
CSC 372 Final Exam
Tuesday, May 9 -or- Thursday, May 11

2023

READ THIS FIRST

Read this page now but do not turn this page until you are told to do so.  Go ahead and fill in the boxes
above with your last name and the last names of any classmates sitting beside you.

This is a 110-minute exam with a total of 100 points of regular questions and an extra credit section.

The last five  minutes of the exam is a "seatbelts required" period, to avoid distractions for those who are
still working.  If you finish before the "seatbelts required" period starts, you may turn in your exam and
leave.  If not, you must stay quietly seated—no "packing up"— until time is up for all.

You are allowed no reference materials whatsoever.

If you have a question, raise your hand.  We will come to you.  DO NOT leave your seat.

If you have a question that can be safely resolved with a minor assumption, like the name of a function or
the order of function arguments, state the assumption and proceed.

Feel free to use abbreviations, like "otw" for "otherwise".

It's fine to use helper predicates or procedures unless they are specifically prohibited or a specific form for
the function or predicate is specified.

Don't make a programming problem hard  by assuming that it needs to do more than is specifically
mentioned in the write-up or that the solution that comes to mind is "too easy."

If you're stuck on a problem, please ask for a hint. Try to avoid leaving a problem completely
blank—that's a sure zero.

It is better to put forth a solution that violates stated restrictions than to leave it blank—a solution with
violations may still be worth partial credit.

When told to begin, double-check that your name is at the top of this page, and then put your initials in
the lower right-hand corner of the top side of each sheet, checking to be sure you have all 16 sheets.

BE SURE to enter your last name on the sign-out log when turning in your completed exam.

Your last name

____________________________

Last name of classmates beside you (or "wall"/ "aisle")

On my left: ____________ On my right: _______________
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Problem 1:  (6 points)

Cite three things about programming languages you learned by watching your classmates' video projects.
Each of the three should be about a different language and have a bit of depth, as described in the Piazza
post that announced this problem.
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Problem 2:  (6 points)

Without writing any recursive code, write a Haskell function plusvals lst of type
[(Char, a)] -> [a], that returns a list of the second elements of the tuples whose first element is
'+'.  Examples:

> plusvals [('+',5),('-',7),('+',2)]
[5,2]

> plusvals [('a',5),('b',7),('c',2)]
[]

> plusvals [('*','t'),('+','h'),('+','i'),('/','s')]
"hi"

My solution uses the fst and snd functions, which return the first and second elements of 2-tuples,
respectively.

Problem 3:  (2 points)
Here is the procedure for a Prolog predicate named printN:

printN(0).
printN(N) :- N > 0, M is N - 1, printN(M), writeln(N).

Circle and label one example of each of these four elements: clause, fact, goal, rule.

Problem 4:  (1 point)
What's the biggest problem with the following Prolog programming problem?

"Write a predicate maxint(+List) that returns the largest integer in List."
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Problem 5:  (11 points)

Write a Prolog predicate wrap_with_each(+Word, +Chars, -Wrapped) that "wraps" Word
with each of the characters in Chars, instantiating Wrapped to each result in turn.

Assume that Word is an atom and that Chars is a list of one-character atoms.

My solution uses atom_chars(?Atom, ?CharList).

Examples:

?- wrap_with_each(ate, [d,s], W).
W = dated ;
W = sates.

?- wrap_with_each(ee, [p,d,s,e,z],W).
W = peep ;
W = deed ;
W = sees ;
W = eeee ;
W = zeez.

If called with an empty list of characters, wrap_with_each fails:

?- wrap_with_each(test, [], W).
false.
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Problem 6:  (6 points)

Write a Prolog predicate second(?S,?L) that expresses the relationship that S is the second
element in the list L.  second must provide all of the following behaviors:

second can get the second element from a list, failing if there are less than two elements:

?- second(X,[3,4,5]).
X = 4.

?- second(X, [3]).
false.

second can test whether the second element in a list has a specific value:

?- second(a, [t,a,c,k]).
true.

?- second(x, [t,a,c,k]).
false.

second can establish a constraint for the second element in a list that is more fully specified by
subsequent goals.

?- second(7,L), L=[X,X].
L = [7, 7],
X = 7.

?- second(7,L), length(L,5), last(L,end).
L = [_1704, 7, _1716, _1722, end].
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Problem 7:  (11 points)

Write a Prolog predicate prefixes(+List,+Min,-Prefixes) that instantiates Prefixes to a
list that contains the prefixes of Listthat are at least Min elements long.

