The layout rule, continued}

At hand:
\[
\begin{gathered}
\mathrm{fx}=\mathrm{a}+\mathrm{b}+\mathrm{ga} \\
\text { where } \\
\mathrm{a}=1 \\
\mathrm{~b}=2 \\
\mathrm{~b} \mathrm{x}= \\
1-\mathrm{x}
\end{gathered}
\]

The absence of a brace after where activates the layout rule.
The column position of the first token after where establishes the column in which declarations in the where must start.

Note that the declaration of g is continued onto a second line; if the minus sign were at or left of the line, it would be an error.

\section*{The layout rule, continued}

Don't confuse the layout rule with indentation-based continuation of declarations! (See slides 106-108.)

The layout rule allows omission of braces and semicolons in where, do, let, and of blocks. (We'll see do and let later.)

Indentation-based continuation applies
1. outside of where/do/let/of blocks
2. inside where/do/let/of blocks when the layout rule is triggered by the absence of an opening brace.

The layout rule is also called the "off-side rule".
TAB characters are assumed to have a width of 8 .
What other languages have rules of a similar nature?

\section*{Literals in patterns}

CSC 372 Spring 2018, Haskell Slide 206

\section*{Literals in patterns}

Literal values can be part or all of a pattern. Here's a 3-clause binding for f :
\[
\begin{aligned}
& \mathrm{f} \mathrm{l}=10 \\
& \mathrm{f} 2=20 \\
& \mathrm{fn}=\mathrm{n}
\end{aligned}
\]
\[
\begin{aligned}
& \text { For contrast, with guards: } \\
& \qquad \begin{array}{c}
\mathrm{n} \\
\mid \mathrm{n}==1=10 \\
\mid \mathrm{n}==2=20 \\
\mid \text { otherwise }=\mathrm{n}
\end{array}
\end{aligned}
\]

Usage:
\(>\mathrm{fl}\)
10
\(>\mathrm{f} 3\)
3
Remember: Patterns are tried in the order specified.

\section*{Literals in patterns, continued}

Here's a function that classifies characters as parentheses (or not): parens c
\[
\begin{aligned}
& \mid \mathrm{c}==\text { '(' = "left" } \\
& \mid \mathrm{c}==\text { ')' = "right" } \\
& \text { | otherwise = "neither" }
\end{aligned}
\]

Could we improve it by using patterns instead of guards?
parens '(' = "left"
parens ')' = "right"
parens _ = "neither"
Which is better?
Remember: Patterns, then guards, then if-else.

\section*{Literals in patterns, continued}
not is a function:
\(>\) :type not
not :: Bool -> Bool
> not True
False
Problem: Using literals in patterns, define not.
Solution:
not True = False
not _ = True -- Using wildcard avoids comparison

\section*{Pattern construction}

A pattern can be:
- A literal value such as 1 , ' \(x\) ', or True
- An identifier (bound to a value if there's a match)
- An underscore (the wildcard pattern)
- A tuple composed of patterns
- A list of patterns in square brackets (fixed size list)
- A list of patterns constructed with : operators
- Other things we haven't seen yet

Note the recursion.
Patterns can be arbitrarily complex.
3.17.1 in H 10 shows the full syntax for patterns.

\section*{Larger examples}

\section*{countEO}

Imagine a function that counts occurrences of even and odd numbers in a list.
\(>\) countEO \([3,4,5]\)
\((1,2)\)
-- one even, two odds

Code:
countEO [] \(=(0,0) \quad--\) no odds or evens in [] countEO (x:xs)
| odd \(x=\) (evens, odds+l)
| otherwise = (evens+l, odds)
where
(evens, odds) \(=\) countEO xs -- do counts for tail first!

\section*{countEO, continued}

At hand:
\[
\begin{aligned}
& \text { countEO }[]=(0,0) \\
& \text { countEO (x:xs) } \\
& \quad \mid \text { odd } x=(\text { evens, odds }+1) \\
& \text { | otherwise }=(1+\text { evens, odds }) \\
& \text { where (evens, odds) }=\text { countEO xs }
\end{aligned}
\]

Here's one way to picture this recursion:
countEO [10,20,25] returns \((2,1)\) (result of \((1+1,1)\) )


CSC 372 Spring 2018, Haskell Slide 213

\section*{travel}

Imagine a robot that travels on an infinite grid of cells. Movement is directed by a series of one character commands: \(n, e, s\), and \(w\).

Let's write a function travel that moves the robot about the grid and determines if the robot ends up where it started (i.e., it got home) or elsewhere (it got lost).


If the robot starts in square \(R\) the command string nnnn leaves the robot in the square marked 1.

The string nenene leaves the robot in the square marked 2.
nnessw and news move the robot in a round-trip that returns it to square R .

\section*{travel, continued}

Usage:
> travel "nnnn" -- ends at 1 "Got lost; 4 from home"
> travel "nenene" -- ends at 2
"Got lost; 6 from home"
> travel "nnessw"
"Got home"


How can we approach this problem?

\section*{travel, continued}

One approach:
1. Map letters into integer 2-tuples representing \(X\) and \(Y\) displacements on a Cartesian plane.
2. Sum the \(X\) and \(Y\) displacements to yield a net displacement.

Example:
Argument value: "nnee"
Mapped to tuples: \((0,1)(0,1)(1,0)(1,0)\)
Sum of tuples: \((2,2)\)

Another:
Argument value: "nnessw"
Mapped to tuples: \((0,1)(0,1)(1,0)(0,-1)(0,-1)(-1,0)\)
Sum of tuples: \((0,0)\)

\section*{travel, continued}

First, let's write a helper function to turn a direction into an ( \(\mathrm{x}, \mathrm{y}\) ) displacement:
mapMove :: Char -> (Int, Int)
mapMove ' \(n\) ' \(=(0,1)\)
mapMove 's' \(=(0,-1)\)
mapMove 'e' = \((1,0)\)
mapMove 'w' \(=(-1,0)\)
mapMove c = error ("Unknown direction: " ++ [c])

Usage:
\(>\) mapMove ' n '
\((0,1)\)
> mapMove 'w'
\((-1,0)\)

\section*{travel, continued}

Next, a function to sum x and y displacements in a list of tuples:
\(>\) sumTuples [(0,1),(1,0)]
\((1,1)\)
> sumTuples [mapMove ' \(n\) ', mapMove ' \(w\) ']
\((-1,1)\)

Implementation:
sumTuples :: [(Int,Int)] -> (Int,Int)
sumTuples [] = \((0,0)\)
sumTuples ((x,y):ts) \(=(x+\operatorname{sumX}, y+s u m Y)\) where
(sumX, sumY) = sumTuples ts
travel itself:

\section*{travel, continued}
```

travel :: [Char] -> [Char]
travel s
| disp == (0,0) = "Got home"
| otherwise = "Got lost; " ++ show (abs x + abs y) ++
" from home"
where
tuples = makeTuples s
disp@(x,y) = sumTuples tuples -- note "as pattern"
makeTuples :: [Char] -> [(Int, Int)]
makeTuples [] = []
makeTuples (c:cs) = mapMove c : makeTuples cs

```

As is, mapMove and sumTuples are at the top level but makeTuples is hidden inside travel. How should they be arranged?

\section*{Sidebar: top-level vs. hidden functions}
| disp \(==(0,0)=\) "Got home" otherwise = "Got lost; " ...
where
tuples = makeTuples s
disp = sumTuples tuples
makeTuples [] = []
makeTuples (c:cs) \(=\) mapMove c:makeTuples cs
mapMove ' n ' \(=(0,1)\)
mapMove 's' = (0,-1)
mapMove 'e' \(=(1,0)\)
mapMove 'w' \(=(-1,0)\)
mapMove \(\mathbf{c}=\) error ...

Top-level functions can be tested after code is loaded but functions inside a where block are not visible.

The functions at left are hidden in the where block but they can easily be changed to top-level using a shift or two with an editor.
```

Note: Types are not shown, to
save space.

```
sumTuples [] \(=(0,0)\)
sumTuples \(((\mathrm{x}, \mathrm{y}):\) ts \()=(\mathrm{x}+\operatorname{sumX}, \mathrm{y}+\operatorname{sum} \mathrm{Y})\)
    where
        (sumX, sumY) \(=\) sumTuples ts

Consider a function tally that counts character occurrences in a string:
```

> tally "a bean bag"
a 3
b 2
2
g 1
n 1
e 1

```

Note that the characters are shown in order of decreasing frequency.
How can this problem be approached?
In a nutshell: [('a',3),('b',2),(' ',2),('g',l),('n',l),('e',l)]

\section*{tally, continued}

Let's start by writing incEntry c tuples, which takes a list of (character, count) tuples and produces a new list of tuples that reflects the addition of the character \(\mathbf{c}\). incEntry :: Char -> [(Char, Int)] -> [(Char, Int)]

Calls to incEntry with 't', 'o', 'o':
> incEntry ' t ' []
[('t', l)]
\(>\) incEntry 'o' it
[('t',l),('o',l)]
\(>\) incEntry 'o' it
[('t', 1),('o',2)]
\(\{-\) incEntry c tups
tups is a list of (Char, Int) tuples that indicate how many times a character has been seen. A possible value for tups:
[('b',l),('a',2)]
incEntry produces a copy of tups with the count in the tuple containing the character c incremented by one.

If no tuple with cexists, one is created with a count of 1. -\}
incEntry::Char -> [(Char,Int)] -> [(Char,Int)]
incEntry c [ ] = [(c, l)]
incEntry c ((char, count):entries)
| c == char = (char, count +1 ) : entries
| otherwise = (char, count) : incEntry c entries

Next, let's write mkentries s. It calls incEntry for each character in the string \(\mathbf{s}\) in turn and produces a list of (char, count) tuples.
mkentries :: [Char] -> [(Char, Int)]
Usage:
> mkentries "tupple"
[('t', l),('u', l),('p',2),('l', l),('e', l)]
> mkentries "cocoon"
[('c',2),('o',3),('n',l)]
Code:
mkentries :: [Char] -> [(Char, Int)]
mkentries s = mkentries's []
where
mkentries' [ ] entries = entries
mkentries' (c:cs) entries = mkentries' cs (incEntry c entries)
\{- insert, isOrdered, and sort provide an insertion sort -\} insert v [] = [v] insert v (x:xs)
| isOrdered (v,x) = v:x:xs
| otherwise = x:insert v xs
isOrdered ((_, vl), (_, v2)) = vl > v2
sort [] = []
sort (x:xs) = insert \(x\) (sort \(x s\) )
> mkentries "cocoon"
[('c',2),('o',3),('n',l)]
> sort it
[('o',3),('c',2),('n', 1)]

\section*{tally, continued}
\{- fmtEntries prints (char,count) tuples one per line -\(\}\) fmtEntries [] = " "
fmtEntries ((c, count):es) \(=\)
[c] ++ " " ++ (show count) ++ "\n" ++ fmtEntries es
\{- top-level function - \(\}\)
tally \(s=\operatorname{putStr}(f m t E n t r i e s(s o r t(m k e n t r i e s ~ s)))\)
> tally "cocoon"
- 3
c 2
n 1
- How does this solution exemplify functional programming? (slide 28+)

