
SNOBOL4
CSC 372, Spring 2018

The University of Arizona
William H. Mitchell

whm@cs
CSC 372 Spring 2018, SNOBOL4 Slide 1

Developed in the Programming Research Studies Department at Bell
Telephone Laboratories.

Their interests: Automata theory, graph analysis, associative
processors, high-level programming languages.

Were using SCL (Symbolic Communication Language) for symbolic
integration, factoring of multivariate polynomials, and analysis of
Markov chains.

First called SCL7, then SEXI (String EXpression Interpreter).

Renamed to SNOBOL, with a backronym
StriNg Oriented SymBOlic Language

Four versions of SNOBOL from 1963-1966, culminating with SNOBOL4.

Ralph Griswold was involved with all, and was lead on SNOBOL4.

A little SNOBOL history

CSC 372 Spring 2018, SNOBOL4 Slide 2

Consider a program that reads lines from standard input and writes
numbered lines to standard output:

% cat lines
one
two
three
four
five

% snobol4 numlines.sno < lines
1: one
2: two
3: three
4: four
5: five

Try it! spring18/bin/snobol4 is the executable; examples are in
spring18/snobol4.

A line-numbering program

CSC 372 Spring 2018, SNOBOL4 Slide 3

*
* Read lines from standard input and write
* numbered lines to standard output, a bit
* like "cat -n"
*

n = 1

loop line = input :f(end)

output = n ': ' line

n = n + 1 :(loop)

end

numlines.sno

CSC 372 Spring 2018, SNOBOL4 Slide 4

String concatenation:
"The decision not to have an explicit operator for concatenation, but
instead just to use blanks to separate the strings to be concatenated,
was motivated by a belief in the fundamental role of concatenation in
a string-manipulation language. The model for this feature was
simply the convention used in natural languages to separate words by
blanks."

Control structures:
"We felt that providing a statement with a test-and-goto format would
allow division of program logic into simple units and that
inexperienced users would find a more technical, highly structured
language difficult to learn and use."

Source: History of Programming Languages (from ACM SIGPLAN
History of Programming Languages Conference, June 1-3, 1978)

Two language design decisions

CSC 372 Spring 2018, SNOBOL4 Slide 5

Imagine a program that prompts the user for a repetition count and a string
to repeat:

$ snobol4 repl.sno
How many of what?
5 *

How many of what?
7 abc
abcabcabcabcabcabcabc

How many of what?
11 1011
10111011101110111011101110111011101110111011

repl.sno

CSC 372 Spring 2018, SNOBOL4 Slide 6

define('repl(s,n)')
:(main)

*
* function repl(s,n) is like s * n in Ruby
*
repl eq(n,0) :s(return)

repl = repl s
n = n - 1 :(repl)

main
output = 'How many of what?'
line = input :f(end)
line span(&digits) . count span(' ') rem . string
output = repl(string, count)
output = :(main)

end

repl.sno

CSC 372 Spring 2018, SNOBOL4 Slide 7

In formal language theory, a language is a possibly infinite set of strings.

A recognizer for a language determines whether a string is in the language.

Consider a recognizer for simple arithmetic expressions:
Expression?
3*(4+5)
OK!

Expression?
((x+y)*z)/2+((x))-(q/3)*500
OK!

Expression?
(x+3)*
Huh?

Note: we'll not handle whitespace.

An expression recognizer

CSC 372 Spring 2018, SNOBOL4 Slide 8

Here is a first version of a recognizer for arithmetic expressions.

nl = char(10)
expr = 'x'

loop
line = input :f(end)
line pos(0) expr rpos(0) :f(huh)

output = 'ok: ' line nl :(loop)
huh output = '??: ' line nl :(loop)

end

How can we characterize the arithmetic expressions it recognizes?

How does the above version behave wrt. input and output?

expr.sno

CSC 372 Spring 2018, SNOBOL4 Slide 9

Let's extend the expressions that can be handled!
$ cat expr.1
x
abc
abc+x
a+b+c
a*b+c-d/e
10
-20
10+a-20--x
(a-1)
-20*(3+4-(x*y))
3*(4+5)
-x*-(-(-(x)))
((x+y)*z)/2+((x))-(q/3)*500

expr.sno, continued

CSC 372 Spring 2018, SNOBOL4 Slide 10

var = span(&lcase)
int = span(&digits)
op = any('+-/*')
expr = int | var | *expr op *expr

| '-' *expr | '(' *expr ')'

loop
line = input :f(end)
line pos(0) expr rpos(0) :f(huh)
output = 'ok: ' line nl :(loop)
...

