
Comparative Programming
Languages

CSC 372
Spring 2018

cs.arizona.edu/classes/cs372/spring18

Stranger Danger
Introduce yourself to your

tablemates while we're waiting
to launch!

CSC 372, Spring 2018, Introduction slide 1

InstructorWilliam Mitchell (whm)

• Consultant/contractor doing software development and
training of software developers. Lots with Java, C++, C,
Python, Ruby, Icon, and more. Linux stuff, too.

• Occasionally teach a CS course. (337, 352, 372, and
others)

• Adjunct instructor, not a professor

• Education:
BS CS (North Carolina State University, 1981)
MS CS (University of Arizona, 1984)

• Incorrect to say "Dr. Mitchell" or "Professor Mitchell"!
CSC 372, Spring 2018, Introduction slide 2

Topic Sequence
• Functional programming with Haskell

• Imperative and object-oriented programming using
dynamic typing with Ruby

• Logic programming with Prolog

• Whatever else in the realm of programming languages
that we find interesting and have time for.

Note: We'll cover a selection of elements from the
languages, not everything.

CSC 372, Spring 2018, Introduction slide 3

Themes running through the course
• Discerning the philosophy of a language and how it's

manifested

• Understanding tensions and tradeoffs in language design

• Acquiring a critical eye for language design

• Assessing the "mental footprint" of a language

• Learning how to learn a language (LHtLaL)

CSC 372, Spring 2018, Introduction slide 4

Syllabus highlights
(cs.arizona.edu/classes/cs372/spring18/syllabus.html)

CSC 372, Spring 2018, Introduction slide 5

Prereqs, Piazza, Mail
Prerequisites

• CSC 120 or 127B or 227
• But, this is a 300-level class!

Piazza
• Our forum
• Sign up if you haven't already!
• Private posts disabled—use mail
• If staff starts a thread, the first post is required reading

Mail
• goes to whm and TAs
• For anything more than "Thanks!" use "Reply All" to

follow the Cc:'s

CSC 372, Spring 2018, Introduction slide 6

Teaching Assistants
Undergraduate TAs

Alex Koltz (akoltz)
Michael Ordaz (michaelaordaz)

Office hours and contact information is on website

CSC 372, Spring 2018, Introduction slide 7

Textbooks
• No texts are required.

• Lectures, handouts, and Piazza postings might be all you
need.

• Syllabus and slides have recommendations for
supplementary texts, most of which are on Safari Books
Online.

• Suggested supplementary readings will be provided
(but alignment with our topics and sequencing is tough)

CSC 372, Spring 2018, Introduction slide 8

Handouts
Handouts of all slides will be provided

Three options for handouts with slides:
• Handouts with selected questions answered
• Handouts with selected questions unanswered (default)
• No handouts

Mail us to adjust your preference

Both versions, as both PDFs and .pptxs, on website

CSC 372, Spring 2018, Introduction slide 9

Grading
Grading

� Assignments 60%
� Pop quizzes 5%
� Mid-term exam 13%
� Final exam 22%

Ten-point scale: >= 90 is A, etc. Might go lower.

Original Thoughts
� Half-point on final average for each

CSC 372, Spring 2018, Introduction slide 10

Assignments
Assignments—things like:

� Coding in the various languages
� Short answer and essay questions
� Diagrams
� One video project

Late assignments are not accepted!

No late days!

But, extensions for situations beyond your control.

CSC 372, Spring 2018, Introduction slide 11

Collaborative Learning Exercises
"Collaborative learning is two or more students laboring
together and sharing the workload equitably as they progress
toward intended learning outcomes."—Barkley et al.

• This is my first use of CLEs. I welcome your feedback!

• Exercises typically done during the class period

• Group size will vary; groups formed in various ways

• Exercises will be graded

• Scores will be grouped with assignment points

CSC 372, Spring 2018, Introduction slide 12

We'll be grading on lectura
You can develop solutions on your own machines but they'll be
graded on the CS machine "lectura", and thus should be tested
there.

Mail us (372s18@cs) TODAY if you haven't worked on lectura
or if you feel your knowledge of that eviroment is weak; we'll be
happy to help you get up and running there.

If you haven't had 352, I recommend you skim through my UNIX
slides:
http://cs.arizona.edu/classes/cs352/fall15/unix.pdf

CSC 372, Spring 2018, Introduction slide 13

Office hours
� I love office hours!
� Website has guaranteed hours
� Open-door policy otherwise
� In-person interaction is most effective
� Discord or Skype preferred for IM and screen sharing
� OK to call my mobile but don't leave voice mail! (Send

e-mail instead.)

CSC 372, Spring 2018, Introduction slide 14

Suggestions for success
• Attend every lecture.

• Arrive on time for lectures.

• Work through all examples on the slides. Try some what-ifs, too.