\section*{Running tally from the command line}

Let's run it on lectura...
\% code=/cs/www/classes/cs372/springl8/haskell
\% cat \$code/tally.hs
... everything we've seen before and now a main:
main \(=\) do
bytes <- getContents -- reads all of standard input tally bytes
\% echo -n cocoon | runghc \$code/tally.hs
- 3
c 2
n 1

\section*{tally from the command line, continued}
\$code/genchars N generates N random letters:
\% \$code/genchars 20
KVQaVPEmClHRbgdkmMsQ
Lets tally a million letters:
\% \$code/genchars 1000000 | time runghc \$code/tally.hs >out
21.79user 0.24system 0:22.06elapsed
\% head -3 out
s 19553
V 19448
J 19437

\section*{tally from the command line, continued}

Let's try a compiled executable.
\% cd \$code
\% ghc --make -rtsopts tally.hs
\(\%\) ls -l tally
-rwxrwxr-x l whm whm 1118828 Jan 26 00:54 tally
\% ./genchars \(1000000>1 m\)
\% time ./tally < lm > out
real 0m7.367s
user 0m7.260s
sys 0m0.076s

\section*{tally performance in other languages}

Here are user CPU times for implementations of tally in several languages. The same one-million letter file was used for all timings.
\begin{tabular}{|l|l|}
\hline Language & Time (seconds) \\
\hline Haskell & 7.260 \\
\hline Ruby & 0.548 \\
\hline Icon & 0.432 \\
\hline Python 2 & 0.256 \\
\hline C w/ gcc -O3 & 0.016 \\
\hline
\end{tabular}

However, our tally implementation is very simplistic. An implementation of tally by an expert Haskell programmer, Chris van Horne, ran in \(\underline{0.008}\) seconds. (See spring 18/haskell/tally-cwvh[12].hs.)

Then I revisited the C version (tally2.c) and got to 3x faster than Chris' version with a one-billion character file.

\section*{Real world problem: "How many lectures?"}

Here's an early question when planning a course for a semester:
"How many lectures will there be?"
How should we answer that question?
Google for a course planning app?
No! Let's write a Haskell program! ©

\section*{classdays}

One approach:
> classdays ...arguments...
\#l H l/l5 (for 2015...)
\#2 T l/20
\#3 H l/22
\#4 T l/27
\#5 H l/29

What information do the arguments need to specify?
First and last day
Pattern, like M-W-F or T-H
How about holidays?

\section*{Arguments for classdays}

Let's start with something simple:
> classdays ( 1,15 ) ( 5,6 ) [('H',5),('T',2)]
\#1 H l/l5
\#2 T l/20
\#3 H l/22
\#4 T l/27

\section*{\#32 T 5/5}
>

The first and last days are represented with (month,day) tuples.
The third argument shows the pattern of class days: the first is a Thursday, and it's five days to the next class. The next is a Tuesday, and it's two days to the next class. Repeat!

\section*{Date handling}

There's a Data.Time.Calendar module but writing two minimal date handling functions provides good practice.
\(>\) toOrdinal \((12,31)\)
\(365-\) - 12/31 is the last day of the year
> fromOrdinal 32
\((2,1)--T h e 32^{\text {nd }}\) day of the year is February 1.

What's a minimal data structure that could help us?
\([(0,0),(1,31),(2,59),(3,90),(4,120),(5,151),(6,181),(7,212\)
),(8,243),(9,273),(10,304),(11,334),(12,365)]
\((1,31)\) The last day in January is the \(31^{\text {st }}\) day of the year
\((7,212)\) The last day in July is the \(212^{\text {th }}\) day of the year

\section*{toOrdinal and fromOrdinal}
offsets \(=\)
\([(0,0),(1,31),(2,59),(3,90),(4,120),(5,151),(6,181),(7,212),(8,2\) 43),(9,273),(10,304),(11,334),(12,365)]
toOrdinal (month, day) = days + day where
(_,days) = offsets!!(month-l)
> toOrdinal (12,31) 365
> fromOrdinal 32
\((2,1)\)
fromOrdinal ordDay = fromOrdinal' (reverse offsets) ordDay where
fromOrdinal' ((month,lastDay):t) ordDay
\(\mid\) ordDay \(>\) lastDay \(=(\) month +1 , ordDay - lastDay \()\)
| otherwise = fromOrdinal' t ordDay
fromOrdinal' [] _ = error "invalid month?"

Recall:
> classdays (1,15) (5,6) [('H',5),('T",2)]
\#1 H l/l5
\#2 T l/20

Ordinal dates for \((1,15)\) and \((5,6)\) are 15 and 126 , respectively.
With the Thursday-Tuesday pattern we'd see the ordinal dates progressing like this:
\(15,20,22,27,29,34,36,41, \ldots\)
\(\downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \cdots\)
\(+5+2+5+2+5+2+5 \ldots\)

Imagine this series of calls to a helper, showLecture:
```

Desired output:
\#l H l/l5
\#2 T l/20
\#3 H l/22
\#4 T l/27
\#32 T 5/5

```

What computations do we need to transform showLecture l 15 'H' into
"\#l H l/l5\n"?

We have: showLecture 115 ' H '
We want: "\#l H l/l5"

Let's write showOrdinal :: Integer -> [Char]
> showOrdinal 15
" \(1 / 15\) "
showOrdinal ordDay = show month ++ "/" ++ show day where
(month,day) \(=\) fromOrdinal ordDay
Now we can write showLecture:
showLecture lecNum ordDay dayOfWeek =
"\#" ++ show lecNum ++ " " ++ [dayOfWeek] ++
" " ++ showOrdinal ordDay ++ "\n"

Recall:
showLecture l 15 'H' showLecture 220 " T showLecture 32125 " T"

Desired output: \#l H l/l5 \#2 T l/20 \#32 T 5/5

Let's "cons up" a list out of the results of those calls...
> showLecture l 15 'H' : showLecture 220 "T":
"...more..." : -- I literally typed "...more..." showLecture 32125 "T" : []
["\#l H l/l5\n","\#2 T l/20\n", "...more...","\#32 T 5/5\n"]

How close are the contents of that list to what we need?

Now lets imagine a recursive function showLectures that builds up a list of results from showLecture calls:
showLectures 115 l26 [('H',5),("T",2)] "\#l H l/l5\n" showLectures 220 l26 [(T",2),('H',5)] "\#2 T l/20\n" showLectures 32125126 [("T",2),('H',5)] "\#32 T 5/5\n" showLectures 33127126 [('H',5),("T",2)]
Result:
["\#l H l/l5\n","\#2 T l/20\n", ... ,"\#33 H 5/5\n"]
Now let's write showLectures:
showLectures lecNum thisDay lastDay
(pair@(dayOfWeek, daysToNext):pairs)
thisDay > lastDay = []
otherwise \(=\) showLecture lecNum thisDay dayOfWeek
: showLectures (lecNum+l) (thisDay + daysToNext)
lastDay (pairs ++ [pair])

\section*{classdays-top-level}

Finally, a top-level function to get the ball rolling: classdays first last pattern \(=\) putStr (concat result) where
result = showLectures 1 (toOrdinal first) (toOrdinal last) pattern

Usage:
> classdays \((1,15)(5,6)\left[(' H ', 5),\left({ }^{\prime}{ }^{\prime}{ }^{\prime}, 2\right)\right]\)
\#1 H l/l5
\#2 T 1/20
\#3 H l/22
\#31 H 4/30
\#32 T 5/5

Full source is in spring18/haskell/classdays.hs

\section*{Errors}

\section*{Syntax errors}

What syntax errors do you see in the following file?
\% cat synerrors.hs
Fx=
\[
\begin{aligned}
& \mid x<0==y+10 \\
& \mid x!=0=y+20 \\
& \text { otherwise }=y+30 \\
& \text { where } \\
& g \mathrm{x}: \mathrm{xs}=\mathrm{x} \\
& \mathrm{y}= \\
& \mathrm{g}[\mathrm{x}]+5 \\
& \mathrm{~g} 2 \mathrm{x}=10
\end{aligned}
\]

\section*{Syntax errors, continued}

What syntax errors do you see in the following file?

\[
\begin{aligned}
& \text { use } /=\text { for } \\
& \text { inequality }
\end{aligned}
\]
\[
=\text {, not }==
\]
before result
continuation should be indented otherwise

Needs parens:
(x:xs)

\section*{Type errors}

In my opinion, producing understandable messages for type errors is what ghci is worst at.

If no polymorphic functions are involved, type errors are typically easy to understand.
\(>\) :type chr
chr :: Int -> Char
> chr 'x'
Couldn't match expected type `Int' with actual type 'Char'
In the first argument of 'chr', namely ' \(x\) '
In the expression: chr ' \(x\) '
In an equation for 'it': it = chr ' \(x\) '

\section*{Type errors, continued}

Code and error:
fxy
| \(\mathrm{x}==0=[]\)
| otherwise \(=\mathrm{fx}\)
Couldn't match type 'p0 -> [a]' with '[a]'
Expected type: t-> [a]
Actual type: t -> p0 -> [a]
The first clause implies that f returns [a] but the second clause returns a partial application, of type \(\mathrm{p} 0->\) [a], a contradiction.

\section*{Type errors, continued}

Code:
countEO ( \(x: x s\) )
| odd \(\mathrm{x}=\) (evens, odds+1)
| otherwise = (evens+l, odds)
where (evens,odds) \(=\) countEO
Error:
Couldn't match expected type '(al, b)' with actual type '[a] -> (al, b)'
Probable cause: countEO is applied to too few arguments In the expression: countEO

What's the problem?
It's expecting a tuple, (al,b) but it's getting a function, [a] -> (al, b)
Typically, instead of errors about too few (or too many) function arguments, you get function types popping up in unexpected places.

\section*{Type errors, continued}

Here's an example of omitting an operator:
\(>\) add3 \(\mathrm{xyz}=\mathrm{x}+\mathrm{yz}\)
\(>\) add3 456
<interactive>:9:1: error:
Non type variable argument in the constraint: Num (t -> a) (Use FlexibleContexts to permit this)

Looking at the type of add3 sheds some light on the problem:
> :t add3
add3 : : Num a => a -> ( \(\mathrm{t}->\mathrm{a}\) ) -> t \(->\mathrm{a}\)
A function type unexpectedly being inferred for y suggests we should look at how y is being used.

Try it: See if a type declaration for add3 leads to a better error.