General form of a pattern match statement:
label subject pattern = replacement goto

Pattern creation:
Alternation (|) and concatenation
Value assignment with . and $
Unevaluated expressions

Control keywords:
&anchor, &fullscan

Predefined patterns:
arb, bal, fail, fence, null, rem, succeed

Functions that produce patterns:
any(chars), arbno(pattern), break(chars), len(n), notany(chars),
pos(n), rpos(n), rtab(n), span(chars), tab(n)

Summary of SNOBOL4 pattern matching

CSC 372 Spring 2018, SNOBOL4 Slide 11

Number of "words" reported by wc for...
• Summary of SNOBOL4 patterns on previous slide: 54
• Summary of Ruby 2.0 REs in "Pickaxe" book: 705
• Microsoft's quick reference for REs: 2,091
• Summary of Icon string scanning in Ruby slides: 81

Recognition capability:
• Regular expressions can recognize strings in a "regular" language—

type(3) in the Chomsky hierarchy.

• SNOBOL4 patterns can recognize strings in an "unrestricted"
language—type(0).

Notable: There are few idioms to learn with SNOBOL4 patterns.

Why is the industry using regular expressions when SNOBOL4 patterns
are both simpler and more powerful?

SNOBOL4 patterns vs. regular expressions

CSC 372 Spring 2018, SNOBOL4 Slide 12

SNOBOL4 is implemented in SIL—SNOBOL Implementation Language.
*
* Output Procedure
*
PUTOUT PROC , Output procedure

POP (IO1PTR,IO2PTR) Restore block and val
VEQLC IO2PTR,S,,PUTV Is value STRING?
VEQLC IO2PTR,I,,PUTI Is value INTEGER?
RCALL IO2PTR,DTREP,IO2PTR Get data type repr.
GETSPC IOSP,IO2PTR,0 Get specifier
BRANCH PUTVU Join processing

*_
PUTV LOCSP IOSP,IO2PTR Get specifier
PUTVU STPRNT IOKEY,IO1PTR,IOSP Perform print

AEQLC IOKEY,0,,COMP6 Check status
INCRA WSTAT,1 Inc count of writes
BRANCH RTN1 Return

*_
PUTI INTSPC IOSP,IO2PTR Convert INT. to STRING

BRANCH PUTVU Rejoin processing

In essence, SIL instructions are instructions for a virtual machine.
SNOBOL4 SIL implementation: spring18/snobol4/v311.sil (12,189 lines)

SNOBOL4 implementation

CSC 372 Spring 2018, SNOBOL4 Slide 13

David R. Hanson developed RATSNO, an adaptation of RATFOR to SNOBOL4.
Here is assignment 5's seqwords in RATSNO: (not tested!)

&anchor = 1; maxlen = 100000
word = input
for (;;) {

if (word '.')
break

words = words rpad(word,maxlen)
word = input
}

while (num = input) {
if (num '.') {

output = line
line =
}

else {
words len((num - 1) * maxlen) len(maxlen) . word
line = line trim(word) ' '
}

}
output = line

CSC 372 Spring 2018, SNOBOL4 Slide 14

In 1968 the University of Arizona formed a committee to develop a
computer science program. A graduate program with courses from a
variety of departments was assembled.

Murray Sargent III, a UA optics professor with an interest in programming
languages, had visited Bell Labs and knew of the SNOBOL family.

Sargent embarked on a one-man recruiting campaign to convince Ralph
Griswold to leave Bell Labs and join the University of Arizona.

In August of 1971, Ralph Griswold joined the University of Arizona as its
first Professor of Computer Science.

On his first day, Dr. Griswold arrived to find a line of students waiting
outside his office for advising.

In his office was a desk, but no chair.

A little more history

CSC 372 Spring 2018, SNOBOL4 Slide 15

I'd like you to know...

• The syntax for string and pattern concatenation

• How flow of control works

• The basic form of pattern matching, with functions and operators that
build patterns, and the "dot" notation for extracting parts of matches

• That there is implicit conversion between integers and strings

• What the variables input and output represent

• That SNOBOL4 patterns are capable of recognizing an unrestricted
language (type 0 in the Chomsky hierarchy)

SNOBOL4 takeaways

CSC 372 Spring 2018, SNOBOL4 Slide 16