Examples:

?- prefixes([a,b,c,d,e],2,Ps).
Ps = [[a, b], [a, b, c], [a, b, c, d], [a, b, c, d, e]].

?- prefixes([a,b,c],3,Ps).
Ps = [[a, b, c]].

?- prefixes([a,b,c],4,Ps).
Ps = [].

?- prefixes([],0,Ps).
Ps = [[]].

My solution uses findall.
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Problem 8:  (12 points)

This problem is like the pit-crossing example in the slides and connect.pl on assignment 6,
although greatly simplified.

Write a Prolog predicate find_combo(+Ints, +Goal, -Combo) that finds a combination of one
or more values from the list Ints whose sum is Goal. Assume that Ints contains only integers.

Examples:

?- find_combo([3,1,5,2],10,Combo).
Combo = [3, 5, 2] .

?- find_combo([3,1,5],4,Combo).
Combo = [3, 1] .

If there is no combination of values from Ints whose sum is Goal, find_combo fails:

?- find_combo([3,1,5],7,Combo).
false.

There may be many combinations of values that satisfy a given call to find_combo.  Only the first
satisfying combination is requested in the examples above but it is fine for your solution to produce all
possible combinations.

Remember that the predicate select(?E, ?L, ?R) will select, one by one, each element in the list L
and instantiate R to the remaining values:
  ?- select(E, [3,1,5], R).
  E = 3,
  R = [1, 5] ;

  E = 1,
  R = [3, 5] ;

  ...
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IMPORTANT

Three Racket programming problems, vequal?, let-vars, and
store follow.  Each is worth 16 points.  We will grade all three

problems and count your best two scores of the three.

Problem 9:  (16  points)

Write a Racket procedure vequal? that is like a variadic equal?—it returns #t if all of its
arguments are equal to each other, as determined by equal?.

Examples:

> (vequal? 'a 'a 'a)
#t

> (vequal? 3 3 3 4)
#f

If vequal? is called with less than two values it returns #t:

> (vequal?)
#t
> (vequal? 7)
#t

Note: your solution will surely need to use the equal? procedure.  Something like
(apply = '(a a a)) might cross your mind but although = is variadic, it only works with numbers.
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Problem 10:  (16 points)

This problem is similar to pinfo on assignment 7.  You are to write a Racket procedure let-vars
that takes a Racket expression and, if it is a let or let* form, return a list of the variables
bound by the let (or let*).  Examples:

> (let-vars '(let ([x 3][a 5]) (< x (* a 2))))
'(x a)

> (let-vars '(let* ([args (drop-right args 0)]
                    [num-args (length args)]
                    [either (if (empty? args) 3
                                (add1 num-args))]) 'result))
'(args num-args either)

> (let-vars '(let () 3))
'()

If the form is not a let or let*, let-vars returns #f:

> (let-vars '(lettuce ([i 0]) (add1 i)))
#f
> (let-vars '(define j 3))
#f

Assume the forms are valid.  You won't see something like (let-vars '(let a 3 b 4))

DO NOT worry about lets nested inside lets; only analyze the top-level expression:

> (let-vars '(let ([a 4]) (let ([b 5]) (+ a b))))
'(a)  ; NOTE: does *not* reflect the nested let that binds b!

Reminder: You must handle both let and let*!

You may write your solution below, or on the next page.
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(Space for solution for let-vars.)

For reference:

> (let-vars '(let ([x 3][a 5]) (< x (* a 2))))
'(x a)

> (let-vars '(let* ([args (drop-right args 0)]
                    [num-args (length args)]
                    [either (if (empty? args) 3
                                (add1 num-args))]) 'result))
'(args num-args either)

> (let-vars '(let () 3))
'()
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Problem 11:  (16 points) 

For this problem you are to write three simple Racket procedures that store and fetch values associated
with names.  The examples below show running store.rkt and then making calls to the three
procedures.

The store procedure associates a name with a value.  fetch prints the value associated with a specified
name.  Names are assumed to be symbols; values can be of any type.  Examples:

% rk/i store.rkt
> (store 'x 5)

> (store 'color "yellow")

> (fetch 'color)
yellow

> (fetch 'x)
5

A store with a name that's already been used, or a fetch with an unknown name, produce errors:

> (store 'x 10)
Duplicate

> (fetch 'z)
Not found

Finally, names prints a sorted, comma-separated list of names for values that have been stored:

> (names)
color, x

There is no persistence between runs.  If we reload store.rkt, we see that previously created names
are gone:

% rk/i store.rkt
> (fetch 'x)
Not found

> (names)
No names

Important: Note that (names) prints "No names" if no stores have yet been done.