Is there an error in the following?
\[
\begin{aligned}
& \mathrm{f}[]=[] \\
& \mathrm{f}[\mathrm{x}]=\mathrm{x} \\
& \mathrm{f}(\mathrm{x}: \mathrm{xs})=\mathrm{x}: \mathrm{f} \mathrm{xs}
\end{aligned}
\]

\section*{Type errors, continued}
```

A simple way to produce an
infinite type:

$$
x=\operatorname{head} x
$$

```

Occurs check: cannot construct the infinite type: a ~ [a]
Expected type: [a]
Actual type: [[a]] ("a is a list of as"--whm)
In the expression: \(x: f x s\)
In an equation for ' f ': \(\mathrm{f}(\mathrm{x}: \mathrm{xs})=\mathrm{x}: \mathrm{f} \mathrm{xs}\)
The second and third clauses are fine by themselves but together they create a contradiction.

Technique: Comment out clauses (and/or guards) to find the troublemaker, or incompatibilities between them.

\section*{Type errors, continued}

Recall ord :: Char -> Int.

Note this error:
\(>\) ord 5
No instance for (Num Char) arising from the literal \({ }^{`} 5\) '
The error "No instance for (TypeClass Type)" means that Type (Char, in this case) is not an instance of TypeClass (Num).
\(>\) :info Num \begin{tabular}{l}
\(\begin{array}{l}\text { instance Num Word } \\
\text { instance Num Integer } \\
\text { instance Num Int } \\
\text { instance Num Float } \\
\text { instance Num Double }\end{array}\) \\
\hline
\end{tabular}\(\quad\) instance Num Char doesn't appear

\section*{Debugging}

\section*{Debugging in general}

My advice in a nutshell:
Don't need to do any debugging in Haskell!

My usual development process in Haskell:
1. Work out expressions at the ghci prompt.
2. Write a function using those expressions and put it in a file.
3. Test that function at the ghci prompt.
4. Repeat with the next function.

With conventional languages I might write dozens of lines of code before trying them out.

With Haskell I might write a half-dozen lines of code before trying them out.

\section*{The trace function}

The Debug.Trace module has a trace function.
Observe:
\(>\) import Debug.Trace -- put it in your ghci config file
\(>\) :t trace
trace :: String -> a -> a
> trace "a tuple" (True, 'x')
a tuple
(True,'x')
What's happening?
trace string value returns value but also outputs string as a sideeffect. (!)
- Great for debugging!
- Completely subverts Haskell's isolation of the side-effects of output.

Here's a trivial function:
\(\mathrm{f} 1=10\)
\(\mathrm{f} n=\mathrm{n} * 5+7\)

Let's augment it with tracing:
import Debug.Trace
f 1 = trace "f: first case" 10
\(\mathrm{f} n=\) trace "f: default case" n * \(5+7\)

Execution:
\(>\mathrm{fl}\)
f: first case
10
\(>\) f 3
f: default case
22

Let's add trace calls to sumElems:

Execution:
> sumElems [5, 1, 4, 2,3]
sumElems []
sumElems [3]
sumElems [2,3]
sumElems \([4,2,3]\)
sumElems [1,4,2,3]
sumElems [5, 1,4,2,3]
15

Unfortunately, due to Haskell's lazy evaluation, the output's order is the opposite of what we'd expect. But it does show "progression".

\section*{trace, continued}

Here's countEO with tracing:
import Debug.Trace
countEO [] = \((0,0)\)
countEO list@(x:xs)
| odd x = (evens, odds+l)
| otherwise = (evens+l, odds)
where
result = countEO xs
(evens,odds) =
trace ("countEO " ++ show xs ++ " --> " ++ show result) result

Execution:
\(>\) countEO [3,2,4]
(countEO [] --> \((0,0)\)
countEO [4] --> \((1,0)\)
countEO [2,4] --> \((2,0)\)
2,1)

Before tracing the where was: (evens,odds) = countEO xs

\section*{trace, continued}

Recall this clause for buildingAtHeight:
buildingAtHeight (width, height, ch) \(\mathrm{n}=\) replicate width (if \(n>\) height then ' ' else ch)

Outputting width, height, and ch with labels is tedious:
buildingAtHeight (width, height, ch) \(\mathrm{n}=\)
trace ("width " ++ show width ++ ", height: " ++
show height ++ ", ch: " ++ show ch)
replicate width (if \(n>\) height then ' ' else ch)
Example of trace output: width: 3, height: 2, ch: 'x'
We can use a tuple to simplify the trace call:
buildingAtHeight (width, height, ch) \(\mathrm{n}=\)
trace (show ("width:", width, "height", height, "ch", ch))
replicate width (if \(n>\) height then "' else ch)
Example of trace output: ("width:",3,"height",2,"ch:",'x')

\section*{Sidebar: Tracing in Icon}

Icon has a built-in tracing mechanism.
Here's sumElems in Icon:
\% cat -n sumElems.icn
```

 1 procedure main()
 2 sumElems([5,1,4,2,3])
 3 end
 4
 5 procedure sumElems(L)
 6 if *L = 0 then
 7 return 0
 8 else
 9 return L[1] + sumElems(L[1:-1])
 10 end

```

\section*{Sidebar, continued}

Execution:
\% TRACE=-1 icont sumElems.icn -x
\begin{tabular}{|c|c|c|}
\hline & & main() \\
\hline sumElems.icn & 2 & | sumElems(list_1 \(=[5,1,4,2,3]\) ) \\
\hline sumElems.icn & 9 & sumElems(list_2 \(=[5,1,4,2])\) \\
\hline sumElems.icn & 9 & | | sumElems (list \(3=[5,1,4])\) \\
\hline sumElems.icn & 9 & | | sumElems(list \(4=[5,1])\) \\
\hline sumElems.icn & 9 & sumElems(list_5 = [5]) \\
\hline sumElems.icn & 9 & | sumElems(list_6 = []) \\
\hline sumElems.icn & 7 & | sumElems returned 0 \\
\hline sumElems.icn & 9 & | sumElems returned 5 \\
\hline sumElems.icn & 9 & | | sumElems returned 10 \\
\hline sumElems.icn & 9 & | | sumElems returned 15 \\
\hline sumElems.icn & 9 & | sumElems returned 20 \\
\hline sumElems.icn & 9 & | sumElems returned 25 \\
\hline sumElems.icn & 3 & main failed \\
\hline
\end{tabular}

I know of no better out-of-the-box tracing facility in any language.

\section*{ghci's debugger}
ghci does have some debugging support but debugging is expressionbased. Here's some simple interaction with it on countEO:
\(>\) :step countEO [3,2,4]
Stopped at countEO.hs:(1,1)-(6,29)
_result :: ( t , tl) = _
\(>\) :step
Stopped at countEO.hs:3:7-11
_result :: Bool = _
\(\mathrm{x}:\) : Integer = 3
\(>\) :step
Stopped at countEO.hs:3:15-29
_result :: (t, tl) = _
evens:: t = _
odds:: tl = _
> :step
(Stopped at countEO.hs:6:20-29
countEO (x:xs)
    odd x = (evens, odds+l)
    | otherwise = (evens+l, odds)
where
    (evens,odds) = countEO xs
```

```
```

countEO [] = (0,0)

```
```

```
countEO [] = (0,0)
```

```
\(\mid\) Odd \(x=(\) evens, odds +1\()\)
\(\mid\) Otherwise \(=(\) evens +1, odds \()\)
where
(evens, odds) \(=\) CountEO xs
```

_result shows type of current expression

Arbitrary expressions can be evaluated at the $>$ prompt (as always).
result shows type of current
expression
Arbitrary expressions can be
evaluated at the $>$ prompt (as
always).
_result shows type of current
expression
Arbitrary expressions can be
evaluated at the > prompt (as
always).
_result :: (t, tl) =
xs :: [Integer] = [2,4]

Excursion:
 A little bit with infinite lists and lazy evaluation

Infinite lists

Here's a way we've seen to make an infinite list:
$>$ [1..]
$\left[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,{ }^{\wedge} \mathrm{C}\right.$
In essence, what does the following bind f to?
$>\mathrm{f}=(!!)[1,3 .$.
$\mathrm{f}::($ Num a, Enum a) $=>$ Int $->\mathrm{a}$

A function that produces the Nth odd number, zero-based.

- Yes, we could say $\mathrm{f} n=(\mathrm{n} * 2)+1$ but that wouldn't be nearly as much fun! (This is functional programming!)
- I want you to be cognizant of performance but don't let concerns about performance stifle creativity!

Lazy evaluation

Consider the following binding. Why does it complete?
$>$ fives $=[5,10 .$.

Haskell uses lazy evaluation. Values aren't computed until needed. (Simplistic; we'll refine it.)

How will the following expression behave?
$>$ take (head fives) fives
[5,10,15,20,25]

Lazy evaluation, continued

Here is an expression that is said to be non-terminating:
$>$ length fives
...when tired of waiting...^C Interrupted.
The value of length fives is said to be \perp ("bottom").
But, we can bind a name to length fives:
$>$ numFives = length fives
numFives :: Int

It completes because Haskell hasn't yet needed to compute a value for length fives.

What does the following do?
$>$ numFives
...after a while...^CInterrupted.

Lazy evaluation, continued

We can use :print to explore lazy evaluation:
$>$ fives $=[5,10 .$.
> :print fives
fives $=($ tl::[Integer]) -- ghci 7.8.3 behavior
fives $=(\mathrm{tl}::($ Enum a, Num a) $=>$ [a]) -- 8.2.2
$>$ take 3 fives
[5,10,15]
What do you think :print fives will now show?
> :print fives

fives $=\left(_t l::(\right.$ Enum a, Num a) $=>$ [a]) -- 8.2.2

Lazy vs. non-strict

In fact, Haskell doesn't fully meet the requirements of lazy evaluation.
The word "lazy" appears only once in the Haskell 2010 Report.
What Haskell does provide is non-strict evaluation:
Function arguments are not evaluated until a value is needed.
Consider this function:
$\mathrm{f} x \mathrm{yz}=$ if even x then y else z
What does the following expression produce?
> f 410 (length [l..])
10

Why does it complete?
Because 4 is even, the value of z isn't needed and never computed.

Lazy vs. non-strict

At hand:
$f x y z=$ if even x then y else z
How will the following behave?