• Read the write-up for an assignment the day it's handed out.

• Start on assignments early. Don't be a regular in the Thursday
Night Club.

• Don't leave any points on the table.

• Don't hesitate to ask for help on an assignment.

• If you get behind, come to office hours right then!

• Don't make bad assumptions.

CSC 372, Spring 2018, Introduction slide 15

NO CHEATING!
Capsule summary:

Don't cheat in my class!
Don't make it easy for anybody else to cheat!
One strike and you're out!

For a first offense expect these penalties:
• Failing grade for course
• Permanent transcript annotation
• Recommendation for one semester university suspension

A typical first step on the road to ruin is sharing your solutions
with your best friend, roommate, etc., who swears to just learn
from your work and absolutely not turn it in as their work.

CSC 372, Spring 2018, Introduction slide 16

No asking the world for help!
The material covered in lectures, posted on Piazza, etc.
should be all you need to do the assignments.

I challenge you to not search the web for solutions for
problems on assignments!

Posting problem-specific questions on websites, IRC
channels, mailing lists, etc. will be considered to be
cheating!

Example: I'm learning Haskell and trying to write a
function that returns True iff the parentheses in a string
are properly matched. Any suggestions?

CSC 372, Spring 2018, Introduction slide 17

My Teaching Philosophy
• I work for you!

• My goal: everybody earns an "A" and averages less than ten
hours per week on this course, counting lecture time.

• Effective use of office hours, e-mail, and IM can equalize
differences in learning speed.

• I should be able to answer every pertinent question about
course material.

• My goal is zero defects in slides, assignments, etc.
Bug Bounty: One assignment point

• Everything I'll expect you to know on exams will be covered
in class, on assignments, or on Piazza.

CSC 372, Spring 2018, Introduction slide 18

READ THE SYLLABUS!
(cs.arizona.edu/classes/cs372/spring18/syllabus.html)

CSC 372, Spring 2018, Introduction slide 19

Assignment 1 and 2
Assignment 1

� It's a survey (on the class website)
� Due Sunday, January 14, 11:00pm
� Worth 10 points
� Maybe 10 minutes to complete
� Thanks for doing it!

Assignment 2
• On the website
• Due Sunday, January 21 at 11:00pm

CSC 372, Spring 2018, Introduction slide 20

Pictures &
Name memorization

CSC 372, Spring 2018, Introduction slide 21

Basic questions about
programming languages

CSC 372, Spring 2018, Introduction slide 22

What is a programming language?

A simple definition:
A system of rules for data manipulation.

It is generally agreed that in order for a language to be considered
a programming language it must be Turing Complete.

One way to prove a language is Turing Complete is to use it
to implement a Universal Turing Machine, a theoretical
device capable of performing any algorithmic computation.

What language is most commonly mis-listed on resumes as a
programming language?

CSC 372, Spring 2018, Introduction slide 23

Does it matter what language is used?
The two extremes:

• If you’ve seen one language, you’ve seen them all. Just
pick one and get to work.

• Nothing impacts software development so much as the
language being used. We must choose very carefully!

CSC 372, Spring 2018, Introduction slide 24

Why study programming languages?
• Learn new ways to think about computation

• Learn to see languages from a critical viewpoint

• Improve basis for choosing languages for a task

• Add some tools to the “toolbox”

• Increase ability to design a new language

"A programmer should learn a new language every year."
--Recommended in The Pragmatic Programmer

CSC 372, Spring 2018, Introduction slide 25

How old are programming languages?
Plankalkül 1945
Short Code 1949
FORTRAN 1957
ALGOL 1958
LISP 1958
COBOL 1959
BASIC 1964
PL/I 1965
SNOBOL4 1967
SIMULA 67 1967
Pascal 1971
C 1972

Prolog 1972
Smalltalk 1972
ML 1977
Icon 1979
Ada 1980
C++ 1983
Objective-C 1983
Erlang 1986
Perl 1987
Haskell 1990
Python 1991
Ruby 2/24/93
Java 1995

JavaScript 1995
PHP 3 1998
C# 2000
D 2001
Scala 2003
Clojure 2007
Go 2008
Rust 2010
Kotlin 2011
TypeScript 2012
Julia 2012
Swift 2014
Goaldi 2015

CSC 372, Spring 2018, Introduction slide 26

How many languages are there?
The State of the Octoverse 2017 (octoverse.github.com)

wikipedia.org/wiki/Alphabetical_list_of_programming_languages

The Language List
people.ku.edu/~nkinners/LangList/Extras/langlist.htm

Online Historical Encyclopaedia of Programming Languages
hopl.info

CSC 372, Spring 2018, Introduction slide 27

How are languages related to each other?
Some of the many attempts at a family tree of languages:

digibarn.com/collections/posters/tongues

levenez.com/lang

rigaux.org/language-study/diagram.html

www.seas.gwu.edu/~mmburke/courses/csci210-
su10/tester-endo.pdf

(Seems to be based on hopl.info data.)