There is space for your solution on the next page.
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(Space for solution for store/fetch/names.)

For reference:

> (names)
No names
> (store 'a "this is a")
> (store 'a 7)
Duplicate
> (fetch 'a)
this is a
> (fetch 'b)
Not found
> (store 'c 10)
> (names)
a, c

For names, my solution uses string-join:
   > (string-join '("a" "b" "c") ", ")
   "a, b, c"
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Problem 12:  (4 points)

Write a Racket macro that mimics the postfix form of Java's ++ operator.  Recall that we've learned
that "the value of i++ is i" (whatever i is), and that the increment of i is a side-effect.

Here's the ++ macro in operation:

> (define i 7)
> (++ i)
7
> i
8
> (define j (++ i))
> j
8
> i
9

Half the value of this problem is having (++ var) produce the correct value; the other half is
having the correct side-effect.
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Problem 13:  (5 points) (1 point each)

The following questions and problems are related to Racket.

(1) What is it about (define x 7) that requires define to be a special form?

(2) What's the very-important promise that Scheme and Racket make about tail-recursive calls in
procedures?

(3) What built-in Racket procedure produces the type of a value?  (In other words, what is the Racket
analog for Python's type(...) function?)

(4) Write a Racket expression that creates a pair that is not a list.  That is, create an x such that
(pair? x) is true but (list? x) is false.

(5) In a Racket procedure name like x->y, what does -> typically indicate?  Similarly, if a the name
of a procedure or special form ends with asterisk, like x*, what does that indicate? 
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Problem 14:  (2 points) (1 point each)

The following questions about SNOBOL4 are worth one point each.  You may answer as many as you
want but the maximum score on this problem is two points.

(1) What's significant about the names input and output?

(2) If successful, what's the side effect of the following pattern match statement?
loop line span(&digits) = 

(3) Write a statement that concatenates the values of a and b, and assigns the result to c.

(4) If the very first line in a program is x = x + 5, what happens?

(5) In the following statement, what does :(t) mean?
x = gt(x,0) 0   :(t)

Problem 15:  (2 points) (1 point each)

The following questions about Icon are worth one point each.  You may answer as many as you want but
the maximum score on this problem is two points.

(1) Aside from one-based indexing in Icon, what's a very significant difference between strings in Icon
and Python?

(2) Assuming that + and || are of equal precedence and left associative, what value is produced by
the following Icon expression?  3 || "4" + 5

(3) What two modes of computation in SNOBOL4 does Icon's string scanning facility endeavor to
unify?

(4) What does write(read()[10]) do if a line having only five characters is read?

(5) Originally, the Icon project had two separate research focuses.  Name either of them.
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Extra Credit Section (½ point each unless otherwise noted)

(1) The first paper on Lisp was "Recursive Functions of Symbolic Expressions and Their Computation
by Machine, Part I".  What was especially notable about Part II?

(2) Who is regarded as the creator of Lisp?

(3) Write a Prolog predicate oddlen(+L) that succeeds iff the list L has a odd number of elements.
Restrictions: Your implementation may have only one clause and use only the predicates append
and length.  It may use the [E1, E2, ..., EN] list syntax, but not the

         [E1, E2, ... | Tail] form. (In short, like append.pl on  assignment 6.)

(4) In the Racket slides we saw some examples of (time expr), to evaluate expr and report the
time spent (and more). Is time a special form? Justify your answer.

(5) What's the basic capability provided by Racket's "named-let"?

(6) Speculate: What does the following SNOBOL4 code do?
  punch = 'HELLO'

(7) Name three programming languages that have been created at The University of Arizona.

(8) Almost 40 years ago the name "lectura" was chosen for the department's instructional timesharing
system, a VAX-11/785.  Who suggested that name?  (Hint: It wasn't whm!)

(9) UA professor Murray Sargent III was instrumental in attracting Ralph Griswold to The University of
Arizona.  In what department was Sargent a professor?

(10) On his first day here, what was notably lacking from Ralph Griswold's office?

(11) What do you think you will most remember from 372? (1 point)

(12) Write a good extra credit question related to the course material and answer it. (1 point)
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