
CSC 372 Midterm Exam
Wednesday, March 15, 2023

READ THIS FIRST

Read this page now but do not turn this page until you are told to do so.  Go ahead and fill in the boxes
above with your last name and the last names of any classmates sitting beside you.

This is a 65-minute exam with a total of 100 points of regular questions and an extra credit section.

The last five  minutes of the exam is a "seatbelts required" period, to avoid distractions for those who are
still working.  If you finish before the "seatbelts required" period starts, you may turn in your exam and
leave.  If not, you must stay quietly seated—no "packing up"— until time is up for all.

You are allowed no reference materials whatsoever.

If you have a question, raise your hand.  We will come to you.  DO NOT leave your seat.

If you have a question that can be safely resolved with a minor assumption, like the name of a function or
the order of function arguments, state the assumption and proceed.

Feel free to use abbreviations, like "otw" for "otherwise".

It's fine to use helper functions or predicates unless they are specifically prohibited or a specific form for
the function or predicate is specified.

Don't make a programming problem hard  by assuming that it needs to do more than is specifically
mentioned in the write-up or that the solution that comes to mind is "too easy."

If you're stuck on a problem, please ask for a hint. Try to avoid leaving a problem completely
blank—that's a sure zero.

It is better to put forth a solution that violates stated restrictions than to leave it blank—a solution with
violations may still be worth partial credit.

When told to begin, double-check that your name is at the top of this page, and then put your initials in
the lower right-hand corner of the top side of each sheet, checking to be sure you have all five
sheets.

BE SURE to enter your last name on the sign-out log when turning in your completed exam.

Your last name

____________________________

Last name of classmates beside you (or "wall"/ "aisle")

On my left: ____________ On my right: _______________
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Problem 1:  (10 points) (two points each)

What is the type of each of the following Haskell expressions?  If an expression is invalid, briefly state
why.

Assume integers have the type Int.  Remember that String is a type synonym for [Char]— the two
can be used interchangeably. 

Important: Remember that the type of a function includes the type of the arguments as well as the
type of the value returned.

show 10

 
[1,'x']

head "tail"

zip

replicate 5 "a"

Problem 2:  (7 points)

This problem is like ftypes.hs on a3.  Write functions f1, f2, and f3 having each of the following
types.   There are no restrictions other than you may not use explicit type declarations.  (e.g. f1::...)
The functions are worth two, two, and three points, respectively.

f1 :: a -> b -> a

f2 :: a -> b -> [(b,a)]

f3 :: a -> [a] -> [a]
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Problem 3:  (16 points)

Without using any higher-order functions, write a function largers that takes a pair of equal-length
lists, L1 and L2, and returns a list R of the larger values, position by position.

That is, the first element of R is the larger of the first element in L1 and L2; the second element of R is the
larger of the second element in L1 and L2, etc.

Example:

> largers [7,3,9,5] [4,6,2,5]
[7,6,9,5]

> largers "turnip" "caveat"
"tuvnit"

> largers [] []
[]
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Problem 4:  (16 points)

Write a function chunks list lengths of type [a] -> [Int] -> [[a]] that breaks list
into a series of chunks whose lengths are specified by the elements of lengths.

Assume all lengths are greater than zero. 

> chunks [1..9] [3,2,3,1]
[[1,2,3],[4,5],[6,7,8],[9]]

> chunks "abcdefghi" [3,2,3,1]
["abc","de","fgh","i"]

> chunks "abcdefghi" [3,2]
["abc","de"]

> chunks "abcd" []
[]

If a length is encountered that's longer than what remains, chunks produces no further lists:

> chunks "abcd" [3,2,1]
["abc"]

> chunks "abcd" [5,2,1]
[]

My solution is recursive and uses take and drop.
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Problem 5:  (16 points)

Write a function printsums that takes a list of Int lists and prints, one-per-line, the position of each
list in turn (one-based!) and the sum of that list's elements.  Examples:

> printsums [[3,4],[9],[],[3,1,2]]
1: 7
2: 9
3: 0
4: 6

> printsums [[],[1,1,1],[]]
1: 0
2: 3
3: 0

If the list is empty, print "Empty!":

> printsums []
Empty!

My solution uses zip and sum.
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Problem 6:  (15 points)

Without writing any recursive code, write a function addRs that takes a non-empty string
and between each pair of characters inserts either '<' or '>' depending on the ordering relationship
between the two characters.

Example:

> addRs "abc"
"a<b<c"

The resulting string shows that 'a' < 'b' and 'b' < 'c'.

Two more examples:

> addRs "sorted"
"s>o<r<t>e>d"
    
> addRs "c"
"c"

As a simplification, assume characters are never equal.

My solution uses foldr.
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Problem 7:  (10 points) (two points each)

The following questions and problems are related to Haskell.

(1) As taught in this class, what's the recommended order of preference for if-then-else, guards,
and patterns?

(2) What would be awkward about implementing zip using folding?

(3) Rewrite the following function using guards:

f x = if x > 3 then 'a' else 'b'

(4) If a function f has the type String -> Int -> Char and is called with

f "testing"

what is the type of the value produced?  (If it's an error, explain why.)

(5) Is it possible to fold a list of  Bool values into a list of (String,[Int]) tuples?  Briefly
justify your answer.
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Problem 8:  (10 points) (two points each)

Briefly answer the following general questions.

(1) In any language you know, write an expression that has both a value and a side-effect. Cite the
language, too.

(2) With programming languages in general, what's the fundamental difference between a statement
and an expression?

(3) Cite a design decision related to Java's + operator.

(4) What does the syntax of a programming language specify?

(5) What does the semantics of a programming language specify?
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Extra Credit Section (½ point each unless otherwise noted)

(1) Martin came across the following Haskell expression on the net. Briefly, what is it doing?

(.) . (.)

(2) What's the key aspect of folding that Mr. Mitchell admits he didn't "get" when first teaching
functional programming?

(3) Write zip in Python.

(4) What is the title or who is the author of the book that allegedly caused the word "paradigm" to come
into popular use as in "programming paradigms"?

(5) We started the class with the quote, “A language that doesn't affect the way you think about
programming is not worth knowing.”  Who said it?

(6) Write a Haskell function samelen list1 list2 that returns True iff list1 and list2 are
the same length.  The only function you may use in your solution is samelen. (1 point)

(7) Write a good extra credit question related to the course material and answer it. (1 point)
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