CSC 372, Spring 2018, Introduction slide 28

Collaborative Learning Exercise

What languages are popular right now?
cs.arizona.edu/classes/cs372/spring18/cle-poplang.html

CSC 372, Spring 2018, Introduction slide 29

How do languages help us?

• Free the programmer from details
int i = 5;
x = y + z * q;

• Detect careless errors
int f(String s, char c);
...
int i = f('i', "Testing");

• Provide constructs to concisely express a computation
for (int i = 1; i <= 10; i++)

...

CSC 372, Spring 2018, Introduction slide 30

How languages help, continued
• Provide portability

Examples:
• C provides moderate source-level portability.
• Java was designed with binary portability in

mind.

• Facilitate using a paradigm, such as functional, object-
oriented, or logic programming.

CSC 372, Spring 2018, Introduction slide 31

How are languages specified?
The specification of a language has two key aspects:
• Syntax

Specifies the sequences of symbols that are valid
programs in the language.

• Semantics
Specifies the meaning of a sequence of symbols.

Language specifications fall on a broad spectrum:
High end:

The specification is a published international standard
Low end:

The behavior of the lone implementation is the
specification.

CSC 372, Spring 2018, Introduction slide 32

Syntax vs. semantics
Consider this expression:

a[i] = x

What are some languages in which it is syntactically valid?

In each of those languages, what is the meaning of it?

What are various meanings for these expressions?
x || y
x y
*x

CSC 372, Spring 2018, Introduction slide 33

What are the building blocks of a language?
• Data types
• Operators
• Control structures
• Support for encapsulation
• Functions
• Abstract types / Classes
• Packages / Modules

• Error / Exception handling
• Standard library

Building blocks

CSC 372, Spring 2018, Introduction slide 34

What are qualities a language might have?
• Simplicity (“mental footprint”)

• Expressive power

• Readability of programs

• Orthogonality

• Extensibility

• Reliability of programs

• Run-time efficiency

• Practical development project size

• Support for a style of programming

What are some tensions between these qualities?
CSC 372, Spring 2018, Introduction slide 35

What factors affect popularity?
• Available implementations

• Documentation

• Community

• Vectors of “infection”

• Ability to occupy a niche

• Availability of supporting tools, like debuggers and IDEs

• Buzz

• Cost

CSC 372, Spring 2018, Introduction slide 36

The philosophy of a language
What is the philosophy of a language? How is it manifested?

C
• Close to the machine
• Few constraints on the programmer
• High run-time efficiency
• “What you write is what you get.”

C++
• Close to both machine and problem being solved
• Support object-oriented programming
• “As close to C as possible, but no closer.” — Stroustrup

PostScript
• Page description
• Intended for generation by machines, not humans

What is the philosophy of Java?
CSC 372, Spring 2018, Introduction slide 37

A Little U of A CS History

CSC 372, Spring 2018, Introduction slide 38

The Founding of UA CS
• The UA CS department was founded by Ralph Griswold in

1971. (Hint: know this! Mnemonic aid: ASCII 'G' is 71.)

• Griswold was Head of Programming Research and
Development at Bell Labs before coming to UA.

• Griswold and his team at Bell Labs created the SNOBOL
family of languages, culminating with SNOBOL4.

• Griswold's interest and prominence in programming
languages naturally influenced the course of research at
UA.

CSC 372, Spring 2018, Introduction slide 39

UA CS's language heritage

Cg
EZ
Icon
Leo
MPD
Ratsno
Rebus

Seque
SIL2
SL5
SR
SuccessoR
Unicon
Y

Goaldi

In the 1970s and 1980s UA Computer Science was recognized
worldwide for its research in programming languages.

These are some of the languages created here:

Along with language design, lots of work was focused on
language implementation techniques.

CSC 372, Spring 2018, Introduction slide 40

My intersection with Griswold's work
I learned FORTRAN IV and BASIC in a summer school course at
Wake Forest during the summer after high school.

In first trip to library at NCSU, took home a stack of books on
programming languages, including SNOBOL4. Was totally mystified.

Learned PL/I in two-course introduction to computer science sequence.

Took a one-unit course on SNOBOL4 during sophomore year. Used
SPITBOL whenever possible in courses thereafter.

Attended a colloquium at NCSU where Ralph Griswold presented a
new programming language, named Icon.

Ported Icon to an IBM mainframe and DEC's VAX/VMS.

Went to graduate school here at UA, and worked on Icon as a graduate
research assistant for Dr. Griswold.

CSC 372, Spring 2018, Introduction slide 41

Quiz!

CSC 372, Spring 2018, Introduction slide 42