```
    >a=f4 (length [1..]) 100
    >b =a + l
    >c=[1,b]
    > length c
    2
    > head c
    I
    >c
    [1,^CInterrupted.
```

See wiki.haskell.org/Lazy vs. non-strict for the fine points of lazy evaluation vs. non-strict evaluation. Google for more, too.

Sidebar: Evaluation in Java

How is the following Java expression evaluated?

$$
x=f(g(x+3), h())
$$

A model:
l. $\mathrm{tl}=\mathrm{x}+3$
2. $\mathrm{t} 2=\mathrm{g}(\mathrm{tl})$
3. $\mathrm{t} 3=\mathrm{h}()$
4. $\mathrm{x}=\mathrm{f}(\mathrm{t} 2, \mathrm{t} 3)$

- Java uses strict evaluation
- Java guarantees* left to right evaluation of argument lists (JLS 15.7)
- Contrast: C does not guarantee L-to-R evaluation of argument lists.

What's a case in which Java's L-to-R guarantee makes a difference?

- If g and h do output.
- Output is a side-effect!

What's a non-output case where order would make a difference?

More with infinite lists

Speculate: Can infinite lists be concatenated?
$>$ values $=[1 .]+.+[5,10 .]+.+[1,2,3]$
$>$

What will the following do?
$>$ values > [1,2,3,5]
False

False due to lexicographic comparison of fourth elements: $4<5$
How far did evaluation of values progress?
$>$:print values
values $=1: 2: 3: 4:\left(_\right.$t2::[Integer] $)$-- ghci 7.8.3

Infinite expressions

What does the following expression mean?
$>$ threes $=3$: threes
threes is a list whose head is 3 and whose tail is threes!
$>$ take 5 threes
[3,3,3,3,3]

How about the following?
$>x y s=[' x ', ' y ']++x y s$
$>$ take 5 xys
"xyxyx"
> xys !! 100000000
'x'

One more:
$>x=1+x$
$>x$
${ }^{\wedge}$ CInterrupted.

Problem: write a function intsFrom that produces the integers from a starting value. (No, you can't use [n..]!)
$>$ intsFrom l
$[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21, \ldots$
> intsFrom 1000
[1000,1001,1002,1003,1004,1005,1006,1007,1008,...
$>$ take 5 (intsFrom 1000000)
[1000000,1000001,1000002,1000003,1000004]
Solution: intsFrom $n=n$:intsFrom $(n+1)$

Does length (intsFrom (minBound::Int)) terminate?

Collaborative Learning Exercise

Infinite experimentation cs.arizona.edu/classes/cs372/springl8/cle-4-infexp.html Note to self: do push-cle 4

Higher-order functions

Remember: Functions are values

Recall this fundamental characteristic of a functional language:
Functions are values that can be used as flexibly as values of other types.

Here are some more examples of that. What do the following do?
> (if $3<4$ then head else last) "abc" 'a'
$>$ funcs $=($ tail, (:) 100)
$>$ nums $=[1 . .10]$
$>$ fst funcs nums
[2,3,4,5,6,7,8,9,10]
$>$ snd funcs nums
[100,1,2,3,4,5,6,7,8,9,10]

Lists of functions

Is the following valid?
$>$ [take, tail, init]
Couldn't match type `[a2]' with `Int'
Expected type: Int -> [a0] -> [a0] Actual type: [a2] -> [a2]
In the expression: init
What's the problem?
take does not have the same type as tail and init.
Puzzle: Make [take, tail, init] valid by adding two characters.

Comparing functions

Can functions be compared?
$>$ add == plus
No instance for (Eq (Integer -> Integer -> Integer)) arising from a use of ${ }^{\prime}=='$
In the expression: add $==$ plus
You might see a proof based on this in CSC 473:
If we could determine if two arbitrary functions perform the same computation, we could solve the halting problem, which is considered to be unsolvable.

Because functions can't be compared, this version of length won't work for lists of functions: (Its type: (Num a, Eq t) $=>$ [t] -> a)
len list@(_h:t)
list $==[]=0$
otherwise $=1+$ len t

A simple higher-order function

Definition: A higher-order function is a function that (and/or)

- Has one or more arguments that are functions
- Returns a function
twice is a higher-order function with two arguments: f and x twice $f x=f(f)$
$>$ twice tail [$1,2,3,4,5$]
[3,4,5]
$>$ tail (tail [1,2,3,4,5])
[3,4,5]

twice, continued

At hand:
$>$ twice $\mathrm{fx}=\mathrm{f}(\mathrm{fx})$
$>$ twice tail [$1,2,3,4,5]$
[3,4,5]
Let's make the precedence explicit:
> ((twice tail) [1,2,3,4,5])
[3,4,5]
Consider a partial application...
$>\mathrm{t} 2=$ twice tail $\quad-$ like $\mathrm{t} 2 \mathrm{x}=$ tail (tail x$)$
$>$ t2
<function>
it :: [a] -> [a]

twice, continued

At hand:
$>$ twice $\mathrm{fx}=\mathrm{f}(\mathrm{fx})$
$>$ twice tail [1,2,3,4,5]
[3,4,5]

Let's give twice a partial application!
> twice (drop 2) [1..5]
[5]
Let's make a partial application with a partial application!
$>$ twice (drop 5)
<function>
> it ['a'..'z']
"klmnopqrstuvwxyz"

Try these!

twice (twice (drop 3)) [1..20] twice (twice (take 3)) [1..20]

twice, continued

At hand:

```
    twice f x = f (f x)
```

What's the the type of twice?
$>$:t twice twice :: ($\mathrm{t}-\mathrm{t}$) -> t -> t

A higher-order function is... a function that (1) has one or more arguments that are functions and/or (2) returns a function.

Parentheses added to show precedence:

What's the correspondence between the elements of the clause and the elements of the type?

The map function

The Prelude's map function

Recall double $x=x * 2$
map is a Prelude function that applies a function to each element of a list, producing a new list:
> map double [1..5]
[2,4,6,8,10]
> map length (words "a few words")
[1,3,5]
> map head (words "a few words")
"afw"
Is map a higher order function?
Yes! (Why?)
Its first argument is a function.

map, continued

At hand:
$>$ map double [1..5]
[2,4,6,8,10]

Problem: Write map!

$$
\begin{aligned}
& \operatorname{map}_{-}[]=[] \\
& \operatorname{map}_{\mathrm{f}}(\mathrm{x}: \mathrm{xs})=\mathrm{fx}: \operatorname{map} \mathrm{fxs}
\end{aligned}
$$

What is its type?

$$
\operatorname{map}::(\mathrm{a} \mathrm{->} \mathrm{~b})->[\mathrm{a}]->[\mathrm{b}]
$$

What's the relationship between the length of map's input and output lists?

The lengths are always the same.

map, continued

Mapping (via map) is applying a transformation (a function) to each of the values in a list, always producing a new list of the same length.
> map chr [97,32,98,105,103,32,99,97,116]
"a big cat"
$>$ map isLetter it
[True,False,True,True,True,False,True,True,True]
$>$ map not it
[False,True,False,False,False,True,False,False,False]
> map head (map show it) -- Note: show True is "True" "FTFFFTFFF"

Sidebar: map can go parallel

Here's another map:
> map weather [85,55,75]
["Hot!","Cold!","Nice"]
This is equivalent:
> [weather 85, weather 55, weather 75]
["Hot!","Cold!","Nice"]

- If functions have no side effects, we can immediately turn a mapping into a parallel computation.
- We might start each function call on a separate processor and combine the values when all are done.

map and partial applications

What's the result of these?
$>$ map (add 5) [1..10]
[6,7,8,9,10,11,12,13,14,15]
> map (drop l) (words "the knot was cold") ["he","not","as","old"]
> map (replicate 5) "abc"
["aaaaa","bbbbb","ccccc"]

map and partial applications, cont.

What's going on here?
$>\mathrm{f}=$ map double
$>\mathrm{f}[1 . .5]$
[2,4,6,8,10]
$>\operatorname{map} f[[1 . .3],[10 . .15]]$
[[2,4,6],[20,22,24,26,28,30]]

Here's the above in one step:
$>$ map (map double) [[1..3],[10..15]]
[[2,4,6],[20,22,24,26,28,30]]
Here's one way to think about it:
[(map double) [1..3],(map double) [10..15]]

Sections

Instead of using map (add5) to add 5 to the values in a list, we should use a section instead: (it's the idiomatic way!)
$>\operatorname{map}(5+)[1,2,3]$
$[6,7,8]-(5+1,5+2,5+3]$
More sections:
$>\operatorname{map}(10 *)[1,2,3]$
[10,20,30]
> map (++"*") (words "a few words")
["a*","few*","words*"]
> map ("*"++) (words "a few words")
["*a","*few","*words"]

Sections, continued

Sections have one of two forms:
(infix-operator value) Examples: (+5), (/10)
(value infix-operator) Examples: (5*), ("x"++)
Iff the operator is commutative, the two forms are equivalent.
$>\operatorname{map}(3<=)[1.4] \quad[3<=1,3<=2,3<=3,3<=4]$
[False,False,True,True]
$>\operatorname{map}(<=3)[1 . .4] \quad[1<=3,2<=3,3<=3,4<=4]$
[True,True,True,False]
Sections aren't just for map; they're a general mechanism.
$>$ twice (+5) 3
13

travel, revisited

CSC 372 Spring 2018, Haskell Slide 290

Now that we're good at recursion...

Some of the problems on the next assignment will encourage working with higher-order functions by prohibiting you from writing any recursive functions!

Think of it as isolating muscle groups when weight training.
Here's a simple way to avoid what's prohibited:
Pretend that you don't understand recursion!
What's a base case? Is it related to baseball?
Why would a function call itself? How's it stop?
Is a recursive plunge refreshing?
If you were UNIX machines, I'd do chmod 0 on an appropriate section of your brains.

travel revisited

Recall our traveling robot: (slide 214+)
> travel "nnee"
"Got lost"
> travel "nnss"
"Got home"
Recall our approach:
Argument value: "nnee"
Mapped to tuples: $(0,1)(0,1)(1,0)(1,0)$
Sum of tuples: $(2,2)$
How can we solve it without writing any recursive functions?

travel, continued

Recall:
> :t mapMove
mapMove :: Char -> (Int, Int)
$>$ mapMove ' n '
$(0,1)$

Now what?
$>$ map mapMove "nneen"
[(0,1),(0,1),(1,0),(1,0),(0,1)]
Can we sum the tuples with map?

travel, continued

We have:
> disps = map mapMove "nneen"
[(0,1),(0,1),(1,0),(1,0),(0,1)]
We want: $(2,3)$

Any ideas?
$>$:t fst
fst :: (a, b) -> a
> map fst disps
[0,0,1,1,0]
$>$ map snd disps
[1,1,0,0,1]

travel, revisited

We have:
> disps= map mapMove "nneen"
[(0,1),(0,1),(1,0),(1,0),(0,1)]
$>$ map fst disps
[0,0,1,1,0]
$>$ map snd disps
[1,1,0,0,1]
We want: $(2,3)$

Ideas?
$>$:t sum
sum :: Num a => [a] -> a
> (sum (map fst disps), sum (map snd disps))
$(2,3)$
travel :: [Char] -> [Char]

travel-Final answer

travel s
| totalDisp $==(0,0)=$ "Got home"
| otherwise = "Got lost"
where
disps = map mapMove s totalDisp $=($ sum (map fst disps), sum (map snd disps))

Did we have to understand recursion to write this version of travel?
No.
Did we write any recursive functions?
No.
Did we use any recursive functions?
Maybe. But using recursive functions doesn't violate the prohibition at hand.

Filtering

Filtering

Another higher order function in the Prelude is filter:
$>$ filter odd [1..10]
[1,3,5,7,9]
> filter isDigit "(800) 555-1212"
"8005551212"

What's filter f list doing?
Producing the values in list for which f returns True.
Note: Think of filter as filtering in, not filtering out.
What is the type of filter?
filter :: (a -> Bool) -> [a] -> [a]

filter uses a predicate

filter's first argument (a function) is called a predicate because inclusion of each value is predicated on the result of calling that function with that value.

More...
$>$ filter (<= 5) (filter odd [1..10])
[1,3,5]
> map (filter isDigit) ["br549", "24/7"]
["549","247"]
> filter (`elem` "aeiou") "some words here" "oeoee"

Note that (elem`...) is a section.
elem :: Eq a => a -> [a] -> Bool

filter, continued

At hand:
$>$ filter odd [1..10]
$[1,3,5,7,9]$
$>$:t filter
filter :: (a -> Bool) -> [a] -> [a]

Problem: Write filter!
filter _ [] = []
filter f (x:xs)
| $\mathrm{fx}=\mathrm{x}$: filteredTail
| otherwise = filteredTail
where
filteredTail $=$ filter f xs

Prelude functions that use predicates

Several Prelude functions use predicates. Here are two:
all :: (a -> Bool) -> [a] -> Bool
$>$ all even [2,4,6,8]
True
$>$ all even [2,4,6,7]
False
dropWhile :: (a -> Bool) -> [a] -> [a]
> dropWhile isSpace " testing "
"testing "
> dropWhile isLetter it
" "

How could we find other Prelude functions that use predicates?
\% grep "(a -> Bool)" prelude-8.0.1.txt

map vs. filter

For reference:
$>$ map double [1..10]
[2,4,6,8,10,12,14,16,18,20]
$>$ filter odd [1..10]
[1,3,5,7,9]
map:
transforms a list of values
length input $==$ length output

filter:

selects values from a list
$0<=$ length output <= length input
map and filter are in Python and JavaScript, to name two of many languages having them. (And, they're trivial to write!)

Anonymous functions

Anonymous functions

Imagine that for every number in a list we'd like to double it and then subtract five.

Here's one way to do it:
$>\mathrm{fn}=\mathrm{n} * 2-5$
$>\operatorname{map} \mathrm{f}$ [1..5]
[-3,-1, $1,3,5]$
We could instead use an anonymous function to do the same thing:
$>\operatorname{map}(\backslash n->n * 2-5)[1 . .5]$

$$
[-3,-1,1,3,5]
$$

What benefits does the anonymous function provide?

Anonymous functions, continued

At hand:

$$
\mathrm{f} n=\mathrm{n} * 2-5
$$

VS.
$\operatorname{map} f[1 . .5]$

The most common use case for an anonymous function: (my guess)
Supply a simple "one-off" function to a higher-order function.
Anonymous functions...

- Directly associate a function's definition with its only use.
- Let us avoid the need to think up a good name for a function! :)
- Can be likened to not using an intermediate variable:

$$
\text { int } t=a * 3+g(a+b) ; \quad / / J a v a
$$

return $\mathrm{f}(\mathrm{t})$;
VS.

$$
\text { return } f(a * 3+g(a+b)) ;
$$

Anonymous functions, continued

The general form of an anonymous function:
\patternl ... pattern N-> expression
Simple syntax suggestion: enclose the whole works in parentheses. $\operatorname{map}(\underline{\mathrm{n}->\mathrm{n} * 2-5})[1 . .5]$

These terms are synonymous with "anonymous function":
Lambda abstraction (H10)
Lambda expression
Just lambda (LYAH).

The \backslash character was chosen due to its similarity to λ (Greek lambda), used in the lambda calculus, another system for expressing computation.

Anonymous functions, continued

What will ghci say?
$>\backslash x y->x+y * 2$
<function>
$>$ it 34
11
$\backslash \mathrm{xy}->\mathrm{x}+\mathrm{y} * 2$ is an expression whose value is a function.
Here are three ways to bind the name double to a function that doubles a number:
double $\mathrm{x}=\mathrm{x} * 2$
double $=\backslash x->x * 2$
double $=(* 2)$

Anonymous functions, continued

Anonymous functions are commonly used with higher order functions such as map and filter.
$>\operatorname{map}(\backslash w->$ (length $w, w)$) (words "a test now") [(l,"a"),(4,"test"),(3,"now")]
> map (\c -> "\{" ++ [c] ++ "\}") "anon."
["\{a\}","\{n\}","\{o\}","\{n\}","\{.\}"]
> filter ($\backslash \mathrm{x}->$ head $\mathrm{x}==$ last x) (words "pop top suds")
["pop","suds"]

Analogy

From the previous slide:
> map (\w -> (length w, w)) (words "a test now")
[(l,"a"),(4,"test"),(3,"now")]

A rough Java analogy: (springl8/haskell/javamap.java)
ArrayList<Object []> result = new ArrayList<>();
for (String s: "a test now".split(" ")) result.add(new Object[] \{s.length(), s\});

An anonymous function given to map is a bit like the body of an enhanced for in Java.

Challenge: Rewrite in Java the other two examples on the previous slide.

Sidebar: Three languages

A simple anonymous function in Haskell...
$>\backslash \mathrm{s}$-> s ++ "-" ++ show (length s)
<function>
> it "abc"
"abc-3"

Python...
>>> lambda s: s + '-' + str(len(s))
<function <lambda> at 0xl0138af28>
>>> _('abc') \# underscore is like Haskell's it
'abc-3'
and JavaScript...
$>\mathrm{f}=$ function (s) $\left\{\right.$ return $\mathrm{s}+\mathrm{I}^{-1}+\mathrm{s}$.length $\}$
> f("abc")
"abc-3"

Larger example: longest

Example: longest line(s) in a file

Imagine a program to print the longest line(s) in a file, along with their line numbers:
\% runghc longest.hs /usr/share/dict/web2 72632 : formaldehydesulphoxylate 140339:pathologicopsychological 175108:scientificophilosophical 200796:tetraiodophenolphthalein 203042 :thyroparathyroidectomize

Imagining that we don't understand recursion, how can we approach it in Haskell?

longest, continued

Let's work with a shorter file for development testing:
\% cat longest. 1
data
to
test
readFile in the Prelude lazily returns the full contents of a file as a string:
> readFile "longest.l"
"data\nto\ntest\n"

To avoid wading into input yet, let's focus on a function that operates on the full contents of a file as a single string:
> longest "data\nto\ntest $\backslash n$ "
"l:data\n3:test\n"

longest, continued

Let's work through a series of transformations of the data:
> bytes = "data\nto\ntest $\backslash n$ "
$>\operatorname{lns}=$ lines bytes

["data","to","test"]

Note: To save space in this example, we'll show the value bound immediately after each binding.

Let's use zip3 and map length to create (length, line-number, line) triples:
$>$ triples $=$ zip3 (map length $\ln s)$ [l..] lns
[(4,1,"data"),(2,2,"to"),(4,3,"test")]

longest, continued

We have (length, line-number, line) triples at hand:
> triples
[(4,1,"data"),(2,2,"to"),(4,3,"test")]
Let's use Data.List.sort :: Ord a => [a] -> [a] on them:
$>$ sortedTriples $=$ reverse (Data.List.sort triples) [(4,3,"test"),(4,1,"data"),(2,2,"to")]a

Note that by having the line length first, the triples are sorted first by line length. Ties are resolved by line number, which is second.

We reverse the list to put the tuples in descending order.

longest, continued

At hand:
> sortedTriples
[(4,3,"test"),(4,1,"data"),(2,2,"to")]

We'll handle ties by using takeWhile to get all the triples with lines of the maximum length.

Let's use a helper function to get the first element of a 3-tuple:
$>$ first (len, ,, _) $=$ len
$>$ maxLength $=$ first (head sortedTriples)
4

We'll be using first elsewhere but if we weren't, we'd bind maxLength using a pattern:
(maxLength,_,_):_ = sortedTriples

longest, continued

At hand:
> sortedTriples
[(4,3,"test"),(4,1,"data"),(2,2,"to")]
$>$ maxLength
4

Let's use takeWhile :: (a -> Bool) -> [a] -> [a] to get the triples having the maximum length:
$>$ maxTriples $=$ takeWhile
(triple -> first triple $==$ maxLength) sortedTriples
[(4,3,"test"),(4,l,"data")]

longest, continued

At hand:
$>$ maxTriples
[(4,3,"test"),(4,1,"data")]

Let's map an anonymous function to turn the triples into lines prefixed with their line number:
$>$ linesWithNums $=$ map (
(_,num,line) -> show num ++ ":" ++ line) maxTriples
["3:test","l:data"]

We can now produce a ready-to-print result:
> result = unlines (reverse linesWithNums)
"l:data\n3:test\n"

longest, continued

Let's package up our work into a function:
longest bytes $=$ result where
lns = lines bytes
triples = zip3 (map length lns) [l..] lns
sortedTriples $=$ reverse (Data.List.sort triples)
maxLength = first (head sortedTriples)
maxTriples $=$ takeWhile
(\triple -> first triple $==$ maxLength) sortedTriples
linesWithNums =
map (
(_,num,line) -> show num ++ ":" ++ line) maxTriples
result = unlines (reverse linesWithNums)
first $(x, \ldots,-)=x$
Look, Ma! No conditional code!

At hand:
> longest "data $\backslash n t o \backslash n t e s t \backslash n "$
"1:data\n3:test\n"
Let's add a main that handles command-line args and does I/O:
\% cat longest.hs
import System.Environment (getArgs)
import Data.List (sort)
longest bytes $=$...from previous slide...
main = do -- 'do' "sequences" its expressions args <- getArgs -- Get command line args as list bytes <- readFile (head args) putStr (longest bytes)

Execution:
\$ runghc longest.hs /usr/share/dict/words \# lectura 39886:electroencephalograph's

Composition

Function composition

Definition:
The composition of functions f and g is a function \mathbf{c} that for all values of \mathbf{x}, ($\mathbf{c} \mathbf{x}$) equals ($\mathrm{f}(\mathrm{g} \mathrm{x}$))

Here is a function that applies two functions in turn: compose $\mathrm{fgx}=\mathrm{f}$ (gx)

How many arguments does compose have?
Its type:
(b -> c) -> (a -> b) -> a -> c
> compose init tail [1..5]
[2,3,4]
> compose signum negate 3
-1

Composition, continued

Haskell binds the symbolic variable dot to a "compose" function:
$>: t$ (.)
(.) :: (b -> c) -> (a -> b) -> a -> c

Dot is an operator whose operands are functions. Its result is a function.
> numwords $=$ length. words
> numwords "just testing this"
3
> map numwords ["a test", "up \& down", "done"] [2,3,1]

Ponder this: Given 'compose $\mathrm{f} \mathrm{g} \mathrm{x}=\mathrm{f}(\mathrm{gx})$ ', this works:
(.) = compose

Composition, continued

At hand:
numwords $=$ length. words
A model:

Usage:
> numwords "a b"
2

Composition, continued

Problem: Using composition create a function that returns the next-to-last element in a list:

$$
>\text { ntl [1..5] }
$$

4
$>$ ntl "abc"
'b'

Two solutions:

$$
\begin{aligned}
& \text { ntl }=\text { head } . \text { tail } . \text { reverse } \\
& \text { ntl }=\text { last } . \text { init }
\end{aligned}
$$

Composition, continued

Problem: Recall twice $f x=f(f x)$. Define twice as a composition.
Solution:
twice $\mathrm{f}=\mathrm{f} . \mathrm{f}$
Problem: Use composition to create a function that reverses the words in a string:
> f "flip these words around"
"pilf eseht sdrow dnuora"

Hint: unwords is the inverse of words.

Solution:
f = unwords . (map reverse) . words

Composition, continued

Problem: Create a function to remove the digits from a string:
> rmdigits "Thu Feb 6 19:13:34 MST 2014"
"Thu Feb : : MST "

Solution:
$>$ rmdigits $=$ filter (not. isDigit)
Given the following, describe f :

$$
\begin{aligned}
& >\mathrm{f}=(* 2) \cdot(+3) \\
& >\operatorname{map} \mathrm{f}[1 . .5] \\
& {[8,10,12,14,16]}
\end{aligned}
$$

Would an anonymous function be a better choice for f's computation?

Composition, continued

Recalling the following, what's the type of f ?
head :: [a] -> a
length :: [a] -> Int
words :: String -> [String]
show :: Show a => a -> String
f = head . show . length . words

Simple rule:
If a composition is valid, the type of the resulting function is
based only on the input of the rightmost function and the output of the leftmost function.

What's the type of f ?
String -> Char

Composition, continued

Consider the following:
> s = "It's on!"
$>$ map head (map show (map not (map isLetter s))) "FFTFTFFT"

Can we use composition to simplify it?
$>$ map (head .show .not.isLetter) s "FFTFTFFT"

Question: Is
map f (map g x)
always equivalent to the following?
$\operatorname{map}(f . g) x$

If f and g did output, how would the output of the two cases differ?

Mystery function

What would be a better name for the following function?

$$
\begin{aligned}
& \mathrm{f} 2=\mathrm{f} . \mathrm{f} \\
& \text { where } \mathrm{f}=\text { reverse } . \text { dropWhile isSpace }
\end{aligned}
$$

Credit: Eric Normand on Stack Overflow

Sidebar: A little Standard ML

- explode;
val it = fn : string -> char list
- implode;
val it = fn : char list $->$ string
- explode "abc";
val it = [\#"a",\#"b",\#"c"] : char list
- implode it;
val it = "abc" : string
- rev;
val it = fn : 'a list -> 'a list
Problem: Write revstr s, which reverses the string s.
- revstr "backwards";
val it = "sdrawkcab" : string
Solution:
- val revstr = implode o rev o explode;
val revstr $=\mathrm{fn}$: string $->$ string sml runs Standard ML on lectura

Point-free style (video)

Point-free style

Recall rmdigits:
> rmdigits "Thu Feb 6 19:13:34 MST 2014"
"Thu Feb : : MST "

What the difference between these two bindings for rmdigits? rmdigits $\mathrm{s}=$ filter (not. isDigit) s rmdigits $=$ filter (not. isDigit)

The latter version is said to be written in point-free style.
A point-free binding of a function f has NO parameters!

Point-free style, continued

I think of point-free style as a natural result of fully grasping partial application and operations like composition.

Although it was nameless, we've already seen examples of point-free style, such as these:

```
nthOdd = (!!) [1,3..]
t2 = twice tail
numwords = length . words
ntl = head . tail . reverse
```

There's nothing too special about point-free style but it does save some visual clutter. It is commonly used.

The term "point-free" comes from topology, where a point-free function operates on points that are not specifically cited.

Point-free style, continued

Problem: Using point-free style, bind len to a function that works like the Prelude's length.

Handy:
> :t const
const :: a -> b -> a
> const 1020
10
> const [l] "foo"
[1]
Solution:

$$
\text { len }=\text { sum } . \operatorname{map}(\text { const } 1)
$$

See also: Tacit programming on Wikipedia

Hocus pocus with higher-order functions

Mystery function

What's this function doing?

$$
f a=g
$$

where

$$
g \mathrm{~b}=\mathrm{a}+\mathrm{b}
$$

Type?
f : : Num a => a -> a -> a

Interaction:
$>\mathrm{f}^{\prime}=\mathrm{f} 10$
$>$ f' 20
30
$>$ f 34
7

Fact:

DIY Currying

Curried function definitions are really just syntactic sugar-they just save some clutter. They don't provide something we can't do without.

Compare these two completely equivalent declarations for add:

$\operatorname{add} \mathrm{x} y=\mathrm{x}+\mathrm{y}$

The result of the call add 5 is essentially this function:

$$
\text { add' } y=5+y
$$

The combination of the code for add' and the binding for \mathbf{x} is known as a closure. It contains what's needed for execution at a future time.

Sidebar: Syntactic sugar

In 1964 Peter Landin coined the term "syntactic sugar".
A language construct that makes something easier to express but doesn't add a new capability is called syntactic sugar. It simply makes the language "sweeter" for human use.

Two examples from C :

- "abc" is equivalent to a char array initialized with \{'a', 'b', 'c', '\0'\}
- $a[i]$ is equivalent to $*(a+i)$

What's an example of syntactic sugar in Java?
The "enhanced for": for (int i: a) \{ ... \}

Syntactic sugar, continued

In Haskell a list like [5, 2, 7] can be expressed as 5:2:7:[].
Is that square-bracket list literal notation syntactic sugar?
What about [l..], [1,3..], ['a'..'z']?
The Enum type class has enumFrom, enumFromTo, etc.
Recall these equivalent bindings for double:
double $\mathrm{x}=\mathrm{x} * 2$
double $=\backslash x->x * 2$

Is the first form just syntactic sugar?
What if a function has multiple clauses?

Are anonymous functions syntactic sugar?

Syntactic sugar, continued

"Syntactic sugar causes cancer of the semicolon." —Alan J. Perlis.

Another Perlis quote:
"A language that doesn't affect the way you think about programming is not worth knowing."

Perlis was the first recipient of the ACM's Turing Award.

DIY currying in JavaScript

JavaScript doesn't provide the syntactic sugar of curried function definitions but we can do this:
function add(x) \{
return function (y) $\{$ return $\mathrm{x}+\mathrm{y}\}$
\}

| Q Elements Network Sources Ti | Try it in Chrome!
 View>Developer> JavaScript Console brings up a console
 Type in the code for add. |
| :---: | :---: |
| Q ∇ <top frame> | |
| $\begin{aligned} & >\operatorname{add}(5)(3) \\ & 8 \end{aligned}$ | |
| $\begin{aligned} & \text { a5 }=\operatorname{add}(5) \\ & \text { function }(y)\{\text { return } x+y\} \end{aligned}$ | |
| $\begin{aligned} & {[10,20,30] \text {.map(a5) }} \\ & {[15,25,35]} \end{aligned}$ | |

DIY currying in Python

>>> def add(x):
return lambda y : $\mathrm{x}+\mathrm{y}$
>>> f $=\operatorname{add}(5)$
>>> type(f)
<type 'function'>
>>> map(f, [10,20,30])
[15, 25, 35]

Another mystery function

Here's another mystery function:
$>\operatorname{mfxy}=\mathrm{fyx}$
$>$:type m
m : : (tl -> t2 -> t) -> t2 -> tl -> t

Can you devise a call to m ?
$>\mathrm{m}$ add 34
7
> m (++) "a" "b"
"ba"

What is m doing?

REPLACEMENTS! Discard 345+ in the old set

At hand:

$$
\mathrm{mfxy}=\mathrm{fyx}
$$

m is actually a Prelude function named flip:
$>$:t flip
flip :: (a -> b -> c) -> b -> a -> c

Recall take :: Int -> [a] -> [a]
> flip take [1..10] 3
[1,2,3]
> ftake = flip take
> ftake [l..10] 3
[1,2,3]

flip, continued

At hand:
flip $f x y=f y x$
> map (flip take "Haskell") [1..7]
["H","Ha","Has","Hask","Haske","Haskel","Haskell"]

Problem: write a function that behaves like this:
$>\mathrm{f}$ 'a'
["a","aa","aaa","aaaa","aaaaa",...infinitely...
Solution:
$\mathrm{f} x=\operatorname{map}(f l i p$ replicate x) [1..]

flip, continued

From assignment 3:
> splits "abcd"
[("a","bcd"),("ab","cd"),("abc","d")]
Some students used the Prelude's splitAt:
> splitAt 2 [10,20,30,40]
([10,20],[30,40])

Problem: Write a non-recursive version of splits.
Solution:

The $\$$ operator

\$ is the "application operator". Here's what :info shows:
$>$:info (\$)
(\$) :: (a -> b) -> a -> b
infixr $0 \$$-- right associative infix operator with very
-- low precedence
The following binding of $\$$ uses an infix syntax:
$\mathrm{f} \$ \mathrm{x}=\mathrm{fx} \quad-$ Equivalent: (\$) $\mathrm{f} x=\mathrm{f} \mathrm{x}$
Usage:
$>$ negate $\$ 3+4$
-7
What's the point of it?

The $\$$ operator, continued

$\$$ is a low precedence, right associative operator that applies a function to a value:
$\mathrm{f} \$ \mathrm{x}=\mathrm{f} \mathrm{x}$
Because + has higher precedence than \$, the expression negate $\$ 3+4$
groups like this:
negate $\$(3+4)$
Problem: Rewrite the following with parentheses instead of \$ filter (>3) \$ map length \$ words "up and down"
filter (>3) (map length (words "up and down"))
Don't confuse $\$$ with . (composition)!

Currying the uncurried

Problem: We're given a function whose argument is a 2-tuple but we wish it were curried so we could map a partial application of it.
$\mathrm{g}:$: (Int, Int) -> Int
$g(x, y)=x^{\wedge} 2+3 * x^{*} y+2 * y^{\wedge} 2$
$>g(3,4)$
77

Solution: Curry g with curry from the Prelude!
$>\operatorname{map}$ (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]
Your problem: Write curry! (And don't peek ahead!)

Currying the uncurried, continued

At hand:

```
g :: (Int, Int) -> Int
>g(3,4)
77
> map (curry g 3) [l..10]
[20,35,54,77,104,135,170,209,252,299]
```

Here's curry:
curry :: ((a, b) -> c) -> a -> b -> c curry fxy=f(x,y)

Usage:
$>$ cg = curry g
$>$:type cg
cg :: Int -> Int -> Int
$>\operatorname{cg} 34$
77

Currying the uncurried, continued

At hand:

$$
\begin{aligned}
& \text { curry :: }((a, b)->c)->a->b->c \\
& \text { curry f x } y=f(x, y)
\end{aligned}
$$

$>$ map (curry g 3) [l..10]
[20,35,54,77,104,135,170,209,252,299]
The key: (curry g 3) is a partial application of curry!
Call: curry g 3
Dcl: curry $\stackrel{\downarrow}{\mathrm{f}} \mathrm{x} \mathrm{y}=\mathrm{f}(\mathrm{x}, \mathrm{y})$

$$
=g(3, y)
$$

Currying the uncurried, continued

At hand:
curry :: ((a, b) -> c) -> (a -> b -> c) (parentheses added) curry fxy=f(x,y)
$>\operatorname{map}$ (curry g 3) [1..5]
Effectively turns [20,35,54,77,104]

Let's get flip into the game!
$>\operatorname{map}$ (flip (curry g) 4) [1..5]
[45,60,77,96,117]
The counterpart of curry is uncurry:
$>$ uncurry (+) $(3,4)$
7
function curry(f) \{

A curry function for JavaScript

 return function(x) \{ return function (y) $\{$ return $\mathrm{f}(\mathrm{x}, \mathrm{y})\}$ \}\}Elements Network Sources Timeline Profiles Resourc
Q \quad <top frame>
> function add (x, y) \{return $\mathrm{x}+\mathrm{y}$ \}
undefined
> c_add $=$ curry (add)
function (x) \{ return function (y) \{ return $f(x, y)$ \} \}
> add_5 = c_add(5)
function (y) \{ return $f(x, y)$ \}
[10, 20, 30].map(add_5)
[15, 25, 35]

Folding

Reduction

We can reduce a list by a binary operator by inserting that operator between the elements in the list:
$[1,2,3,4]$ reduced by + is $1+2+3+4$
["a","bc", "def"] reduced by ++ is "a" ++ "bc" ++ "def"
Imagine a function reduce that does reduction by an operator.
$>$ reduce (+) [1,2,3,4]
10
> reduce (++) ["a","bc","def"]
"abcdef"
> reduce max [10,2,4]
10
-- think of 10 `max` 2 `max` 4

Reduction, continued

At hand:
$>$ reduce (+) [1,2,3,4]
10

An implementation of reduce:
reduce _ [] = error "emptyList"
reduce _ $[\mathrm{x}]=\mathrm{x}$
reduce op (x:xs) = x `op` reduce op xs
Does reduce $+[1,2,3,4]$ do $((1+2)+3)+4$
or
$1+(2+(3+4))$
?
In general, when would the grouping matter?
If the operation is non-commutative, like division.

foldl1 and foldr1

In the Prelude there's no reduce but there is foldl1 and foldr1.

```
> foldl1 (+) [1..4]
10
> foldl1 max "maximum"
'x'
> foldl1 (/) [1,2,3]
0.16666666666666666 -- behaves like left associative: (1 / 2) / 3
> foldr1 (/) [1,2,3] -- behaves like right associative: 1/ (2 / 3)
1.5
```

The types of both foldl1 and foldr1 are (a -> a -> a) -> [a] -> a.

foldl1 vs. foldl

Another folding function is foldl (no 1). Let's compare the types of foldl1 and foldl:

$$
\begin{aligned}
& \text { foldl1 :: (a -> a -> a) -> [a] -> a } \\
& \text { foldl :: (a -> b -> a) -> a -> [b] -> a }
\end{aligned}
$$

What's different between them? (Eyes on the screen!)
First difference: foldl requires one more argument:
$>$ foldl (+) $\underline{0}$ [1..10]
55
> foldl (+) 100 []
100
$>$ foldll ${ }^{(+)}$[]
*** Exception: Prelude.foldl1: empty list

foldl1 vs. foldl, continued

Again, the types:
foldl1 :: (a -> a -> a) -> [a] -> a
foldl :: (a -> b -> a) -> a -> [b] -> a
Second difference:
foldl can fold a list of values into a different type! (This is BIG!)
Examples:
> foldl f1 0 ["just","a","test"]
3
-- folded strings into a number
> foldl f2 "stars: " [3,1,2]
"stars: $\underbrace{* * * * * " ~--~ f o l d e d ~ n u m b e r s ~ i n t o ~ a ~ s t r i n g ~}$
$>$ foldl f3 $0[(1,1),(2,3),(5,10)]$
57 -- folded two-tuples into a sum of products

For reference:
foldl :: (a -> b -> a) -> a -> [b] -> a

Here's another view of the type: (acm_t stands for accumulator type)
foldl :: (acm_t -> elem_t -> acm_t) -> acm_t -> [elem_t] -> acm_t
foldl takes three arguments:

1. A function that takes an accumulated value and an element value and produces a new accumulated value
2. An initial accumulated value
3. A list of elements

Recall:
> foldl f1 0 ["just","a","test"]
3
> foldl f2 "stars: " [3,1,2]
"stars: $* * * * * * "$

Recall:
> foldl f1 0 ["just","a","test"]
3

Here are the computations that fold did to produce that result
> f1 0 "just"
1
> f1 it "a"
2
> f1 it "test"
3

Let's do it in one expression, using backquotes to infix f1:

$1+2+3+4$ is the reduction we started this section with.

foldl, continued

At hand:

$$
\begin{aligned}
& >\text { f1 } 0 \text { "just" } \\
& 1
\end{aligned}
$$

> f1 it "a"

$$
2
$$

> f1 it "test"

$$
3
$$

Problem: Write a function $f 1$ that behaves like above.

Starter:

$$
\begin{aligned}
& \text { f1 }:: \text { acm_t }->\text { elem_t }->\text { acm_t } \\
& \text { f1 } \mathrm{acm} \text { elem }=a c m+1
\end{aligned}
$$

Congratulations! You just wrote a folding function!

Recall:
> foldl f2 "stars: " [3,1,2]
"stars: ******"

Here's what foldl does with $f 2$ and the initial value, "stars: ":
> f2 "stars: " 3
"stars: ***"
$>f 2$ it 1
"stars: ****"
$>f 2$ it 2
"stars: ******"

Write f 2 , with this starter:
f2 :: acm_t -> elem_t -> acm_t
f2 acm elem = acm ++ replicate elem '*'

Look! Another folding function!

Folding abstracts a common pattern of computation:
A series of values contribute one-by-one to an accumulating result.
The challenge of folding is to envision a function that takes nothing but an accumulated value (acm) and a single list element (elem) and produces a result that reflects the contribution of elem to acm.
f2 acm elem $=$ acm ++ replicate elem ${ }^{\prime *}$

SUPER IMPORTANT: A folding function never sees the list!

We then call foldl with (1) the folding function, (2) an appropriate initial value, and (3) a list of values.
fold f2 "stars: " [3,1,2]
foldl orchestrates the computation by making a series of calls to the folding function.
> (("stars: " ‘f2`3)`f2`1)`f2` 2
"stars: ******"

foldl, continued

Recall:
$>$ foldl f3 0 [(1,1),(2,3),(5,10)]
57

Here are the calls that foldl will make:
$>$ f3 $0(1,1)$
1
$>f 3$ it $(2,3)$
7
$>$ f3 it $(5,10)$
57

Problem: write f3!
$\mathrm{f} 3 \mathrm{acm}(\mathrm{a}, \mathrm{b})=\mathrm{acm}+\mathrm{a} * \mathrm{~b}$

foldl, continued

Remember that
fold f 0 [10,20,30]
is like
$((0 \text { ‘f } 10) \text { 'f' } 20)^{\prime} f^{\prime} 30$

Here's an implementation of foldl:
foldl facm [] = acm
foldl facm (elem:elems) = foldl f(acm `f` elem) elems
We can implement foldl1 in terms of foldl:
foldl1 $\mathrm{f}(\mathrm{x} 1: \mathrm{xs})=$ foldl $\mathrm{f} x 1 \mathrm{xs}$
foldl1_ [] = error "emptyList"

A non-recursive countEO

Let's use folding to implement our even/odd counter non-recursively.
$>$ countEO [3,4,7,9]
$(1,3)$
Often, a good place to start on a folding is to figure out what the initial accumulator value should be. What should it be for countEO?
$(0,0)$
Given countEO $[3,4,7,9]$, what will be the calls to the folding function?

$$
\begin{aligned}
& >f(0,0) 3 \\
& (0,1) \\
& >f \text { it } 4 \\
& (1,1) \\
& >f \text { it } 7 \\
& (1,2) \\
& >f \text { it } 9 \\
& (1,3)
\end{aligned}
$$

Problem: Write the folding function f (evens, odds) elem
| even elem = (evens + 1, odds)

$$
\text { | otherwise }=(\text { evens, odds }+1 \text {) }
$$

Problem: Write countEO as a foldl with f countEO nums $=$ foldl $f(0,0)$ nums

Folds with anonymous functions

If a folding function is simple, an anonymous function is typically used.

Let's redo our three earlier folds with anonymous functions:
> foldl (\acm _ -> acm + 1) 0 ["just","a","test"]
3
> foldl (\acm elem -> acm ++ replicate elem '*') "stars: " [3,1,2]
"stars: ******"
$>$ foldl (\acm (a,b) -> acm + a * b) 0 [(1,1), (2,3),(5,10)]
57

foldr

The counterpart of foldl is foldr. Compare their meanings:
foldl f zero [e1, e2, ..., eN] == (...((zero `f'e1) 'f`e2) `f'...)'f'eN foldr f zero [e1, e2, ..., eN] == e1 `f`(e2`f`... (eN`f` zero)...)
"zero" represents the computation-specific initial accumulated value. Note that with foldl, zero is leftmost; but with foldr, zero is rightmost.

Their types, with long type variables:
foldl :: (acm -> val -> acm) -> acm -> [val] -> acm
foldr :: (val -> acm -> acm) -> acm -> [val] -> acm

Mnemonic aid:
foldl's folding function has the accumulator on the left.
foldr's folding function has the accumulator on the right.

foldr, continued

Because cons (:) is right-associative, folds that produce lists are often done with foldr.

Imagine a function that keeps the odd numbers in a list:
> keepOdds [5,4,2,3]
[5,3]
Implementation, with foldr:
keepOdds list = foldr f [] lista where
f elem acm
| odd elem = elem : acm
| otherwise = acm

What are the calls to the folding function?
> f 3 [] -- rightmost first!
[3]
$>f 2$ it
[3]
$>f 4$ it
[3]
$>f 5$ it
[5,3]

filter and map with folds?

keepOdds could have been defined using filter:
keepOdds = filter odd
Can we implement filter as a fold? filter predicate list = foldr f [] list
where
f elem acm
| predicate elem = elem : acm
| otherwise = acm
How about implementing map as a fold? map $f=$ foldr (\backslash elem acm -> f elem : acm) []

Is folding One Operation to Implement Them All?

paired with a fold

Recall paired from assignment 3:
> paired "((())())"
True

Can we implement paired with a fold?

$$
\begin{aligned}
& \text { counter }(-1)^{\prime}=-1 \\
& \text { counter total '(' = total }+1 \\
& \text { counter total ')' = total }-1 \\
& \text { counter total }_{-}=\text {total }
\end{aligned}
$$

paired is a fold with a simple wrapper, to test the result of the fold.
paired $s=$ foldl counter $0 s==0$

Point-free:
paired $=(0==)$. foldl counter 0

A progression of folds

Let's do a progression of folds related to finding vowels in a string.
First, let's count vowels in a string with a fold:

Next, let's produce both a count and the vowels themselves:
Note: $s / v a l / l e t t e r / g$
> foldr (\letter acm@(n, vows) ->
if letter `elem` "aeiou" then ($\mathrm{n}+1$, letter:vows) else acm) (0,[]) "ate"
(2,"ae")

A progression of folds, continued

Finally, let's write a function that produces a list of vowels and their positions:
> vowelPositions "Down to Rubyville!"
[('o', l), ('o',6), ('u',9), ('i', 13), ('e', 16)]
Solution:
vowelPositions s = reverse result
where (result, _) =
foldl (\acm@(vows, pos) letter ->
if letter `elem` "aeiou" then ((letter,pos):vows,pos+l) else (vows,pos+1))
$([], 0) \mathrm{s}$
The foldl produces a 2-tuple whose first element is the result, a list, but in reverse order.

This is another function that's a fold with a wrapper, like paired, earlier.
map:
transforms a list of values
length input $==$ length output
filter:
selects values from a list
$0<=$ length output $<=$ length input
folding
Input: A list of values and an initial value for accumulator
Output: A value of any type and complexity
True or false?
Any operation that processes a list can be expressed in a terms of a fold, perhaps with a simple wrapper.

We can fold a list of anythings into anything!

Far-fetched folding:
Refrigerators in Gould-Simpson to ((grams fat, grams protein, grams carbs), calories)

Keyboards in Gould-Simpson to
[("a", \#), ("b", \#), ..., ("\$", \#), ("CMD", \#)]
[Backpack] to
(\# pens, pounds of paper,
[(title, author, [page \#s with the word "computer")])
[Furniture]
to a structure of 3D vertices representing a convex hull that could hold any single piece of furniture.

User-defined types

A Shape type

A new type can be created with a data declaration.
Here's a simple Shape type whose instances represent circles or rectangles:

```
data Shape =
    Circle Double | -- just a radius
    Rect Double Double -- width and height
        deriving Show
```

The shapes have dimensions but no position.
Circle and Rect are data constructors.
"deriving Show" declares Shape to be an instance of the Show type class, so that values can be shown using some simple, default rules.

Shape is called an algebraic type because instances of Shape are built using other types.

Shape, continued

Instances of Shape are created by calling the data constructors:

```
>rl=Rect 3 4
> rl
Rect 3.04.0
> r2 = Rect 5 3
```

data Shape =
Circle Double |
Rect Double Double deriving Show

```
\(>\mathrm{cl}=\) Circle 2
> shapes \(=[r 1, r 2, \mathrm{cl}]\)
> shapes
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0]
```

Lists must be homogeneous-why are both Rects and Circles allowed in the same list?

Shape, continued

The data constructors are just functions-we can use all our function-fu with them!
> :t Circle
Circle :: Double -> Shape
$>$:t Rect
Rect :: Double -> Double -> Shape
$>$ map Circle [2,3] ++ map (Rect 3) [10,20]
[Circle 2.0,Circle 3.0,Rect 3.0 10.0,Rect 3.0 20.0]

Shape, continued

Functions that operate on algebraic types use patterns based on the type's data constructors.
area $($ Circle $r)=r * * 2 * p i$ area (Rect wh) $=\mathrm{w} * \mathrm{~h}$

Usage:
$>\mathrm{rl}$
Rect 3.04 .0
$>$ area rl
12.0
$>$ shapes
[Rect 3.0 4.0,Rect 5.0 3.0, Circle 2.0]
$>$ shapes
[Rect 3.0 4.0,Rect 5.0 3.0, Circle 2.0]
$>$ map area shapes
[12.0,15.0,12.566370614359172]
$>$ sum \$ map area shapes
39.56637061435917
data Shape =
Circle Double |
Rect Double Double deriving Show

Shape, continued

Let's make the Shape type an instance of the Eq type class.
What does Eq require?
$>$:info Eq
class Eq a where

$$
\begin{aligned}
& \text { (==) :: a -> a -> Bool } \\
& \text { (/=) :: a -> a -> Bool }
\end{aligned}
$$

Default definitions from Eq:
(==) $\mathrm{a} b=\operatorname{not} \$ \mathrm{a} /=\mathrm{b}$
(/二) $\mathrm{a} b=\operatorname{not} \$ \mathrm{a}==\mathrm{b}$

We'll say that two shapes are equal if their areas are equal. instance Eq Shape where

$$
\text { (==) rl r2 = area } r l==\text { area } r 2
$$

Usage:
$>$ Rect $34==$ Rect 62
True
$>$ Rect $34=$ Circle 2
False

Shape, continued

Let's see if we can find the biggest shape:
$>$ maximum shapes
No instance for (Ord Shape) arising from a use of 'maximum'
Possible fix: add an instance declaration for (Ord Shape)

What's in Ord?
$>$:info Ord
class Eq a => Ord a where compare :: a -> a -> Ordering (<) :: a -> a -> Bool
(>=) :: a -> a -> Bool
(>) :: a -> a -> Bool
(<=) :: a -> a -> Bool
max :: a -> a -> a
min :: a -> a -> a

Eq a => Ord a requires
would-be Ord classes to be instances of Eq. (Done!)

Like $==$ and $/=$ with Eq, the operators are implemented in terms of each other.

Shape, continued

Let's make Shape an instance of the Ord type class:
instance Ord Shape where

$$
\begin{aligned}
& (<) \mathrm{rl} \mathrm{r2} \mathrm{=} \mathrm{area} \mathrm{rl} \mathrm{<} \mathrm{area} \mathrm{r2} \\
& (<=) \mathrm{rl} \mathrm{r2}=\text { area } \mathrm{rl}<=\text { area } \mathrm{r} 2
\end{aligned} \quad-\quad<\text { and }<=\text { are sufficient }
$$

Usage:

> shapes

[Rect 3.0 4.0,Rect 5.0 3.0, Circle 2.0]
> map area shapes
[12.0,15.0, 12.566370614359172]
> maximum shapes
Rect 5.03 .0
> Data.List.sort shapes
[Rect 3.0 4.0, Circle 2.0,Rect 5.0 3.0]
Note that we didn't need to write functions like sumOfAreas or largestShape - we can express those in terms of existing operations

Shape all in one place

Here's all the Shape code: (in shape.hs)
data Shape =

Circle Double |

Rect Double Double deriving Show
area $($ Circle $r)=r * * 2 *$ pi
area (Rect wh) $=\mathrm{w} * \mathrm{~h}$
instance Eq Shape where
(==) rl r2 = area rl == area r2
instance Ord Shape where

$$
\begin{aligned}
& (<) \mathrm{rl} \mathrm{r} 2=\text { area } \mathrm{rl}<\text { area } \mathrm{r} 2 \\
& (<=) \mathrm{rl} \mathrm{r2}=\text { area } \mathrm{rl}<=\text { area } \mathrm{r} 2
\end{aligned}
$$

What would be needed to add a Figure8 shape and a perimeter function?
How does this compare to a Shape/Circle/Rect hierarchy in Java?

The type Ordering

Let's look at the compare function:
> :t compare
compare :: Ord a => a -> a -> Ordering
Ordering is a simple algebraic type, with only three values:
> :info Ordering
data Ordering $=\mathrm{LT}|\mathrm{EQ}| \mathrm{GT}$
$>$ [rl,r2]
[Rect 3.0 4.0,Rect 5.0 3.0]
> compare rl r2
LT
> compare r2 rl
GT

What is Bool?

What do you suppose Bool really is?
Bool is just an algebraic type with two values:
$>$:info Bool
data Bool = False | True
Bool is an example of Haskell's extensibility. Instead of being a primitive type, like boolean in Java, it's defined in terms of something more basic.

A binary tree

Here's an algebraic type for a binary tree: (in tree.hs)
data Tree a = Node a (Tree a) (Tree a)
| Empty deriving Show

The a is a type variable. Our Shape type used Double values but Tree can hold values of any type!
$>$ tl $=$ Node 9 (Node 6 Empty Empty) Empty
$>\mathrm{tl}$
Node 9 (Node 6 Empty Empty) Empty
$>\mathrm{t} 2=$ Node 4 Empty tl
$>$ t2
Node 4 Empty (Node 9 (Node 6 Empty Empty) Empty)

Tree, continued

Here's a function that inserts values, maintaining an ordered tree:
insert Empty v = Node v Empty Empty
insert (Node x left right) value
value $<=x=$ (Node x (insert left value) right)
| otherwise = (Node x left (insert right value))
Let's insert some values...
$>\mathrm{t}=$ Empty
> insert t 5
Node 5 Empty Empty
$>$ insert it 10
Node 5 Empty (Node 10 Empty Empty)

> insert it 3
Node 5 (Node 3 Empty Empty) (Node 10 Empty Empty)
Note that each insertion rebuilds some portion of the tree!

Tree, continued

Here's an in-order traversal that produces a list of values:
inOrder Empty = []
inOrder (Node val left right) =
inOrder left ++ [val] ++ inOrder right
What's an easy way to insert a bunch of values?
$>\mathrm{t}=$ foldl insert Empty [3,1,9,5,20,17,4,12]
$>$ inOrder t
[1,3,4,5,9,12,17,20]
> inOrder \$ foldl insert Empty "tim korb" " bikmort"
> inOrder \$ foldl insert Empty [Rect 3 4, Circle l, Rect l 2] [Rect 1.0 2.0,Circle 1.0,Rect 3.04 .0]

Maybe

Here's an interesting type:
$>$:info Maybe
data Maybe a = Nothing | Just a
Speculate: What's the point of it?
Here's a function that uses it:
$>$:t Data.List.find
Data.List.find :: (a -> Bool) -> [a] -> Maybe a
How could we use it?
$>$ find even $[3,5,6,8,9]$
Just 6
$>$ find even $[3,5,9]$
Nothing
> case (find even [3,5,9]) of \{ Just _ -> "got one"; _ -> "oops!"\} "oops!"

In conclusion...

CSC 372 Spring 2018, Haskell Slide 393

If we had a whole semester...

If we had a whole semester to study functional programming, here's what might be next:

- More with infinite data structures (like $\mathrm{x}=1: \mathrm{x}$)
- How lazy/non-strict evaluation works
- Implications and benefits of referential transparency (which means that the value of a given expression is always the same).
- Functors (structures that can be mapped over)
- Monoids (a set of things with a binary operation over them)
- Monads (for representing sequential computations)
- Zippers (a structure for traversing and updating another structure)
- And more!

Jeremiah Nelson and Jordan Danford are great local resources for Haskell!

Even if you never use Haskell again...

Recursion and techniques with higher-order functions can be used in most languages. Some examples:

JavaScript, Python, PHP, all flavors of Lisp, and lots of others:
Functions are "first-class" values; anonymous functions are supported.
C
Pass a function pointer to a recursive function that traverses a data structure.

C\#
Excellent support for functional programming with the language itself, and LINQ, too.

Java 8
Lambda expressions are in!
OCaml
"an industrial strength programming language supporting functional, imperative and object-oriented styles" - OCaml.org
http://www.ffconsultancy.com/languages/ray_tracer/comparison.html

Killer Quiz!

